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Epidemic outbreaks in two-scale community networks
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We consider a model for the diffusion of epidemics in a population that is partitioned into local communities. In
particular, assuming a mean-field approximation, we analyze a continuous-time susceptible-infected-susceptible
(SIS) model that has appeared recently in the literature. The probability by which an individual infects individuals
in its own community is different from the probability of infecting individuals in other communities. The aim
of the model, compared to the standard, nonclustered one, is to provide a compact description for the presence
of communities of local infection where the epidemic process is faster compared to the rate at which it spreads
across communities. Ultimately, it provides a tool to express the probability of epidemic outbreaks in the form
of a metastable infection probability. In the proposed model, the spatial structure of the network is encoded by
the adjacency matrix of clusters, i.e., the connections between local communities, and by the vector of the sizes
of local communities. Thus, the existence of a nontrivial metastable occupancy probability is determined by an
epidemic threshold which depends on the clusters’ size and on the intercommunity network structure.
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I. INTRODUCTION

Network models are commonly used to describe interac-
tions which occur between agents, e.g., in the digital domain
or in a biological environment. The spatial structure of the
population and the dynamics of interactions play a central
role in determining the evolution of such systems. Apart from
recent epidemic studies on interdependent networks [1], the
analysis of epidemic diffusion in networks has been focused,
primarily, on the behavior of a single community of agents,
whose spatial interactions are described by the correspondent
network structure. Several studies have been characterizing
the interplay of interconnected communities working possibly
at different space and/or time scales (e.g., [2–9]). In these
settings, the whole population is partitioned into communities
(also called clouds, households, clusters, or subgraphs).

Several works also account for the effect of migration
between households [10–12]. Conversely, the model we are
interested in suits better the diffusion of computer viruses or
stable social communities, which do not change during the
infection period; hence we do not consider migration.

In this paper, we consider the following situation (see
Fig. 1): The whole population, consisting of N individuals, is
distributed over c communities, or clouds, whose interconnec-
tion pattern is described by a c × c adjacency matrix A. Each
community can be thought of as a local population containing
two types of individuals: S (susceptible) and I (infected).

*Also at the Mathematics Department, University of Trento, Trento,
Italy.

There are two infection rates: the global, intercommunity
infection rate βG, for infecting individuals among different
communities, and the local, intracommunity infection rate βL

for infecting individuals in the same community or cloud.
The model captures the case when the rate of intracommunity
infections among individuals within clouds is much larger
than the rate of community infections, e.g., due to the fact that
contacts across communities occur at a much smaller rate.

We focus on a continuous-time susceptible-infected-
susceptible (SIS) model described via Markov theory. In the
exact continuous-time Markovian SIS model [13,14], the state
of each agent is described by a Bernoulli random variable
Xi(t), such that Xi(t) = 0 if the agent is healthy and Xi(t) = 1
if it is infected. The probability that an agent is infected
is vi(t) = P(Xi(t) = 1) and the probability that it is cured
is P(Xi(t) = 0) = 1 − vi(t). In a simplified, homogeneous
model, the curing process of each node is a Poisson process
with given rate δ and the infection process is a Poisson process
with rate β, each process being independent of the others.

For a network with finite size N , the exact SIS Markov
process will always converge towards the absorbing zero state
or overall healthy state, in which the virus has disappeared
from the network. This absorbing zero state is the unique
stationary state of the SIS Markov chain. Nevertheless, prior
to absorption [15], the SIS process approaches what appears
to be a quasistationary distribution that is different from the
disease-free equilibrium.

Such a quasistationary distribution is thus obtained by
conditioning on the fact that there is no absorption (see
[16,17] for a deeper explanation). This distribution can also
be regarded as the limiting conditional distribution, useful in
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FIG. 1. The two-scale community model: the contagion spreads
within each cluster node with intracluster infection rate βL and
among clusters with intercluster infection rate βG. A link between
two clusters means that each node in one cluster is linked with all
nodes in the other cluster.

representing the long-term behavior of the process “that in
some sense terminates, but appears to be stationary over any
reasonable time scale” [18].

