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Susceptible-infected-susceptible epidemics on the complete graph and the star graph: Exact analysis
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Since mean-field approximations for susceptible-infected-susceptible (SIS) epidemics do not always predict
the correct scaling of the epidemic threshold of the SIS metastable regime, we propose two novel approaches:
(a) an ε-SIS generalized model and (b) a modified SIS model that prevents the epidemic from dying out (i.e.,
without the complicating absorbing SIS state). Both adaptations of the SIS model feature a precisely defined
steady state (that corresponds to the SIS metastable state) and allow an exact analysis in the complete and star
graph consisting of a central node and N leaves. The N -intertwined mean-field approximation (NIMFA) is shown
to be nearly exact for the complete graph but less accurate to predict the correct scaling of the epidemic threshold
τc in the star graph, which is found as τc = ατ (1)

c , where α =√
1
2 log N+ 3

2 log log N and where τ (1)
c = 1√

N
< τc is the

first-order epidemic threshold for the star in NIMFA and equal to the inverse of the spectral radius of the star’s
adjacency matrix.

DOI: 10.1103/PhysRevE.87.012811 PACS number(s): 89.75.Hc, 89.20.−a

I. INTRODUCTION

Epidemic processes on networks have gained considerable
attention recently because they are regarded as a first-order
description of how information in popular online social
networks, such Hyves, Twitter, and Facebook, spreads. How
many nodes (users) receive a particular message and which
news item affects most users or with what intensity should
news be spread to “infect” a considerable fraction of users
in the network? These types of questions can be addressed
(approximately) by a susceptible-infected-susceptible (SIS)
epidemic process on an undirected graph G(N,L), with N
nodes and L links, characterized by a symmetric adjacency
matrix A. In a SIS epidemic process, the viral state of a
node i at time t is specified by a Bernoulli random variable
Xi(t) ∈ {0,1}: Xi(t) = 0 for a healthy node and Xi(t) = 1 for
an infected node. A node i at time t can be in one of the
two states: infected, with probability vi(t) = Pr[Xi(t) = 1],
or healthy, with probability 1 − vi(t) but susceptible to the
infection. We assume that the curing process per node i is
a Poisson process with rate δ and that the infection rate per
link is a Poisson process with rate β. Obviously, only when a
node is infected, it can infect its direct neighbors, which are
still healthy. The curing and infection Poisson processes are
independent. The effective infection rate is defined by τ = β

δ
.

This is the general continuous-time description of the simplest
type of a SIS epidemic process on a network.

Although a SIS epidemic process [1,2] is a simple abstrac-
tion of how a real virus spreads on a contact network, the
SIS model is still too complex for general analytic treatment
as shown in Ref. [3]. Only very few exact results exist,
which are overviewed in Ref. [4]. Simon et al. [5] have
employed graph-isomorphisms to reduce the 2N states of the
SIS Markov process and found that the complete graph, the
star, and the household graph are exactly solvable with a
reduced state space (without providing that exact solution).
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Most papers investigating SIS epidemics on networks ana-
lyze the behavior approximately, often using a variant of a
mean-field approach such as the Vespignani-Pastor-Satorras
heterogeneous mean-field model [6] and the N -intertwined
mean-field approximation (NIMFA) [3]. However, in spite of
initial comparisons [7], the accuracy of mean-field SIS models
has not been satisfactorily quantified yet.

Here, we assess the quality of NIMFA to the exact SIS
process by considering two extreme graphs, the complete
graph and the star graph. We start by relating the SIS model to a
new model, called the modified SIS (MSIS). The MSIS model
obeys the same evolution rules as the SIS model, except that
when there is only one infected node in the system, this node
is forbidden to heal. Hence, the infection will always survive,
and there exists a nontrivial stationary measure for the MSIS.
We can couple the SIS and MSIS models in the following
way: the SIS process follows exactly the same evolution as the
MSIS process, except when there is only one infected node.
In that case, the SIS process has an extra exponential clock
with rate δ running at this single infected node, independent
of everything else. If this clock rings before the process in
the MSIS model jumps to two infected nodes, the SIS process
dies out, otherwise the SIS process follows the MSIS process.
Thus, the epidemic process in the SIS model either equals
that in the MSIS model or it has died out. The relevance of
the stationary distribution of the MSIS model is now clear:
If this distribution has a very small probability that only one
node is infected, then the corresponding SIS process will be
“metastable.” If the probability that one node is infected is
relatively large, then the SIS process will die out within a
reasonable time. We will show in this paper that the MSIS
model for the complete graph and for the star graph can be
exactly determined, giving a detailed insight into the behavior
of the SIS epidemic process for these two graphs. A surprising
result is that if we choose our effective infection rate τ in
the star graph to be equal to C/

√
N (for some constant C),

then we can show that, as N → ∞, the SIS process will
die out exponentially fast. In other words, the scaling of the
epidemic threshold in the star is shown to be τc = ατ (1)

c ,
where α =√

1
2 log N+ 3

2 log log N and where τ (1)
c = 1

λ1;star
= 1√

N
is
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the first-order epidemic threshold in NIMFA [8,9]. Since the
correction factor α is small for realistic networks, simulations
may fail to determine the correct scaling law for τc.

In both the complete and star graph, the steady-state fraction
y∞ of infected nodes, also called the prevalence, is determined
and compared with the corresponding expression in NIMFA. In
addition, we determine the precise scaling law for the number
M of infected nodes when N grows large, which leads to an
asymptotic scaling law for the epidemic threshold τc in the
complete and star graph. These exact scaling laws allow us to
verify the quality of the NIMFA epidemic threshold τ (1)

c = 1
λ1

,
where λ1 denotes the largest eigenvalue of the adjacency matrix
of the graph. While the mean-field type approximation as
explained in Ref. [3] suggests very good results in the complete
graph, as confirmed here, the mean-field method applied to
the star graph seems less promising to determine the critical
infection rate. However, for relatively large infection rates
NIMFA predicts the steady-state fraction very well. When
τ is large, the center of the star is (almost) always infected,
which implies that the infection processes in the leaves of the
star are almost independent. Just the independence assumption
in infection probabilities, i.e., Pr[Xi = 1,Xj = 1] = Pr[Xi =
1] Pr[Xj = 1] is the only approximation made in NIMFA,
which explains the excellent agreement of NIMFA with the
exact results for large τ .

While this paper concentrates on the MSIS model, earlier
in Ref. [10], another approach to compute the metastable state
was proposed. The SIS model was generalized to the ε-SIS
model, where each node possesses an additional nodal self-
infection, modeled as an independent, third Poisson process
with rate ε. Similarly to the MSIS model, the ε-SIS model
has a precisely defined steady state. For small, but fixed ε∗ =
ε
δ

< 1
N

, the corresponding steady state in the ε-SIS model was
defined as the metastable state of the SIS process. The results
derived in Sec. II for the complete graph in the MSIS model
agree exceedingly well with the exact computation for the
complete graph in the ε-SIS model [10].

After computing the MSIS process for the complete graph
in Sec. II, we devote most of our efforts to the computation
of the MSIS process on the star, which is considerably more
complex than that of the complete graph. We deduce the exact
Markov chain for the number of infected nodes in the star and
present the exact MSIS steady state in the appendix. Unfortu-
nately, these exact equations fail to provide physical insight,
which has motivated to us to construct an asymptotic analysis
for large N . The remarkable observation from our asymptotic
analysis in Sec. III A is the discovery of two different, asymp-
totic scaling regimes with N in the MSIS process in terms of
the effective infection rate τ . Finally, we compare the exact
steady-state fraction of infected nodes in the star for various
size N with the exact, closed form Eq. (27) in NIMFA in Fig. 2.
For finite N and due to finite-size fluctuations, the precise onset
of the infection is obscured most around the threshold τc and
large variations in the order parameter (here, the steady-state
fraction of infected nodes) occur (as illustrated in Fig. 2).

