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The interplay between disease dynamics on a network and the dynamics of the structure of that network
characterizes many real-world systems of contacts. A continuous-time adaptive susceptible-infectious-susceptible
(ASIS) model is introduced in order to investigate this interaction, where a susceptible node avoids infections
by breaking its links to its infected neighbors while it enhances the connections with other susceptible nodes by
creating links to them. When the initial topology of the network is a complete graph, an exact solution to the
average metastable-state fraction of infected nodes is derived without resorting to any mean-field approximation.
A linear scaling law of the epidemic threshold τc as a function of the effective link-breaking rate ω is found.
Furthermore, the bifurcation nature of the metastable fraction of infected nodes of the ASIS model is explained.
The metastable-state topology shows high connectivity and low modularity in two regions of the τ,ω plane
for any effective infection rate τ > τc: (i) a “strongly adaptive” region with very high ω and (ii) a “weakly
adaptive” region with very low ω. These two regions are separated from the other half-open elliptical-like regions
of low connectivity and high modularity in a contour-line-like way. Our results indicate that the adaptation of
the topology in response to disease dynamics suppresses the infection, while it promotes the network evolution
towards a topology that exhibits assortative mixing, modularity, and a binomial-like degree distribution.
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I. INTRODUCTION

Recently, the coupling between epidemic dynamics and
the underlying network topology has attracted ample attention
[1–3]. A network, where the topology changes independently
from the epidemic spread, is called an evolving network. In
an evolving network, where the topology changes based on
some predefined patterns, the epidemic threshold has been
investigated in a number of studies [4,5]. More complex than
evolving networks are adaptive networks, where the topology
changes in response to the epidemic process. In other words,
there exists an interplay between the dynamics of the network
(i.e., the change of the topology) and the dynamics on the
network (i.e., the epidemic process).

Gross et al. [6] proposed an adaptive network model, where
a rewiring process is introduced in the classical susceptible-
infected-susceptible (SIS) model. In every time step, for every
link connecting a susceptible node with an infected node (i.e.,
S-I link), the susceptible node is infected with probability p.
The infected node recovers with probability r . Meanwhile,
for every S-I link, the susceptible node breaks the S-I link
with probability w and immediately reconnects the link to
another randomly selected susceptible node. The link-breaking
and reconnecting process is an instance of a rewiring process.
Gross et al. [6] reported a complex bifurcation pattern during
the evolution of the adaptive network through the healthy state,
the oscillatory state, the bistable state and the endemic state,
respectively, as p increases with fixed nonzero r and w. An
improved analysis of Gross’s model was presented by Marceau
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et al. [7], while the model of Zanette and Risau-Gusmán [8]
differs from that of Gross et al. [6] in that the broken link
is reconnected to a randomly selected, but not necessarily
susceptible node. Lagorio et al. [9] studied the discrete-time
susceptible-infected-recovered (SIR) model in the presence
of a rewiring process and argued that there exists a phase
transition at a critical rewiring rate wc.

Valdez et al. [10] proposed an adaptive SIR model,
where a link-activation-deactivation strategy different from
the link rewiring is introduced to the classical SIR model. In
every discrete time step and for every S-I link, the infected
node i infects its susceptible neighbor j with probability p.
Otherwise, if the node i fails to infect its neighbor j , with
probability σ , its neighbor j breaks (deactivates) the link
connected to node i for a fixed period tB . After tB time steps,
the link between nodes i and j will be created (activated)
again. Every infected node i recovers after a fixed period tR .
In contrast to the link-rewiring process in Gross’s adaptive
model [6] which is a global link-dynamic process, following
the link-dynamic strategy proposed in [10], a link can only
be broken (deactivated) and created (activated) based on the
local information (i.e., the viral states of nodes connected
by the link). There exists a threshold σc above which the
epidemic dies out according to Valdez et al. [10]. A SIS model
with link-activation-deactivation dynamics was investigated
by Tunc et al. [11].

The above related papers on adaptive networks mainly
concentrate on the persistence of the epidemic on the network
by studying the epidemic threshold of the adaptive network in
the metastable state. However, all these papers are based on
mean-field approximations ignoring high-order correlations.
On the other hand, the formation of special structures when
the adaptive network is in the metastable state, such as the
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emergence of a highly connected susceptible component as
well as the associated degree distribution [6], have rarely been
discussed in detail. Wieland et al. [12] addressed how the
degree distribution converges to a well-defined distribution
irrespective of the initial topology in the adaptive SIS model
of Gross et al. [6]. Using stochastic differential equations,
Rogers et al. [13] investigated the mean degree of susceptible
nodes in adaptive networks.

In this paper, we propose a continuous-time adaptive SIS
model (in short, ASIS model) where a new link-dynamic
strategy is introduced into the SIS model. The paper is
organized as follows. Section II describes the ASIS model
and its generality compared with other adaptive SIS models.
Section III explains the simulation method that we employ
to calculate the metastable-state characteristics of the ASIS
model. Section IV constitutes the main part of this article.
When the initial topology is a complete graph, we first propose
and verify an exact formula for the average metastable-state
fraction y of infected nodes. Next, we discuss and calculate
the epidemic threshold of the ASIS model. Then we show
the impact of the disease dynamics and the link dynamics
on the metastable-state topology by investigating many charac-
teristics of the metastable topology such as the modularity [14],
the connectivity [15], and the degree distribution. We show
a complex bifurcation diagram of the metastable fraction of
infected nodes observed from the ASIS model. Finally, we
conclude the paper in Sec. V.

II. ADAPTIVE SIS MODEL

A. Model description

We consider the interplay between the virus spread and
the topology change in an undirected graph G(N,L) with N
nodes and L links denoted by a symmetric adjacency matrix
A. The viral state of node i at time t is specified by a Bernoulli
random variable Xi(t) ∈ {0,1}: Xi(t) = 1 for an infected node
and Xi(t) = 0 for a susceptible node. At time t , a node i can be
in one of the two possible states: inf ected, with probability
vi(t) = Pr[Xi(t) = 1] or healthy, with probability 1 − vi(t),
but susceptible to the virus. We assume that the curing process
per infected node is a Poisson process with rate δ, and that
the infection process per link connecting an infected node and
a susceptible node is a Poisson process with rate β. Both the
curing and the infection Poisson processes are independent.
Only when a node i is infected can it infect its direct neighbors
that are still susceptible. This is the general description of
the simplest type of the continuous-time susceptible-infected-
susceptible (SIS) epidemic model.