After a mean-field approximation, depending on the system
operating point, a limiting occupancy probability appears as
the second solution of the nonlinear system, which exists,
apart from the zero-vector solution that reflects the absorbing
state. This nonzero steady-state solution is termed in [13] a
metastable state. Hence, the metastable state can be understood
as the nodes’ ergodic infection probability of a modified
Markovian SIS model (see [16]), where either the absorbing
state is removed or a self-infection probability is imposed as
described at the end of this section. Despite the fact that the
metastable state is actually a vector of the nodes’ infection
probabilities, it can be seen as an apparent steady state, in
the sense that, before disappearing, the system remains in that
metastable state for a sufficiently long time.

This long-term behavior also justifies the presence of
a characteristic epidemic threshold τc, mentioned by many
authors, (e.g., [19–21]). In a single network with constant
infection and curing rates β and δ, respectively, the effective
infection rate is defined as the ratio τ := β/δ: if the effective
infection rate τ is above the epidemic threshold, i.e., τ > τc, a
nonzero fraction of the nodes are infected, while, for τ � τc,
the epidemic dies out.

Strictly speaking, in the exact Markovian SIS model on
a finite graph, the epidemic threshold is undefined, since the
system is expected to certainly reach the unique absorbing
state. In particular, for small networks (i.e., N < 10), the
time-dependent behavior of the fraction of infected nodes
tends towards the absorbing state in an observable time.
However, for large N , numerical simulations have revealed
that, when τ > τc, the overall healthy state is reached only
after an unrealistically long time [22,23], so that the exact
steady state is hardly ever reached in real networks, while
the metastable state reflects the observed viral behavior fairly

well [24]. Below the critical threshold (τ < τc), the infection
vanishes exponentially fast in time.

The continuous-time Markov SIS model on networks can
be expressed exactly in terms of a with 2N states [13,25].
The state space, unfortunately, increases exponentially with
N , which poses severe limitations in order to determine
the set of solutions for large, real networks. A mean-field
approximation for the exact continuous-time SIS model, called
the N -intertwined mean-field approximation (NIMFA), was
proposed recently in the literature [13,24,26,27]. Essentially,
the NIMFA makes one approximation and assumes inde-
pendence between the infection probabability of any pair of
nodes in the network; thus, that Pr[Xi(t) = 1,Xj (t) = 1] =
Pr[Xi(t) = 1] Pr[Xj (t) = 1]. The NIMFA results in a set of
N nonlinear equations specifiying the time change of the
infection probability of a node. Hence, the NIMFA provides
a computational advantage compared to the exact model,
because it reduces the original system of 2N linear equations
to a system of N nonlinear ones.

The NIMFA model sets the SIS epidemic threshold for the
effective infection rate τ at the level τ (1)

c where

τ (1)
c = 1

λ1(A)
, (1)

and λ1(A) is the principal eigenvalue of the adjacency matrix
A of the community network.

Although it was conjectured intuitively already in [13] that
an infection somewhere in the network cannot decrease the
infection at another place, the recent demonstration in [28]
that Pr[Xi(t) = 1,Xj (t) = 1] � Pr[Xi(t) = 1] Pr[Xj (t) = 1]
in the exact, Markovian SIS process was the missing part in the
proof that τ (1)

c � τc or τc = ατ (1)
c with α � 1. Moreover, that

same demonstration also leads to the property that the NIMFA
upper bounds the nodal infection probability [14]. From a
practical point of view, computations with the NIMFA thus
always result in an upper bound of the infection in a network
and basing the engineering of a network on NIMFA values
safeguards the design against malware spread. However, for
which networks with N nodes the NIMFA is worst, in the sense
that α = τc

τ
(1)
c

is largest, remains a fundamental open question.
A general criterion that assesses the goodness of a mean-field
approximation such as the NIMFA for a given graph is believed
to be a currently missing, essential building block in the SIS
epidemic theory on networks.

