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Most real-world networks are not isolated. In order to function fully, they are interconnected with other
networks, and this interconnection influences their dynamic processes. For example, when the spread of a disease
involves two species, the dynamics of the spread within each species (the contact network) differs from that of
the spread between the two species (the interconnected network). We model two generic interconnected networks
using two adjacency matrices, A and B, in which A is a 2N × 2N matrix that depicts the connectivity within each
of two networks of size N , and B a 2N × 2N matrix that depicts the interconnections between the two. Using
an N-intertwined mean-field approximation, we determine that a critical susceptible-infected-susceptible (SIS)
epidemic threshold in two interconnected networks is 1/λ1(A + αB), where the infection rate is β within each of
the two individual networks and αβ in the interconnected links between the two networks and λ1(A + αB) is the
largest eigenvalue of the matrix A + αB. In order to determine how the epidemic threshold is dependent upon
the structure of interconnected networks, we analytically derive λ1(A + αB) using a perturbation approximation
for small and large α, the lower and upper bound for any α as a function of the adjacency matrix of the two
individual networks, and the interconnections between the two and their largest eigenvalues and eigenvectors.
We verify these approximation and boundary values for λ1(A + αB) using numerical simulations, and determine
how component network features affect λ1(A + αB). We note that, given two isolated networks G1 and G2 with
principal eigenvectors x and y, respectively, λ1(A + αB) tends to be higher when nodes i and j with a higher
eigenvector component product xiyj are interconnected. This finding suggests essential insights into ways of
designing interconnected networks to be robust against epidemics.
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I. INTRODUCTION

Complex network studies have traditionally focused on
single networks in which nodes represent agents and links
represent the connections between agents. Recent efforts have
focused on complex systems that comprise interconnected
networks, a configuration that more accurately represents real-
world networks [1,2]. Real-world power grids, for example,
are almost always coupled with communication networks.
Power stations need communication nodes for control and
communication nodes need power stations for electricity.
When a node at one end of an interdependent link fails, the node
at the other end of the link usually fails. The influence of cou-
pled networks on cascading failures has been widely studied
[1,3–6]. A nonconsensus opinion model of two interconnected
networks that allows the opinion interaction rules within each
individual network to differ from those between the networks
was recently studied [7]. This model shows that opinion
interactions between networks can transform nonconsensus
opinion behavior into consensus opinion behavior.

In this paper we investigate the susceptible-infected-
susceptible (SIS) behavior of a spreading virus, a dynamic pro-
cess in interconnected networks that has received significant
recent attention [8–11]. An interconnected networks scenario
is essential when modeling epidemics because diseases spread
across multiple networks, e.g., across multiple species or
communities, through both contact network links within
each species or community and interconnected network links
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between them. Dickison et al. [9] study the behavior of
susceptible-infected-recovered (SIR) epidemics in intercon-
nected networks. Depending on the infection rate in weakly
and strongly coupled network systems, where each individual
network follows the configuration model and interconnections
are randomly placed, epidemics will infect none, one, or both
networks of a two-network system. Mendiola et al. [10] show
that in SIS model an endemic state may appear in the coupled
networks even when an epidemic is unable to propagate
in each network separately. In this work we will explore
how the structural properties of each individual network and
the interconnections between them determine the epidemic
threshold of two generic interconnected networks.

In order to represent two generic interconnected networks,
we represent a network G with N nodes using an N × N
adjacency matrix A1 that consists of elements aij , which are
either one or zero depending on whether there is a link between
nodes i and j . For the interconnected networks, we consider
two individual networks G1 and G2 of the same size N . When
nodes in G1 are labeled from 1 to N and in G2 labeled from
N + 1 to 2N , the two isolated networks G1 and G2 can be pre-
sented by a 2N × 2N matrix A = [ A1 0

0 A2
] composed of their

corresponding adjacency matrices A1 and A2, respectively.
Similarly, a 2N × 2N matrix B = [ 0 B12

BT
12 0 ] represents the

symmetric interconnections between G1 and G2. The intercon-
nected networks are composed of three network components:
network A1, network A2, and interconnecting network B.

In the SIS model, the state of each agent at time t is
a Bernoulli random variable, where Xi(t) = 0 if node i is
susceptible and Xi(t) = 1 if it is infected. The recovery
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(curing) process of each infected node is an independent
Poisson process with a recovery rate δ. Each infected agent
infects each of its susceptible neighbors with a rate β, which
is also an independent Poisson process. The ratio τ ! β/δ
is the effective infection rate. A phase transition has been
observed around a critical point τc in a single network. When
τ > τc, a nonzero fraction of agents will be infected in the
steady state, whereas if τ < τc, infection rapidly disappears
[12–14]. The epidemic threshold via the N-intertwined mean-
field approximation (NIMFA) is τc = 1

λ1(A) , where λ1(A) is
the largest eigenvalue of the adjacency matrix, also called the
spectral radius [15]. For interconnected networks, we assume
that the curing rate δ is the same for all the nodes, that
the infection rate along each link of G1 and G2 is β, and
that the infection rate along each interconnecting link between
G1 and G2 is αβ, where α is a real constant ranging within
[0,∞) without losing generality.

We first show that the epidemic threshold for β/δ in
interconnected networks via NIMFA is τc = 1

λ1(A+αB) , where
λ1(A + αB) is the largest eigenvalue of the matrix A + αB.
We further express λ1(A + αB) as a function of network com-
ponents A1, A2, and B and their eigenvalues and eigenvectors
to reveal the contribution of each component network. This
is a significant mathematical challenge, except for special
cases, e.g., when A and B commute, i.e., AB = BA (see
Sec. III A). Our main contribution is that we analytically derive
for the epidemic characterizer λ1(A + αB) (a) its perturbation
approximation for small α, (b) its perturbation approximation
for large α, and (c) its lower and upper bound for any α as
a function of component networks A1, A2, and B and their
largest eigenvalues and eigenvectors. Numerical simulations
in Sec. IV verify that these approximations and bounds
well approximate λ1(A + αB), and thus reveal the effect of
component network features on the epidemic threshold of
the whole system of interconnected networks, which provides
essential insights into designing interconnected networks that
are robust against the spread of epidemics (see Sec. V).

Sahneh et al. [11] recently studied SIS epidemics on generic
interconnected networks in which the infection rate can differ
between G1 and G2, and derived the epidemic threshold
for the infection rate in one network while assuming that
the infection does not survive in the other. Their epidemic
threshold was expressed as the largest eigenvalue of a function
of matrices. Our work explains how the epidemic threshold
of generic interconnected networks is related to the properties
(eigenvalue and eigenvector) of network components A1, A2,
and B without any approximation on the network topology.

