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Since the Susceptible-Infected-Susceptible (SIS) epidemic threshold is not precisely defined in spite of its
practical importance, the classical SIS epidemic process has been generalized to the ε−SIS model, where a node
possesses a self-infection rate ε, in addition to a link infection rate β and a curing rate δ. The exact Markov
equations are derived, from which the steady state can be computed. The major advantage of the ε−SIS model is
that its steady state is different from the absorbing (or overall-healthy state) and approximates, for a certain range
of small ε > 0, the in reality observed phase transition, also called the “metastable” state, that is characterized
by the epidemic threshold. The exact steady-state analysis for the complete graph illustrates the effect of small
ε and the quality of the first-order mean-field approximation, the N -intertwined model, proposed earlier. Apart
from duality principles, often used in the mathematical literature, we present an exact recursion relation for the
Markov infinitesimal generator.
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I. INTRODUCTION

We consider virus spread in an undirected graph G(N,L),
with N nodes and L links, characterized by a symmetric
adjacency matrix A. The graph G is fixed and does not change
over time. The viral state of a node i at time t is specified
by a Bernoulli random variable Xi(t) ∈ {0,1}: Xi(t) = 0 for a
healthy node and Xi(t) = 1 for an infected node. A node i at
time t can be in one of the two states: infected, with probability
vi(t) = Prob[Xi(t) = 1] or healthy, with probability 1 − vi(t),
but susceptible to the virus. We assume that the curing process
per node i is a Poisson process with rate δ and that the infection
rate per link is a Poisson process with rate β. Obviously, only
when a node is infected can it infect its direct neighbors that are
still healthy. Both the curing and infection Poisson process are
independent. This is the general continuous-time description of
the simplest type of a Susceptible-Infected-Susceptible (SIS)
virus process on a network.

In this paper we generalize the SIS process by adding a
nodal component to the infection. We assume that each node
i can be infected with a rate ε. Hence, besides receiving
the infection over links from infected neighbors with rate
β, the node i can also itself produce a virus with rate ε.
Again, all involved Poisson processes are independent. The
motivation to consider a nodal infection component stems from
the analogy of epidemics with information spread in social
networks, where nodes can generate themselves information,
which is spread over links to neighbors. This generalization
is here called the ε−SIS model, which clearly reduces to the
“classical” SIS model when ε = 0. This SIS generalization is
not new: The ε−SIS model was already proposed recently by
Hill et al. [1], who have considered the happiness of persons
as a form of infection over a social contact network. However,
in contrast to Hill et al. [1], we present an exact analysis of the
ε−SIS model and deduce insights in the SIS epidemic process.

Apart from the greater flexibility of the ε−SIS epidemic
to model practical cases of information diffusion, there is
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a second, more fundamental motivation to consider in this
generalization of the “classical” SIS model. Many authors
(see, e.g., Refs. [2–7]) mention the existence of an epidemic
threshold τc. If the effective spreading rate τ = β

δ
> τc,

the virus persists and a nonzero fraction of the nodes are
infected, whereas for τ ! τc, the epidemic dies out and the
network is virus free in the steady state. From the point
of view of network protection against viral infections, the
epidemic threshold τc is the key parameter in the design
of immunization strategies in networks [8–10]. Many ap-
proximate methods applied to the SIS model have proposed
various types of estimates for τc. The most successful and
general approximation is the lower bound τc " τ (1)

c = 1
λ1(A) ,

first proposed by Wang et al. [11], but rigorously proved in
Refs. [12,13], where λ1(A) is the largest eigenvalue of the
adjacency matrix A of the network. Higher order mean-field
approximations have been derived in Ref. [14] illustrating
the existence of a sequence of more accurate lower bounds
τc " · · · " τ (m)

c " τ (m−1)
c " · · · " τ (2)

c " τ (1)
c . In particular, a

similar largest eigenvalue expression as for τ (1)
c was deduced,

namely, τ (2)
c = 1

λ1(H ) , where the N2 × N2 matrix H contains
elements of the adjacency matrix A and reflects network
properties.

However, when the SIS model is exactly described via
Markov theory as shown in Ref. [12] and its generalization
in Sec. II, the observation that this Markov chain (with a
finite number of states) possesses an absorbing state equal
to the overall healthy state contradicts the existence of any
threshold. For, in an irreducible Markov chain, where all states
are reachable from each other, the existence of an absorbing
state implies that all other states are transient states and that the
steady state is the absorbing state. Moreover, the probability
that the process is in a transient state exponentially tends
to zero with time. However, the convergence time T to the
steady state can be very large [12,15,16]. When the number of
states grows unboundedly, major complications arise because
an infinite state Markov process is considerably more complex
than a finite state Markov chain. Most of the epidemic work in
mathematics so far (see, e.g., Ref. [17]) witnesses the difficulty
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FIG. 1. The state diagram in a graph with N = 4 nodes and the
binary numbering of the states.

to analyze infinitely large networks. Although there is an
absorbing state, in an infinite-state Markov process, there is a
nonzero chance that the process never dies out. Since the exact
Markov chain [12] consists of 2N states in a network of N
nodes, features of the infinite-state Markov process rapidly pop
up. The apparent steady state connected with the observation
of an epidemic threshold is often termed the “metastable state”
since, on a sufficiently long timescale for finite-state systems,
it disappears.