II. SIS EPIDEMICS ON THE COMPLETE GRAPH

We consider an SIS epidemic process on the complete
graph KN with N nodes. The infection and curing process

are independent with infection rate β and curing rate δ,
respectively. If we define M(t) as the number of infected nodes
at time t , then M is a Markov process on {0,1, . . . ,N} with
the following rates:

M '→ M + 1 at rate βM(N − M)

M '→ M − 1 at rate δM.

Indeed, every infected node heals with rate δ, whereas every
healthy node (of which there are N − M) has exactly M
infected neighbors.

We will analyze the critical τ = β
δ

as N → ∞ by slightly
altering the SIS Markov process: We propose that if the total
number of infected sites reaches 1, then that infected site
cannot heal. In this way, the Markov process will not end in an
absorbing state, and there will always exist a nondegenerate
stationary state. Furthermore, as long as there are two or more
infected nodes, the evolution of the two processes (SIS and
modified SIS) is exactly the same. This means that if the MSIS
has a stationary distribution for which we have very small
probability of ending up in a state with M = 1, this stationary
distribution can be interpreted as a metastable state for the
original SIS process. In the remainder of this article, we will
consider the MSIS process, and with a slight abuse of notation,
we will still use M to denote the number of infected sites.
Clearly, also for the MSIS process, M is a Markov process on
{1,2, . . . ,N} with the following rates:

M '→ M + 1 at rate βM(N − M)

M '→ M − 1 at rate δM × 1{M!2}.

The stationary state of M can be determined exactly.
Let πj = limt→∞ Pr[M(t) = j ] be the steady-state probability
that the number of infected nodes in the MSIS process equals
j . In the steady state, the rate at which M jumps from i to
i + 1 must be equal to the rate at which M jumps from i + 1
to i, such that

∀ 1 " i " N − 1 : πiβi(N − i) = πi+1δ(i + 1).

which is written, after iterating, in terms of the effective
infection rate τ = β

δ
as

πi+1 = π1
τ i

i + 1

i∏

j=1

(N − j ) = π1
τ i

i + 1
(N − 1)!

[N − (i + 1)]!
.

(1)

Using
∑N

i=1 πi = 1 and (1) leads to

1
π1

= (N − 1)!
N∑

i=1

τ i−1

i(N − i)!
= (N − 1)!

N−1∑

m=0

τN−m−1

(N − m)m!
.

A. The steady-state fraction of infected nodes

The steady-state fraction of infected nodes, y∞;N (τ ) =
1
N

∑N
i=1 iπi , equals

y∞;N (τ ) =
1
N

∑N−1
m=0

τ−m

m!∑N−1
m=0

τ−m

(N−m)m!

. (2)
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Clearly, limτ→∞ y∞;N (τ ) = 1 and1 limτ→0 y∞;N (τ ) = 1
N

. Us-
ing N

N−m
= N−m+m

N−m
in the denominator in Eq. (2) yields

N−1∑

m=0

Nτ−m

(N − m)m!
=

N−1∑

m=0

τ−m

m!
+

N−1∑

m=0

mτ−m

(N − m)m!

=
N−1∑

m=0

τ−m

m!
+ 1

τ

N−2∑

m=0

τ−m

(N − 1 − m)m!
.

Now, using (2),

N−2∑

m=0

τ−m

(N − 1 − m)m!
=

1
N−1

∑N−2
m=0

τ−m

m!

y∞;N−1(τ )

leads to the recursion

y∞;N (τ ) = 1

1 + 1
(N−1)τy∞;N−1(τ )

∑N−2
m=0

τ−m

m!∑N−1
m=0

τ−m

m!

.

Rewritten with

rN (τ ) =
∑N−2

m=0
τ−m

m!∑N−1
m=0

τ−m

m!

,

the recursion for the steady-state average number of infected
nodes becomes

y∞;N (τ ) = 1 − rN (τ )
(N − 1)τ

y∞;N (τ )
y∞;N−1(τ )

. (3)

For sufficiently large N , there holds that y∞;N (τ ) ≈ y∞;N−1(τ )
and rN (τ ) → 1 and (3) simplifies, provided (N − 1)τ > 1, to

y∞;N (τ ) ≈ 1 − 1
(N − 1)τ

.

The steady-state fraction of infected nodes in NIMFA [9] for
the complete graph KN equals, for τ ! τ (1)

c = 1
N−1 ,

y
(1)
∞;N (τ ) = 1 − 1

(N − 1)τ
,

illustrating how accurate NIMFA is for the complete graph.

B. Asymptotics: Scaling law for large N

We now determine the SIS epidemic behavior for large N
and deduce a scaling law for the epidemic threshold τc in the
MSIS process. Since

i∏

j=1

(N − j ) = Ni

i∏

j=1

(
1 − j

N

)
= Ni exp




i∑

j=1

log
(

1 − j

N

)



= Ni exp



−
i∑

j=1

j

N
+ O(i3N−2)





= Ni exp
[
− i2

2N
+ O(iN−1) + O(i3N−2)

]
,

1Multiply both numerator and denominator by τN−1.

we rewrite (1) as

πi+1 = π1
(τN )i

i + 1
exp

(
−1

2
i2

N

)
[1 + O(iN−1 + i3N−2)].

(4)

In order to find what scaling for τ would still give metastable
behavior (by choosing τ close to the critical value), we
transform exponential factors in i into a fully quadratic
argument,

(τN )i exp
(

−1
2

i2

N

)
= exp

(
i log τN − 1

2
i2

N

)

= e
N
2 (log τN)2

exp
[
−1

2
(i − N log τN )2

N

]

and obtain

πi+1 = π1e
N
2 (log τN)2

i + 1
exp

[
−1

2
(i − N log τN )2

N

]

× [1 + O(iN−1 + i3N−2)].

For large N , the appropriate scaling for τ , for which we can
still see metastable behavior, in the above expression of the
probability πi+1 " 1 is found by requiring that N (log τN )2 =
c2, where c is independent of N , which is equivalent to

τ = 1
N

exp
(

c√
N

)
= 1

N

[
1 + c√

N
+ O(N−1)

]

such that

πi+1 = π1e
1
2 c2

i + 1
exp

[

−1
2

(i − c
√

N )2

N

]

× [1 + O(iN−1 + i3N−2)]. (5)

Guided by the scaling for τ , we define

τ = 1 + c/
√

N

N
(6)

and proceed further with (4) to specify c. Then,

πi+1 = π1
(1 + c/

√
N )i

i + 1
exp

[
−1

2
(i + 1)2

N

]

× [1 + O(iN−1 + i3N−2)]. (7)

We can find imax such that πi+1 is maximal: If c ! 2, then

imax = c +
√

c2 − 4
2

√
N.

If c < 2, then imax = 1. Furthermore, the standard deviation
of the stationary distribution is close to

√
N , more or less

independent of c; this follows from inspecting (5), which
shows that the stationary distribution of the MSIS process
is close to a normal distribution with variance N . For a
metastable state to exist, the MSIS distribution should have
low probability of reaching only one infected site, which means
that π1 should be small. One way of ensuring a small π1 could
be to choose c such that imax is 3 times the standard deviation
away from 1. In other words, we choose c such that

1
2 (c +

√
c2 − 4) > 3 ⇔ c > 10

3 .
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Of course, this choice is somewhat arbitrary, and other choices
for a fixed critical τ could be made. We have to realize that
the system shows metastable behavior, starting from τ values
given by τ = 1

N
(1 + c√

N
) for large-enough c.