We now describe the link-dynamic process, reflected by
an adjacency matrix A(t) at time t . Each element aij (t) of
A(t) is a Bernoulli random variable aij (t) ∈ {0,1}, which
specifies the existence of the link between nodes i and j :
When aij (t) = 1, there is a link between nodes i and j at time
t with probability Pr[aij (t) = 1], and, when aij (t) = 0, there is
no link with probability 1 − Pr[aij (t) = 1]. Two processes, the
link-breaking [Fig. 1(a)] and the link-creating [Fig. 1(b)], run
independently based on the viral state of the end nodes of the
link. Suppose that node i and node j were initially connected,
i.e., aij (0) = 1. Once one of them, but not both, is infected,

(a) (b)

FIG. 1. (Color online) Link state changing based on the viral
states of a pair of nodes. (a) The link breaking between the susceptible
node (S) and the infected node (I); (b) the link creating between a
pair of susceptible nodes (S).

the link (i,j ) between them can be broken (deactivated). The
link-breaking process is a Poisson process with rate ζ . Given
that the link between nodes i and j was broken (deactivated)
at one time, a link can be recreated (activated) between them
once both node i and node j are susceptible. The link-creating
process is a Poisson process with rate ξ .

B. Model formulation

Taking the Bernoullian nature, E[Xi] = Pr[Xi = 1], into
account, we formulate the change of the viral state of node i
as

d

dt
E[Xi] = E

[
−δXi + (1 − Xi)β

N∑

j=1

aijXj

]
, (1)

where the right-hand side of (1) is composed of two parts:
While being infected, node i is cured with rate δ, and
while node i is healthy, it can be infected by each of its
infected neighbors with rate β. In the same manner, using the
Bernoullian property E[Xn] = E[X] for any integer n > 1,
we define the change of the link aij (t) as

d

dt
E[aij ] = aij (0)E{−ζaij [Xi(1 − Xj ) + Xj (1 − Xi)]

+ ξ (1 − aij )(1 − Xi)(1 − Xj )}
= aij (0)E[−ζaij (Xi − Xj )2

+ ξ (1 − aij )(1 − Xi)(1 − Xj )], (2)

where the right-hand side of (2) consists of two opposing
processes. (i) While either node i or node j , but not both, is
infected, the link between nodes i and j is broken (deactivated,
removed) with rate ζ in order to protect the susceptible node
from infection as shown in Fig. 1(a). (ii) While both node i
and node j are susceptible, a link is created between them
with rate ξ as shown in Fig. 1(b) given that the link (i,j )
existed in the original topology [i.e., aij (0) = 1]. In the case
when both node i and node j are infected (i.e., Xi = Xj = 1),
the link is preserved, i.e., dE[aij ]

dt
= 0. In the following, the

above model, consisting of governing equations (1) and (2), is
named the adaptive SIS model, or ASIS model in short. Before
proceeding, we recast the governing equations (1) and (2) in a
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dimensionless form by defining

t̃ = tδ, ζ̃ = ζ

δ
, ξ̃ = ξ

δ
, τ = β

δ
, ω = 2ζ

ξ
, (3)

where τ is the effective infection rate, ω is the effective link-
breaking rate, and the time t̃ is measured in units of the curing
rate δ. In the following, we drop the tilde (˜) notation and
work with the dimensionless parameters (3). Employing the
dimensionless variables (3), the dimensionless forms of (1)
and (2) are

d

dt
E[Xi] = E

[
−Xi + (1 − Xi)τ

N∑

j=1

aijXj

]
, (4)

d

dt
E[aij ] = aij (0)E[−ζaij (Xi − Xj )2

+ ξ (1 − aij )(1 − Xi)(1 − Xj )]. (5)

In this paper, we confine ourselves to the complete graph
KN , where aij (0) = 1 for any nodal pair (i,j ). Only for KN ,
an exact analysis (see Theorem 1 below) is possible.

As explained in Sec. III, the steady state of the ASIS model
in a finite-size network is the purely healthy state. Therefore,
the metastable state of the ASIS model is of interest, in
which the system (consisting of the disease dynamics and
link dynamics) remains for a long time before being trapped
into the absorbing steady state.

C. Generality of the ASIS model

By slightly recasting the governing equations (1) and (2),
our proposed ASIS model can be reduced to some other
models. When a new link can be created between any pair
of healthy nodes, Gross et al.’s model [6] elaborated in Sec. I
applies. Denote by p, r , and w the infection probability, the
curing probability, and the rewiring probability, respectively, in
Gross’s model. The rewiring process in Gross’s model actually
consists of two subprocesses: Within a time step, a susceptible
node i (a) first breaks the link connected to its infected
neighbor j with probability w and (b) then immediately creates
a link to another randomly selected susceptible node. The
link-breaking subprocess depends on the viral states of both
nodes and happens with probability w. Once the link-breaking
subprocess occurs, the link-creating subprocess follows that
increases the degree of another susceptible node disconnected
from i by 1 with probability 1/Ni , where Ni is the number of
these susceptible nodes. By employing the term aij (0) = 1 for
any nodal pair (i,j ) and

β = p,δ = r,ζ = w,ξij = Ri

Ni

+ Rj

Nj

− RiRj

NiNj

,

Ri = ζ

N∑

m=1

aim(t)[1 − Xi(t)]Xm(t), (6)

Ni =
N∑

m=1

[1 − aim(t)][1 − Xi(t)][1 − Xm(t)],

in the governing equation (2), our proposed ASIS model
reduces to one similar to Gross’s model [6], although there
is only one link-dynamic process (i.e., the rewiring process) in
Gross’ model [6], while two separate link dynamics (i.e., the

link-breaking process and the link-creating process) exist in the
ASIS model. The term ξij denotes the link-creating rate which
depends on node i and j . The term Ri denotes the average
number of links connected to node i which are broken within
a time step, while Ni equals the number of the susceptible
nodes disconnected from i. The link-breaking subprocess of
the rewiring process of Gross’s model is equivalent to the
link-breaking process of the ASIS model. The event that a link
is created between a pair of susceptible nodes i and j in a time
step happens only if node i or j , but not both, rewires a link
to the other with probability Ri/Ni or Rj/Nj , respectively.
Hence, by defining ζ and ξ of the ASIS model following the
notations in (6), the ASIS model will approximate Gross’s
model.

For the case that only an initially existing link can be
deactivated or activated, Valdez’s model [10] applies. By
denoting the infection probability by p, the link-deactivation
probability by σ , and the curing probability and the link-
activation probability by 1/tR and 1/tB , respectively, the
transform

β = p, δ = 1
tR

, ζ = σ, ξ = 1
tB

, (7)

reduces the ASIS model to one with link dynamics similar to
Valdez’s model [10], ignoring the different disease dynamics
in ours and in Valdez’s model [10], i.e., the SIS epidemics
versus the SIR epidemics.