A major consequence of the theoretical nonexistence of the
SIS epidemic threshold in a finite network confuses the epi-
demiological field greatly. While simulations in “sufficiently”
large networks (already of the order of magnitude for N of 100)
show the epidemic phase transition, the mathematical precise
definition obscures any observation, because simulating or
measuring longer alters the precise position of the epidemic
threshold as eventually the SIS epidemics will disappear. In
particular, in relatively small networks (N about 10 or 20), the
time-dependent evolution towards the absorbing state of the
SIS epidemics is clearly observed, for any value of the effective
spreading rate τ . The probability to reach the absorbing state in
which, eventually, all the nodes in the network will be healthy
so that the virus disappears decreases with N . Figure 1 shows
this decrease with N immediately: The number of paths in the
Markov graph from a certain state towards the absorbing state
dramatically increases with N . Thus, the major complication
in the analysis of the SIS model is the absorbing state, not
only theoretical, but also simulative. In order to determine the
epidemic threshold τc via computer simulations in sufficiently
large networks, the occurrence of hitting the absorbing state
is large because the effective infection rate τ is so low that
infection often vanishes, yet τ should be high enough to avoid
exponential dying out of the virus. Such simulations do not
only take a long time, but also possess high variability, which
questions how accurately computer simulations can determine
the epidemic SIS threshold.

The second major motivation to study the ε−SIS model
is that, for ε > 0, there is no absorbing state and the steady
state can be well determined by ordinary Markov theory. The
absence of the absorbing state follows from the fact that,
if all nodes are healthy, the network does not permanently

remain healthy but gets infected with rate Nε (due to nodal
self-infection with rate ε), implying that the probability that the
network is healthy (all nodes are in state 0) is less than 1. This
also means that, for a given small ε, the epidemics as a function
of the infection rate τ can be computed as well as the boundary
between low infection (due to the immanent self-infection
with rate ε) and the high infection region due to neighbor
infection with rate β. The precise SIS epidemic threshold is
now defined as the sharp transition between those two regimes
for a given small ε. In contrast to the SIS model, for small
values of ε = 10−a with 10 ! a ! 3 in the ε−SIS model,
computer simulations on finite, sufficiently large networks
are accurate, as shown by extensive simulations in Ref. [18]
and in Sec. IV. In particular, Fig. 6 illustrates that even for
unrealistically low values of ε = 10−a with a > 20, a nonzero
self-infection rate, though nearly arbitrarily small, results in a
clear phase transition. Also, the shift of the phase transition
when ε = 10−a varies from a = 6 to a = 10, is rather
small.

From a biological point of view, the phase transition is
important because of self-organization (see, e.g., Ref. [19]).
When the virus dies out, the population will start losing
immunity (i.e., the curing rate will decrease with time) against
that virus, and when it suddenly appears again, the whole
population may be wiped out (since δ has become very low).
Hence, the existence of a very few infected nodes on average
keeps the population fit against the virus (i.e., δ remains more
or less constant) because their immunity system is constantly
challenged. The “background” presence of viruses can be
modeled by a low nodal self-infection rate ε. The most obvious
equilibrium situation of such a population is to operate with
τ very close to the epidemic threshold τc. This argument of
self-organized criticality underlines the desire to determine the
SIS epidemic threshold τc accurately.

Here we extend the analysis in Ref. [12] to ε−SIS epidemics
(Sec. II). In Sec. III we provide a new matrix recursion for
the infinitesimal generator and show that the Markov graph
exhibits a regular bipartite structure. Simulations and exact
results for the steady-state fraction of infected nodes in the
complete graph are presented in Sec. IV and in the Appendix
to show the effect of the self-infection rate ε.

II. THE ε−SIS 2N -STATE MARKOV CHAIN

A “physical” description of the ε−SIS epidemic process is
as follows. Let I denote the set of infected nodes in the graph
G. Then the Markov transitions

I $→ I ∪ {j} (j /∈ I ) at rate β
∑

k∈I

akj + ε,

I $→ I\{i} (i ∈ I ) at rate δ

detail the dynamics1 between the infected subgraph I and
its complement I c = G\I . Computationally we need to
enumerate the subgraphs I in G, which leads to another
description. The state Y (t) of the network at time t is defined

1A mean-field analysis based on infected subgraphs is given in
Ref. [20], pp. 48–51.
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by all possible combinations of states in which the N nodes
can be at time t ,

Y (t) =
[
Y0(t) Y1(t) . . . Y2N−1(t)

]T

and

Yi(t) =
{

1, i =
∑N

k=1 Xk(t)2k−1

0, i '=
∑N

k=1 Xk(t)2k−1
.

Hence, the state space of the Markov chain is organized with
xk ∈ {0,1}, where 1 ! k ! N refers to the node with label k
in G, as

State number i xNxN−1...x2x1

0 00...000
1 00...001
2 00...010
3 00..011
... ...

2N − 1 11...11

The number of the states with j infected nodes is ( N
j ).

Figure 1 shows an example of the Markov state graph with
N = 4 nodes. A state with j infected nodes needs to make
at least j transitions to reach the overall-healthy state 0. The
total number of transitions from any state to state 0 is at least∑N

j=1 j ( N
j ) = N2N−1, so that the average number of transi-

tions from an arbitrary state to state 0 is at least N
2 . Likewise the

corresponding variance equals
∑N

j=1 j 2( N
j )2−N − (N

2 )2 = N
4 .

Hence, for large N , it requires for a randomly infected network,

in the best possible case,2 on average N
2 + O(

√
N ) hops to

eradicate the virus.
The representation of a integer number n in a binary base

is

n =
log2(n)∑

k=0

wk(n)2k,

where the binary kth digit wk(n) = 1
2 (1 − (−1)[ n

2k ]) is3 either 0
or 1. Here we slightly modify the representation for an integer
i as

i =
N∑

k=1

xk(i)2k−1

because the binary kth digit xk(i) represents the infectious state
of a node k in the network, while in state i, and node labels in
a graph G range from 1 to N , rather than from 0 to N − 1.