Finally, after summing (7) over 1 " i " N and using∑N
i=1 πi = 1 and

N∑

i=1

(1 + c/
√

N )i−1

i
exp

(
−1

2
i2

N

)
= log(

√
N ) + O(1),

we arrive at

πi = (1 + c/
√

N )i−1

i log(
√

N )
exp

(
−1

2
i2

N

)
[1 + o(1)],

which illustrates that the probability of having one infected
node in KN only decreases like 1/ log(N ) for any choice of
c. Thus, (6) characterizes the correct scaling for epidemic
threshold of the SIS metastable state in KN . The expected
number of infected nodes is

N∑

i=1

iπi =
N∑

i=1

(1 + c/
√

N )i−1

log(
√

N )
exp

(
−1

2
i2

N

)
[1 + o(1)]

=
√

2πN

log(
√

N )
((c) e

1
2 c2

[1 + o(1)].

where ( is the standard normal distribution function.
The results of the MSIS model agree well with those of the

ε-SIS model, in which each node can infect itself with rate ε
for a fixed ε∗ = ε

δ
< 1

N
, as illustrated in Ref. [10].

III. SIS EPIDEMICS ON THE STAR GRAPH

The star graph consists of a center and N “leaves.”We
define X = 1 if the center is infected, and X = 0 otherwise.
Furthermore, we define M as the number of leaves that
are infected. Similarly to the complete graph, though more
complicated, the number of infected nodes M in the star can
be reformulated as a SIS Markov chain with the following
rates:

(M,0) '→ (M − 1,0) at rate Mδ,

(M,0) '→ (M,1) at rate Mβ,

(M,1) '→ (M − 1,1) at rate Mδ,

(M,1) '→ (M + 1,1) at rate (N − M)β,

(M,1) '→ (M,0) at rate δ.

Again we have an absorbing state if all nodes are healthy. We
alter the chain slightly in order to obtain an irreducible Markov
chain without an absorbing state.

The modified Markov chain without absorbing state, drawn
in dotted box, is shown in Fig. 1. A state is characterized as
(M,X), where M denotes the number of infected leaves of the
star and X = {0,1} indicates the infectious state of the hub or
central node. Since we are concerned with the steady state, we
can divide the Kolmogorov equations [11], deduced from the
Markov graph, by δ to formulate the equation directly in terms
of the effective infection rate τ = β

δ
. In the sequel, we confine

ourselves to the Markov chain, still denoted by (M,X), but
we make sure that when there is only one infected node. This

FIG. 1. The Markov graph for the SIS process on a star.

node cannot heal, so the rates become

(M,0) '→ (M − 1,0) at rate M1{M!2},

(M,0) '→ (M,1) at rate Mτ,

(M,1) '→ (M − 1,1) at rate M,

(M,1) '→ (M + 1,1) at rate (N − M)τ,

(M,1) '→ (M,0) at rate 1{M!1}. (8)

A. Condition the star graph to have X = 1

To analyze the behavior of (M,X), we start by ignoring the
time spent by the chain on the set X = 0 (when the center
is healthy). This means that if we jump from state (M,1) to
(M,0), we immediately move the chain to the point where it
enters the set X = 1 again. It turns out that we can determine
this entry point, given that we exit at M: when X = 0, at
each state (i,0), the process has probability 1/(1 + τ ) to jump
to (i − 1,0) and probability τ/(1 + τ ) to jump to (i,1). This
means that the process will move a geometric number of steps
to the left and then enter the set X = 1 again. Of course, when
the process walks all the way to (1,0), thereafter it must go to
(1,1). Also, the process could enter X = 1 at the same state as
where it left X = 1. We will ignore such transitions. We define
this new Markov process on the set {0,1, . . . ,N} as M∗ and
we find the following jump rates for M∗, where we have to be
careful at the edges of the set:

M∗ '→ M∗ + 1 at rate (N − M∗)τ,

M∗ '→ M∗ − j at rate 1{j=1}M
∗

+ τ

(1 + τ )j
(∀ 1 " j " M∗ − 2),

∀ M∗ ! 2 : M∗ '→ 1 at rate 1{M∗=2}M
∗ + (1 + τ )−M∗+1,

(M∗ = 1) '→ (M∗ = 0) at rate 1.

The general Markov theory now guarantees that if π =
(π0,π1, . . . ,πN ) denotes the stationary measure or steady
state for M∗, then π equals the stationary state for (M,X),
conditioned to have X = 1.

To determine the steady-state vector π , we look at the flow
rates of the process from the set {i + 1, . . . ,N} to the set
{0, . . . ,i} and vice versa. Since these two rates should be equal
in equilibrium, the following equations are found:

∀ 1 " i " N − 1 : πi(N − i)τ = πi+1

(
i + 1 + 1

1 + τ

)

+
N∑

j=i+2

πj

(1 + τ )j−i
(9)
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and

π1 = π0τN. (10)

The last equation is, of course,

N∑

i=0

πi = 1. (11)

We transform these equations into a more elegant set. We
rewrite equation (9) for i − 1 and for i but then multiplied by
1/(1 + τ ):

πi−1(N − i + 1)τ = πi

(
i + 1

1 + τ

)
+

N∑

j=i+1

πj

(1 + τ )j−i+1

πi(N − i)τ
1 + τ

= πi+1

1 + τ

(
i + 1 + 1

1 + τ

)

+
N∑

j=i+2

πj

(1 + τ )j−i+1
.

Subtracting these two equations and multiplying by 1 + τ
gives

πi−1(N − i + 1)τ (1 + τ ) − πi(N − i)τ

= πi(i + iτ + 1) − πi+1

(
i + 1 + 1

1 + τ

)
+ πi+1

1 + τ
,

which leads to

∀ 2 " i " N − 1 : (i + 1)πi+1 − (τN + i + 1)πi

+ τ (1 + τ )(N − i + 1)πi−1 = 0. (12)

This set of equations can be solved exactly using a generating
function approach as shown in Appendix A. Unfortunately, the
resulting expressions (A16) for πi lack insight, which has led
us to proceed with an asymptotic analysis (for large N ).

1. Asymptotic analysis

The maximum of πi should be around i = τN/(1 + τ ).
Indeed, put πi−1 = πi = πi+1 in Eq. (12), which corresponds
to equating the discrete derivative to zero (we need three terms
because we have a second-order equation). To analyze the
solution of Eq. (12), we will assume that as N → ∞, the πi’s
can be rescaled to a smooth function in some way. We will
scale around the location of the maximum by introducing a
new variable x ∈ R, which should replace i:

x(i) = N−α [(i − τN/(1 + τ )] .

Here, 0 < α < 1 is a scaling parameter that we still have
to choose. We then define the function f by the following
equation:

πi = N−αf

[
i − τN/(1 + τ )

Nα

]
= N−αf (x(i)).

In this way,

N∑

i=1

πi =
N∑

i=1

N−αf

[
i − τN/(1 + τ )

Nα

]

≈
∫ ∞

−τN1−α

f (x) dx,

and if we pick the correct α, we might end up with a
nondegenerate density f as N → ∞. If such an α ∈ (0,1)
exists, then for any other α′ we will obtain a degenerate result:
If α′ > α, we zoom in too much and just find a constant equal
to the maximal value of f , whereas if α′ < α, we zoom out too
much, and we only see 0. The correct α will depend on how we
allow τ to change with N : We are interested in finding a regime
for τ where there still is a metastable phase. We therefore
introduce two new constants, C > 0 and 0 " β < 1, and
choose τ = CN−β . Assuming that f is smooth then leads to
[denoting x(i) with x and simply using Taylor approximation]

Nαπi−1 = f (x) − N−αf ′(x) + 1
2N−2αf ′′(x) + lower order

and

Nαπi+1 = f (x) + N−αf ′(x) + 1
2N−2αf ′′(x) + lower order.