Graph spectra theory [16] and modern network theory,
integrated with dynamic systems theory, can be used to
understand how network topology can predict these dynamic
processes. Youssef and Scoglio [17] have shown that an
SIR epidemic threshold via NIMFA also equals 1/λ1. The
Kuramoto synchronization process of coupled oscillators [18]
and percolation [19] also features a phase transition that
specifies the onset of a remaining fraction of locked oscillators
and the appearance of a giant component, respectively. Note
that a mean-field approximation predicts both phase transitions
at a critical point that is proportional to 1/λ1. Thus we expect
our results to apply to a wider range of dynamic processes in
interconnected networks.

II. EPIDEMIC THRESHOLD OF INTERCONNECTED
NETWORKS

In the SIS epidemic spreading process, the probability
of infection vi(t) = E[Xi(t)] for a node i in interconnected
networks G is described by

dvi(t)
dt

=



β

2N∑

j=1

aij vj (t) + αβ

2N∑

j=1

bij vj (t)





× (1 − vi(t)) − δvi(t),

via NIMFA, where aij and bij is an element of matrices A and
B, respectively. Its matrix form becomes

dV (t)
dt

= (β(A + αB) − δI )V (t)

−βdiag(vi(t))(A + αB)V (t).

The governing equation of the SIS spreading process on a
single network A1 is

dV (t)
dt

= (βA1 − δI )V (t) − βdiag(vi(t))A1V (t),

whose epidemic threshold has been proven [15] to be

τc = 1
λ1(A1)

,

which is a lower bound of the epidemic threshold [20]. Hence,
the epidemic threshold of interconnected networks by NIMFA
is

τc = 1
λ1(A + αB)

, (1)

which depends on the largest eigenvalue of the matrix A +
αB. The matrix A + αB is a weighted matrix, where 0 "
α < ∞. The NIMFA is an improvement over earlier epidemic
models [14] in that it takes the complete network topology
into account, and thus it allows us to identify the specific
role of a general network structure on the spreading process.
However, NIMFA still relies on a mean-field argument and
thus approximates the exact SIS epidemics [21,22].

III. ANALYTIC APPROACH: λ1(A + αB) IN RELATION
TO COMPONENT NETWORK PROPERTIES

The spectral radius λ1(A + αB) as shown in the last section
is able to characterize epidemic spreading in interconnected
networks. In this section we explore how λ1(A + αB) is influ-
enced by the structural properties of interconnected networks
and by the relative infection rate α along the interconnection
links. Specifically, we express λ1(A + αB) as a function of
the component networks A1, A2, and B and their eigenvalues
and eigenvectors. (For proofs of theorems or lemma, see the
Appendix.)

A. Special cases

We start with some basic properties related to λ1(A + αB)
and examine several special cases in which the relation
between λ1(A + αB) and the structural properties of network
components A1, A2, and B are analytically tractable.
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The spectral radius of a subnetwork is always smaller or
equal to that of the whole network. Hence,

Lemma 1.

λ1(A + αB) # λ1(A) = max(λ1(A1), λ1(A2)).

Lemma 2.

λ1(A + αB) # αλ1(B).

The interconnection network B forms a bipartite graph.
Lemma 3. The largest eigenvalue of a bipartite graph B =

[ 0 B12
BT

12 0 ] follows λ1(B) =
√

λ1(BT
12B12) where B12 is possibly

asymmetric [16].
Lemma 4. When G1 and G2 are both regular graphs with the

same average degree E[D] and when any two nodes from G1
and G2, respectively, are randomly interconnected with prob-
ability pI , the average spectral radius of the interconnected
networks follows:

E[λ1(A + αB)] = E[D] + αNpI ,

if the interdependent connections are not sparse.
A dense Erdös-Rényi (ER) random network approaches

a regular network when N is large. Lemma 4, thus, can be
applied as well to cases where both G1 and G2 are dense ER
random networks.

If A and B commute, thus AB = BA, then the eigenvectors
of A and B are the same, provided that all N eigenvectors are
independent [[16], p. 253]. In that case, it holds that λ1(A +
B) = λ1(A) + λ1(B). This property of commuting matrices
makes the following two special cases, where A and B are
symmetric with orthogonal (hence, independent) eigenvectors,
analytically tractable.

Lemma 5. When A + αB = [ A1 0
0 A1

] + α[ 0 I
I 0 ], i.e., the

interconnected networks are composed of two identical net-
works, where one network is indexed from 1 to N and
the other from N + 1 to 2N , with an interconnecting link
between each so-called image node pair (i,N + i) from the
two individual networks, respectively, its largest eigenvalue
λ1(A + αB) = λ1(A) + α.

Proof. When A + αB = [ A1 0
0 A1

] + α[ 0 I
I 0 ], matrices A and

αB are commuting

A · αB = α

[
0 A1
A1 0

]
= αBA.

Therefore, λ1(A + αB) = λ1(A) + λ1(αB) = λ1(A1) +
αλ1(B). The network B is actually a set of isolated links.
Hence, λ1(B) = 1. $

Lemma 6. When A + αB = [ A1 0
0 A1

] + α[ 0 A1
A1 0 ], its largest

eigenvalue λ1(A + αB) = (1 + α)λ1(A1).
Proof. When A + αB = [ A1 0

0 A1
] + α[ 0 A1

A1 0 ], matrices A

and αB are commuting

A · αB = α

[
0 A2

1
A2

1 0

]
= αBA.

Therefore λ1(A + αB) = λ1(A) + λ1(αB) = (1 + α)
λ1(A) = (1 + α)λ1(A1). $

When A and B are not commuting, little can be known
about the eigenvalues of λ1(A + αB), given the spectrum of A
and of B. For example, even when the eigenvalue of A and B

are known and bounded, the largest eigenvalue of λ1(A + αB)
can be unbounded [16].

B. Lower bounds for λ1(A + αB)

We now denote matrix A + αB to be W . Applying the
Rayleigh inequality [16], p. 223] to the symmetric matrix W =
A + αB yields

zT Wz

zT z
" λ1 (W ) ,

where equality holds only if z is the principal eigenvector
of W .

Theorem 7. The best possible lower bound zT Wz
zT z

of interde-
pendent networks W by choosing z as the linear combination
of x and y, the largest eigenvector of A1 and A2, respectively,
is

λ1(W ) # max(λ1(A1),λ1(A2))

+





√(
λ1(A1) − λ1(A2)

2

)2

+ ξ 2

−
∣∣∣∣
λ1(A1) − λ1(A2)

2

∣∣∣∣



 , (2)

where ξ = αxT B12y.
When α = 0, the lower bound becomes the exact solution

λ1(W ) = λL. When the two individual networks have the same
largest eigenvalue λ1(A1) = λ1(A2), we have

λ1(W ) # λ1(A1) + αxT B12y.