In any continuous-time Markov process [21], there is only
one event possible during an arbitrary small time interval,
which implies for the ε−SIS process that a transition out of
state i can only end in a state j , whose binary representation
xNxN−1 . . . x2x1 has either one more 1 bit4 or one less than that
of state i. If the state j has less 1 bits, then precisely one of the 1
bits (corresponding with one node in the network) of state i has
been cured with rate δ. If the state j has precisely one additional
1 bit, then one of the nodes, say, m, with xm(i) = 0 has become
infected [so that xm(j ) = 1] with rate ε + β

∑N
k=1 amkxk(i):

The strength of infection is due to all neighbors of node m
that are infected, i.e., xk(i) = 1, augmented with the nodal
self-infection rate ε of node m. The defined virus infection
process is a continuous-time Markov chain with 2N states
specified by the infinitesimal generator Q with elements

qij =






δ if j = i − 2m−1; m = 1,2...N and xm(i) = 1

ε + β
∑N

k=1 amkxk(i) if j = i + 2m−1; m = 1,2...N and xm(i) = 0

−
∑N

k=1;k '=j qkj if i = j

0 otherwise

, (1)

where i =
∑N

k=1 xk(i)2k−1. For example, if i = 0, then all
xk = 0, and the transition probability rates out of the network
overall-healthy state 0 are q0j = ε for j = 2m−1 with 1 ! m !
N (ranging over all network states with 1 infected node), while
q00 = −Nε and q0j = 0 for all other j . Hence, for ε > 0, the
first row in the infinitesimal generator Q is nonzero, whereas
it is zero in the “classical” SIS model (ε = 0), corresponding
to the absorbing state. When β = 0, there are no link-based
infections, only nodal infections. Thus, locally, the infection
process per node is a two-state continuous-time Markov

2Only curing transitions occur, and all transition links are
equally weighted.

process with self-infection rate ε and curing rate δ, from which
we know (see Ref. [21], p. 196) that the steady-state infection
probability for each node k ∈ G equals Prob[Xk∞ = 1] = ε

ε+δ
.

The time dependence of the probability state vector s(t),
with components

si(t) = Prob[Y (t) = i]

= Prob[X1(t) = x1(i),X2(t) = x2(i), . . . ,XN (t) = xN (i)],

3[x] denotes the integral part of the real number x.
4Each xk is called a bit or binary digit, and a 1 bit means

that xk = 1, while a zero bit means that xk = 0.
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and normalization
∑2N−1

i=0 si(t) = 1, obeys (see Ref. [21],
p. 182) the differential equation

dsT (t)
dt

= sT (t)Q,

whose solution is

sT (t) = sT (0)eQt .

The definition of si(t) as a joint probability distribution shows
that, if we sum over all the states of all nodes except for the
node j , we obtain the probability that a node j is either healthy
yj = 0 or infected yj = 1,

Prob[Xj (t) = yj ] =
2N −1∑

i=0;i '=j

si(t),

where, in the index i =
∑N

k=1 xk(i)2k−1 in the sum above,
every xk(i) with k '= j takes both values from the set
{0,1}, while for k = j , xk(i) = yj is either 0 (healthy) or 1
(infected). Defining the nodal viral infection probability as
vj (t) =Prob[Xj (t) = 1], then the relation between the vectors
s(t) and v(t) is

vT (t) = sT (t)M,

where the 2N × N matrix M contains the states in binary
notation, but bit reversed:

M =





0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
1 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

1 1 1 · · · 1





.

Thus, the element mij = xj−1(i − 1). The average frac-
tion of infected nodes in G at time t equals y(t) =
E[ 1

N

∑N
j=1 Xj (t)] = 1

N
uT v(t) and

y(t) = 1
N

sT (0)eQtMu,

where u is the all-one vector. We denote the steady-state
average fraction of infected nodes for an effective infection rate
τ by y∞(τ,ε). For each graph, the steady-state average fraction
of infected nodes in G at β = τ = 0 equals y∞(0,ε) = ε

ε+δ
and, obviously, 1 " y∞(τ,ε) " ε

ε+δ
for τ " 0.

The joint probabilities zij =Prob[Xi = 1,Xj = 1] can be
organized in the matrix Z. This matrix can be rewritten as
a N2 × 1 vector vec(Z), consisting of all elements of Z
columnwise (see Ref. [22], p. 254),

vec(Z∞) = (z11, . . . ,zN1,z12, . . . ,zN2, . . . ,z1N, . . . ,zNN ),

which is obtained from the state vector s as

vec(Z) = Ws,

where the elements of the N2 × 2N matrix W are wij =
xl−1(j − 1)xm−1(j − 1), where l + (m − 1)N = i. The vari-

ance Var[
∑N

j=1 Xj ] follows from Ref. [21], p. 30, as

Var




N∑

j=1

Xj



 =
N∑

j=1

E[Xj ] −
N∑

j=1

(E[Xj ])2

+
N∑

k=1

N∑

j=1

{E[XkXj ] − E[Xk]E[Xj ]}

=
N∑

j=1

zjj −
N∑

j=1

z2
jj +

N∑

k=1

N∑

j=1

zkj −




N∑

j=1

zjj




2

= tr(Z) − vT v + uT Zu − [tr(Z)]2.

Hence, the variance of the fraction of infected nodes equals
σ 2

y = 1
N2 Var[

∑N
j=1 Xj ] and, written in terms of the vectors v

and vec(Z):

σ 2
y = 1

N2

[
uT v − vT v + uT

N2×1vec(Z) − (uT v)2].