Equation (12) then becomes (after multiplying with Nα)

0 = −τ (1 + τ )Nαxf (x)

+
[
−τ 2N1−α

1 + τ
+ x + xτ (1 + τ )

]
f ′(x)

+ 1
2

[
N1−2α(2τ + τ 2)

1 + τ
+ xN−α − τ (1 + τ )xN−α

]
f ′′(x)

+ lower order. (13)

(a) Regime β < 1/3. It turns out that the system shows
different behaviors for different choices of τ . We start with
supposing that β < 1/3. If we take α = 1/2 − β/2, the highest
order terms in Eq. (13) become

0 = −τ (1 + τ )Nαxf (x) − τ 2N1−α

1 + τ
f ′(x)

=
[
−C(1 + τ )xf (x) − C2

1 + τ
f ′(x)

]
N1/2−3β/2.

The above equation implies that f is the density of a normal
distribution with expectation 0 and variance C/(1 + τ )2, so
only for this choice of α will we get a nondegenerate result.
This result is fairly easy to explain: If the center would be in-
fected all the time (if we would forbid it to heal), then the leaves
are all independent and at all times they would have probability
τ/(1 + τ ) to be infected. Since a sum of independent Bernoulli
random variables tends to a Gaussian, the distribution of
infected leaves tends to a normal (or Gaussian) distribution
with expectation τN/(1 + τ ) and variance (Nτ )/(1 + τ )2 =
N1−βC/(1 + τ )2, which completely corresponds to our f
and our fluctuations of order α = 1/2 − β/2. Indeed, our
scaling is set up such that if M is the number of infected
nodes, the variable W = N−α[M − τN/(1 + τ )] has density
f . Since W is (approximately) normal with expectation 0 and
variance C/(1 + τ )2, we see that M has a normal distribution
with expectation τN/(1 + τ ) and variance N2αC/(1 + τ )2. If
β < 1/3, why would the distribution behave as if the center is
always infected? The number of infected leaves is around τN ,
so the time for the healthy center to get infected again is of
order 1/(τ 2N ). In this time period, the number of healed leaves
will be of order τN/(τ 2N ) = 1/τ . Since 1/τ < N1/2−β/2 (if
β < 1/3), the fluctuations caused by the center being healthy
are negligible compared to the fluctuations when the center is
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always infected. Therefore, when β < 1/3, the system behaves
as if the center is always infected.

(b) Regime β > 1/3. The case β > 1/3 behaves differ-
ently. If we again choose α = 1/2 − β/2, we would now have
that the highest-order terms in Eq. (13) become

0 = xf ′(x) + Cf ′′(x).

The solution which satisfies limx→∞ f (x) = 0 is given by

f (x) = A[1 − ((x/
√

C)],

with ( the distribution function of the standard normal
distribution. The behavior for x → −∞ is a bit puzzling: The
function f does not go to 0. The reason is that to the left of τN ,
πi is decreasing at a rate slower than α = 1/2 − β/2. In other
words, when β < 1/3, the stable distribution is symmetric
(even normal) around its maximum, but when β > 1/3, the
distribution becomes very skewed as N → ∞, where the left
tail is much heavier than the right tail. For the regime x < 0,
it turns out that in order to get a sensible differential equation
for f , we need to choose α = β. The highest-order terms in
Eq. (13) when x < 0 are then given by

0 = −Cxf (x) + xf ′(x).

When x is very close to 0, other terms in Eq. (13) start playing
a role. The solution is given by

f (x) = BeCx.

The constant B is determined by the fact that f is a density: It
should hold that

∫ 0

−τN1−α

BeCx dx = 1.

We ignore the N1/2−β/2 regime, since it is much smaller than
the Nβ regime: This means that f is going to 0 when x → ∞
at such a fast rate that the positive half line does not contribute
significantly to

∫
R f (x) dx. If β < 1/2, we get B = C + o(1),

and if β = 1/2, then

B = C

1 − e−C2 .

We have found that if 1/3 < β < 1/2 and τ = CN−β , then
for x < 0 and i = τN + xNβ we obtain

πi = CeCx N−β[1 + o(1)]. (14)

For β = 1/2, τ = C/
√

N , x < 0 and i = τN + x
√

N , we get

πi = CeCx

1 − e−C2

1√
N

[1 + o(1)]. (15)

For x > 0, we find that
√

Nπi → 0. It seems that β = 1/2
corresponds to the critical τ , since, in that case, the fluctuations
are of the same order as τN . This means that there is a
reasonable chance of approaching the absorbing state in which
all nodes are healthy. However, it will turn out that this chance
will actually go to 1.

B. Full stationary distribution for the star graph

In the previous section, we have determined asymptotically
the stationary distribution of the SIS epidemics on the star
graph, conditioned to be on the set {X = 1}, that is, conditioned

to have an infected center. Now define ρi as the stationary
measure conditioned on the set {X = 0}, where the index
i ∈ [1,N ] as illustrated in Fig. 1. Furthermore, let p be the
probability that the stationary distribution has an infected
center. Together, πi , ρi , and p determine the full stationary
measure or steady state.

From Fig. 1, we can write down the detailed balance
equation for the state (M = i,X = 0) with 2 " i " N − 1,

(1 − p)ρi(1 + τ )i = (1 − p)ρi+1(i + 1) + pπi .

We can solve ρi exactly for 2 " i " N ,

iρi =
N∑

j=i

p

1 − p
πj

1
(1 + τ )j+1−i

. (16)

This solution satisfies the boundary condition

(1 − p)ρN (1 + τ )N = pπN,

which exactly corresponds to the detailed balance equation
for the state (M = N,X = 0). We also know that

(1 − p)ρ1τ = 2(1 − p)ρ2 + pπ1,

from which

ρ1 = 2
τ

ρ2 + p

1 − p
π1. (17)

The latter equation is very relevant, because ρ1 is a factor
τ−1 larger than ρ2 and might dominate all other values ρi (so
it might happen that ρ1 → 1). Finally, the normalization of
the steady-state probabilities, conditioned that the center is
healthy (X = 0), is

N∑

i=1

ρi = 1.

In addition, we need to determine p, the probability that the
center is infected. If we look at the rate of going from the set
{X = 0} to the set {X = 1}, and vice versa, we find

N∑

i=1

pπi =
N∑

i=1

(1 − p)ρi iτ.

Solving for p, using (11) and the definition

Eρ =
N∑

i=1

ρi i (18)

yields

p = τEρ

1 − π0 + τEρ
, (19)

where π0 is the steady-state probability of being in state
(M = 0,X = 1), determined by the detailed balance equation
(10). In fact, π0 will always tend to zero as follows from
Eq. (10): Whenever τN → ∞, and when τN = O(1), the
time the system resides in the state where only the center is
infected is N times as short as the time the system resides in
the state where only one leave is infected.
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1. Asymptotic analysis of the two β regimes

(a) Regime β < 1/3. If β < 1/3 and τ = CN−β , we have
already seen that, when the center becomes healthy, the number
of leaves that heal during the healthy period is negligible.
Therefore, ρi = πi[1 + o(1)]. Furthermore, the center heals at
rate 1, whereas it becomes infected with rate τN/(1 + τ )[1 +
o(1)] (i.e., proportional to the number of infected leaves), so

p = τN

1 + τ + τN
[1 + o(1)] =

(
1 − 1 + τ

τN

)
[1 + o(1)]

and p → 1 when β < 1/3. This means that the center is almost
always infected, as we have seen before.