Theorem 8. The best possible lower bound λ2
1(W ) # zT W 2z

zT z
by choosing z as the linear combination of x and y, the largest
eigenvector of A1 and A2, respectively, is

λ2
1(W )

#
(
λ2

1(A1) + α2‖BT
12x‖2

2 + λ2
1(A2) + α2‖B12y‖2

2

)

2

+

√(
λ2

1(A1) + α2‖BT
12x‖2

2 − λ2
1(A2) − α2‖B12y‖2

2

2

)2

+ θ2,

(3)

where θ = α(λ1(A1) + λ1(A2))xT B12y.
In general,

zT Wkz

zT z
" λk

1(W ).

The largest eigenvalue is lower bounded by
(

zT Wkz

zT z

)1/k

" λ1(W ).

Theorem 9. Given a vector z, ( zT Wsz
zT z

)1/s " ( zT Wkz
zT z

)1/kwhen
k is an even integer and 0 < s < k. Furthermore,

limk→∞

(
zT Wkz

zT z

)1/k

= λ1(W ).

Hence, given a vector z, we could further improve the lower
bound ( zT Wkz

zT z
)1/k by taking a higher even power k. Note that
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Theorems 7 and 8 express the lower bound as a function of
component networks A1, A2, and B and their eigenvalues
and eigenvectors, which illustrates the effect of component
network features on the epidemic characterizer λ1(W ).

C. Upper bound for λ1(A + αB)

Theorem 10. The largest eigenvalue of interdependent
networks λ1(W ) is upper bounded by

λ1(W ) " max (λ1(A1),λ1(A2)) + αλ1(B) (4)

= max (λ1(A1),λ1(A2)) + α
√

λ1
(
B12B

T
12

)
. (5)

This upper bound is reached when the principal eigenvector
of B12B

T
12 coincides with the principal eigenvector of A1

if λ1(A1) # λ1(A2) and when the principal eigenvector of
BT

12B12 coincides with the principal eigenvector of A2 if
λ1(A1) " λ1(A2).

D. Perturbation analysis for small and large α

In this subsection, we derive the perturbation approximation
of λ1(W ) for small and large α, respectively, as a function of
component networks and their eigenvalues and eigenvectors.

We start with small α cases. The problem is to find the
largest eigenvalue supz '=0

zT Wz
zT z

of W , with the condition that

(W − λI )z = 0 zT z = 1

When the solution is analytical in α, we express λ and z by
Taylor expansion as

λ =
∞∑

k=0

λ(k)αk, z =
∞∑

k=0

z(k)αk.

Substituting the expansion in the eigenvalue equation gives

(A + αB)
∞∑

k=0

z(k)αk =
∞∑

k=0

λ(k)αk

∞∑

k=0

z(k)αk,

where all the coefficients of αk on the left must equal those
on the right. Performing the products and reordering the series
we obtain

∞∑

k=0

(Az(k) + Bz(k−1))αk =
∞∑

k=0

(
k∑

i=0

λ(k−i)z(i)

)

αk.

This leads to a hierarchy of equations,

Az(k) + Bz(k−1) =
k∑

i=0

λ(k−i)z(i).

The same expansion must meet the normalization condition,

zT z = 1,

or, equivalently,



∞∑

k=0

z(k)αk,

∞∑

j=0

z(j )αj



 = 1,

where (u,v) =
∑

i uivi represents the scalar product. The
normalization condition leads to a set of equations,

k∑

i=0

(z(k−i),z(i)) = 0, (6)

for any k # 1 and (z(0),z(0)) = 1.
Let λ1(A1)(λ1(A2)) and x(y) denote the largest eigenvalue

and the corresponding eigenvector of A1(A2), respectively. We
examine two possible cases: (a) the nondegenerate case when
λ1(A1) > λ1(A2) and (b) the degenerate case when λ1(A1) =
λ1(A2) and the case λ1(A1) < λ1(A2) is equivalent to the first.

Theorem 11. For small α, in the nondegenerate case, thus
when λ1(A1) > λ1(A2),

λ1(W ) = λ1(A1) + α2xT B12(λ1(A1)I − A2)−1BT
12x + O(α3).

(7)

Note that in (A6) B is symmetric and (λ(0)I − A) is positive
definite and so is B(λ(0)I − A)−1B. Hence, this second-order
correction λ(2) is always positive.

Theorem 12. For small α, when the two component
networks have the same largest eigenvalue λ1(A1) = λ1(A2),

λ1(W ) = λ(0) + αλ(1) + 1
2
α2yT BT

12

(
λ(0)I − A1 + 1

2
xxT

)−1

× (B12y − λ(1)x) + 1
2
α2xT B12

×
(

λ(0)I − A2 + 1
2
yyT

)−1(
BT

12x − λ(1)y
)
+ O(α3),

(8)

where λ(0) = λ1(A1) and λ(1) = xT B12y.
In the degenerate case, the first-order correction is positive

and the slope depends on B12, y, and x. When A1 and A2 are
identical, the largest eigenvalue of the interdependent networks
becomes

λ = λ1(A1) + α (B12x,x) + O(α2).

When A = [ A1 0
0 A1

] and B = [ 0 I
I 0 ], our result (8) in the

degenerate case up to the first order leads to λ1(A + αB) =
λ1(A) + α, which is an alternate proof of Lemma 5. When
A = [ A1 0

0 A1
] and B = [ 0 A1

A1 0 ], (8) again explains Lemma 6
that λ1(A + αB) = (1 + α)λ1(A1).

Lemma 13. For large α, the spectral radius of interconnected
networks is

λ1(A + αB) = αλ1(B) + vT Av + O(α−1), (9)

where v is the eigenvector belonging to λ1(B) and

λ1(A + αB) " λ1(A) + αλ1(B) + O(α−1).

Proof. Lemma 13 follows by applying perturbation theory
[23] to the matrix α(B + 1

α
A) and the Rayleigh principle [16],

which states that vT Av " λ1(A), for any normalized vector v
such that vT v = 1, with equality only if v is the eigenvector
belonging to the eigenvalue λ1(A). $
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IV. NUMERICAL SIMULATIONS

In this section, we employ numerical calculations to
quantify to what extent the perturbation approximation (7)
and (8) for small α, the perturbation approximation (9) for
large α, and the upper (4) and lower bound (3) are close
to the exact value λ1(W ) = λ1(A + αB). We investigate the
condition under which the approximations provide better
estimates. The analytical results derived earlier are valid for
arbitrary interconnected network structures. For simulations,
we consider two classic network models as possible topologies
of G1 and G2: (i) the Erdös-Rényi (ER) random network
[24–26] and (ii) the Barabási-Albert (BA) scale-free network
[27]. ER networks are characterized by a binomial degree
distribution Pr[D = k] = ( N − 1

k )pk(1 − p)N−1−k , where N is
the size of the network and p is the probability that each
node pair is randomly connected. In scale-free networks, the
degree distribution is given by a power law Pr[D = k] =
ck−λ such that

∑N−1
k=1 ck−λ = 1 and λ = 3 in BA scale-free

networks.
In numerical simulations, we consider N1 = N2 = 1000.