The sum of the rows in any infinitesimal general Q (similar
to the Laplacian of any graph G) is zero, Qu = 0, which
shows that the 2N × 1 all one vector u is the right-eigenvector
belonging to the largest eigenvalue µ = 0. The steady-state
vector π in the ε−SIS model [21] obeys5 πT Q = 0, so that
π equals the left-eigenvector, normalized as

∑2N −1
n=0 πn = 1,

belonging to the zero eigenvalue.

A. Example: The case when N = 2

Let us consider the simplest possible case of the matrix Q,
where N = 2, ε∗ = ε

δ
, and Q∗

2 = Q2
δ

:

Q∗
2 =





−2ε∗ ε∗ ε∗ 0
1 −1 − ε∗ − τa21 0 ε∗ + τa21
1 0 −1 − ε∗ − τa12 ε∗ + τa12
0 1 1 −2



 ,

which can be evaluated analytically. The graph G consists of
two nodes that are possibly connected by a link (if a12 = 1).
The steady-state vector π has the vector components

π0 = 1
(1 + ε∗)2 + τε∗a12

,

π1 = π2 = ε∗

(1 + ε∗)2 + τε∗a12
,

π3 = ε∗(ε∗ + τa12)
(1 + ε∗)2 + τε∗a12

,

illustrating that for ε∗ = 0, we find the absorbing state, while
steady-state symmetry of state 1 and 2, corresponding to the
node configuration 01 and 10, is expected. The vector v∞ =
Mπ has components v1∞ = v2∞ = ε∗(1+ε∗+τa12)

(1+ε∗)2+τε∗a12
, showing

that for N = 2 there is no indication of an epidemic threshold.

5Here we write a vector as a column vector, as usual in
linear algebra, but as opposed to Markov theory [21].
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In order to compute the eigenvalues of Q∗
2, we com-

pute the characteristic polynomial cQ∗
2
(λ) = det(Q2

δ
− λI ) =∑4

k=1 ckλ
k and find, with c4 = 1:

c1 = 2{ε∗τ 2a12 + τa12(1 + 3ε∗ + ε∗2) + (1 + ε∗)3},
c2 = τ 2a12 + 2τa12(2 + 3ε∗) + 5(1 + ε∗)2,

c3 = 2[τa12 + 2(1 + ε∗)].

The zeros of cQ∗
2
(µ) = 0 or eigenvalues 0 = µ1 " µ2 " µ3 "

µ4 of Q∗
2 can be found analytically:

µ2,4 = −3(1 + ε∗) + τa12

2
± 1

2

√
(1 + ε∗ − τa12)2 + 8τa12

and

µ3 = −1 − τa21 − ε∗.

We note that the two eigenvalues µ2,4 can never be complex.
Hence, all eigenvalues of Q∗

2 are real and negative. For larger
N , we found numerically that eigenvalues of Q∗

N can be
complex (with negative real part).

The time dependence of the number of infected nodes in
the connected graph (a12 = 1) is

y(t) = y1 + y2e
−µ2t

∗ + y3e
−µ3t

∗ + y4e
−µ4t

∗
,

where t∗ = δt is the normalized time and where y1 = v1∞ =
ε∗(1+ε∗+τa12)
(1+ε∗)2+τε∗a12

. Using

(1 + ε∗ − τa12)2 + 8τa12 = (τa12 + 3 − ε∗)2 − 8(1 + ε∗),

we observe that, for large τ ,

µ2 = −3(1 + ε∗) + τa12

2
+ 1

2

√
(τa12+3 − ε∗)2 − 8(1 + ε∗)

= −2ε∗ − 2(1 + ε∗)
(τa12 + 3 − ε∗)

+ O(τ−3)

so that the number of infected nodes y(t) ≈ y1 +
y2e

−[2ε∗+O(τ−1)]t∗ tends to y1 in normalized time t∗ with timing
constant 1

2ε∗+O(τ−1) . Hence, when ε∗ → 0, the timing constant
increases or the tendency towards the steady state slows
down. Although computed for N = 2, the property of slow
convergence towards the steady state (above τc) is a general
characteristic for any N (see, e.g., Ref. [16]).

III. PROPERTIES OF SIS EPIDEMICS

A. Recursive structure of Q∗
N

By inspection, we found the recursive structure

Q∗
N+1 =

[
Q∗

N − BN BN

I2N Q∗
N + RN − DN

]
, (2)

where I2N is the 2N × 2N identity matrix and Q∗
N = QN

δ
, when

in a graph G a node is added in an arbitrarily fashion specified
by the adjacency row vector aN+1. Moreover, Bn = diag(bk)
and, for 1 ! k ! 2n,

bk = ε∗ +
2N∑

j=1

a∗
N+1;j xj (k − 1)

reflects the binary expansion of the number k − 1 in which
each 1 bit is replaced by a∗

N+1;j and added. The first row of Bn

thus equals ε∗e1, where e1 = (1,0, . . . ,0) is the first (2N × 1)
basic vector. The matrix RN is a 2N × 2N upper triangle matrix
with zero diagonal elements and DN is a diagonal matrix with
elements equal to the corresponding row sum of RN + 1. The
upper triangle matrix RN has elements along diagonals

(RN )i,i+2m−1 = aN+1;m





1 − (−1)

[
i+2m−1−1

2m−1

]

2






for m = 1,2, . . . ,N and i = 1 up to 2N − 2m−1. When plotting
RN , we observe that the upper triangle matrix RN has a nested
structure of scaled identity matrices aN+1;mI2m−1 , where the
largest of size 2N−1 × 2N−1 appears once in the upper corner,
those of size 2N−2 × 2N−2 appear twice, and the smallest of
size 1 × 1 appears 2N−1 times on diagonal (i,i + 1) for i = 1 to
2N − 1. Specifically, we divide the 2N × 2N matrix in 4 block
matrices, each of size 2N−1 × 2N−1, and we fill the right upper
block with aN+1,N I2N−1 . The left-upper and right-lower block
matrices are again divided in 4 equal size block matrices. Only
the right upper block matrices of size 2N−2 × 2N−2 are filled
with aN+1,N−1I2N−2 . The remaining left-upper and right-lower
block matrices are again divided in 4 equal size block matrices,
and we repeat the scheme of filling in only the right-upper
block matrices and so on until the size of the block matrices is
equal to 2 × 2 and, in each of the 2N−1 such remaining block
matrices with fill the right-upper element by aN+1;1 and stop.

