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Second-order mean-field susceptible-infected-susceptible epidemic threshold
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Given the adjacency matrix A of a network, we present a second-order mean-field expansion that improves
on the first-order N -intertwined susceptible-infected-susceptible (SIS) epidemic model. Unexpectedly, we found
that, in contrast to first-order, second-order mean-field theory is not always possible: the network size N should
be large enough. Under the assumption of large N , we show that the crucial and characterizing quantity, the SIS
epidemic threshold τc, obeys an eigenvalue equation, more complex than the one in the first-order N -intertwined

model. However, the resulting epidemic threshold is more accurate: τ (2)
c = τ (1)

c + O( τ
(1)
c

N
), where the first-order

epidemic threshold is τ (1)
c = 1

λ1(A) and where λ1(A) is the spectral radius of the adjacency matrix A.

DOI: 10.1103/PhysRevE.85.056111 PACS number(s): 89.75.Hc, 89.20.−a

I. SUSCEPTIBLE-INFECTED-SUSCEPTIBLE EPIDEMICS

We consider a virus spread in an undirected graph G(N,L)
with N nodes and L links specified by a symmetric adjacency
matrix A. The state of a node i is specified by a Bernoulli
random variable Xi ∈ {0,1}: Xi = 0 for a healthy node and
Xi = 1 for an infected node. A node i at time t can be in one
of two states: infected, with probability vi(t) = Pr[Xi(t) = 1]
or healthy, with probability 1 − vi(t), but susceptible to the
virus. We assume that the curing process per node i is a
Poisson process with rate δ, and that the infection rate per
link is a Poisson process with rate β. This is the general
description of the simplest type of a susceptible-infected-
susceptible (SIS) virus spread model in a network, to which we
confine ourselves in this article, although other variants such as
susceptible-infected-recovered (SIR) exist [1]. This SIS model
can be expressed exactly in terms of a continuous-time Markov
model with 2N states as shown in Ref. [2]. Unfortunately,
the exponentially increasing state space with N prevents the
determination of the set of {vi(t)}1!i!N in realistically sized
complex networks, which has triggered a spur of research to
find good approximate solutions.

A remarkable property of the SIS model is the appearance of
a phase transition [3,4] when the effective infection rate τ = β

δ
approaches the epidemic threshold τc. Below the epidemic
threshold, τ < τc, the network is virus free in the steady state,
while for τ > τc, there is a fraction of nodes that remains
infected for an exponentially long time. The knowledge of
the epidemic threshold τc for any graph is an important
practical tool to predict and avoid infections in networks.
Numerous immunization strategies [5,6] exist that modify
(mostly increase) the epidemic threshold τc. In spite of some
asymptotic results [7], the determination of the epidemic
threshold τc for an arbitrary graph is still a surprisingly difficult
open problem. The simple SIS epidemics is considered as a
first-order model for real virus spread, both in cyberspace
as in the real world; the real epidemics can only be more
complex. Hence, our currently inaccurate knowledge of the
epidemic threshold τc in the simplest SIS model even gains
in gravity when realizing that real biological virus epidemics
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(like Sars, Mexican flu, etc.) are believed to be an imminent
threat to the human population. The role of the network plays
an increasingly crucial role due to the mobility and speed
of encounters of possibly infected nodes. These arguments
motivate our goal to determine the SIS epidemic threshold τc
in an arbitrary graph, given its adjacency matrix A.

In computer science, Ganesh et al. [8] and Wang et al. [9]
made progress on the simple SIS epidemics in networks. Later,
the Wang et al. discrete-time model [10] was corrected, after
which it was also noticed by the physics community [11].
Pastor-Satorras and Vespignani [12] proposed a solution to SIS
epidemics on random networks, rather than on fixed networks.
Hence, instead of starting from a given and total network
description via the adjacency matrix A, the neighbor degree,
in probabilistic sense, was the central network representative.
Based on the Pastor-Satorras and Vespignani heterogeneous
mean-field model (HMF) [12], a large amount of subsequent
work on the epidemic threshold appeared [3].