Specifically, in the BA scale-free networks m = 3 and the
corresponding link density is pBA ( 0.006. We consider ER
networks with the same link density pER = pBA = 0.006. A
coupled network G is the union of G1 and G2, which are chosen
from the above-mentioned models, together with random
interconnection links with density pI , the probability that any
two nodes from G1 and G2, respectively, are interconnected.
Given the network models of G1 and G2 and the interacting
link density pI , we generate 100 interconnected network
realizations. For each realization, we compute the spectral
radius λ1(W ), its perturbation approximation (7) and (8)
for small α, the perturbation approximation (9) for large α,
and the upper bound (4) and lower bound (3) for any α.
We compare their averages over the 100 coupled network
realizations. We investigate the degenerate case λ1(G1) =
λ1(G2) where the largest eigenvalues of G1 and G2 are the
same and the nondegenerate case where λ1(G1) '= λ1(G2),
respectively.

A. Nondegenerate case

We consider the nondegenerate case in which G1 is a
BA scale-free network with N = 1000,m = 3, G2 is an
ER random network with the same size and link density
pER = pBA ( 0.006, and the two networks are randomly
interconnected with link density pI . We compute the largest
average eigenvalue E[λ1(W )] and the average of the pertur-
bation approximations and bounds mentioned above over 100
interconnected network realizations for each interconnection
link density pI ∈ [0.00025,0.004] such that the average
number of interdependent links ranges from N

4 ,N
2 ,N,2N to

4N and for each value α that ranges from 0 to 10 with step
size 0.05.

For a single BA scale-free network, where the power expo-
nent β = 3 > 2.5, the largest eigenvalue is (1 + o(1))

√
dmax

where dmax is the maximum degree in the network [28].
The spectral radius of a single ER random graph is close
to the average degree (N − 1)pER when the network is
not sparse. When pI = 0, λ1(G) = max(λ1(GER),λ1(GBA)) =
λ1(GBA) > λ1(GER). The perturbation approximation is ex-
pected to be close to the exact λ1(W ) only for α → 0 and
α → ∞. However, as shown in Fig. 1(a), the perturbation ap-
proximation for small α approximates λ1(W ) well for a relative
large range of α, especially for sparser interconnections, i.e.,
for a smaller interconnection density pI . Figure 1(b) shows
that the exact spectral radius λ1(W ) is already close to the
large α perturbation approximation, at least for α > 8.

As depicted in Fig. 2, the lower bound (3) and upper bound
(4) are sharp, i.e., close to λ1(W ) for small α. The lower
and upper bounds are the same as λ1(W ) when α → 0. For
large α, the lower bound better approximates λ1(W ) when the
interconnections are sparser. Another lower bound αλ1(B) "
λ1(W ), i.e., Lemma 2, is sharp for large α, as shown in Fig. 3,
especially for sparse interconnections. We do not illustrate the
lower bound (2) because the lower bound (3) is always sharper
or equally good. The lower bound αλ1(B) considers only
the largest eigenvalue of the interconnection network B and
ignores the two individual networks G1 and G2. The difference

(a) (b)
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FIG. 1. (Color online) A plot of λ1(W ) as a function of α for both simulation results (symbol) and its (a) perturbation approximation (7)
for small α (dashed line) and (b) perturbation approximation (9) for large α (dashed line). The interconnected network is composed of an ER
random network and a BA scale-free network both with N = 1000 and link density p = 0.006, randomly interconnected with density pI . All
the results are averages of 100 realizations.

022801-5



HUIJUAN WANG et al. PHYSICAL REVIEW E 88, 022801 (2013)

(a) (b)

50

40

30

20

E
[λ

1(
W

)]

1086420 α

BA-ER
 simulation,  p I=0. 0002 5
 lower bound, pI=0 .00025
 simulation,  p I=0. 0005
 lower bound, pI=0 .000 5
 simulation,  p I=0. 001
 lower bound, pI=0 .001
 simulation,  p I=0. 002
 lower bound, pI=0 .002
 simulation,  p I=0. 004
 lower bound, pI=0 .004

60

50

40

30

20

E
[λ

1(
W

)]

1086420 α

BA-ER
 simulation,  p I=0. 000 25
 upper bound,  pI=0 .00025
 simulation,  p I=0. 000 5
 upper bound,  pI=0 .0005
 simulation,  p I=0. 001
 upper bound,  pI=0 .001
 simulation,  p I=0. 002
 upper bound,  pI=0 .002
 simulation,  p I=0. 004
 upper bound,  pI=0 .004

FIG. 2. (Color online) Plot λ1(W ) as a function of α for both simulation results (symbol) and its (a) lower bound (3) (dashed line) and
(b) upper bound (4) (dashed line). The interconnected network is composed of an ER random network and a BA scale-free network both with
N = 1000 and link density p = 0.006, randomly interconnected with density pI . All the results are averages of 100 realizations.

λ1(W )− αλ1(B) = vT Av + O(α−1) according to the large α
perturbation approximation, is shown in Fig. 3 to be larger for
denser interconnections. It suggests that G1 and G2 contribute
more to the spectral radius of the interconnected networks
when the interconnections are denser in this nondegenerate
case. For large α, the upper bound is sharper when the
interconnections are denser or when pI is larger, as depicted
in Fig. 2(b). This is because αλ1(B) " λ1(W ) " αλ1(B) +
max (λ1(A1),λ1(A2)). When the interconnections are sparse,
λ1(W ) is close to the lower bound αλ1(B) and hence far from
the upper bound.

Most interdependent or coupled networks studied so far
assume that both individual networks have the same number
of nodes N and that the two networks are interconnected
randomly by N one-to-one interconnections, or by a fraction q
of the None-to-one interconnections where 0 < q " 1 [1,6,7].
These coupled networks correspond to our sparse interconnec-
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FIG. 3. (Color online) Plot λ1(W ) as a function of α for both
simulation results (symbol) and its lower bound αλ1(B) (dashed line).
The interconnected network is composed of an ER random network
and a BA scale-free network both with N = 1000 and link density
p = 0.006, randomly interconnected with density pI . All the results
are averages of 100 realizations.

tion cases where pI " 1, when λ1(B) is well approximated by
the perturbation approximation for both small and large α. The
spectral radius λ1(W ) increases quadratically with α for small
α, as described by the small α perturbation approximation. The
increase accelerates as α increases and converges to a linear
increase with α, with slope λ1(B). Here we show the cases in
which G1, G2, and the interconnections are sparse, as in most
real-world networks. However, all the analytical results can be
applied to arbitrary interconnected network structures.