Let us consider the steady-state vector πN+1 = [
yN

wN
] of

Q∗
N+1, obeying πT

N+1Q
∗
N+1 = 0 or with the recursive structure

0 =
[
yT

N wT
N

] [Q∗
N − BN BN

I2N Q∗
N + RN − DN

]

=
[
yT

N (Q∗
N − BN ) + wT

N yT
NBN + wT

N (Q∗
N + RN − DN )

]
.

Thus, we find that
{

wT
N = yT

N (BN − Q∗
N )

yT
NBN = −wT

N (Q∗
N + RN − DN )

.

Substituting the first vector into the second vector equation
yields

0 = yT
NBN + wT

N (Q∗
N + RN − DN )

= yT
NBN + yT

N (BN − Q∗
N )(Q∗

N + RN − DN ),

illustrating that yN is the left-eigenvector belonging to the zero
eigenvalue of the matrix

H = BN (I2N + Q∗
N + RN − DN ) − Q∗

N (Q∗
N + RN − DN )

and that yN and wN are not easily related to πN , that obeys
πT

NQ∗
N = 0. Hence, the matrix recursion (2) for Q∗

N does not
translate (in an obvious way) to a recursion for the steady-state
vector πN+1 in terms of πN .

B. Regular bipartite structure of the Markov graph

Figure 1 reveals that the Markov state graph is a bipartite
graph. Indeed, we apply the same type of folding as explained
in Ref. [22], p. 132, to map the level set of any tree into a
bipartite graph. In particular, we reorganize the nodes in the
Markov state graph into two sets S0 and S1. We start by placing
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FIG. 2. The Markov graph of a network with N = 4 nodes
arranged as bipartite graph.

the states with zero 1 bits into S0. Next, we place all states with
one 1 bit into S1, with two 1 bits into S0 and so on. Since there
are no links between states with a same number of bits, none of
the nodes in S0 and S1 is connected, so that a bipartite graph is
thus constructed. The construction shows that S0 contains all
states with an even number of 1 bits, whereas S1 contains all
states with an odd number of 1 bits. This relabeling of states
creates an infinitesimal generator with bipartite structure as
illustrated in Fig. 2, where the degree of each node or state is
precisely N . The constant degree of N arises from the Markov
property that only 1 bit can change per event, and the binary
representation of each state i =

∑N
k=1 xk(i)2k−1 reveals that

each state has N bits. Hence, the Markov graph is a regular
bipartite6 graph B2N/2,2N/2 with degree N .

For a regular Markov graph, the largest eigenvalue [22]
of its corresponding adjacency matrix equals the degree
N . Moreover, all eigenvalues of its corresponding Lapla-
cian follow directly from those of the adjacency matrix as
µj (Q) = N − λN+1−j (A). Consequently, the second smallest
eigenvalue of the Laplacian, the algebraic connectivity, equals
the spectral gap, the difference between the largest and second
largest adjacency eigenvalue and µN−1(Q) ! N [see Ref. [22],
Eq. (4.23)]. However, the infinitesimal generator QN is a
weighted Laplacian, for which the above nice properties do
not immediately apply.

The relabeled infinitesimal generator Q̃N+1 has a bipartite
structure

Q̃N+1 =
[

diag((MNu)i) MN

MT
N diag((MNu)i)

]
, (3)

6The complete regular bipartite graph Km,m has degree
equal to m.

FIG. 3. (Color online) The average steady-state fraction y∞(τ ) of
infected nodes in the complete graph versus the effective infection
rate τ for ε∗ = 10−1 and for various sizes N .

where MN is a 2N × 2N matrix with N elements per row and
the ith row sum is (MNu)i . The relabeled steady-state vector
π̃N+1 = [ yN

wN
] of Q̃N+1 obeys πT

N+1Q̃N+1 = 0,

0 =
[
yT

N wT
N

] [ ϒ MN

MT
N ϒ

]

=
[
yT

Nϒ + wT
NMT

N yT
NMN + wT

Nϒ
]
,

where ϒ =diag((MNu)i). Hence,
{

yT
N = −wT

NMT
Ndiag

( 1
(MNu)i

)

wT
N = −yT

NMNdiag
( 1

(MNu)i

)

or
{

yT
N = −wT

NMT
Ndiag

( 1
(MN u)i

)

wT
N = −wT

NMT
Ndiag

( 1
(MN u)i

)
MNdiag

( 1
(MNu)i

) .

Alternatively,
{

wT
N = −yT

NMNdiag
( 1

(MN u)i

)

yT
N = −yT

NMNdiag
( 1

(MN u)i

)
MT

Ndiag
( 1

(MNu)i

) ,

illustrating that the vector wN and yN are related, but, again
in a less obvious way, because both involved matrices are
different and related as H1 = CT D and H2 = DCT , where
C = diag( 1

(MN u)i
)MN and D = MNdiag( 1

(MN u)i
).