Here, we approximate the SIS epidemics in any graph
by subsequent order expansions. The first-order mean-field
expansion that approximates E[Xi] has been proposed earlier
in Ref. [2] and was called the N -intertwined SIS epidemic
model, which is briefly reviewed in Sec. II. The analytic
tractability, extensions, and several insights on epidemics
deduced from the N -intertwined SIS epidemic model are
shown in Ref. [13]. In particular, the first-order epidemic
threshold equals τ (1)

c = 1
λ1(A) ! τc, where λ1(A) is the largest

eigenvalue of the adjacency matrix. Section III presents the
second-order mean-field expansion that approximates the joint
moments E[XiXj ] = Pr[Xi = 1,Xj = 1] between any two
nodes i and j in the graph G. The major insights that we can
draw from our study are twofold: (a) Although in most cases,
increasingly higher-order expansions are more accurate, these
higher-order expansions are not always physically meaningful
and, hence, sometimes impossible. (b) When possible though,
we show that the second-order approximation of the epidemic
threshold τ (2)

c is again equal to the inverse of the largest
eigenvalue of some matrix H , specified in Eq. (8), and that
τ (2)
c = τ (1)

c + O( τ
(1)
c

N
). This result is in line with expectations: a

second-order approximation returns a more accurate epidemic
threshold τ (2)

c than the first-order τ (1)
c . The drawback of the

second-order mean-field expansion is that the relation of the
matrix H to the underlying network is far less intuitive than
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for the adjacency matrix A, that is prominent in the first-order
mean-field expansion.

II. FIRST-ORDER MEAN-FIELD APPROXIMATION:
THE N-INTERTWINED

SUSCEPTIBLE-INFECTED-SUSCEPTIBLE
EPIDEMIC MODEL

In Ref. [2], a mean-field approximation is presented that
replaces the random variable

∑N
j=1 aijXj (t) of the number of

infected neighbors of node i by its expectation
∑N

j=1 aij vj (t),
leading to

dvi(t)
dt

= β[1 − vi(t)]
N∑

j=1

aij vj (t) − δvi(t). (1)

The governing differential Eq. (1) in the N -intertwined model
for each node i ∈ G has the following physical interpretation:
the time derivative of the infection probability of a node i
consists of two competing processes: (i) while healthy with
probability [1 − vi(t)], all infected neighbors, of which there
are expected to be

∑N
j=1 aij vj (t), try to infect the node i with

rate β and (ii) while infected with probability vi(t), the node i
is cured at rate δ.

Writing the set of Eqs. (1) for all nodes in matrix form with
the vector

v(t) = [ v1(t) v2(t) · · · vN (t) ]T

we arrive at

dv(t)
dt

= diag[1 − vi(t)]βAv(t) − δv, (2)

where diag[vi(t)] is the diagonal matrix with elements
v1(t),v2(t), . . . ,vN (t).

Omitting the time dependence, the governing Eq. (1) is
rewritten in terms of expectations with vi = Pr[Xi = 1] =
E[Xi] as

dE[Xi]
dt

= E



−δXi + β(1 − Xi)
N∑

j=1

aijE[Xj ]



 , (3)

which should be compared with the exact companion in Eq. (5)
below. The first-order approximation consists of replacing
E[XiXj ]

E[XiXj ] = Pr[Xi = 1,Xj = 1]

= Pr[Xj = 1|Xi = 1] Pr[Xi = 1]

by E[Xi]E[Xj ] = Pr[Xi = 1] Pr[Xj = 1]. Because a given
infection at node i cannot cure another node j , but
can only positively influence the probability of infection
at node j , it holds that Pr[Xj = 1|Xi = 1] " Pr[Xj = 1]
and E[XiXj ] " E[Xi]E[Xj ]. Hence, the replacement of
E[XiXj ] by E[Xi]E[Xj ] results in a more positive
right-hand side in Eq. (3). Consequently as reported in
Ref. [2], the first order approximation in the N -intertwined
SIS model upperbounds the exact probability vi(t) of
infection.

III. SECOND-ORDER MEAN-FIELD APPROXIMATION
AND JOINT EXPECTATIONS E[Xi X j ]

In this section, we consider the joint expectation E[XiXj ]
that satisfies for i #= j ,

dE[XiXj ]
dt

= E

[

−2δXiXj + βXj (1 − Xi)
N∑

k=1

aikXk + βXi(1 − Xj )
N∑

k=1

ajkXk

]

= −2δE[XiXj ] + β

N∑

k=1

aikE[XjXk] + β

N∑

k=1

ajkE[XiXk] − β

N∑

k=1

(aik + ajk)E[XiXjXk] (4)

and when i = j ,

dE[Xi]
dt

= E



−δXi + β(1 − Xi)
N∑

j=1

aijXj



 . (5)

Indeed, in a time-dependent Markov process, we can ignore the occurrence of multiple events in the arbitrarily small time interval
[t,t + dt]. The right-hand side of the first equation states that the change in the joint expectation is due to a curing or an infection
in either node i or node j (not in both due to the Markov property). Thus, curing of node i contributes to the change in the
product XiXj by (−δXi)Xj and curing in node j by Xi(−δXj ). The infection contribution is similarly deduced.