B. Degenerate case

We assume the spectrum [29] to be a unique fingerprint of
a large network. Two large networks of the same size seldom
have the same largest eigenvalue. Hence, most interconnected
networks belong to the nondegenerate case. Degenerate cases
mostly occur when G1 and G2 are identical, or when they
are both regular networks with the same degree. We consider
two degenerate cases where both network G1 and G2 are
ER random networks or BA scale-free networks. Both ER
and BA networks lead to the same observations. Hence as
an example we show the case in which both G1 and G2
are BA scale-free networks of size N = 1000 and both are
randomly interconnected with density pI ∈ [0.00025,0.004],
as in the nondegenerate case. Figure 4(a) shows that the
perturbation analysis well approximates λ1(W ) for small α,
especially when the interconnection density is small. When
the interconnections are dense, the small α perturbation
approximation performs better in the degenerate case, i.e., is
closer to λ1(W ) than in nondegenerate cases [see Fig. 1(a)].
Similar to the nondegenerate case, Fig. 4(b) illustrates that the
exact spectral radius λ1(W ) is close to the large α perturbation
approximation even since α = 8.

Similarly, Fig. 5 shows that both the lower and upper bound
are sharper for small α. The lower bound better approximates
λ1(W ) for sparser interconnections whereas the upper bound
better approximates λ1(W ) for denser interconnections.

Thus far we have examined the cases where G1, G2,
and the interconnections are sparse, as is the case in most
real-world networks. However, if both G1 and G2 are dense
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FIG. 4. (Color online) A plot of λ1(W ) as a function of α for both simulation results (symbol) and its (a) perturbation approximation (8)
for small α (dashed line) and (b) perturbation approximation (9) for large α (dashed line). The interconnected network is composed of two
identical BA scale-free networks with N = 1000 and link density p = 0.006, randomly interconnected with density pI . All the results are
averages of 100 realizations.

ER random networks and if the random interconnections
are also dense, the upper bound is equal to λ1(W ), i.e.,
λ1(W ) = λ1(G1) + αλ1(B) (see Lemma 4). Equivalently, the
difference λ1(W ) − αλ1(B) is a constant λ1(G1) = λ1(G2)
independent of the interconnection density pI .

In both the nondegenerate and degenerate case, λ1(W ) is
well approximated by a perturbation analysis for a large range
of α, especially when the interconnections are sparse. The
lower bound (3) and upper bound (4) are sharper for small α.
Most real-world networks are sparsely interconnected, where
our perturbation analysis better approximates λ1(W ) for a large
range of α, and thus well reveals the effect of component
network structures on the epidemic characterizer λ1(W ).

V. CONCLUSION

We study interconnected networks that are composed of
two individual networks G1 and G2, and interconnecting links

represented by adjacency matrices A1, A2, and B, respectively.
We consider SIS epidemic spreading in these generic coupled
networks, where the infection rate within G1 and G2 is β,
the infection rate between the two networks is αβ, and the
recovery rate is δ for all agents. Using a NIMFA we show that
the epidemic threshold with respect to β/δ is τc = 1

λ1(A+αB) ,

where A = [ A1 0
0 A2

] is the adjacency matrix of the two isolated
networks G1 and G2. The largest eigenvalue λ1(A + αB)
can thus be used to characterize epidemic spreading. This
eigenvalue λ1(A + αB) of a function of matrices seldom gives
the contribution of each component network. We analytically
express the perturbation approximation for small and large α,
lower and upper bounds for any α, of λ1(A + αB) as a function
of component networks A1, A2, and B and their largest eigen-
values and eigenvectors. Using numerical simulations, we
verify that these approximations or bounds approximate well
the exact λ1(A + αB), especially when the interconnections
are sparse, as is the case in most real-world interconnected
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FIG. 5. (Color online) Plot λ1(W ) as a function of α for both simulation results (symbol) and (a) its lower bound (3) (dashed line) and
(b) upper bound (4) (dashed line). The interconnected network is composed of two identical BA scale-free networks N = 1000 and link density
p = 0.006, randomly interconnected with density pI . All the results are averages of 100 realizations.
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networks. Hence, these approximations and bounds reveal
how component network properties affect the epidemic char-
acterizer λ1(A + αB). Note that the term xT B12y contributes
positively to the perturbation approximation (8) and the lower
bound (3) of λ1(A + αB) where x and y are the principal
eigenvector of network G1 and G2. This suggests that, given
two isolated networks G1 and G2, the interconnected networks
have a larger λ1(A + αB) or a smaller epidemic threshold if
the two nodes i and j with a larger eigenvector component
product xiyj from the two networks, respectively, are inter-
connected. This observation provides essential insights useful
when designing interconnected networks to be robust against
epidemics. The largest eigenvalue also characterizes the phase
transition of coupled oscillators and percolation. Our results
apply to arbitrary interconnected network structures and are
expected to apply to a wider range of dynamic processes.
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APPENDIX: PROOFS

1. Proof of Lemma 4

In any regular graph, the minimal and maximal node
strength are both equal to the average node strength. Since
the largest eigenvalue is lower bounded by the average node
strength and upper bounded by the maximal node strength
as proved below in Lemma 14, a regular graph has the
minimal possible spectral radius, which equals the average
node strength. When the interdependent links are randomly
connected with link density pI , the coupled network is
asymptotically a regular graph with average node strength
E[D] + αNpI , if pI is a constant.

Lemma 14. For any N × N weighted symmetric matrix W ,

E[S] " λ1(W ) " max sr ,

where sr =
∑N

j=1 wrj is defined as the node strength of node
r and E[S] is the average node strength over all the nodes in
graph G.