While we believe that the recursion (2) and the related
bipartite structure (Fig. 2) point to fundamental properties of

FIG. 4. (Color online) The variance of the steady-state fraction
of infected nodes in the complete graph versus the effective infection
rate τ for ε∗ = 10−1 and for various sizes N .
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FIG. 5. (Color online) The average steady-state fraction y∞(τ )
of infected nodes in the complete graph with N = 100 nodes versus
τ = c

N
and various values of ε∗. The unlabeled curves correspond to

ε∗ = {1,0.8,0.6,0.6,0.4,0.2,0.1,10−2}.

the ε-SIS process on any graph, we have failed so far to deduce
useful insights.

IV. EPIDEMICS ON THE COMPLETE GRAPH KN

We confine to the complete graph because an exact analysis
of the steady-state fraction y∞;N (τ ) of infected nodes is
possible, as presented in Appendix A 1.

Figures 3 and 4 show the average (A5) and variance (A9) of
the steady-state fraction y∞(τ ) = limt→∞ y(t ; τ ) of infected
nodes for various complete graphs KN as a function of the
effective infection rate τ . Figure 4 illustrates that the largest
variance occurs in a region around the “epidemic threshold”
and that the variance decreases with N .

Figure 5 for N = 100 and Fig. 6 for N = 500 illustrate
the rate at which y∞(τ ) tends to the absorbing state with ε∗.
When ε∗ → 0, the fraction of infected nodes y∞ → 0, and
no obvious interpretation of an epidemic threshold can be
deduced. Figure 6 also illustrates that ε∗ is not a perturbation
parameter, because arbitrary small, positive values of ε∗ have
a significant effect on y∞. However, for large N and ε∗ =
10−a with 3 ! a ! 10, but ε∗ < 1

N
as shown in Appendix A 2,

Fig. 6 on the linear scale leads us to “estimate” the in reality

FIG. 6. (Color online) The average fraction y∞(τ ) of infected
nodes in K500 as a function of τ for various small values of
ε∗ = {10−2,10−6,10−10,10−20,10−30,10−40}, that can be read of in
the inserted log-scale plot because y∞(0) = ε∗

1+ε∗ , ε∗. The thick
line represent the N -intertwined mean-field approximation.

FIG. 7. (Color online) The steady-state average fraction y∞(τ ) of
infected nodes versus the normalized effective infection rate c = τN

for N = 25, 50, and 100. Both the exact ε∗ = 10−3 SIS model and
the N -intertwined mean-field approximation are shown.

observed threshold fairly well. The left-top insert shows the
corresponding highly peaked variance. Figure 6 indicates that
the epidemic threshold deduced for ε∗ = 10−6 and ε∗ = 10−10

differs only moderately. Moreover, much lower values of ε∗ =
10−10 are difficult to simulate and seem to be unrealistically
small to occur in nature. All these considerations suggested
to us to propose to define the epidemic threshold for a small
ε∗ = 10−a < 1

N
with 3 ! a ! 10 as the τ value where y∞(τ )

jumps from practically zero to some positive value.
For large τ and larger N , the N -intertwined mean-field

model, yielding y∞;N (τ ) # 1 − 1
(N−1)τ , is accurate as verified

from Figs. 6 and 7. The N -intertwined mean-field approxima-
tion and the exact SIS model are further compared for different
graph types in Ref. [18].

V. CONCLUSIONS

The classical SIS epidemic process has been generalized
to the ε−SIS model: Besides link infections from infected
neighbors with rate β, a node itself produces a virus with
rate ε and can be cured with rate δ. The exact Markov chain
is derived, from which the steady state can be computed,
and an exact recursion relation for the Markov infinitesimal
generator is presented. The major advantage of the ε−SIS
model is that its steady state is different from the absorbing
(or overall-healthy state) and approximates, for a certain range
of small ε > 0, the in reality observed phase transition, that is
characterized by the epidemic threshold. The complete graph
allows an exact analysis, that illustrates the effect of small ε
and the quality of the first-order mean-field approximation, the
N -intertwined model, proposed earlier.

APPENDIX: THE NUMBER OF INFECTED NODES IN KN

The number of infected nodes M(t) at time t in the
complete graph KN is a continuous-time Markov process on
{0,1, . . . ,N} with the following rates:

M $→ M + 1 at rate (βM + ε)(N − M),

M $→ M − 1 at rate δM.

Every infected node heals with rate δ, whereas every healthy
node (of which there are N − M) has exactly M infected
neighbors, each actively transferring the virus with rate β in
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addition to the self-infection rate ε. This Markov process M(t)
is, in fact, a birth and death process with birth rate λj = (βj +
ε)(N − j ) and death rate µj = jδ, whose steady-state prob-
abilities π0, . . . ,πN , where πj = limt→∞Prob[M(t) = j ],
can be computed exactly [21], p. 209] as

π0 = 1

1 +
∑N

k=1

∏k−1
m=0

(βm+ε)(N−m)
(m+1)δ ,

(A1)

πj = π0

j−1∏

m=0

(βm + ε)(N − m)
(m + 1)δ

1 ! j ! N. (A2)

Using the Gamma function’s basic property)(z + 1) = z)(z),
we have

πj = π0

j−1∏

m=0

τm + ε∗

m + 1

j−1∏

m=0

(N − m)

= π0

j !
τ j

j∏

m=1

(
m − 1 + ε∗

τ

) j∏

m=1

(N + 1 − m)

= π0

j !
τ j

)
(
ε∗

τ
+ j

)

)
(
ε∗

τ

) N !
(N − j )!