III. THE STEADY-STATE INFECTION IN
THE ADAPTIVE ε-SIS MODEL

Van Mieghem et al. [16] showed that the classical SIS model
can be exactly formulated in the form of a continuous-time
Markov chain with 2N states. Later, completely independently,
Simon et al. [17] proposed the same exact SIS equations. Van
Mieghem et al. [16] also argued that the steady state of the
exact SIS model in a finite-size network is the all-healthy
state (i.e., the absorbing state of the SIS Markov chain as
shown in [16]). Hence, Li et al. [18] mentioned (in Secs. I
and III A of [18]) that it is impossible to compare the SIS model
directly with some mean-field approximations such as the
N -intertwined mean-field approximation (NIMFA) proposed
by Van Mieghem et al. [16,19] or the heterogeneous mean-
field (HMF) approximation proposed by Pastor-Satorras and
Vespignani [20], because the steady state of these mean-field
approximations actually corresponds to the metastable state
of the exact SIS model. However, the metastable state is not
defined precisely for finite N . Experimentally, one approach
for determining the metastable state for finite N is to run
many independent simulation instances, compute the average
number of infected nodes over time and look for a plateau. The
average number of infected nodes at an empirically determined
time point of the plateau is defined as the metastable-state
value. This is the approach followed by Chakrabarti et al. [21].
Unfortunately, this approach requires an assessment of the
choice of the time point to calculate the metastable-state value.
The assessment depending on the effective infection rate and
the topology is usually determined empirically, making the
approach inaccurate and less flexible as a simulation method.
An alternative way is to define the metastable state by the
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FIG. 2. (Color online) Comparison between the metastable state
of the ASIS model (solid red curve) and the steady state of the ε-ASIS
model (dashed black straight line). A reasonable instance of a virus
outbreak as well as the corresponding link dynamics are shown in (a)
and (b), respectively.

steady state of the ε-SIS model [22] for a relatively small ε
(e.g., ε < δ

N
). By introducing a nodal self-infection Poisson

process in which each node is infected spontaneously with rate
ε, the absorbing state of the Markov SIS process is eliminated
and thus a nonzero steady state exists for ε > 0. When ε = 0,
the ε-SIS model reduces to the classical SIS model.

Li et al. [18] employed the ε-SIS model as a benchmark
to compare NIMFA [16,19] with HMF [20]. Li et al. [18]
implemented an event-driven time-continuous simulator of the
ε-SIS model (Sec. II A in [18]). Extending the ε-SIS model by
introducing the link-dynamic processes (i.e., the link-breaking
process and the link-creating process as described in Sec. II A),
we name this generalized ε-SIS model incorporating the link
dynamics the adaptive ε-SIS model (or, ε-ASIS model, in
short).

Employing the adaptive ε-SIS model with small positive
ε, we start a simulation instance in a healthy network and
continue to run for a specific warmup period. After the warmup
period, the measurement period starts during which we record
the change in the value of a metric. Based on the recorded

data, we calculate the average steady-state values of many
metrics over the whole measurement period, such as the
average number of infected nodes and the average number
of links. This calculated time-averaged value is defined as the
average steady-state value of a metric. We experimentally
ensure that the steady state does exist for all simulations
and that the initial number of infected nodes in a network
has no influence on the steady state. Hence, to calculate the
average steady-state value of a metric, we only need to run one
simulation instance for a long-enough time period. For any
simulation instance, we have taken both the warmup and the
simulation period to be 104 time units and set the self-infection
rate ε = 10−3.

The steady state of the ε-ASIS model will be close to the
metastable state of the ASIS model. A reasonable instance
of a virus outbreak as well as its corresponding link-dynamic
diagram are shown in Figs. 2(a) and 2(b). For instance, the solid
curve in Fig. 2(a) denotes a single run of the ASIS model in the
metastable state. The dashed line denotes the average steady-
state number of infected nodes of the ε-ASIS model. As shown,
the steady-state number of infected nodes (dashed black line)
of the ε-ASIS model is precisely the line around which the
number of infected nodes in the ASIS model fluctuates. These
examples illustrate that the steady-state of the ε-ASIS model
exists and can be a reasonable approximation to the metastable
state of the ASIS model. In this paper, we use the ε-ASIS model
to calculate the average metastable value of any metric of the
ASIS model.

IV. THE METASTABLE STATE IN
A COMPLETE GRAPH KN

A. The average metastable-state fraction of infected nodes

Denote by Z = 1
N

∑
i Xi the fraction of infected nodes

and by y = E[Z∗] the average metastable-state fraction of the
infected nodes, where Z∗ is the fraction of infected nodes in
the metastable state. In the same manner, the average value of
any other metric in the metastable state can be defined. The
governing equations (1) and (2) lead to an expression (11) for
the average metastable-state fraction y of infected nodes, when
the initial topology is a complete graph KN .

Theorem 1. The average metastable state or maximal
fraction y = E[Z∗] of infected nodes in a graph with N nodes,
produced by (1) and (2) in which aij (0) = 1, satisfies the
quadratic equation

y2 − 2Vy + H = 0, (8)

where

V = 1 − 1
2N

+ ω − 1
2τN

(9)

and

H = 1 − 1
N

+ Var[Z∗] − E

[
1

N2

N∑

j=1

d∗
j (1 − X∗

j )
]
. (10)
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The solution of (8) is, explicitly,

y =
(

1 − 1
2N

+ ω − 1
2τN

)


1 ±

√√√√1 −
1 − 1

N
+ Var[Z∗] − E

[ 1
N2

∑N
j=1 d∗

j

(
1 − X∗

j

)]

(
1 − 1

2N
+ ω−1

2τN

)2




 , (11)

where Var[Z∗] and d∗
j denote the variance of the fraction

of infected nodes and the degree of node j , respectively,
when d

dt
E[ 2L

ξ
− (ω−1)N

β
Z] = 0 and the corresponding random

variables are denoted by ∗.
Proof. See Appendix A. !
Although there exist two possible solutions in (11), denoted

by y1 and y2, only one applies, as proved in Appendix C.
If τ → ∞ with finite ω, the positive sign in (11) is correct;
otherwise, the negative sign in (11) applies. When ω → 0 (i.e.,
no link dynamics), (8) reduces to the corresponding equation
for a fixed complete graph [23].

Given that the initial topology is a complete graph KN with
N = 40, we first verify Theorem 1 by simulations for various
effective link-breaking rates ω, given a fixed link-creating
rate ξ . The exact solution (11) is numerically calculated by
substituting the variance Var[Z∗] and the term E[

∑
j d∗

j X∗
j ]

obtained from the simulation results into the right part
of (11). Then this numerically calculated result is compared
with the average metastable-state fraction of infected nodes
experimentally obtained. As observed in Fig. 3(a), the exact
solution (11) fits the simulation results well for various cases.
The term (10) is not larger than 1, which is indeed confirmed
by Fig. 3(b).