Proof. The largest eigenvalue λ1 follows:

λ1 = sup
x '=0

xT Wx

xT x
,

when matrix W is symmetric and the maximum is attained if
and only if x is the eigenvector of W belonging to λ1(W ). For
any other vector y '= x, it holds that λ1 # yT Wy

yT y
. By choosing

the vector y = u = (1,1, . . . ,1), we have

λ1 # 1
N

N∑

i=1

N∑

j=1

wij = 1
N

N∑

i=1

si = E[S],

where wij is the element in matrix W and E[S] is the average
node strength of the graph G. The upper bound is proved
by the Gerschgorin circle theorem. Suppose component r of
eigenvector x has the largest modulus. The eigenvector can be
always normalized such that

x ′ =
(

x1

xr

,
x2

xr

, . . . ,
xr−1

xr

,1,
xr+1

xr

, . . . ,
xN

xr

)
,

where | xj

xr
| " 1 for all j . Equating component r on both sides

of the eigenvalue equation Wx ′ = λ1x
′ gives

λ1(W ) =
N∑

j=1

wrj

xj

xr

"
N∑

j=1

∣∣∣∣wrj

xj

xr

∣∣∣∣ "
N∑

j=1

|wrj | = sr ,

when none of the elements of matrix W are negative. Since
any component of x may have the largest modulus, λ1(W ) "
max sr . $

2. Proof of Theorem 7

We consider the 2N × 1 vector z as zT = [ C1x
T C2y

T ] the
linear combination of the principal eigenvector x and y of the
two individual networks, respectively, where xT x = 1, yT y =
1, C2

1 + C2
2 = 1 such that zT z = 1 and compute

zT Wz = [C1x
T C2y

T ]
[

A1 αB12

αBT
12 A2

] [
C1x

C2y

]

= C2
1x

T A1x + C2
2y

T A2y + 2α2C1C2x
T B12y

= C2
1λ1 (A1) + C2

2λ1 (A2) + 2C1C2ξ,

where ξ = αxT B12y. By Rayleigh’s principle λ1(W ) #
zT Wz
zT z

= zT Wz. We could improve this lower bound by
selecting z as the best linear combination (C1 and C2) of x

and y. Let λL be the best possible lower bound zT Wz
zT z

via the
optimal linear combination of x and y. Thus,

λL = max
C2

1 +C2
2 =1

C2
1λ1(A1) + C2

2λ1(A2) + 2C1C2ξ .

We use the Lagrange multipliers method and define the
Lagrange function as

( = C2
1λ1(A1) + C2

2λ1(A2) + 2C1C2ξ − µ
(
C2

1 + C2
2 − 1

)
,

where µ is the Lagrange multiplier. The maximum is achieved
at the solutions of

∂(

∂C1
= 2C1λ1(A1) + 2C2ξ − 2C1µ = 0,

∂(

∂C2
= 2C2λ1(A2) + 2C1ξ − 2C2µ = 0,

∂(

∂µ
= C2

1 + C2
2 − 1 = 0.

Note that (C1
∂(
∂C1

+ C2
∂(
∂C2

)/2 = λL − µ = 0, which leads to
µ = λL. Hence, the maximum λL is achieved at the solution
of

C1λ1(A1) + C2ξ − C1λL = 0,

C2λ1(A2) + C1ξ − C2λL = 0,
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that is,

det
(

λ1 (A1) − λL ξ

ξ λ1 (A2) − λL

)
= 0.

This leads to

λL = λ1 (A1) + λ1 (A2)
2

+

√(
λ1 (A1) − λ1 (A2)

2

)2

+ ξ 2

= λ1 (A1) + λ1 (A2)
2

+
∣∣∣∣
λ1 (A1) − λ1 (A2)

2

∣∣∣∣ +





√(
λ1 (A1) − λ1 (A2)

2

)2

+ ξ 2 −
∣∣∣∣
λ1 (A1) − λ1 (A2)

2

∣∣∣∣





= max (λ1 (A1) ,λ1 (A2)) +





√(
λ1 (A1) − λ1 (A2)

2

)2

+ ξ 2 −
∣∣∣∣
λ1 (A1) − λ1 (A2)

2

∣∣∣∣



 .

The maximum is obtained when

zT = ±
[√

λ1(A2)−λL

λ1(A1)+λ1(A2)−2λL
xT

√
λ1(A1)−λL

λ1(A1)+λ1(A2)−2λL
yT

]
.

3. Proof of Theorem 8

By Rayleigh’s principle λ2
1(W ) # zT W 2z

zT z
= zT W 2z. We consider z as linear combination zT = [ C1x

T C2y
T ] of x and y. The

lower bound,

zT W 2z = [C1x
T C2y

T ]
[

A2
1 + α2B12B

T
12 α (A1B12 + B12A2)

α (A1B12 + B12A2)T A2
2 + α2BT

12B12

] [
C1x
C2y

]

= C2
1x

T A2
1x + C2

2y
T A2

2y + α2(C2
1x

T B12B
T
12x + C2

2y
T BT

12B12y
)
+ 2αC1C2x

T (A1B12 + B12A2) y

= C2
1λ

2
1 (A1) + C2

2λ
2
1 (A2) + 2C1C2θ + α2(C2

1

∥∥BT
12x

∥∥2
2 + C2

2

∥∥B12y
∥∥2

2

)
,

where θ = α(λ1(A1) + λ1(A2))xT B12y. Let λL be the best possible lower bound zT W 2z via the optimal linear combination (C1
and C2) of x and y. Thus,

λL = max
C2

1 +C2
2 =1

C2
1λ

2
1(A1) + C2

2λ
2
1(A2) + 2C1C2θ + α2(C2

1

∥∥BT
12x

∥∥2
2 + C2

2

∥∥B12y
∥∥2

2

)
.

We use the Lagrange multipliers method and define the Lagrange function as

( = C2
1λ

2
1 (A1) + C2

2λ
2
1 (A2) + 2C1C2θ + α2

(
C2

1

∥∥BT
12x

∥∥2
2 + C2

2 ‖B12y‖2
2

)
− µ

(
C2

1 + C2
2 − 1

)
,

where µ is the Lagrange multiplier. The maximum is achieved at the solutions of

∂(

∂C1
= 2C1λ

2
1 (A1) + 2αC2 (λ1 (A1) + λ1 (A2)) xT B12y + 2α2C1

∥∥BT
12x

∥∥2
2 − 2C1µ = 0,

∂(

∂C2
= 2C2λ

2
1 (A2) + 2αC1 (λ1 (A1) + λ1 (A2)) xT B12y + 2α2C2 ‖B12y‖2

2 − 2C2µ = 0,

∂(

∂µ
= C2

1 + C2
2 − 1 = 0,

which lead to (C1
∂(
∂C1

+ C2
∂(
∂C2

)/2 = λL − µ = 0. Hence, the maximum λL is achieved at the solution of

C1λ
2
1(A1) + C2θ + α2C1

∥∥BT
12x

∥∥2
2 − C1λL = 0, C2λ

2
1(A2) + C1θ + α2C2 ‖B12y‖2

2 − C2λL = 0,

that is,

det

(
λ2

1(A1) + α2
∥∥BT

12x
∥∥2

2 − λL θ

θ λ2
1(A2) + α2

∥∥B12y
∥∥2

2 − λL

)

= 0.