(b) Regime β > 1/3. Now we investigate the case where
1/3 < β " 1/2. We recall (14) and (15) to conclude that there
exists a constant B∗ such that

πi = B∗eτ i[1 + o(1)],

for i " τN and that πi is of smaller order for larger i. If i >
τN , then πi = 0 in the scaling α = β > 1

3 . Using these values
of πi in Eq. (16) and evaluating the resulting geometric series,
it follows that there exists a D > 0 such that, for 2 " i " τN ,

iρi = D[1 + o(1)]
[

eτ 2N

(1 + τ )τN
(1 + τ )i − eiτ

]
.

Define ρ∗
i , for 2 " i " τN , by

iρ∗
i = eτ 2N

(1 + τ )τN
(1 + τ )i − eiτ

so

ρi =
{

Dρ∗
i for 2 " i " τN

0 for i > τN
.

We need an estimate of Eρ. Since ρi = Dρ∗
i , we first look

at

τN∑

i=2

iρ∗
i = eτ 2N

(1 + τ )τN

τN∑

i=2

(1 + τ )i −
τN∑

i=2

eiτ = eτ 2N

(1 + τ )τN

(1 + τ )τN+1 − (1 + τ )2

τ
− eτ 2N+τ − e2τ

eτ − 1

= eτ 2N

(
1 + τ

τ
− eτ

eτ − 1

)
−

[
(1 + τ )−τN+2eτ 2N

τ
− e2τ

eτ − 1

]

= 1
2

[1 + o(1)]eτ 2N − exp[τ 2N − (τN − 2) log(1 + τ )] − e2τ

τ
− 1

2
[1 + o(1)]

and
τN∑

i=2

iρ∗
i = 1

2

[
eτ 2N − 1 − τ 2N

]
[1 + o(1)]. (20)

Further, we have that

ρ∗
2 = 1

2

[
eτ 2N

(1 + τ )τN
(1 + τ )2 − e2τ

]

= 1
2

[
eτ 2N−(τN−2) log(1+τ ) − e2τ

]
= 1

2

[
e

1
2 τ 3N+o(τ 3N) − 1

]
[1 + o(1)]

and

ρ∗
2 = 1

4τ 3N [1 + o(1)]. (21)

Note from τ = CN−β that τ 3N → 0 since β > 1/3. Ignoring 1 + o(1) factors, recalling that ρ∗
i = 0 for i > τN and combining

equations (17) and (19)–(21), we have

Eρ =
N∑

i=1

ρi i = D

Nτ∑

i=1

ρ∗
i i = 1

2
D

(
eτ 2N − 1 − τ 2N

)
+ 2

τ
D

1
4
τ 3N + p

1 − p
π1 = 1

2
D

(
eτ 2N − 1

)
+ τEρπ1,

which implies that

Eρ = 1
2D

(
eτ 2N − 1

)
[1 + o(1)].

It remains to determine D, which can be achieved from
∑N

i=1 ρi = 1. We first determine
τN∑

i=2

ρ∗
i = [1 + o(1)]

∫ τN

2

[
eτ 2N+(x−τN) log(1+τ ) − exτ

]dx

x
= [1 + o(1)]

∫ τN

2
exτ

(
e− 1

2 xτ 2+ 1
2 τ 3N − 1

)dx

x

= [1 + o(1)]
1
2
τ 3N

∫ 1

2/τN

esτ 2N 1 − s

s
ds = [1 + o(1)]

1
2
τ 3N

(∫ 1

2/τN

ds

s
+

∫ 1

0

esτ 2N − sesτ 2N − 1
s

ds

)

= [1 + o(1)]
1
2
τ 3N

(

log(τN ) +
∫ 1

0

esτ 2N − sesτ 2N − 1
s

ds

)
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and, after some tedious calculations, we arrive at
τN∑

i=2

ρ∗
i = 1

2

[

τ 3N log(τN ) + eτ 2N

τN

]

[1 + o(1)]. (22)

Since
∑N

i=τN+1 ρ∗
i = 0 because ρ∗

i = 0 for i > τN , combining (17), (22), and (21) leads to

1 = ρ1 +
N∑

i=2

ρi = 2ρ2

τ
+ p

1 − p
π1 + 1

2
D

[
τ 3N log(τN ) + eτ 2N

τN

]
[1 + o(1)]

=
{

1
2
τ 2N + 1

2

[
τ 3N log(τN ) + eτ 2N

τN

]}
D[1 + o(1)] + τEρπ1

=
{

1
2
τ 2N + 1

2

[
τ 3N log(τN ) + eτ 2N

τN

]
+ 1

2
τ
(
eτ 2N − 1

)
π1

}
D[1 + o(1)],

from which

D = 1 + o(1)
1
2τ 2N + 1

2τ
(
eτ 2N − 1

)
π1 + 1

2τ 3N log(τN ) + 1
2eτ 2N (τN )−1

. (23)

2. Asymptotic scaling of τ

Let us now investigate the scaling for τ . If τ = C/
√

N in
Eq. (23),

D = 1 + o(1)
1
2C2 + 1

2
C√
N

(
eC2 − 1

)
π1 + 1

2
C3√
N

log(C
√

N ) + 1
2

eC2

C
√

N

,

then, for large N → ∞, we find

D = 1 + o(1)
1
2C2

and

Eρ = eC2 − 1
C2

[1 + o(1)]

so

p = C/
√

NEρ

1 − π0 + C/
√

NEρ
,

which implies that p → 0 (the center is almost always healthy)
and ρ1 → 1. Clearly this means that in the original SIS model,
the system will quickly heal as N grows larger.

To ensure that we stay away from the healthy state, a
minimal requirement would be that ρ1 → 0. Relation (17)
reveals that the first term dominates the second term whenever
τ > 1/N , and therefore, also using (21),

ρ1 = 1
2τ 2ND[1 + o(1)].

Thus, we need a slightly larger τ than C√
N

, so

τ 2ND → 0.

Since the fourth term in the denominator of Eq. (23) will
be the dominant term, this can be accomplished precisely by
choosing τ such that

eτ 2N

τ 3N2
→ ∞. (24)

A bit of puzzling with logarithmic corrections then leads to
the choice

τ = 1√
N

√
1
2

log(N ) + 3
2

log(log(N )) + an, (25)

where an is any sequence going to +∞, no matter how slowly.
Using this τ in Eq. (24) indeed gives

e
1
2 log(N)+ 3

2 log(log(N))+an

N1/2
[ 1

2 log(N ) + 3
2 log(log(N )) + an

]3/2

= log(N )
3
2 ean

[ 1
2 log(N ) + 3

2 log(log(N )) + an

]3/2

→ ∞.

With the choice for τ in Eq. (25), we find that p → 1 and
ρ1 → 0, but very slowly. In summary, it is reasonable to define
the epidemic threshold in the star as

τc = 1√
N

√
1
2

log(N ) + 3
2

log(log(N )). (26)

Any τ significantly larger than τc (meaning that τ/τc → ∞)
would lead to a metastable state. Moreover, (25) indicates that
the difference between a critical τc and C/

√
N is very hard to

distinguish, for some C > 0 and finite N .

C. Comparison with the mean-field approximation

The steady-state fraction of infected nodes in the star (with
N + 1 nodes) in NIMFA [9] equals

y(1)
∞ (τ ) = (N − τ−2)

N + 1

{
1

τ−1 + 1
+ 1

τ−1 + N

}
. (27)

The exact computation of the steady-state fraction y∞(τ )
of infected nodes in the star for any N is based on the Markov
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FIG. 2. (Color online) The steady-state fraction y∞(τ ) versus the
normalized effected infection rate τ

√
N for various sizes of N of the

exact and the N -intertwined mean-field approximation. All mean-
field curves have an onset of infection precisely starting at τ

√
N = 1,

clearly lower bounding the exact onset of the epidemic in the star.

equations (12) with (10), (11) for πi and (16) and (17) for ρi ,
and (19) for p. Figure 2 illustrates the difference between the
exact steady-state fraction y∞(τ ) of infected nodes in the star
and that in NIMFA (27).