Furthermore, Fig. 4(a) and Fig. 4(b) illustrate the behavior
of y and H versus the effective link-breaking rate ω. Theorem
1 is verified again and the term H is indeed less than 1. As the
average metastable-state fraction of infected nodes decreases
in the effective link-breaking rate ω, the adaptation of the
topology in response to the epidemic spread does suppress the
infection.

B. Epidemic threshold

The existence of an epidemic threshold τc for a specific
finite-size network was reported in the classical SIS model
(see, e.g., [16], [24], [25], and [21]). For the effective infection
rate τ > τc, a disease can eventually persist and become
endemic; otherwise, it will vanish quickly (i.e., the metastable
state of the SIS model is the purely healthy state).

Theorem 2. The epidemic threshold in the ASIS epidemic
process on KN equals

τc(ω; ξ ) = ω − 1

N
(
h(ω; ξ ) − 2 + 1

N

) , (12)

where h(ω; ξ ) = limy↓0
H
y

is a positive, slowly varying func-
tion obeying, for all ω > 0,

1 " h(ω; ξ ) " 2 + 1
N

(
1

∂τc(ω;ξ )
∂ω

∣∣
ω→∞

− 1
)

and h(1; ξ ) = 2 − 1
N

.
Proof. See Appendix B. !

Theorem 2 implies that the epidemic threshold τc tends
to be a linear function of ω since the function h(ω; ξ ) varies
slowly in ω, especially for large ω.

Experimentally, we compute the epidemic threshold by
setting a baseline yc on the average metastable-state fraction
y(τ ) of infected nodes and by defining τc for which y(τc) = yc

as the epidemic threshold for a specific set of parameters
(δ,ζ,ξ,ε). Employing this method with yc = 1

N
, we determine

the epidemic threshold τc as a function of the effective
link-breaking rate ω. The function h(ω; ξ ) can be calculated
experimentally by h = H (τc)

yc
.
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FIG. 3. (Color online) (a) Comparison between the formula (11)
numerically calculated and the simulation results on the average
metastable-state fraction y of infected nodes versus the effective
infection rate τ in the network taking complete graph as the initial
topology. The blue markers denote the simulation results, while the
solid red lines are calculated numerically based on (11). (b) H in (10)
corresponding to the cases in (a).
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FIG. 4. (Color online) (a) Comparison between the formula (11)
numerically calculated and the simulation results on the average
metastable-state fraction y of infected nodes versus ω when the initial
topology is a complete graph, i.e., ASIS model on KN . The blue
markers denote the simulation results while the solid red lines are
calculated numerically based on (11). (b) H in (10) corresponding to
the cases in (a).

As shown in Fig. 5(b), the function h(ω; ξ ) is indeed a
slowly varying function of ω. Specifically, when ω is large,
h(ω; ξ ) is almost a constant, as shown in the inset of Fig. 5(b).
The epidemic threshold τc well approximates a linear function
of ω as shown in Fig. 5(a). Both observations are consistent
with Theorem 2.

The linear law of the epidemic threshold as a function of
the link-breaking rate was also reported by Tunc et al. [11] in
a similar model based on a mean-field analysis.

C. Metastable-state topology

1. Impact of the disease dynamics on the metastable-state topology

We aim to investigate the impact of the disease dynamics
(i.e., the infection process and the curing process) on the
metastable-state topology when the initial topology is a
complete graph. Some metastable-state topological charac-
teristics such as the connectivity [15], the average number of
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FIG. 5. (Color online) (a) Epidemic threshold τc versus effective
link-breaking rate ω in complete graph of size N = 40. The inset
shows τc for a large range of ω. Simulations (blue circles) are
computed by the method described in Sec. IV B. (b) h(ω; ξ ) as a
function of ω corresponding to the cases in (a). The inset shows
h(ω; ξ ) for a large range of ω.

components, the size of the biggest component [26], the assor-
tativity, the modularity [14], and the number of links are shown.
The average metastable-state number of links [normalized by
N (N − 1)], demonstrated in Fig. 6(a), drops down at the very
beginning and then approaches asymptotically a constant as τ
increases. The constant plateau goes against the intuition that
the number E[2L∗]/[N (N − 1)] of links should be almost
1 if the effective infection rate τ is extremely high because
almost all nodes are infected immediately so that no link
will be broken. Actually, for a larger range of τ , namely
τ ∈ [0,1500], the inset in Fig. 6(a) demonstrates that the
number E[2L∗]/[N (N − 1)] of links does rise, albeit rather
slowly after the initial dropping. One possible reason for this
observation is described as follows. When τ is not high enough,
it is very likely that the link between an infectious i and its
susceptible neighbor j is broken before i infects j . However,
once the link between them was broken, no link between them
will be created again, because each node is infected with high
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FIG. 6. (Color online) Impact of the effective infection rate τ on the characteristics of the metastable-state topology. (a) The normalized
average metastable-state number E[2L∗]

N(N−1) of links versus τ . The inset shows E[2L∗]
N(N−1) for a large range of τ . (b) The metastable-state probability

that a graph is connected versus τ . (c) The normalized average metastable-state size E[G∗
c ]

N
of the biggest component versus τ . (d) The average

metastable-state number of components of a graph versus τ . (e) The average metastable-state linear degree correlation coefficient (assortativity)
E[ρ∗

D] versus τ . (f) The average metastable-state modularity E[M∗] [14] versus τ .

probability even for a not too high τ and a relatively small ω.
The number of links will decrease slowly but gradually. In con-
trast, the link between i and j tends not to be broken when τ is
extremely high (e.g., τ → ∞) because both nodes are infected
with high probability. Other metrics such as the connectivity
and the size of the biggest component are correlated to the
number of links. Figure 6(b) (the connectivity) illustrates that
when the effective link-breaking rate (e.g., ω = 2ζ/ξ > 1) is
relatively high, the network tends to be disconnected. Also,
as the effective infection rate τ increases from 0 to a not too
high value, the probability of connectivity declines gradually.
Figures 6(d) and Fig. 6(c), respectively, show the number
of the components and the size of the biggest component
of a network in metastable state. The network breaks into
a biggest component of size near to N and a few small-size
components with high probability for the cases with relatively
high ω > 1.

In order to demonstrate the assortativity of the metastable-
state topology, the linear degree correlation coefficient ρD [27]
for an undirected graph is computed as shown in Fig. 6(e).
Given that the effective infection rate τ is fixed and the effective
link-breaking rate ω is not too large, the larger ω is, the larger is
the assortativity of a graph. The introduction of link dynamics
with moderate rates promotes the correlation in a network,
which was also reported by Gross et al. [6]. The modularity
[14] behaves the same as the assortativity, as shown in
Fig. 6(f). The observation that a high modularity leads to a high
assortativity indicates that the modularity is correlated to the
assortativity [28].