This leads to

λ2
L −

(
λ2

1(A1) + α2
∥∥BT

12x
∥∥2

2 + λ2
1(A2) + α2

∥∥B12y
∥∥2

2

)
λL +

(
λ2

1(A1) + α2
∥∥BT

12x
∥∥2

2

)(
λ2

1(A2) + α2
∥∥B12y

∥∥2
2

)
− θ2 = 0.
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Hence,

λL =
(
λ2

1(A1) + α2
∥∥BT

12x
∥∥2

2 + λ2
1(A2) + α2‖B12y‖2

2

)

2

+

√(
λ2

1(A1) + α2
∥∥BT

12x
∥∥2

2 + λ2
1(A2) + α2‖B12y‖2

2

)2 − 4
((

λ2
1(A1) + α2

∥∥BT
12x

∥∥2
2

)(
λ2

1(A2) + α2‖B12y‖2
2

)
− θ2

)

2

=
(
λ2

1(A1) + α2
∥∥BT

12x
∥∥2

2 + λ2
1(A2) + α2‖B12y‖2

2

)

2
+

√√√√
(

λ2
1(A1) + α2

∥∥BT
12x

∥∥2
2 − λ2

1(A2) − α2‖B12y‖2
2

2

)2

+ θ2,

which is obtained when

C1 = θ
√

θ2 +
(
λL − λ2

1(A1) − α2
∥∥BT

12x
∥∥2

2

)2
, C2 =

λL − λ2
1(A1) − α2

∥∥BT
12x

∥∥2
2√

θ2 +
(
λL − λ2

1(A1) − α2
∥∥BT

12x
∥∥2

2

)2
.

4. Proof of Theorem 9

Any vector z of size 2N with zzT = m can be expressed
as a linear combination of the eigenvectors (z1,z2, . . . ,z2N ) of
matrix W ,

z√
m

=
2N∑

i=1

cizi,

where
∑2N

i=1 c2
i = 1. Hence,

zT Wsz

zT z
=

(
2N∑

i=1

cizi

)T (
2N∑

i=1

ciW
szi

)

=
(

2N∑

i=1

cizi

)T (
2N∑

i=1

ciλ
s
i zi

)

=
2N∑

i=1

c2
i λ

k
i = λs

1

(
2N∑

i=1

c2
i

λs
i

λk
1

)

.

Hence,

limk→∞

(
zT Wkz

zT z

)1/k

= λ1(W ).

According to Lyapunov’s inequality,

(E[|X|s])1/s " (E[|X|t ])1/t ,

when 0 < s < t . Taking Pr[X = λi

λ1
] = c2

i , we have

2N∑

i=1

c2
i

λs
i

λs
1

"
2N∑

i=1

c2
i

∣∣∣∣
λi

λ1

∣∣∣∣
s

= (E[|X|s])1/s " (E[|X|k])1/k

=
2N∑

i=1

c2
i

λk
i

λk
1

,

since k is even and k > s > 0.

5. Proof of Theorem 10

λ1(W ) = max
xT x+yT y=1

[xT yT ](A + αB)
[

x
y

]

= max
xT x+yT y=1

(
[xT yT ]A

[
x
y

]
+ α [xT yT ]B

[
x
y

])

" max
xT x+yT y=1

(xT A1x + yT A2y)

+α max
xT x+yT y=1

[xT yT ]B
[

x
y

]

= max(λ1(A1),λ1(A2)) + αλ1(B).

The inequality is due to the fact that the two terms are
maximized independently. The second term,

λ1(B) = max
xT x+yT y=1

(
xT B12y + yT BT

12x
)

= 2 max
xT x+yT y=1

xT B12y,

is equivalent to the system of equations,

B12y = λ1(B)x, B12y = λ1(B)x, xT x + yT y = 1,

or

BT
12B12y = λ1(B)2y, B12B

T
12x = λ1(B)2x, xT x + yT y = 1,

which is to find the maximum eigenvalue (or more precisely the
positive square root) of the symmetric positive matrix B12B

T
12,

λ1(B) =
√

max
x2=1

xT B12B
T
12x.

This actually proves Lemma 3, the property λ1(B) =√
λ1(B12B

T
12) of a bipartite graph B.

6. Proof of Theorem 11

The explicit expression up to the second order reads

(A + αB)(z(0) + αz(1) + α2z(2) + O(α3))

= (λ(0) + αλ(1) + α2λ(2) + O(α3))

× (z(0) + αz(1) + α2z(2) + O(α3)). (A1)
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The zero-order expansion is simply

Az(0) = λ(0)z(0).

The problem at zero order becomes to find the maximum of

z(0)T Az(0)

z(0)T z(0)
= (z(0),Az(0))

(z(0),z(0))
.

In the nondegenerate case,

max
(z(0),Az(0))
(z(0),z(0))

= (x,A1x)
(x,x)

= λ1(A1).

Hence,

λ(0) = λ1(A1), (z(0))T = [xT ,0T ],

where the first N elements of z(0) are x and the rest N elements
are all zeros. Let us look at the first-order correction. Imposing
the identity for the first-order expansion in (A1) gives

Az(1) + Bz(0) = λ(0)z(1) + λ(1)z(0). (A2)

Furthermore, we impose the normalization condition to z [see
(6)], which leads to

(z(0),z(1)) = 0. (A3)

The first-order correction to the principal eigenvector is
orthogonal to the zero order. Plugging this result in (A2),

(z(0),Az(1) + Bz(0)) = λ(0)(z(0),z(1)) + λ(1)(z(0),z(0)),

(AT z(0),z(1)) + (z(0),Bz(0)) = λ(1),

that is,

(z(0),Bz(0)) = λ(1). (A4)

Since (z(0))T = (xT 0T ) and B = [ 0 B12
BT

12 0 ], the first-order

correction in this nondegenerate case is null λ(1) = 0. Equation
(A2) allows us to calculate also the first-order correction to the
eigenvector,

Az(1) + Bz(0) = λ(0)z(1), (A − λ(0)I )z(1) = −Bz(0).

(A − λ(0)I ) is invertible out of its kernel (A − λ(0)I )z = 0 (that
is the linear space generated by z(0)) and since Bz(0) ⊥ z(0) we
have

z(1) = (λ(0)I − A)−1Bz(0). (A5)

Let us look for the second-order correction. Imposing the
identification of the second-order term of (A1) we obtain

Az(2) + Bz(1) = λ(0)z(2) + λ(1)z(1) + λ(2)z(0).

Projecting this vectorial equation on z(0) provides the second-
order correction to λ,

(z(0),Az(2) + Bz(1))

= λ(0)(z(0),z(2)) + λ(1)(z(0),z(1)) + λ(2)(z(0),z(0)),

λ(2) = (z(0),Az(2)) + (z(0),Bz(1)) − λ(0)(z(0),z(2))

= λ(0)(z(0),z(2)) + (z(0),Bz(1)) − λ(0)(z(0),z(2))

= (z(0),Bz(1)).