= π0

(
N

j

)
τ j

)
(
ε∗

τ
+ j

)

)
(
ε∗

τ

)

= π0

(
N

j

)
ε∗τ j−1 )

(
ε∗

τ
+ j

)

)
(
ε∗

τ
+ 1

) , (A3)

which shows that, if ε∗ = 0, then πj = 0 and consequently,
π0 = 1, because

∑N
i=0 πi = 1 (by the conservation of proba-

bility). Further, (A1) becomes

π0 = 1
∑N

k=0

(
N
k

)
τ k

)
(

ε∗
τ

+k
)

)
(

ε∗
τ

)
. (A4)

For τ = 0 [and approximately for large ε∗

τ
because then

)( ε
∗
τ

+j )

)( ε
∗
τ

+1)
∼ ( ε

∗

τ
)j−1], we find that πj = π0( N

j )(ε∗)j and

π0 = 1∑N
k=0 (N

j )(ε∗)j
= 1

(1+ε∗)N , from which y∞;N (0) = ε∗

1+ε∗ , in

agreement with the general theory above. When ε∗

τ
= ε

β
= 1,

thenπj = π0
N!

(N−j )!τ
j , which almost reduces to the steady state

of a Markov model with a forbidden absorbing state.
For large τ , we find from (A3) that

πj ∼ π0
N !

(N − j )!j
ε∗τ j−1,

and from (A4) that

π−1
0 = 1 + ε∗

N∑

k=1

(
N

k

)
τ k−1 )

(
ε∗

τ
+ k

)

)
(
ε∗

τ
+ 1

)

∼ 1 + ε∗
N∑

k=1

N !
(N − k)!k

τ k−1

= 1 + N !τN−1ε∗
N−1∑

j=0

τ−j

j !(N − j )

∼ (N − 1)!τN−1ε∗.

Hence, for large τ and fixed ε∗, it holds that

πj ∼ N

(N − j )!j
τ j−N,

illustrating that the steady-state probability that j nodes are
infected increases with j and ultimately that limτ→∞ πj =
δ0N = 1{j=N} and limτ→∞ y∞;N (τ ) = 1.

1. The average steady-state fraction y∞;N (τ ) of infected nodes

The average steady-state fraction of infected nodes is

y∞;N (τ ) = 1
N

N∑

j=0

jπj ;N = π0;N

N

N∑

j=1

j

(
N

j

)
τ j

)
(
ε∗

τ
+ j

)

)
(
ε∗

τ

) ,

(A5)

and, using j ( N
j ) = N ( N − 1

j − 1 ),

y∞;N (τ )
π0;N

=
N∑

j=1

(
N − 1
j − 1

)
τ j

)
(
ε∗

τ
+ j

)

)
(
ε∗

τ

)

= τ

N−1∑

j=0

(
N − 1

j

)
τ j

)
(
ε∗

τ
+ j + 1

)

)
(
ε∗

τ

)

= ε∗ + τ

N−1∑

j=1

(
N − 1

j

)
τ j

)
(
ε∗

τ
+ j + 1

)

)
(
ε∗

τ

) .

Further, using the Gamma function’s basic property
)(z + 1) = z)(z) in the last sum gives

R =
N−1∑

j=1

(
N − 1

j

)
τ j

(
ε∗

τ
+ j

)
)

(
ε∗

τ
+ j

)

)
(
ε∗

τ

)

= ε∗

τ

N−1∑

j=1

(
N − 1

j

)
τ j

)
(
ε∗

τ
+ j

)

)
(
ε∗

τ

)

+
N−1∑

j=1

j

(
N − 1

j

)
τ j

)
(
ε∗

τ
+ j

)

)
(
ε∗

τ

) .

We recognize from (A4) that the first sum equals

N−1∑

j=1

(
N − 1

j

)
τ j

)
(
ε∗

τ
+ j

)

)
(
ε∗

τ

) = 1
π0;N−1

− 1,

while (A5) indicates that the last sum equals

N−1∑

j=1

j

(
N − 1

j

)
τ j

)
(
ε∗

τ
+ j

)

)
(
ε∗

τ

) = (N − 1)
y∞;N−1(τ )
π0;N−1

,

so that a recursion relation for y∞;N (τ )
π0;N

y∞;N (τ )
π0;N

= ε∗

π0;N−1
+ (N − 1)τ

y∞;N−1(τ )
π0;N−1

(A6)

is found.
Next, we use the binomial recursion ( N

k ) = ( N − 1
k − 1 ) +

( N − 1
k ) in the denominator Fd of

y∞;N (τ ) =

∑N
k=1

(
N−1
k−1

)
τ k

)
(

ε∗
τ

+k
)

)
(

ε∗
τ

)

∑N
k=0

(
N
k

)
τ k

)
(

ε∗
τ

+k
)

)
(

ε∗
τ

)
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and obtain, invoking the recursion (A6) and (A4),

Fd =
N∑

k=0

{(
N − 1
k − 1

)
+

(
N − 1

k

)}
τ k

)
(
ε∗

τ
+ k

)

)
(
ε∗

τ

)

= ε∗

π0;N−1
+ (N − 1)τ

y∞;N−1(τ )
π0;N−1

+ 1
π0;N−1

,

which leads to a recursion for y∞;N (τ ):

y∞;N (τ ) = 1

1 + 1
ε∗+(N−1)τy∞;N−1(τ )

, (A7)

from which we finally deduce

y∞;N (τ ) = 1 − 1
ε∗

y∞;N (τ ) + (N − 1)τ y∞;N−1(τ )
y∞;N (τ )

. (A8)