The high modularity also indicates an apparent division
on the topology. Thus, we claim that after introducing a
link-breaking process, the structure of a network is divided
into two loosely interconnected components consisting of
susceptible nodes and infected nodes, called the S component
and the I component, respectively. The link-creating process
enhances the intraconnectivity in the S component, while the
link-breaking process degrades the interconnectivity between
the S component and the I component. On the other hand, both
the infection process and the curing process ruin the division
between the S component and the I component. Figure 6(e)
shows that as the disease dynamics and the link dynamics
compete, the assortativity reaches its maximum followed by a
drop down as the effective infection rate increases. So does the
modularity shown in Fig. 6(f). The division between S and I
components also appears in other adaptive models such as the
one proposed by Gross et al. [6].

2. Impact of the link dynamics on the metastable-state topology

In this section, we focus on the impact of the link dynamics
(including the link-breaking process and the link-creating
process) on the metastable-state infection and topology. In
other words, for a fixed effective infection rate τ , we investigate
some metrics in metastable state as a function of the effective
link-breaking rate ω. For a fixed τ , the average metastable-state
fraction y of infected nodes decreases as ω increases, which is
demonstrated in Fig. 4(a). This also implies that the epidemic
threshold τc grows up as ω increases. Since the epidemic
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FIG. 7. (Color online) Impact of the effective link-breaking rate ω on the characteristics of the metastable-state topology such as (a) the nor-
malized average metastable-state number E[2L∗]

N(N−1) of links, (b) the probability that a graph is connected in the metastable state, (c) the normalized

average metastable-state size E[G∗
c ]

N
of the biggest component, (d) the average number of components of a graph in the metastable state, (e) the

average metastable-state linear degree correlation coefficient (assortativity) E[ρ∗
D], and (f) the average metastable-state modularity E[M∗] [14].

threshold τc > 1/(N − 1) [16] for a complete graph of size
N is the smallest among all graphs of size N and that a
network will become a noncomplete graph after introducing
link-dynamic processes, the epidemic threshold τc will always
be larger than 1/(N − 1) given that ω # 0.

The network becomes more sparse as the effective link-
breaking rate ω increases, as shown in Fig. 7(a). However, for
the case (τ = 0.2) there is a drop followed by an uncommon
rise in the number of the links. This observation is explained
in Appendix D based on the analysis of the existence state
of each link. For the connectivity, Fig. 7(b) shows that a
network will be disconnected with high probability if ω > 1
under the condition (δ = 1,ξ = 1). Figures 7(c) and 7(d)
show that the size of the biggest component behaves the
same as the connectivity and that the higher τ is, the

more disconnected components the network will break into.
Moreover, the assortativity E[ρ∗

D] of the network will increase
and then decline as ω increases, as shown in Fig. 7(e). The
introduction of the link dynamics will increase the assortativity
of a network, which was also reported by Gross et al. [6]. As
shown in Fig. 7(f), the modularity behaves in a way similar to
that of the assortativity.

3. Structure of the metastable-state topology

In Secs. IV C1 and IV C2, the metastable-state topological
properties are demonstrated for some special combinations
of parameters. This section provides an overview on the
metastable-state topology in terms of the modularity, connec-
tivity, and degree distribution.
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FIG. 8. (Color online) Modularity contours in the τ − ω plane for three different values of link-creating rate ξ , namely, (a) ξ = 0.1,
(b) ξ = 1, and (c) ξ = 10.
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FIG. 9. (Color online) Connectivity contours in the τ − ω plane for three different values of link-creating rate ξ , namely, (a) ξ = 0.1, (b)
ξ = 1, and (c) ξ = 10.

Figures 8(b) and Fig. 9(b) demonstrate, respectively, the
modularity diagram and the connectivity diagram in a τ,ω
plane with δ = 1,ξ = 1. The metastable-state topology of
the ASIS model shows high modularity within a “half-open
elliptical-like” domain where τ is relatively high, ω is not too
high, and τ ' ω. This can be explained as follows. According
to its definition [14], the high modularity means (i) that the
infected nodes and the susceptible nodes are well separated
and (ii) that the I component is comparable in size to the S
component. For the domains with low τ , the number of infected
nodes is extremely low. Because the network is partitioned
based on the viral states of nodes in order to compute its
modularity (explained in [14]), a low fraction of infected
nodes (i.e., the size of the I component is small) will induce
a low modularity. For the domains with extremely high ω,
the infection will be strongly suppressed, which also leads
to a low modularity. Moreover, the connectivity shown in
Fig. 9(b) behaves in contrast to the modularity in the τ,ω
plane. The high connectivity is achieved at the expense of a
low modularity as the network is compact and a noticeable
separation of the susceptible and the infectious communities
(components) does not emerge. Naturally, for extremely low
values of τ the network is likely to be connected with high
probability, independent on the link-breaking rate ω. For a
fixed relatively high value of τ , high connectivity could be
achieved either for (a) extremely high ω, which corresponds
to the high adaptability of the network that suppresses the
virus spread and prevents the high connectivity of the S
component being ruined, or (b) extremely low ω, which
corresponds to the weak link dynamics that is not fast enough to
separate the infected nodes from the susceptible nodes. In what
follows, we take as examples the regions of high ω [i.e., the
above case (a)] in Figs. 9(a)–9(c) to explain some interesting
observations. High connectivity can be achieved for high ω
as demonstrated. The higher the link-creating rate ξ is, the
higher the link-breaking rate ζ has to be to keep the topology
connected, although the ratio ω of ζ to ξ decreases. To illustrate
this, let us consider the curves for the connectivity equal to 0.7
in Figs. 9(a)–9(c). Fixed τ = 1 corresponds to ω ≈ 40,12,2,
as shown. Meanwhile, the corresponding ζ = 2,6,10 because
ω = 2ζ/ξ , which increases as ξ increases from 0.1 to 10.
The higher ξ is, the denser the S component consisting of all
susceptible nodes becomes. For a given τ and a high ξ , if ζ
is not high enough to separate the I component from the S

component and once one of the susceptible node is infected,
many other nodes in the S component will be infected soon.
Consequently, the number of S-I links increases and thus
more link-breaking events tend to happen, which ruins the
connectivity. Thus, ζ should become higher as ξ increases in
order to keep a specific connectivity. The increase in ζ is not
linearly proportional to the increase in ξ in order to keep a
specific connectivity and thus ω = 2ζ/ξ decreases. Moreover,
the “concentric half-open elliptical-like” connectivity regions
always exist, albeit slightly different from each other. Hence,
it is anticipated that the half-open concentric elliptical-like
contour line is a universal diagram of the connectivity as well
as the modularity in a τ,ω plane for any link-creating rate ξ .