The second-order mean-field approximation consists of replacing
∑N

k=1;k #=i,j ajkE[XiXjXk] by E[XiXj ]
∑N

k=1;k #=i,j

ajkE[Xk]. We arrive at

dE[XiXj ]
dt

= −2δE[XiXj ] + β

N∑

k=1

aikE[XjXk] + β

N∑

k=1

ajkE[XiXk] − βE[XiXj ]
N∑

k=1;k #=i,j

(aik + ajk)E[Xk] − 2βaijE[XiXj ]
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or, rewritten as

dE[XiXj ]
dt

= −2(δ + βaij )E[XiXj ] + β

N∑

k=1

aikE[XjXk] + β

N∑

k=1

ajkE[XiXk] − βE[XiXj ]
N∑

k=1

aikE[Xk]

+βaijE[XiXj ]E[Xj ] − βE[XiXj ]
N∑

k=1

ajkE[Xk] + βajiE[XiXj ]E[Xi].

When i = j , we do not need to make any approximation,

dE[Xi]
dt

= −δE[Xi] + β

N∑

j=1

aijE[Xj ] − β

N∑

j=1

aijE[XiXj ].

We define the symmetric matrix Z with elements zij = zji = E[XiXj ] when i #= j , and zii = E[X2
i ] = E[Xi] = vi . Again as

in the first-order mean-field N -intertwined model, we define the vector v such that vi = E[Xi]. The governing set of differential
equations is

dzij

dt
= −2(δ + βaij )zij + β

N∑

k=1

aikzkj + β

N∑

k=1

ajkzki − βzij

N∑

k=1

(aik + ajk)vk + βaij zij (vi + vj ) if i #= j

(6)
dzii

dt
= dvi

dt
= −δvi + β

N∑

k=1

aikvk − β

N∑

k=1

aikzki if i = j.

In the second-order approximation, we replace, for i #= j ,
i #= k, and j #= k,

E[XiXjXk] = Pr[Xi = 1,Xj = 1,Xk = 1]

= Pr[Xk = 1|Xi = 1,Xj = 1] Pr[Xi = 1,Xj = 1]

by E[XiXj ]E[Xk]. Since an infection at nodes i and j can
only negatively affect the state of infection in node k in the
sense that node k can only get infected (not cured), we have
that

Pr[Xk = 1|Xi = 1,Xj = 1] " Pr[Xk = 1].

Hence, similarly as in the first-order approximation, the
second-order approximation upper bounds the exact infec-
tion pair correlation E[XiXj ]. Because the pair correlation
E[XiXj ] is taken into account, the second-order approxi-
mation is more accurate than the first-order, that assumes
independence.

Before proceeding, we observe that the above method
is readily extended to a third-order approximation in
E[XiXjXk], in which the fourth-order term E[XiXjXkXl] is
replaced by E[XiXjXk]E[Xl]. Using the same arguments as
above, that third-order expansion again upper bounds the exact
SIS model. In conclusion, the method can be generalized to any
order m < N using the same type of replacement in the joint
moments, which always leads to an upper bound. Subsequent
order expansions are increasingly accurate, but the mth order
expansion involves Nm unknowns to be solved. Somewhere, a
tradeoff between computational complexity and accuracy will
determine what order is appropriate. In future work, we plan to
concentrate on m = 2 and show what can be concluded about
the steady state and the approximation τ (2)

c of the epidemic
threshold τc.

A. Fundamental limitation

When N ! 5 is small, however, numerical computations
have shown that the resulting set of differential equations (6)
can be unstable (in the sense that zij = Pr[Xi = 1,Xj = 1] can
grow unboundedly, which is meaningless). The discovery of
such anomalies in small networks is understandable, because
in the exact SIS Markov model with 2N states, there is
no epidemic threshold and the steady state is the healthy
network state (due to the absorbing state in the Markov
chain). The observed instability of the set (6) is caused
by the fact that given all E[XiXj ], there might not exist
a distribution for which the replacement of E[XiXjXk]
by E[XiXj ]E[Xk] is valid, while, in the first-order mean-
field approximation, for all choices of E[Xi], the inde-
pendent distribution can be chosen such that E[XiXj ] =
E[Xi]E[Xj ].