Our NIMFA-like approximation is validated here by
comparison with the exact SIS model. From the operative
standpoint, a method to calculate the actual metastable state of
the SIS model is obtained by determining the steady state of
the ε-SIS model [25,27]. The ε-SIS model generalizes the SIS
model by adding nodal self-infection. Thus, besides receiving
the infection from an infected neighbor with rate β, a node can
also itself produce a virus with rate ε. For ε = 0, the ε-SIS
model corresponds to the classical SIS model.

The ε-SIS model [25] has no absorbing state, corresponding
to an irreducible Markov process on a finite state space.
Markov theory [14,29] guarantees that irreducibility (and ape-
riodicity) results in a unique steady state that, by considering
appropriate and small values of ε > 0, can be made arbitrarily
close to the metastable state of the original SIS model. Hence,
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just as in [27], the steady state of the ε-SIS model will be
compared here to the metastable state of our model.

II. THE EPIDEMIC MODEL

As introduced before, in this paper we investigate the
spread of an epidemic through a network structure with local
communities. Each local community contains kj individuals,
for j = 1, . . . ,c, where c is the number of communities in the
corresponding graph. The total number of individuals in the
network equals N = ∑c

j=1 kj .
When we consider the community level, we refer to the

community interconnection network. It is described by an
adjacency matrix A = (aij ) with c × c entries. Also, we let
node nj represent the j th community. When we consider
the individual level, we denote each individual as a node
ni,j , where j is the index of the community or cloud and
i is the index of the node inside the j th community. Inside
each community, we assume all nodes are connected among
themselves. Hence, we assume that the internal structure of
a cloud is a full mesh or complete graph. A model with a
full mesh structure of communities appears natural in the
case of small-sized clusters kj , because the members of a
community usually know each other (for example, friends
in a certain club, members of the same family, employees
in the same department, etc.). Thus, nodes ns,j and nr,j are
always connected (for s �= r) and nodes nr,j and ns,l (for
j �= l) are connected if ajl �= 0. The full mesh assumption
encodes in the model the fact that the contact rate between
individuals belonging to the same community is higher than
across communities.

The infection probability vi,j of the individual ni,j is
described by the mean-field equation

d

dt
vi,j (t) = βG[1 − vi,j (t)]

c∑
m=1

ajm

km∑
l=1

vl,m(t)

+βL[1 − vi,j (t)]
kj∑

l=1;l �=i

vl,j (t) − δ vi,j (t). (2)

In words, the time derivative of the infection probability of
node ni,j consists of two competing processes:

(a) While healthy, with probability [1 − vi,j (t)], all infected
neighbors of the node ni,j try to infect it with rate βL (βG),
according to whether they belong to the same local commu-
nity or to an external community. The term

∑kj

l=1;l �=i vl,j (t)
computes the expected number of infected neighbors in the
local community, while

∑c
m=1 ajm

∑km

l=1 vl,m(t) is the expected
number of infected individuals in the other clouds connected
to cloud j .

(b) While infected, with probability vi,j (t), node ni,j is
cured at rate δ.

Our main interest in the analysis of Eq. (2) is to discuss the
epidemic threshold for the effective infection rate. However,
the notion of effective infection rate will be defined anew, since
now it must depend on both βG and βL. We show that in regular
graphs, the epidemic threshold can be explicitly computed in
terms of the infection rates βG and βL, the curing rate δ, and the
structure of the network, which is specified by the adjacency

matrix A. For more complex networks, we shall find that this
value depends also on the distribution of the population among
the different clouds. In both cases, we find that above a critical
level, there exists a metastable probability distribution, which
corresponds to an endemic epidemic state for the system.