Besides the modularity and the connectivity, the metastable-
state degree distribution is another important characteristic to
investigate. Unfortunately, it is hard to provide an overview
of the degree distribution due to its complexity. Instead, we
just investigate some extreme cases, namely, τ ' {ζ,ξ} and
τ ) {ζ,ξ}, while ensuring τ > τc, as shown in Fig. 10. For
other cases, the distributions are hard to depict. Figure 10(a)
demonstrates the degree distributions for susceptible and
infected nodes for these extreme cases. As shown in Fig. 10(a),
the degree distribution for susceptible nodes is a binomial-like
one with a peak near N − 1 for the case with τ ' {ζ,ξ}, while
it is a binomial-like one with a medium mean value for τ )
{ζ,ξ}. In other words, the impact of link dynamics, if much
stronger than the disease dynamics (i.e., τ ' {ζ,ξ}), may
induce a high-mean-value degree distribution for susceptible
nodes. The degree distribution for infected nodes centers at
a low value for the case with high τ or at a high value for
the case with low τ . Based on the above observations, the
degree distribution for all nodes is depicted as follows [also
shown in Fig. 10(b)]. For τ ' {ζ,ξ}, the degree distribution
centers nearly N − 1 with low variance, owning one peak
[e.g., the case with (τ = 0.007,ζ = ξ = 0.07)] or multiple
peaks [e.g., the case with (τ = 0.08,ζ = ξ = 10)] but only
one is noticeable. In contrast, for τ ) {ζ,ξ}, the degree
distribution is a binomial-like distribution with low mean
value for high τ [e.g., the case with (τ = 0.08,ζ = ξ =
0.001)] or high mean value for low τ [e.g., the case with
(τ = 0.0065,ζ = ξ = 0.0005)]. In the following, we explain
how the binomial-like degree distribution could emerge for
cases with τ ) {ζ,ξ}. Because the S component (consisting
of all susceptible nodes) is well mixed with the I component
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FIG. 10. (Color online) The metastable-state degree distributions
for (a) susceptible and infected nodes, and (b) for all nodes.

(consisting of all infected nodes) for the case with τ ) {ζ,ξ},
the link-breaking event happens between any nodal pair with
almost the same probability, which could be considered as
a random link-removing. Randomly removing links from a
regular graph (e.g., a complete graph) will induce a topology
with the binomial degree distribution

Pr[D = k] =
(

N − 1
k

)
pk

L(1 − pL)(N−1−k), (13)

where N and pL denote the size of the network and the link
density after deletion. Hence, if substituting the normalized
metastable-state number of links to the right part of (13), we
will obtain a metastable-state degree distribution similar to the
distribution experimentally obtained.

D. Determination of the bistability in the ASIS model

In this section, we concentrate on the distribution Pr[Z∗] of
the metastable-state fraction Z∗ of infected nodes rather than
the average metastable-state fraction y = E[Z∗] of infected
nodes. Figure 11 demonstrates the distribution of Z∗ for cases
with various effective infection rate τ and fixed link-dynamic
rates ζ and ξ . For low (τ = 0.15), the metastable state is
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FIG. 11. (Color online) The distribution of the metastable-state
fraction Z∗ of infected nodes.

close to the healthy state, while the metastable state is the
endemic state for the case with high (τ = 3). However, the
metastable-state fraction Z∗ of infected nodes is around either
0 or a nonzero positive value for some other case (e.g., the case
τ = 1 shown in Fig. 11). For the case τ = 1, the probability
that the metastable state is the healthy state (i.e., Pr[Z∗ = 0])
is comparable in value to the probability that the metastable
state is the endemic state (i.e., Pr[Z∗ = c]), where c is a
positive value depending on τ . This indicates that maybe the
metastable state is stable in either of two dramatically different
infection states, which is likely the bistability phenomenon.
The bistability phenomenon in adaptive networks in the
presence of disease dynamics was first reported by Gross
et al. [6]. The bistable state is a metastable state where there
is no infection in the ASIS model or the infection persists in
the ASIS model on average.

If the probability Pr[Z∗ = 0] is comparable in value with
the probability Pr[Z∗ = c] for a specific τ , where the factor
c depends on τ , we plot these two values simultaneously
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FIG. 12. (Color online) The bifurcation diagram of the
metastable-state fraction of infected nodes. The metastable-state
infection of the ASIS model is in the healthy state (for 0 " τ " 0.3),
the bistable infection state (for 0.3 " τ " 1.6), and the endemic state
(for τ # 1.6), in sequence, as the effective infection rate τ increases.
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in a τ,Z∗ plane and think that the metastable state of the
ASIS model is possibly stable in either of the two states.
Otherwise, if one probability is extremely higher than the other
in value, or there exists only one peak in Pr[Z∗] versus τ , we
consider that the metastable state is stable just in one infection
state. Following the above-mentioned manner, we plot Fig. 12
showing a bifurcationlike behavior in the ASIS model. It seems
that the metastable state changes from the healthy state, to
the bistable state, and to the endemic state as τ increases.
Because of the similarity between the ASIS model and Gross’s
model [6] discussed previously in Sec. II C, we argue that the
bistability phenomenon may also exist in the ASIS model when
concentrating on Z∗ rather than its average value.

V. CONCLUSION

In order to characterize the coevolution and interplay
between the dynamics on a network (i.e., disease dynamics)
and the dynamics of the network (i.e., dynamics of the
link state), we proposed an adaptive network model named
ASIS, where a link-breaking Poisson process with rate ζ and
a link-creating Poisson process with rate ξ are introduced
in the classical SIS model. For the case that the initial
topology of an adaptive network is a complete graph, we de-
duced the average metastable-state fraction of infected nodes
(see Theorem 1). Furthermore, we derived a linear law of
the epidemic threshold τc versus the effective link-breaking
rate ω = 2ζ/ξ (see Theorem 2 ). The phase transition that a
disease can persist in the presence of link dynamics for the
effective infection rate τ > τc and the linear function τc(ω)
are also experimentally verified.