Let us consider in Eq. (4) the term, approximated in the
second-order mean-field expansion,

N∑

k=1

(aik + ajk)E[XiXjXk]

= 2aijE[XiXj ] +
N∑

k=1;k #=i,j

(aik + ajk)E[XiXjXk]

and denote rijk = E[XiXjXk]. Since Xk is a Bernoulli random
variable,

rijk = E[XiXjXk] = Pr[Xi = 1,Xj = 1,Xk = 1]

we can write the seven remaining possible combinations of
zero and ones as a function of rijk . For example,

Pr[Xi = 1,Xj = 1,Xk = 0] = E[XiXj ] − rijk = zij − rijk
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and

Pr[Xi = 1,Xj = 0,Xk = 1] = zik − rijk

Pr[Xi = 0,Xj = 1,Xk = 1] = zjk − rijk,

from which rijk ! min(zij ,zik,zjk). Further, from

Pr[Xi = 1,Xj = 0,Xk = 0] + Pr[Xi = 1,Xj = 0,Xk = 1]

= Pr[Xi = 1,Xj = 0] = E[Xi] − zij

it follows that

Pr[Xi = 1,Xj = 0,Xk = 0] = vi − zij − zik + rijk.

Thus, since all probabilities must lie between 0 and 1, a set
of bounds for rijk can be deduced. The argument shows that
replacement of rijk = E[XiXjXk] by E[XiXj ]E[Xk] = zij vk

needs to be checked. For example, if vk is close to one
and zij > zik and zij > zjk , then rijk replaced by zij vk may
violate the general bound rijk ! min(zij ,zik,zjk) for three
Bernoulli random variables. There does not seem to be an
easy way to incorporate these probabilistic limitations into the
set of differential equations. It turns out that the second-order
mean-field approximation is valid for sufficiently large N
and we will illustrate possible unrealistic consequences for
smaller N .

B. The steady state

The steady state is characterized by dzij

dt
= 0 and

limt→∞ zij = zij∞, that obeys the set of nonlinear equations
(defining τ = β/δ)

0 = −(1 + τaij )zij∞ + τ

2

N∑

k=1

aikzkj∞ + τ

2

N∑

k=1

ajkzki∞ − τ

2
zij∞

N∑

k=1

(aik + ajk)vk∞ + τ

2
aij zij∞(vi∞ + vj∞) if i #= j

0 = −vi∞ + τ

N∑

k=1

aikvk∞ − τ

N∑

k=1

aikzki∞ if i = j.

The corresponding matrix form, valid for the off-line diagonal elements, is

0 = −(I + τA) • Z∞ + τ

2
(AZ∞ + Z∞A) − τ

2
{diag[(Av∞)i]Z∞ + Z∞diag[(Av∞)i] − A • [Z∞diag(v∞i) + diag(v∞i)Z∞]},

where (R • S)ij = rij sij . The diagonal elements obey the
vector equation (defining u as the vector of all ones)

−v∞ + τAv∞ − τdiag[(AZ∞)ii]u = 0.

In order to obtain a matrix equation that is valid for all entries,
we need to correct the diagonal elements and arrive at

0 = −(I + τA) • Z∞ + τ

2
(AZ∞ + Z∞A)

− τ

2
{diag[(Av∞)i]Z∞ + Z∞diag[(Av∞)i]

−A • [Z∞diag(v∞i) + diag(v∞i)Z∞]}
+ τdiag((Av∞)i − 2(AZ∞)ii + {diag[(Av∞)i]v∞}i).

Just as in the first-order mean-field approximation [2], the
trivial solution is Z∞ = 0 and v∞ = 0. The epidemic threshold
τc specifies the value of τ at which the first nonzero solution
for elements of Z∞ appear. In order to find this critical value of
τ , we consider the solution of the above steady-state equation
with very small norm. This means that the second-order terms
(i.e., products of elements of Z∞ and v∞) become negligible,
and we end up with

0 = −Z∞ − τA • Z∞ + τ

2
(AZ∞ + Z∞A)

+ τdiag[(Av∞)i − 2(AZ∞)ii].