We may simplify the problem, using the symmetries of
the full mesh assumption, by noticing that all nodes inside a
community have the same infection probability. After setting
vj (t) = vi,j (t) = vl,j (t) for all i,l = 1, . . . ,kj in (2), we obtain

d

dt
vj (t) = βG[1 − vj (t)]

c∑
m=1

ajmkmvm(t)

+ (kj − 1)βL[1 − vj (t)]vj (t) − δvj (t). (3)

We now restate the previous equation (3) in matrix
form. We introduce the vector V (t) = (v1(t), . . . ,vc(t)); let
further I = Ic denote the c × c identity matrix and diag(α) =
diag(α1, . . . ,αc) be the diagonal c × c matrix whose elements
on the principal diagonal are given by the entries of the vector
α = (α1, . . . ,αc). Then we obtain the following representation
of (3):

d

dt
V (t) = −δ V (t) + βG{Ic − diag[V (t)]}A diag(kj )V (t)

+βL{Ic − diag[V (t)]} diag(kj − 1)V (t)

= −δV (t) + βG

(
A diag(kj ) + βL

βG

diag(kj − 1)

)

×V (t) − diag[V (t)] βG

(
A diag(kj )

+ βL

βG

diag(kj − 1)

)
V (t).

Introducing the weighted adjacency matrix

AL,G =
(

A diag(kj ) + βL

βG

diag(kj − 1)

)
,

whose elements are, in general, not binary (zero or 1), we
obtain

d

dt
V (t) = −δ V (t)+βG AL,GV (t)−βG diag[V (t)]AL,GV (t),

(4)

which has precisely the same form as the NIMFA governing
equation introduced first in [26].

III. STEADY STATES

In the following, we focus on the steady state V∞ =
(vj ;∞)j=1,...,c, which is defined by the following conditions:

vj ;∞ = lim
t→∞ vj (t) and 0 = lim

t→∞
d

dt
vj (t).

Passing to the limit in (3) we obtain

δ vj ;∞ = βG(1 − vj ;∞)
c∑

m=1

ajmkmvm;∞

+βL(kj − 1)vj ;∞(1 − vj ;∞). (5)
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It follows that, besides the trivial solution vj ;∞ = 0, there
possibly exist other positive solutions, reflecting the metastable
state that we are interested in.

We recall that, with respect to the original SIS Markov
model, the NIMFA approximation (2) represents an upper
bound to the infection probability of a node. Thus, under the
assumption that the graph is connected, a necessary condition
for the existence of a nontrivial metastable solution [13] is
vj ;∞ > 0, ∀ j = 1, . . . ,c.

A. Inhomogeneous systems

We now resort to the framework proposed in [30]: we
consider the case of general networks, where the degree of
node nj is denoted by dj and the size of the population in
community nj is kj . We write κ = (k1, . . . ,kn).

The metastable state is calculated from (4) as the solution
of

δ V∞ = βG AL,GV∞ − βG diag(V∞)AL,GV∞. (6)

With the exclusion of extremal cases (as for instance the case
of curing rate δ = 0), the metastable state corresponds to 0 <

vj ;∞ < 1. Hence from (6) we get

βG AL,GV∞ = diag

(
δ

1 − vj ;∞

)
V∞.

From the definition of AL,G we can write also

A diag(κ)V∞ = diag

(
1

βG

δ
(1 − vj ;∞)

− (kj − 1)βL

βG

)
V∞. (7)

The Laplacian of the underlying network is the matrix
Q = diag(dj ) − A; Q is a c × c singular, semipositive de-
fined matrix, and the eigenvector corresponding to the zero
eigenvalue is the all-1 vector u = (1, . . . ,1)T . We show how
the above construction can be adapted in our case. We
denote Aκ := A diag(κ), i.e., the matrix obtained from A by
multiplying the j th column by kj , j = 1, . . . ,c. We introduce
the modified Laplacian matrix as

Qκ (α) = diag(α) − Aκ, α = (α1, . . . ,αn)T .

It should be noticed that Aκ is not a symmetric matrix, unless
all the communities have the same population kj = k.