Simulations reveal how the disease dynamics and the
link dynamics promote an adaptive network evolving into a
topology with specific characteristics in terms of the number
of links, the connectivity, the size of the biggest component,
the modularity, and the assortativity. Nodes in the network are
divided into two loosely interconnected components according
to their viral states, namely the I (infectious) component and
the S (susceptible) component, based on which the modularity
[14] is calculated. When the disease dynamics dominate (i.e.,
the infection process is faster than the link-breaking process
and the link-creating process in rate), the network evolves
to one with a binomial-like degree distribution, no apparent
community structure, and disassortative mixing. When the link
dynamics are much faster than the disease dynamics in rate,
the degree distribution is composed of multiple peaks and the
topology becomes a little, but clearly, modular and assortative.
For the other cases than those described above, it is hard
to sketch the topology. Nevertheless, a universal contour-line
behavior is observed from the modularity diagram in the τ,ω
plane. Either a very low effective infection rate τ or a very
high effective link-breaking rate ω will lead to the region of
low modularity and disassortative mixing. The connectivity is
opposite to the modularity, meaning that a low connectivity
leads to a high modularity in the ASIS model.

Finally, rather than the average metastable-state fraction
of infected nodes, the investigation on the distribution of the
infection fraction reveals that between the healthy state and
the endemic state there may exist a bistable state where the
metastable-state infection fraction is stable either around 0

(i.e., the healthy state) or around a positive nonzero value (i.e.,
the endemic state).
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APPENDIX A: PROOF OF THEOREM 1

We transform the link dynamic Eq. (2) into

d

dt
E[aij ] = ξ (1 − E[aij ]) − ξE[(Xi + Xj )]

− (ζ − ξ )E[aij (Xi + Xj )] + ξE[XiXj ]

+ (2ζ − ξ )E[aijXiXj ].

After summing these equations over all j *= i and using the
degree of node i, di =

∑N
j=1 aij and aii = 0, we obtain

d

dt
E[di]

= ξ (N − 1 − E[di]) − ξE



(N − 1)Xi +
N∑

j=1;j *=i

Xj





− (ζ − ξ )E



diXi +
N∑

j=1

aijXj





+ ξE



Xi

N∑

j=1;j *=i

Xj



 + (2ζ − ξ )E




N∑

j=1

aijXiXj



 .

Using

(N − 1)Xi +
N∑

j=1;j *=i

Xj = (N − 2)Xi +
N∑

j=1

Xj

and

Xi

N∑

j=1;j *=i

Xj = Xi




N∑

j=1

Xj − Xi



 = Xi

N∑

j=1

Xj − Xi,

we find

d

dt
E[di] = ξ (N − 1 − E[di]) − ξE



(N − 1)Xi +
N∑

j=1

Xj





− (ζ − ξ )E



diXi +
N∑

j=1

aijXj





+ ξE



Xi

N∑

j=1

Xj



+(2ζ − ξ )E




N∑

j=1

aijXiXj



 .
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Substituting

E




N∑

j=1

aijXiXj



 = − 1
β

d

dt
E[Xi] − 1

τ
E [Xi]

+E




N∑

j=1

aijXj





from (1) into the above relation to remove the highest order
correlation term yields

d

dt
E[di]

= ξ (N − 1) − ξE[di] − ξE

[(
N − 1 + (2ζ − ξ )

τξ

)
Xi

]

− ξE




N∑

j=1

Xj



 − (ζ − ξ )E[diXi] + ξE



Xi

N∑

j=1

Xj





− (2ζ − ξ )
β

d

dt
E[Xi] + ζE




N∑

j=1

aijXj



 .

Rewritten, using ω = 2ζ
ξ

,

d

dt
E

[
di

ξ
+ (ω − 1)

β
Xi

]

= N−1−E

{
di+

[
N − 1 + ω − 1

τ
+

(
ω

2
− 1

)
di

]
Xi

}

−E




N∑

j=1

Xj



+E



Xi

N∑

j=1

Xj



+ω

2
E




N∑

j=1

aijXj



 .

Now we sum over all i, using
∑N

i=1 di = 2L; then

d

dt
E

[
2L

ξ
+ (ω − 1)

β

N∑

i=1

Xi

]

= N (N − 1) − E

[

2L +
(

N − 1 + ω − 1
τ

) N∑

i=1

Xi

+
(

ω

2
− 1

) N∑

i=1

diXi

]

− E



N

N∑

j=1

Xj





+E




(

N∑

i=1

Xi

)2


 + ω

2
E




N∑

j=1

djXj



 .

Simplified, with t̃ = δt and the fraction of infected nodes Z =
1
N

∑N
j=1 Xj ,

d

dt̃
E

[
2δL

ξ
+ (ω − 1)N

τ
Z

]

= N (N − 1) − N

(
2N − 1 + ω − 1

τ

)
E[Z]

+N2E[Z2] + E

[
N∑

i=1

diXi

]

− E[2L].

When the derivative at the left-hand side vanishes (in the
steady-state or at an extreme value, which we denote by a
superscript ∗), we have

N (N − 1) − N

(
2N − 1 + ω − 1

τ

)
E[Z∗] + N2E[Z∗2]

− E

[
N∑

i=1

d∗
i

(
1 − X∗

i

)
]

= 0.

Using E[Z2] = Var[Z] + (E[Z])2 and y = E[Z∗], we ar-
rive at (8). Solving the quadratic equation (8) finally
yields (11). !

APPENDIX B: PROOF OF THEOREM 2

From the quadratic equation (8), we find for y > 0 that

V = 1
2

(
y + H

y

)
.

Using the definition (9) of V , we can extract τ as

τ = ω − 1

2N
[ 1

2

(
y + H

y

)
− 1 + 1

2N

] .

The epidemic threshold is defined as the largest non-negative
value of τ when y ↓ 0, such that

τc = ω − 1

N
(

limy↓0
H
y

− 2 + 1
N

) ,

where H
y

= q(τ,ω; ξ ) is a function of both τ and ω (and ξ )
[29], but limy↓0

H
y

= q(τc,ω; ξ ) =h(ω; ξ ). Thus, we obtain the
analytic expression (12) for epidemic threshold. The remainder
of the proof consists of demonstrating that h(ω; ξ ) is a positive,
slowly varying function.

The two roots of (8) satisfy y1 + y2 = 2V and y1y2 = H .
Since H # 0, the roots are either both negative or both positive.
Since negative roots have no physical meaning, we must
require that V # 0, which implies, with the definition (9) that

1 − ω

2N
(
1 − 1

2N

) " τ.

This condition for the effective infection rate τ , which is only
confining for ω < 1, can be sharpened. The roots y1 and y2
must be real so that the discriminant of (8) is non-negative,
H " V 2 or (

√
H − V )(

√
H + V ) " 0. Requiring positive

roots so that 0 "
√

H " V , leads, with the definition (9) of
V , to

ω − 1

2N
(√

H + 1
2N

− 1
) # τ.

Since
√

H + 1
2N

− 1 < 0, we arrive at the improved lower
bound

1 − ω

2N
(
1 − 1

2N
−

√
H

) = τ ∗ " τ. (B1)

If ω # 1 (more link breaking than link creation), then there is
no confinement for τ .