We proceed by vectorizing this matrix equation and define
vec(Z∞), the (N2 × 1) vector consisting of all elements of Z
columnwise (see Ref. [14], p. 254),

vec(Z∞) = (z11,z21, . . . ,zN1,z12,z22, . . . ,

zN2, . . . ,z1N,z2N, . . . ,zNN )

We define the N2 × N2 diagonal matrix M by mjj =
1{j=(i−1)N+i} for 1 ! i ! N , where 1x is the indicator function,
so that Mvec(Z) = (z11,0, . . . ,0,z22,0, . . . ,z33,0, . . .). Then,
using the Kronecker product ⊗ and J = u.uT is the all-one
matrix, we have

0 = −vec(Z∞) − τ {diag[vec(A)]}vec(Z∞)

+ τ

2
{IN ⊗ A + A ⊗ IN }vec(Z∞)

+ τM(A ⊗ J )Mvec(Z∞) − 2τM(A ⊗ IN )vec(Z∞),

which is written as an eigenvalue equation

Hvec(Z∞) = 1
τ

vec(Z∞), (7)

where the N2 × N2 matrix H is

H = 1
2 {IN ⊗ A + A ⊗ IN } − diag[vec(A)]

+M{(A ⊗ J )M − 2(A ⊗ IN )} (8)

with zero diagonal elements.
The first nonzero solution of Z∞, satisfying all symmetry

properties, occurs when vec(Z∞) is the eigenvector of H
belonging to the largest eigenvalue λ1(H ) = 1

τ1
so that τ1 is,

indeed, the smallest value of τ at which Z∞ contains nonzero
elements. Hence, the epidemic threshold deduced from the
second-order mean-field expansion obeys

τ (2)
c = 1

λ1(H )
(9)

and it remains to specify λ1(H ) in terms of the eigenstructure
of the adjacency matrix A of the network.
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1. Possible unrealistic solution

We remark that H contains negative elements and is
not symmetric (because of the last matrix M(A ⊗ IN ) due
to diag[(AZ∞)ii] that only selects from AZ∞ the diagonal
elements via M). For example, we see that

{IN ⊗ A + A ⊗ IN } = {IN ⊗ A + A ⊗ IN }T

and

[M(A ⊗ J )M]T = MT (A ⊗ J )T MT

= M(AT ⊗ J T )M = M(A ⊗ J )M

are symmetric. Moreover,

M(A ⊗ IN )vec(Z∞) = M(I ⊗ A)vec(Z∞)

= 1
2M{IN ⊗ A + A ⊗ IN }vec(Z∞)

illustrating that there are different expressions of H but the
matrix

(M{IN ⊗ A + A ⊗ IN })T

= {IN ⊗ A + A ⊗ IN }.M #= M.{IN ⊗ A + A ⊗ IN }

is not symmetric.
It is well known that, if a matrix H is not symmetric,

its eigenvalues and eigenvector can be complex. Moreover,
H is not non-negative, which means that the eigenvector
components belonging to λ1(H ) are not necessarily positive (at
least, the Perron-Frobenius theorem [14], that guarantees non-
negative eigenvector components, is not applicable). Finally,
even when the eigenvector w1 of H belonging to λ1(H ) has
non-negative components, it represents vec(Z∞), in which
Z∞ = ZT

∞ is symmetric (and very likely positive definite).
Hence, w1 should possess additional symmetry properties. In
particular for small N , such unrealistic solutions for vec(Z∞)
and λ1(H ) can occur. However, when N is sufficiently large,
their occurrence (based on some numerical checks) rapidly
seems to decrease. Unfortunately, we cannot indicate for which
N these finite size effects disappear.

Assuming that N is large enough, we can continue as
follows.