Next, we write the previous relation (7) by means of the
modified Laplacian defined by the vector of entries

αj = 1
βG

δ
(1 − vj ;∞)

− (kj − 1)βL

βG

,

to get the (nonlinear) equation

Qκ

(
1

βG

δ
(1 − vj ;∞)

− (kj − 1)βL

βG

)
V∞ = 0. (8)

Hence, if it exists, a nonzero steady-state vector V∞ is an
eigenvector of the eigenvalue zero. In order to find conditions
that imply the existence of the zero eigenvalue for the modified
LaplacianQκ (α), we apply Gerschgorin’s theorem [29] to both
Aκ and AT

κ .
Corollary 1. Every eigenvalue of the modified Laplacian

Qκ (α) lies in (at least) one of the circular disks with center αi

and radius Ri , where

Ri = max

⎛
⎝∑

i �=j

kj aij ,ki

∑
j �=i

aji

⎞
⎠ = max

⎛
⎝∑

j �=i

kj aji,kidi

⎞
⎠

and in the previous formula di is the degree of community ni .

B. General graphs with homogeneous partition into households

As mentioned above, in the case when all the households
have the same population kj = k, the matrix Aκ , and hence
also the matrix Qκ (α) is real symmetric, which implies that
all the eigenvalues are real numbers. In this setting, Corollary
III A implies that a necessary condition for the existence of a
zero eigenvalue is that for some j = 1, . . . ,c, the inequality

αj − Rj < 0 < αj + Rj

holds. We can further express the above inequality as follows:

1
βG

δ
(1 − vj ;∞)

− (k − 1)βL

βG

− Rj < 0,

1
βG

δ
(1 − vj ;∞)

− (k − 1)βL

βG

+ Rj > 0,

which, after a little algebra, leads to

1

(1 − vj ;∞)
< (kj − 1)

βL

δ
+ Rj

βG

δ
,

1

(1 − vj ;∞)
> (kj − 1)

βL

δ
− Rj

βG

δ
.

The first inequality implies that

vj ;∞ < 1 − δ

(k − 1)βL + Rj βG

and since we require vj ;∞ > 0, we obtain the result that
existence of an epidemic state implies

(k − 1)βL + k dj βG

δ
> 1. (9)

The second inequality leads to no further conditions. Ac-
tually, if the right-hand side is negative, i.e., in the regime
(k − 1)βL < kdjβG, the inequality is trivially satisfied, since
we require vj ;∞ < 1. Otherwise, in the regime (k − 1)βL >

k dj βG, we get 1 > δ
(k−1)βL−k dj βG

which leads to the lower

bound for the probability vj ;∞ > 1 − δ
(k−1)βL−k dj βG

.
Theorem 1. For a generic network with local clouds of

constant cloud size kj = k, a sufficient condition for the
uniqueness of the trivial epidemic steady state is the following:

dmaxβG + (
1 − 1

k

)
βL

δ
<

1

k
.

Example: Regular, homogeneous graphs. We consider here
the special case of a regular graph, which will enable us
to explain the difference of this model with respect to the
case when the partition into communities is not considered
(compare for instance [13]). A regular graph [29] is a graph
where each node has the same degree d.

In this section, we assume that the block size is uniform
among the communities, i.e., kj = k. These assumptions
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simplify (5), since it follows that vj ;∞ is constant in j . Hence,
we can compute

v∞ = 1 − δ

(k − 1)βL + kβGd
,

which shows that only the trivial steady state exists provided
that

(k − 1)βL + kβGd < δ. (10)

Let us consider k = 1 in our construction: this corresponds to
the case when individuals populate a regular network without
a community structure. We observe that the condition (10) for
the existence of a nontrivial solution corresponds to the steady
state given in [24] by

v∞ = 1 − 1

d τ
.

However, it is important to link the existence of a steady state,
which requires τ > 1

d
, to the structure of the network. This

relation is given by the following property (see [29, art. 74]):
the largest eigenvalue λ1(A) of the adjacency matrix for a
regular graph equals λ1(A) = d. Then, from (10), we have the
following sufficient condition for the uniqueness of the trivial
epidemic steady state for a regular, homogeneous graph:

λ1(A)βG + (
1 − 1

k

)
βL

δ
<

1

k
. (11)

We see at once that this formula is equivalent to (1) in the case
k = 1 and that the influence of the size k of the community is
twofold: k increases the value of the left-hand side (increasing
the influence of local contacts) and decreases the right-hand
side (as it measures the probability of infecting one element of
the community).