For larger N and larger τ , both curves in Fig. 2 coincide.
However, for larger N , the onset of the SIS epidemic shifts to
increasingly larger values of the normalized effective infection
rate τ

√
N , indicating that τc does not scale as C√

N
but slightly

faster as τc = ατ (1)
c , where α =

√
1
2 log N + 3

2 log log N and

τ (1)
c = 1√

N
according to Eq. (26).

IV. CONCLUSION

Since the metastable (or quasistationary regime) in SIS
epidemics is not precisely defined for finite sizes of the graph,
two different approaches are proposed in this paper: (a) a
generalization of the SIS model to the ε-SIS model in Ref. [10]
and (b) a modified SIS model that prevents the epidemics
to die out. For the complete graph KN , both approaches are
analytically shown to lead to precisely the same epidemic
threshold scaling with N . Moreover, NIMFA is extremely good
for the complete graph; in fact, among all graphs, NIMFA is
most accurate for KN . For the star graph, on the other hand,
the analysis, culminating in Fig. 2 and the precise scaling law
(25) for the epidemic threshold τc, shows larger discrepancies
between the exact MSIS model and NIMFA. In particular, the
onset of the epidemic is smeared out (for finite N ) without
a sharp transition point. In addition, the convergence with N
towards such a sharp threshold τc is rather slow.

The star graph represents a limiting case of a scale-free or
power-law degree distribution. In addition, the hub structure,
that many complex networks possess, can be regarded as a set
of sparsely interconnected large stars. From this perspective,
the epidemics in the star exhibits a bounding or limiting
behavior of the SIS epidemics in power law graphs. The
SIS epidemic in the power law graphs with different degree
exponents was studied in detail by Pastor-Satoras and Castel-
lano in several papers, such as Refs. [12] and [13] (and other
references therein), mainly simulative, although the role of the
central hub (via the star graph) was analyzed approximately
in Ref. [12]. Our exact asymptotic analysis of the star, which
reflects two distinct asymptotic τ regimes, may shed light
on the local initial onset of the SIS epidemics in scale-free
graphs (with degree power exponent γ > 3), followed by a
propagation of the epidemics to the rest of the network.

APPENDIX: SOLUTION OF THE DIFFERENCE
EQUATION (12)

We consider the set of difference equations (12) that
determine the set {πk}0"k"N ,

∀ 2 " i " N − 1 : (i + 1)πi+1 − (i + τN + 1)πi

+ τ (1 + τ )(N − i + 1)πi−1 = 0.

with (10) and (11) and the i = N − 1 equation from Eq. (9),

πN−1 = πN

τ

(
N + 1

1 + τ

)
. (A1)

1. Differential equation for the generating function

We define the generating function G (z) =
∑N

k=0 πkz
k with

πk = 0 when k /∈ [0,N ], which satisfies G(1) = 1, due to
Eq. (11). Multiplying (12) by zi and summing over all
2 " i " N − 1 yields

N−1∑

i=2

(i + 1)πi+1z
i −

N−1∑

i=2

(i + τN + 1)πiz
i

+ τ (1 + τ )
N−1∑

i=2

(N − i + 1)πi−1z
i = 0.

We consider each summation separately. First, using G′ (z) =∑N
k=1 kπkz

k−1, we have

N−1∑

i=2

(i + 1)πi+1z
i =

N∑

i=3

iπiz
i−1 =

N∑

i=1

iπiz
i−1 − 2π2z − π1

= G′ (z) − 2π2z − π1.

The second summation is

N−1∑

i=2

(i + τN + 1)πiz
i =

N∑

i=1

iπiz
i − π1z − NπNzN + (τN + 1)

(
N∑

i=0

πiz
i − π0 − π1z − πNzN

)

= zG′ (z) + (τN + 1)G (z) − (τN + 1)π0 − (τN + 2)π1z − [N (τ + 1) + 1] πNzN,
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while the third summation equals

N−1∑

i=2

(N − i + 1)πi−1z
i

=
N−2∑

i=1

(N − i)πiz
i+1

=
N∑

i=1

(N − i)πiz
i+1 − πN−1z

N

= NzG (z) − z2G′ (z) − Nzπ0 − πN−1z
N .

Combining all pieces results in the governing equation for the
generating function

[1 − z − τ (1 + τ )z2]G′(z) + [τ (1 + τ )Nz − (τN + 1)]G(z)

= R (z) , (A2)

where

R (z) = π1 − (τN + 1)π0

+{2π2 − (τN + 2)π1 + τ (1 + τ )Nπ0}z
− {[N (τ + 1) + 1)] πN − τ (1 + τ )πN−1} zN .

Using π1 = π0τN from Eq. (10) and πN−1 = πN

τ
(N + 1

1+τ
)

from Eq. (A1) yields

R (z) = −π0 + {2π2 − τN [τN + 1 − τ ] π0} z, (A3)

which is linear in z. Observe the ominous appearence of
π2,because there is only the additional condition G(1) = 1,
while two unkowns π0 and π2 need to be determined.

It follows from Eq. (A2) that, for z = 1 and using G(1) = 1,

[−τ (1 + τ )] G′(1) + τ (1 + τ )N − (τN + 1) = R(1).

Hence, the average number of infected nodes in the condi-
tioned Markov chain in the steady state, G′(1) =

∑N
k=1 kπk ,

equals

G′(1) = (τ 2N − 1) + [1 + τN (τN + 1 − τ )] π0 − 2π2

τ (1 + τ )
.

(A4)

a. Homogeneous solution of (A2)

We first concentrate on the homogenous solution of the dif-
ferential equation (A2), from which the logarithmic derivative
is

G′
h (z)

Gh (z)
= τ (1 + τ )Nz − (τN + 1)

τ (1 + τ )z2 + z − 1
. (A5)

The integration of the right-hand side requires the partial
fraction decomposition,

τ (1 + τ )Nz − (τN + 1)
τ (1 + τ )z2 + z − 1

= c1

z − r1
+ c2

z − r2
,

where r1 and r2 are the zeros of the quadratic polynomial
τ (1 + τ )z2 + z − 1 and c1,2 are the corresponding residues.

Thus,

τ (1 + τ )z2 + z − 1 = τ (1 + τ ) (z − r1) (z − r2) ,

where

r1 = −1 +
√

1 + 4τ (1 + τ )
2τ (1 + τ )

= 1
1 + τ

> 0

r2 = −1 −
√

1 + 4τ (1 + τ )
2τ (1 + τ )

= − 1
τ

< 0

with r1r2 = r1 + r2 = − 1
τ (1+τ ) . The residues ck for k = 1,2

follow from

ck = lim
z→rk

(
Nz − τN+1

τ (1+τ )

)
(z − rk)

(z − r1) (z − r2)
.

In addition, since c1
z−r1

+ c2
z−r2

= (c1+c2)z−(c1r2+c2r1)
(z−r1)(z−r2) = Nz− τN+1

τ (1+τ )

z2+ z−1
τ (1+τ )

,

we have that

c1 + c2 = N

c1r2 + c2r1 = τN + 1
τ (1 + τ )

,

from which c1 = N − c2 and

c1 =
Nr1 − τN+1

τ (1+τ )

r1 − r2
= − 1

1 + 2τ
.

Hence, for τ ! 0, we find that −1 " c1 " 0 and c1 is only
an integer for either τ = 0 or τ → ∞. Since c2 = N − c1, we
have that N " c2 " N + 1.

Integration of Eq. (A5) yields

log Gh (z) = c1 log (z − r1) + c2 log (z − r2) + b,

where b is an integration constant. Finally, the homogeneous
solution of Eq. (A2) is

Gh (z) = eb (z − r1)c1 (z − r2)N−c1 .