2. The epidemic threshold τ (2)
c

We know ([14], p. 254) that the largest eigenvalue of
the non-negative matrix 1

2 {IN ⊗ A + A ⊗ IN } equals λ1(A),
which leads to the first-order estimate of the epidemic
threshold τ (1)

c = 1
λ1(A) . The corresponding eigenvector is y1 =

x1 ⊗ x1, where x1 is the eigenvector of A belonging to λ1(A).
The matrix

R = MT (A ⊗ J )M − 2M(A ⊗ IN ) − diag[vec(A)]

is not symmetric, relatively sparse, and can be regarded as a
second-order correction to the first-order approximation in the
N -intertwined model. The sums of the elements in R,

uT MT (A ⊗ J )Mu = 2L = uT Au

uT M[(A ⊗ IN )]u = 2L

uT diag[vec(A)]u = 2L

imply that uT Ru = −4L, while uT ( 1
2 {IN ⊗ A + A ⊗ IN })

u = 2LN . Hence, the Rayleigh principle [14] shows that

λ1(H ) " uT Hu

uT u
= 2LN − 4L

N2

= 2L

N

(
1 − 2

N

)
= E[D]

(
1 − 2

N

)
,

where E[D] is the average degree of the network. The
correction matrix R is expected to have the effect to lower the
largest eigenvalue so that λ1(H ) < λ1(A). We will elaborate
this important observation in the remainder of this section.

Let us apply the Rayleigh principle, taking into account that
xT

1 x1 =
∑N

k=1(x1)2
k = 1 and so yT

1 y1 = 1,

λ1(H ) " yT
1 Hy1 = λ1(A) + yT

1 Ry1

where

yT
1 Ry1 =

(
xT

1 ⊗ xT
1

)
M(A ⊗ J )M(x1 ⊗ x1)

− 2
(
xT

1 ⊗ xT
1

)
M(A ⊗ IN )(x1 ⊗ x1)

−
(
xT

1 ⊗ xT
1

)
diag[vec(A)](x1 ⊗ x1)

=
N∑

m=1

N∑

k=1

(x1)2
mamk(x1)2

k − 2
(
xT

1 ⊗ xT
1

)
M

× (Ax1 ⊗ INx1) −
N∑

m=1

N∑

k=1

(x1)2
mamk(x1)2

k

= −2λ1(A)
(
xT

1 ⊗ xT
1

)
M(x1 ⊗ x1)

= −2λ1(A)
N∑

k=1

(x1)4
k.

Hence,

λ1(H ) " λ1(A)

(

1 − 2
N∑

k=1

(x1)4
k

)

.

Further, using
∑N

k=1(x1)4
k ! max1!k!N (x1)2

k

∑N
k=1(x1)2

k =
max1!k!N (x1)2

k and the Cauchy-Schwarz inequality, we find
the bounds

1
N

!
N∑

k=1

(x1)4
k ! max

1!k!N
(x1)2

k < 1.

In conclusion, the lower bound of λ1(H ) is at most λ1(A)
(1 − 2

N
).

Let w1 be the normalized eigenvector of H belonging to the
largest eigenvalue λ1(H ). The vector w1 must all have non-
negative components because they reflect values of the joint
moments E[XiXj ] " 0. Again, application of the Rayleigh
principle shows that

λ1(H ) ! λ1(A) + wT
1 Rw1.

As shown above, the sum of the elements of R, uT Ru = −4L,
is negative and wT

1 Rw1 is a weighted sum of R’s elements,
which, we argue, is negative. The matrix R1 = MT (A ⊗ J )M
contains precisely the same nonzero elements, equal to the
adjacency elements aij , as R2 = M[(A ⊗ IN )], though on
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different positions, so that

wT
1 R1w1 − 2wT

1 R2w1

=
N∑

m=1

N∑

k=1

[(R1)mk − 2(R2)mk](w1)m(w1)k

is likely negative (due to the factor 2). In addition, since
wT

1 diag[vec(A)]w1 > 0, the quadratic form

wT
1 Rw1 = wT

1 R1w1 − 2wT
1 R2w1 − wT

1 diag[vec(A)]w1

is negative with overwhelming probability for sufficiently
large N .

In conclusion, for sufficiently large N ,

λ1(A)

(

1 − 2
N∑

k=1

(x1)4
k

)

! λ1(H ) ! λ1(A) −
∣∣wT

1 Rw1
∣∣

and these bounds, together with λ1(H ) " E[D](1 − 2
N

), sug-
gest that λ1(H ) ( (1 − 2

N
)λ1(A) ( λ1(A) − O( λ1(A)

N
). Equiv-

alently, the epidemic threshold in the second-order approx-
imation shifts to slightly higher values, thus τ (2)

c ( τ (1)
c +

O( 1
N
τ (1)
c ) ! τc. The latter bound follows from the general con-

sideration that subsequent higher-order mean-field expansions
upper bound the real infection probability.