For sufficiently large N , there holds that y∞;N−1(τ )
y∞;N (τ ) # 1 and (A8)

indicates that, when ε∗

y∞;N (τ ) ! 1 + ε∗ is small enough to ne-

glect, we find that y∞;N (τ ) ≈ 1 − 1
(N−1)τ , which supports the

simulations in Fig. 7. Recall [12,23] that the steady-state frac-
tion of infected nodes in the N -intertwined model (for ε∗ = 0)
for the complete graph KN equals, for τ " τ (1)

c = 1
N−1 ,

y
(1)
∞;N (τ ) = 1 − 1

(N − 1)τ
,

illustrating how good the first-order mean-field approximation
for the complete graph is. When iterating (A7), a continued
fraction for y∞;N (τ ) is found, which bears resemblance with
the continued fraction of vj∞ in the N -intertwined model.
Since y∞;N−1(τ ) " y∞;N−1(0) = ε∗

1+ε∗ , each convergent can
be used as a lower bound. For example, the first convergent is

1y∞;N (τ ) = 1

1 + 1
ε∗+(N−1)τ ε∗

1+ε∗

< y∞;N (τ ),

and the second convergent is

2y∞;N (τ ) = 1

1 + 1
ε∗+ (N−1)τ

1+ 1
ε∗+(N−2)τ ε∗

1+ε∗

< y∞;N (τ ).

The variance σ 2
y = 1

N2 Var[
∑N

j=1 Xj ] of the steady-state
fraction of infected nodes equals

σ 2
y = 1

N2

N∑

j=0

j 2πj ;N − y2
∞;N (τ ), (A9)

from which we can deduce that σ 2
y (0) = 1

N
ε∗

(1+ε∗)2 .

2. Scaling of the epidemic threshold

Let us consider the ratio πj+1

πj
= (τj+ε∗)(N−j )

j+1 of the steady-
state probabilities in (A2). The ratio is maximal for

j ∗ =

√

(N + 1)
(

1 − ε∗

τ

)
− 1

and
(
πj+1

πj

)

max

=
[

(N + 2) − ε∗

τ
− 2

√

(N + 1)
(

1 − ε∗

τ

)]

τ,

while the requirement πj+1

πj
= 1 yields

j± = 1
2

(
N−ε∗+1

τ

)
± 1

2

√(
N−ε∗+1

τ

)2

+4(Nε∗−1)
τ

.

If ε∗ > 1
N

, there is only one (non-negative) index for j at which
πj+1

πj
= 1. Thus, πj+1

πj
< 1, implying that πj decreases with j ,

when j > j+ ≈ N − ε∗+1
τ

. In other words, πj increases with
j when j < j+.

The more interesting case appears if ε∗ < 1
N

, then j− ≈
1−Nε∗

τ (N− ε∗+1
τ

)
and πj decreases with j when j < j− and j > j+.

Now, when j− = j+ there is only one value for which πj+1

πj
= 1

and this is the maximum value (πj+1

πj
)max. This means that πj

decreases with j nearly everywhere, except in a small region
around j = j+ = j−. We can consider this region as the onset
of the epidemic which may define the epidemic threshold of the
SIS epidemics (for negligibly small ε∗). Hence, if we choose
(πi+1

πi
)max = 1 and let ε∗ = 0, then we arrive at the scaling for

this defined epidemic threshold

τ ∗
c = 1

(N + 2) − 2
√

(N + 1)
= 1

N

[
1 + 2√

N
+ O

(
1
N

)]
.

(A10)

We observe that τ ∗
c > τ (1)

c = 1
N−1 = 1

N
[1 + 1

N
+ O( 1

N2 ], in
line with the fact that the N -intertwined mean-field approxi-
mation upper bounds the viral node probability [14].

3. Asymptotics for π j

Since
∏i

j=1(N − j ) = Ni exp[
∑i

j=1 log(1 − j
N

)] and

i∏

j=1

(N − j ) = Ni exp



−
i∑

j=1

j

N
+ O(i3N−2)





= Ni exp
[
− i2

2N
+ O(iN−1) + O(i3N−2)

]
,

FIG. 8. (Color online) The steady-state probability πj computed
from (A3) versus j in K100 with ε∗ = 10−3, for various values of τ
around the defined epidemic threshold τc , 1.2 × 10−2 in (A10).
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we have that

πj = π0

j !
ε∗τ j−1 )

(
ε∗

τ
+ j

)

)
(
ε∗

τ
+ 1

)N

j−1∏

m=1

(N − m)

= π0

j !
ε∗

τ

)
(
ε∗

τ
+ j

)

)
(
ε∗

τ
+ 1

) (τN )j

× exp
[
− j 2

2N
+ O(jN−1) + O(j 3N−2)

]

= π0
ε∗

τ

)
(
ε∗

τ
+ j

)

j !)
(
ε∗

τ
+ 1

) exp
[
− j 2

2N
+ j log(τN )

]

× (1 + O(jN−1 + j 3N−2)

and

πj =π0
ε∗

τ

)
(
ε∗

τ
+j

)

j !)
(
ε∗

τ
+1

)e
N
2 (log τN)2

exp
[
−1

2
(j−N log τN )2

N

]

× [1 + O(jN−1 + j 3N−2)].

For large N and small ε∗

τ
so that )( ε

∗
τ

+j )

j !)( ε
∗
τ

+1)
≈ 1

j
, the appropriate

scaling for τ is found by requiring that N (log τN )2 = C2,
where C is independent of N . Hence,

τ = 1
N

exp
(

C√
N

)
= 1

N

{
1 + C√

N
+ O(N−1)

}

and

πj , π0
ε∗

jτ
e

1
2 C2

exp
[

− 1
2

(j − C
√

N )2

N

]

× [1 + O(jN−1 + j 3N−2)],

illustrating that, asymptotically, πj resembles approximately a
Gaussian with mean C

√
N and standard deviation σ =

√
N ,

in agreement with Fig. 8.
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