Explicitly,

Gh (z) = eb

(
z + 1

τ

)N+ 1
1+2τ

(
z − 1

1+τ

) 1
1+2τ

= eb

(
z + 1

τ

)N
(

z + 1
τ

z − 1
1+τ

) 1
1+2τ

illustrates that Gh (z) has an essential singularity for z = 1
1+τ

and a branch cut for Rez < 1
1+τ

, because (z − 1
1+τ

)
1

1+2τ =

e
log(z− 1

1+τ
)

1+2τ . Also the numerator has a branch cut for Rez < − 1
τ

.
In other words, Gh (z) is not analytic around z = 0 and not in
the disk |z| < 1, whereas analyticity for |z| < 1 is required for
any probability generating function.

b. Particular solution of (A2)

The particular solution of the differential equation (A2) is
found by the method of the variation of a constant, where

G (z) = B (z) (z − r1)c1 (z − r2)N−c1 (A6)
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and

G′ (z) = B ′ (z) (z − r1)c1 (z − r2)N−c1

+ c1B (z) (z − r1)c1−1 (z − r2)N−c1

+ (N − c1) B (z) (z − r1)c1 (z − r2)N−c1−1 . (A7)

Introduced into (A2) yields

R (z) = −τ (1 + τ )B ′ (z) (z − r1)c1+1 (z − r2)N−c1+1

+ (τ (1 + τ )Nz − (τN + 1) − τ (1 + τ ))
× {Nz − c1r2 − (N − c1) r1}
×B (z) (z − r1)c1 (z − r2)N−c1 .

The coefficient of the last term vanishes (due to the relation
between the residues),

R (z) = −τ (1 + τ )B ′ (z) (z − r1)c1+1 (z − r2)N−c1+1 (A8)

or

B ′ (z) = R (z)

−τ (1 + τ ) (z − r1)c1+1 (z − r2)N−c1+1 , (A9)

where R (z) = bz + c with c = −π0 and b = 2π2 −
τN [τN + 1 − τ ] π0. After integrating (A9), we have

B (z) = B (z0) − 1
τ (1 + τ )

∫ z

z0

R (u)

(u − r1)c1+1 (u − r2)N−c1+1 du.

(A10)

An appropriate choice for z0 = 1, because B(1) is known from
Eq. (A6), by invoking the condition G(1) = 1, as

B(1) =
(

τ

1 + τ

)N−2c1

. (A11)

Combining (A6) and (A10), the general solution of Eq. (A2)
is

G (z) = B(1) (z − r1)c1 (z − r2)N−c1

− 1
τ (1 + τ )

∫ z

1

(z − r1)c1 (z − r2)N−c1 R (u)

(u − r1)c1+1 (u − r2)N−c1+1 du,

(A12)

where the first function possesses a branch cut for Re (z) <
r1 = 1

1+τ
. Using the expressions for r1, r2, and c1, the integral

in Eq. (A12), denoted by I (z), becomes

I (z) = 1
τ (1 + τ )

∫ z

1

(
u − 1

1+τ

u + 1
τ

) 1
1+2τ

× bu + c
(
u − 1

1+τ

) (
u + 1

τ

)N+1 du, (A13)

which can, as shown in Sec. A 2, be written in terms of
incomplete Beta functions.

2. The integral I (z)

Since

u − 1
1+τ

u + 1
τ

=
u + 1

τ
− 1

1+τ
− 1

τ

u + 1
τ

= 1 − 1 + 2τ

τ (1 + τ )
(
u + 1

τ

) ,

the integral I (z) in Eq. (A13) is

I (z) = 1
τ (1 + τ )

∫ z

1

[

1 − 1 + 2τ

τ (1 + τ )
(
u + 1

τ

)
] 1

1+2τ

× bu + c
(
u − 1

1+τ

) (
u + 1

τ

)N+1 du.

We now make a series of substitutions in the integration
variable. First, let x = u + 1

τ
, then

I (z) = 1
τ (1 + τ )

∫ z+ 1
τ

1+ 1
τ

(
1 − 1 + 2τ

τ (1 + τ )x

) 1
1+2τ

−1

×
bx + c − b

τ

xN+2
dx.

Next, we put y = 1
x

and obtain

I (z) = − 1
τ (1 + τ )

∫ τ
1+zτ

τ
1+τ

[
1 − 1 + 2τ

τ (1 + τ )
y

] 1
1+2τ

−1

×
(

b/y + c − b

τ

)
yNdy.

Finally, let w = 1+2τ
τ (1+τ )y,

I (z) = − 1
1 + 2τ

[
τ (1 + τ )
1 + 2τ

]N ∫ 1+2τ
(1+τ )(1+zτ )

1+2τ

(1+τ )2

(1 − w)
1

1+2τ
−1

[
1 + 2τ

τ (1 + τ )
b

w
+ c − b

τ

]
wNdw

and

I (z) = − b

τ (1 + τ )

[
τ (1 + τ )
1 + 2τ

]N ∫ 1+2τ
(1+τ )(1+zτ )

1+2τ

(1+τ )2

(1 − w)
1

1+2τ
−1 wN−1dw −

(
c − b

τ

)

1 + 2τ

[
τ (1 + τ )
1 + 2τ

]N ∫ 1+2τ
(1+τ )(1+zτ )

1+2τ

(1+τ )2

(1 − w)
1

1+2τ
−1 wNdw.

(A14)

The remaining integrals can be written in terms of the incomplete Beta function B (x; a,b) =
∫ x

0 ta−1 (1 − t)b−1 dt as
∫ x

α

wm (1 − w)q−1 dw =
∫ x

0
wm (1 − w)q−1 dw −

∫ α

0
wm (1 − w)q−1 dw = B (x,m + 1,q) − B (α,m + 1,q) ,
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where α < 1. If x = 1+2τ
(1+τ )(1+zτ ) exceeds 1 (thus z < 1

1+τ
), the integrand, in particular (1 − t)q−1, possesses a branch cut. In

summary,

I (z) = − b

τ (1 + τ )

[
τ (1 + τ )
1 + 2τ

]N {
B

[
1 + 2τ

(1 + τ ) (1 + zτ )
,N,

1
1 + 2τ

]
− B

[
1 + 2τ

(1 + τ )2
,N,

1
1 + 2τ

]}

−
(
c − b

τ

)

1 + 2τ

[
τ (1 + τ )
1 + 2τ

]N {
B

[
1 + 2τ

(1 + τ ) (1 + zτ )
,N + 1,

1
1 + 2τ

]
− B

[
1 + 2τ

(1 + τ )2
,N + 1,

1
1 + 2τ

]}
.

Using the exact evaluation for a ∈ N,

B (x; a,b) = + (a) + (b)
+ (b + a)

− + (a) + (b)
a−1∑

j=0

xa−1−j (1 − x)j+b

+ (a − j ) + (b + j + 1)
,

derived by repeated partial integration, and

(z − r1)c1 (z − r2)N−c1 = τ−N

[
1 − 1 + 2τ

(1 + τ ) (τz + 1)

]− 1
1+2τ

(1 + zτ )N

we have that

s1 = (z − r1)c1 (z − r2)N−c1

{
B

[
1 + 2τ

(1 + τ ) (1 + zτ )
,N,

1
1 + 2τ

]
− B

[
1 + 2τ

(1 + τ )2
,N,

1
1 + 2τ

]}

= −(N − 1)!τ−N (1 + zτ )
(

1 + 2τ

1 + τ

)N−1 N−1∑

j=0

+
( 1

1+2τ

) [ (1+τ )(1+zτ )
1+2τ

− 1
]j

+
( 1

1+2τ
+ j + 1

)
(N − 1 − j )!