3. Examples

The epidemic threshold τ (2)
c = 1

λ1(H ) has been numerically
computed, ignoring the possible imaginary part of the eigen-
values of the N2 × N2 matrix H in Eq. (8). For large N ,
Im[λ1(H )] is much smaller than Re[λ1(H )], which justifies
the neglect of Imλ1(H ). All numerical examples confirm that
τ (2)
c = 1

λ1(H ) > τ (1)
c = 1

λ1(A) as made plausible in Sec. III B2.
For the complete graph KN , we found that Re[λ1(H )] =

N − 2, whereas λ1(A) = N − 1, so that τ (2)
c = 1

N−2 > τ (1)
c =

1
N−1 . For a star, we found approximately that {Re[λ1(H )]} 2 (
0.53N − 1.3, whereas λ2

1(A) = N − 1, implying that τ (2)
c is

significantly larger than τ (1)
c . Figure 1 illustrates that τ (2)

c =
1

λ1(H ) > τ (1)
c = 1

λ1(A) for the line topology or path with N −
1 hops, which has the smallest largest adjacency eigenvalue
among all connected graphs ([14], p. 125) with N nodes, thus
suggesting (and in line with physical expectation) the highest
possible epidemic threshold τc.

FIG. 1. (Color online) The largest eigenvalues of A and H for the
line topology on N nodes.

FIG. 2. (Color online) The largest eigenvalues of A and H for two
realizations of the ER graph with link density p = 0.1 (conditioned
to be connected) versus N nodes.

Figure 2 shows the largest eigenvalues of A and H
in two realizations of connected Erdős-Rényi (ER) graphs
Gp(N ) with link density p = 0.1. The growth of Gp(N )
with N is constructed so that each lower-sized ER graph
is a subgraph [i.e., G0.1(n1) ⊂G0.1(n2) when n1 < n2]. The
difference λ1(A) − λ1(H ) per realization (hollow versus filled
markers in Fig. 2) is remarkably constant.

IV. CONCLUSION

Given an arbitrary network with adjacency matrix A, an
accurate determination of the epidemic threshold τc in the
SIS model remains a challenging quest. We have shown a
second-order mean-field expansion that improves the accuracy
over a first-order mean-field approximation at the price of a
substantially more complex, but still feasible computation.
Moreover, our analysis provides the computation of the joint
moment or pair correlation E[XiXj ] = Pr[Xi = 1,Xj = 1]
between any pair i and j of nodes in the network. Whereas
the first-order N -intertwined model gives the mean frac-
tion y(τ ) = E[

∑N
j=1 Xj ] of infected nodes, the proposed

second-order mean-field expansion allows us to compute the
corresponding variance of the fraction of infected nodes,
Var[

∑N
j=1 Xj ]. Recently, Gleeson [15] proposed a pairwise

approximation, which can be regarded as a second-order
improvement of the Pastor-Satorras and Vespignani HMF [12].
Although Gleeson [15] addressed the same problem, our
approach has the advantage to upper bound the epidemic pair
correlation E[XiXj ] = Pr[Xi = 1,Xj = 1] and to provide a
closed form expression (9) for any graph.

High-order mean-field expansions are argued to provide
tight upper bounds to the exact solution, resulting in a sequence
of more accurate lower bounds for the epidemic threshold τc "
· · · " τ (m)

c " τ (m−1)
c " · · · " τ (2)

c = 1
λ1(H ) " τ (1)

c = 1
λ1(A) . As

an inherent drawback, the solution of the corresponding
eigenvalue equation, such as (7) for m = 2, is not always
guaranteed to be physically correct, but very likely when the
network size N is sufficiently large.

One may argue that high-order mean-field expansions may
not be the most suitable device to determine the epidemic
threshold τc accurately. Finding additional structure in the
exact Markov infinitesimal generator given in Ref. [2] may
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present a viable alternative. Another currently addressed idea
is the removal of the troubling absorbing state in the SIS model
by allowing, beside the neighbor infection, a constant, but very
small self-infection rate at each node.
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[8] A. Ganesh, L. Massoulié, and D. Towsley, IEEE INFOCOM,
Miami, pp. 1455–1466, 2005.

[9] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos, in
22nd International Symposium on Reliable Distributed Systems
(SRDS’03) (IEEE Computer, Washington, DC, 2003), pp. 25–34.

[10] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and
C. Faloutsos, ACM T. Inform. and Syst. 10, 1 (2008).
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