Substituting (A5) gives

λ(2) = (z(0),B(λ(0)I − A)−1Bz(0)), (A6)

which can be further expressed as a function of the largest
eigenvalue and eigenvector of individual network A1,A2 or
their interconnections B12. Since

Bz(0) =
(

0 B12

BT
12 0

) (
x

0

)
=

(
0

BT
12x

)
,

we have

λ(2) = (BT z(0),(λ(0)I − A)−1Bz(0))

= (0B12x)
(

(λ(0)I − A1) 0

0 (λ(0)I − A2)

)−1 (
0

BT
12x

)

= (0xT B12)
(

(λ(0)I − A1) 0

0 (λ(0)I − A2)

)−1 (
0

BT
12x

)

= (0xT B12)
(

(λ(0)I − A1)−1 0

0 (λ(0)I − A2)−1

) (
0

BT
12x

)

= xT B12(λ(0)I − A2)−1BT
12x,

which finishes the proof.

7. Proof of Theorem 12

The zero-order correction z(0) = [ x(0)

y(0) ] of the principal
eigenvector of W is a vector of size 2N, with the first N
elements denoted as vector x(0) and the last N elements denoted
as y(0). Similarly, z(1) = [ x(1)

y(1) ]. In the degenerate case, the

solution z(0) of the zero-order expansion equation,

Az(0) = λ(0)z(0),

can be any combination of the principal eigenvector x and y
of the two individual networks:

x(0) = c1x, y(0) = c2y, c2
1 + c2

2 = 1,

and λ(0) = λ1(A1) = λ1(A2). The first-order correction of the
largest eigenvalue in the nondegenerate case (A4) holds as
well for the degenerate case,

(z(0),Bz(0)) = λ(1), (A7)

which is however nonzero in the degenerate case due to the
structure of z(0) and is maximized by the right choice of c1 and
c2. Thus,

λ1(W )=max
c1,c2

(λ1(A1) + α(z(0),Bz(0))) + O(α2)

=λ1(A1) + max
c1,c2

αc1c2
(
(B12y,x) +

(
BT

12x,y
))

+ O(α2)

=λ1(A1) + 1
2α

(
(B12y,x) +

(
BT

12x,y
))

+ O(α2)

=λ1(A1) + α(x,B12y) + O(α2),

where c1c2 is maximum when c1 = c2 = 1/
√

2. Hence, z(0) =
[ x(0)

y(0) ] = 1√
2
[ x

y ].

One may also evaluate the second-order correction λ(2) of
the largest eigenvalue. The following results we derived in the
nondegenerate case hold as well for the degenerate case,

λ(2) = (z(0),Bz(1))

Az(1) + Bz(0) = λ(0)z(1) + λ(1)z(0).
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The second equation allows us to calculate the first-order
correction z(1) to the principal eigenvector:

(λ(0)I − A)z(1) = (B − λ(1)I )z(0). (A8)

This linear equation has solution when (B − λ(1)I )z(0) is
orthogonal to the kernel of the adjoint matrix of λ(0)I − A,
where the kernel is defined as

Ker(λ(0)I − A) = {v : (λ(0)I − A)v = 0}.

First, we are going to prove that (B − λ(1)I )z(0) is orthogonal
to the kernel v. We assume that the largest eigenvalue is unique
thus differs from the second largest eigenvalue in each single
network A1 and A2, as observed in most complex networks.
In this case,

A1x
(0) = λ(0)x(0)

A2y
(0) = λ(0)y(0).

The kernel of the matrix λ(0)I − A is the linear space generated
by x(0) and y(0)

v =
(

ax(0)

by(0)

)
.

Combining (A7), we have

vT (B − λ(1)I )z(0) = a
((

BT
12x

(0),y(0)) − λ(1))

+ b((x(0),B12y
(0)) − λ(1)) = 0.

Therefore, the solution of z(1) in (A8) exists.
Secondly, we will prove that all solutions of z(1) lead to

the same λ(2). Any two solutions of z(1) differ by a vector in
Ker(λ(0)I − A) and can be denoted by, for example, z(1) =
( x(1)

y(1) ) and ẑ(1) = ( x(1)

y(1) ) +( ax(0)

by(0) ) confined by the normalization

condition (A3):

(x(0))T x(1) + (y(0))T y(1) = 0

(x(0))T (x(1) + ax(0)) + (y(0))T (y(1) + by(0)) = 0,

which leads to a = −b. The λ(2) and λ̂(2) corresponding to the
two solutions,

λ(2) =
(

B12y
(0)

BT
12x

(0)

)T (
x(1)

y(1)

)
,

λ̂(2) =
(

B12y
(0)

BT
12x

(0)

)T (
x(1) + ax(0)

y(1) − ay(0)

)
,

are equal since

λ̂(2) = λ(2) + a
[
(y(0))T BT

12x
(0) − (x(0))T B12y

(0)] = λ(2).

Therefore, all solutions of z(1) lead to the same second-order
correction λ(2) to the eigenvalue and we are allowed to select
any specific solution. We choose one solution by imposing the
orthogonality of x(1) with x(0) and y(1) with y(0). Equation (A8)
in components reads

(λ(0)I − A1)x(1) = B12y
(0) − λ(1)x(0)

(λ(0)I − A2)y(1) = BT
12x

(0) − λ(1)y(0).

We could replace λ(0)I − A1 by λ(0)I − A1 + x(0)(x(0))T and
replace λ(0)I − A2 by λ(0)I − A2 + y(0)(y(0))T since x(0) is
orthogonal with x(1) and y(0) is orthogonal with y(1):

(λ(0)I − A1 + x(0)(x(0))T )x(1) = B12y
(0) − λ(1)x(0)

(λ(0)I − A2 + y(0)(y(0))T )y(1) = BT
12x

(0) − λ(1)y(0).

This allows us to calculate λ(2) algebraically. The first-order
correction z(1) to the principal eigenvector is

x(1) = (λ(0)I − A1 + x(0)(x(0))T )−1(B12y
(0) − λ(1)x(0))

y(1) = (λ(0)I − A2 + y(0)(y(0))T )−1(BT
12x

(0) − λ(1)y(0)).

The second-order correction λ(2) of the largest eigenvalue follows:

λ(2) =
(

B12y
(0)

BT
12x

(0)

)T (
(λ(0)I − A1 + x(0)(x(0))T )−1 0

0 (λ(0)I − A2 + y(0)(y(0))T )−1

) (
B12y

(0) − λ(1)x(0)

BT
12x

(0) − λ(1)y(0)

)
,

which can be expressed as a function of the principal eigenvector x and y of each single network,

λ(2) = 1
2yT BT

12

(
λ(0)I − A1 + 1

2xxT
)−1(B12y − λ(1)x) + 1

2xT B12
(
λ(0)I − A2 + 1

2yyT
)−1(

BT
12x − λ(1)y

)
. (A9)
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