+ (z − r1)c1 (z − r2)N−c1 q1,

where q1 = q(N − 1) and

q (N ) = N !+
(

1
1 + 2τ

) [
1 + 2τ

(1 + τ )2

]N [
τ 2

(1 + τ )2

] 1
1+2τ

N∑

j=0

(
τ 2

1+2τ

)j

(N − j )!+
( 1

1+2τ
+ j + 1

) ,

illustrating that the first sum is analytic in z everywhere, while the second sum is not analytic inside |z| < 1. Similarly,

s2 = (z − r1)c1 (z − r2)N−c1

{
B

[
1 + 2τ

(1 + τ ) (1 + zτ )
,N + 1,

1
1 + 2τ

]
− B

[
1 + 2τ

(1 + τ )2
,N + 1,

1
1 + 2τ

]}

= −N !τ−N−1
(

1 + 2τ

1 + τ

)N N∑

j=0

+
( 1

1+2τ

) [ (1+τ )(1+zτ )
1+2τ

− 1
]j

+
( 1

1+2τ
+ j + 1

)
(N − j )!

+ (z − r1)c1 (z − r2)N−c1 q2,

where q2 = q (N ).

3. Determination of G (z) and πm

With these new definitions, the expression in Eq. (A12) for G (z) becomes

G (z) = B(1) (z − r1)c1 (z − r2)N−c1 − (z − r1)c1 (z − r2)N−c1 I (z)

= B(1) (z − r1)c1 (z − r2)N−c1 + b

τ (1 + τ )

[
τ (1 + τ )
1 + 2τ

]N

s1 +
(
c − b

τ

)

1 + 2τ

[
τ (1 + τ )
1 + 2τ

]N

s2.

In order for G (z) =
∑N

k=0 πkz
k to be a probability-generating function (and, in our case, analytic everwhere), we must require

that

B(1) + b

τ (1 + τ )

[
τ (1 + τ )
1 + 2τ

]N

q1 +
(
c − b

τ

)

1 + 2τ

[
τ (1 + τ )
1 + 2τ

]N

q2 = 0.

With (A11), recall that b = 2π2 − τN [τN + 1 − τ ] π0 and c = −π0, we find that

b = τ
q1

(1+τ ) − q2
(1+2τ )

{ −q2

1 + 2τ
c −

[
1 + 2τ

(1 + τ )2

]N(
τ

1 + τ

) 2
1+2τ

}
. (A15)
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With this requirement, we arrive at

G (z) = −b

τ

(N − 1)!
1 + 2τ

(1 + zτ )
N−1∑

j=0

+
( 1

1+2τ

) [ (1+τ )(1+zτ )
1+2τ

− 1
]j

+
( 1

1+2τ
+ j + 1

)
(N − 1 − j )!

−
(
c − b

τ

)
N !

1 + 2τ

1
τ

N∑

j=0

+
( 1

1+2τ

) [ (1+τ )(1+zτ )
1+2τ

− 1
]j

+
( 1

1+2τ
+ j + 1

)
(N − j )!

.

We expand [ (1+τ )(1+zτ )
1+2τ

− 1]j = (−1)j ( τ
1+2τ

)j [1 − z(1 + τ )]j into a Taylor series around z = 0,

[
(1 + τ ) (1 + zτ )

1 + 2τ
− 1

]j

=
(

τ

1 + 2τ

)j j∑

m=0

(
j

m

)
(−1)j−m (1 + τ )m zm.

Substituted into the above relation for G (z) yields after summation reversal,

G (z) = −b

τ

(N − 1)!
1 + 2τ

N−1∑

m=0






N−1∑

j=m

(−1)j−m
(

j
m

)
+

( 1
1+2τ

) (
τ

1+2τ

)j

+
( 1

1+2τ
+ j + 1

)
(N − 1 − j )!




 (1 + τ )m zm

− b
(N − 1)!
1 + 2τ

N∑

m=1






N−1∑

j=m−1

(−1)j−m−1 (
j

m−1

)
+

( 1
1+2τ

) (
τ

1+2τ

)j

+
( 1

1+2τ
+ j + 1

)
(N − 1 − j )!




 (1 + τ )m−1 zm

−
(
c − b

τ

)
N !

1 + 2τ

1
τ

N∑

m=0






N∑

j=m

(−1)j−m
(

j
m

)
+

( 1
1+2τ

) (
τ

1+2τ

)j

+
( 1

1+2τ
+ j + 1

)
(N − j )!




 (1 + τ )m zm.

After equating corresponding powers of z in G (z) =
∑N

k=0 πkz
k and the above expression, this leads to

π0 = −b

τ

(N − 1)!
1 + 2τ






N−1∑

j=0

(−1)j +
( 1

1+2τ

) (
τ

1+2τ

)j

+
( 1

1+2τ
+ j + 1

)
(N − 1 − j )!




 −
(
c − b

τ

)
N !

1 + 2τ

1
τ






N∑

j=0

(−1)j +
( 1

1+2τ

) (
τ

1+2τ

)j

+
( 1

1+2τ
+ j + 1

)
(N − j )!






and, for 1 " m " N ,

πm = −b

τ

(N − 1)!
1 + 2τ

(1 + τ )m






N−1∑

j=m

(−1)j−m
(

j
m

)
+

( 1
1+2τ

) (
τ

1+2τ

)j

+
( 1

1+2τ
+ j + 1

)
(N − 1 − j )!






− b
(N − 1)!
1 + 2τ

(1 + τ )m−1






N−1∑

j=m−1

(−1)j−m−1 (
j

m−1

)
+

( 1
1+2τ

) (
τ

1+2τ

)j

+
( 1

1+2τ
+ j + 1

)
(N − 1 − j )!






−
(
c − b

τ

)
N !

1 + 2τ

1
τ

(1 + τ )m






N∑

j=m

(−1)j−m
(

j
m

)
+

( 1
1+2τ

) (
τ

1+2τ

)j

+
( 1

1+2τ
+ j + 1

)
(N − j )!




 . (A16)

It remains to determine b and c from the above expression for π0 and from the analyticity condition (A15). Substituting (A15)
into the expression of π0 and recalling that c = −π0 yields

π0 = (N − 1)!v1

q2 − (1+2τ )q1
(1+τ )

{
q2

1 + 2τ
π0 −

[
1 + 2τ

(1 + τ )2

]N (
τ

1 + τ

) 2
1+2τ

}

+ π0N !
1 + 2τ

v2

τ

−
N ! 1

τ
v2

q2 − (1+2τ )q1
(1+τ )

{
q2

1 + 2τ
π0 −

[
1 + 2τ

(1 + τ )2

]N (
τ

1 + τ

) 2
1+2τ

}

with v1 = v(N − 1) and v2 = v (N ), where

v (N ) =
N∑

j=0

(−1)j +
( 1

1+2τ

) (
τ

1+2τ

)j

+
( 1

1+2τ
+ j + 1

)
(N − j )!

.

Solving for π0 finally results in

π0 =
[ 1+2τ

(1+τ )2

]N (
τ

1+τ

) 2
1+2τ (N − 1)!

(
N
τ
v2 − v1

)

(
1 − N!

1+2τ
v2
τ

) [
q2 − (1+2τ )q1

1+τ

]
+ (N−1)!q2( N

τ
v2−v1)

1+2τ

. (A17)

012811-13



E. CATOR AND P. VAN MIEGHEM PHYSICAL REVIEW E 87, 012811 (2013)

From Eq. (A17), c = −π0 and b in Eq. (A15) follow and, therefore, all probabilities πm for 0 " m " N . In addition, G′(1) is
elegantly computed from Eq. (A4) as

G′(1) = (τ 2N − 1) − (b + c)
τ (1 + τ )

,

avoiding the determination of all πm.
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