Since (B1) indicates, for ω < 1, that τ ∗ " τc, there must
hold for ω < 1 that 2

√
H " h(ω; ξ ) < 2 − 1

N
. In particular,
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h(0; ξ ) # 1 because τc(0; ξ ) # 1
N−1 , the epidemic threshold in

SIS epidemics in KN without link dynamics. More precisely
[23], with τc(0; ξ ) = 1

N
[1 + c√

N
+ O(N−1)], we find

h (0; ξ ) = 1 + c√
N

+ O
(
N−1) .

A continuity argument requires for ω → 1 that τc > 0 so
that limω→1 h(ω; ξ ) = 2 − 1

N
and τc(1; ξ ) = 1

N ∂h(ω;ξ )
∂ω

|ω=1
. For

ω > 1 to have an epidemic threshold τc(ω; ξ ) > 0, it must
be that h(ω; ξ ) > 2 − 1

N
. For an extremely high effective

link-breaking rate ω, an infected node is immediately isolated
from the healthy nodes almost surely and cures in isolation so
that the epidemic threshold τc(ω; ξ ) is increasing for all ω > 1
and that limω→∞ τc(ω; ξ ) = ∞. It is reasonable to assume
that h(ω; ξ ) is not decreasing in ω for any ω # 0, in which
case we deduce from (12) that limω→∞

∂h(ω;ξ )
∂ω

= 0 and that
h(ω; ξ ) " 2 + 1

N
( 1

∂τc (ω;ξ )
∂ω

|ω→∞
− 1) for all ω > 1. !

APPENDIX C: SIGN BEFORE THE SQUARE ROOT IN (11)

The roots of the quadratic equation (8) satisfy y1y2 = H
and 0 " y1y2 " 2 − 1

N
. If H # 1, then not both can be smaller

than 1. Since V # 1 in this case (due to H " V 2), (11) shows
that the physically relevant root (0 " y1 " 1) is obtained with
the minus sign. When H " 1, both y1 and y2 can lie in the
[0,1] interval and the hyperbola y1y2 = H shows that

y1 "
√

H " y2.

If H " 1 " V , implying that ω # 1 + τ , then again the
negative sign in (11) applies.

If H " V 2 " V " 1, implying that ω " 1 + τ , then the
situation becomes more complex and both signs in (11) seem
to be possible. In the limit case where H ' V , (11) shows
that y2 , 2V so that again the negative sign applies if V > 1

2
and H ' V . Finally, we show that a positive sign can occur. If
τ → ∞ (and ω finite), in which case X∗

j → 1 and Var[Z∗] =
0, then (8) reduces to

y2 −
(

2 − 1
N

)
y + 1 − 1

N
= 0,

from which

y =
(

1 − 1
2N

)
±

√(
1 − 1

2N

)2

−
(

1 − 1
N

)

=
(

1 − 1
2N

)
± 1

2N
.

Since y = 1, the plus sign is required.

APPENDIX D: THE METASTABLE LINK PROBABILITY pi j

In the metastable state (where dE[aij (t)]
dt

= 0), we deduce
from (2) that

ζE[aij (Xi − Xj )2] = ξE[(1 − aij )(1 − Xi)(1 − Xj )]. (D1)

By the Cauchy-Schwarz inequality, we have

E[aij (Xi − Xj )2] "
√

E
[
a2

ij

]
E[(Xi − Xj )4]

=
√

E[aij ]E[(Xi − Xj )2].

Using the metastable link probability pij = E[aij ] = Pr[aij =
1], the following inequality arises:

ξ 2{E[(1 − aij )(1 − Xi)(1 − Xj )]}2 " pijζ
2E[(Xi − Xj )2].

(D2)

Similarly for the other term,

E[(1 − aij )(1 − Xi)(1 − Xj )]

"
√

E[(1 − aij )2]E[(1 − Xi)2(1 − Xj )2]

=
√

E[(1 − aij )]E[(1 − Xi)(1 − Xj )],

we find the inequality

ζ 2{E[aij (Xi − Xj )2]}2 " (1 − pij )ξ 2E[(1 − Xi)(1 − Xj )],

(D3)

which, after reworking, leads to

ξ 2E[(1 − Xi)(1 − Xj )] − ζ 2{E[aij (Xi − Xj )2]}2

# pijξ
2E[(1 − Xi)(1 − Xj )].

Combining both bounds yields, with ω = 2ζ
ξ

and (D1),

{E[aij (Xi − Xj )2]}2

E[(Xi − Xj )2]
" pij " 1 − ω2

4
{E[aij (Xi − Xj )2]}2

E[(1 − Xi)(1 − Xj )]
.

Approximating " by ≈ in the bounds (D2) and (D3) leads,
after introducing into the metastable link condition (D1), to

ζ 2pijE[(Xi − Xj )2] ≈ ξ 2(1 − pij )E[(1 − Xi)(1 − Xj )].

We estimate that the metastable link probability pij =
E[aij ] = Pr[aij = 1] is about

pij ≈ ξ 2E[(1 − Xi)(1 − Xj )]
ζ 2E[(Xi − Xj )2] + ξ 2E[(1 − Xi)(1 − Xj )]

= 1

1 + ω2 E[(Xi−Xj )2]
4E[(1−Xi )(1−Xj )]

. (D4)

The derivation for the link density (D4) is physically mean-
ingful, despite the approximations. Equation (D4) qualitatively
corresponds with the simulations of the normalized average
metastable-state number E[2L∗]/[N (N − 1)] of links (i.e.,
the link density) shown in Fig. 7(a). In the following, we take
as an example the case τ = 0.2 (the blue circles) in Fig. 7(a).

For ω close to zero (the “weakly adaptive” region), the
metastable-state topology is almost the initial topology KN

and we have a high link density (close to 1). Further, for
ω ∈ [0,1.5], we have a quadratic decrease in ω. Then the
link density pij reaches its minimum near ω = 1.5, as the

term E[(Xi−Xj )2]
4E[(1−Xi )(1−Xj )] in (D4) decreases in the same order of

magnitude as ω2. Finally, for ω ∈ [1.5,∞], the link dynamics
strongly suppresses the infection on the network, Xi ≈ Xj ≈ 0,
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so that the term E[(Xi−Xj )2]
4E[(1−Xi )(1−Xj )] → 0 and decreases faster than

ω increases; hence, the influence of ω vanishes and the link
density is again 1.

For a fixed τ , the connectivity behaves in a similar way
as the link density pij does. Figure 9(b) shows that even

the regions with dramatically different effective link-breaking
rates, e.g., the “weakly adaptive” region with very low ω and
the “strongly adaptive” region with very high ω, can have the
same connectivity. As ω increases, the connectivity decreases,
reaches its minimum, and increases to 1.
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