C. Calculating the metastable state

In order to compute the metastable state, we return to (6)
and we write

δ V∞ = βG diag(1 − V∞) AL,G V∞.

Recall that the inverse of a positive diagonal matrix is the
diagonal matrix with inverse elements on the diagonal; further,
since δ is a constant, we have

diag(1 − V∞)−1V∞ =
(

v1;∞
1 − v1;∞

, . . . ,
vc;∞

1 − vc;∞

)T

= u −
(

1

1 − v1;∞
, . . . ,

1

1 − vc;∞

)T

,

(12)

where u is the all-1 vector u = (1, . . . ,1)T . After some
manipulations, the above equations become

diag(1 − V∞)−1u =
[
I − βG

δ
AL,G diag(V∞)

]
u

which, in the scalar form, becomes

vj ;∞ = 1 − 1

1 + βG

δ

c∑
h=1

(ALG)jhvh;∞
.

This formula was already introduced in a similar context in
[13]. Also, according to the method proposed there, it is
possible to solve the above equation by iteration of the formula

zj ;m+1 = f (z1;m, . . . ,zc;m) = 1 − 1

1 + βG

δ

c∑
h=1

(ALG)jhzh;m

.

In general, an algorithm based on the above formula converges
rapidly to the solution or, equivalently, it is sufficient to perform
a limited number of iterations of the above formula in order to
obtain a good approximation for the state value.

D. Inhomogeneous cloud distribution

In this section, we extend previous results to the case of
different numbers of elements in the communities. The starting
point is Eq. (7); however, instead of using Corollary III A
directly, we first state the problem in terms of the vector W∞ =
diag(κ)V∞. We consider the modified Laplacian matrix with
respect to the adjacency matrix A:

Q(α) = diag(α) − A,

where

αj = 1
βG

kj δ
(1 − vj ;∞)

− (kj − 1)

kj

βL

βG

.

The existence of a nontrivial steady state V∞ requires that W∞
is a nontrivial eigenvector related to the eigenvalue 0. With
the same reasoning as above and taking into account Corollary
III A, this implies that, for at least one j ,

αj − Rj < 0 < αj + Rj .

Clearly, in this case the radius Rj is expressed in terms of the
adjacency matrix A, and hence

Rj = dj = the degree of community nj .

Therefore, a sufficient condition for the uniqueness of the
trivial epidemic steady state is the following:

1
βG

δ
(1 − vj ;∞)

− (kj − 1)
βL

βG

> dj kj

and, since it must be that 0 < vj ;∞ < 1, we have proved the
following result.

Theorem 2. For a generic network with local clouds of
nonconstant size {kj }, a sufficient condition for the uniqueness
of the trivial epidemic steady state is the following:

∀ j = 1, . . . ,c,
dj βG + (

1 − 1
kj

)
βL

δ
<

1

kj

.

The above result confirms the intuition that just the presence
of communities implies an increase of the probability of per-
sistence of the epidemics. Actually, it is sufficient to compare
the condition in Theorem 2 for kj > 1 with the condition
djβG/δ < 1 that results in the case kj ≡ 1. Furthermore, the
same formula implies that the higher the value of βL, the
smaller is the region of extinction of epidemics.

Finally, the result in Theorem 2 becomes apparent in the
limiting cases. Suppose, for instance, that both βL and βG

converge to zero. Then the inequality in Theorem 2 is trivially
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satisfied and the system is in the region of extinction for the
epidemics. Conversely, if they both converge to infinity, then
the system enters into the region of persistence.

IV. NETWORK WITH INHOMOGENEOUS CURING RATES

In this section, we proceed one step of generalization further
and we assume that, apart from the size of the community, we
can modify the curing rate for each local community, i.e.,
we assume that δj is the curing rate for the community nj .
In order to handle this case, we introduce the matrix 	 =
diag(δ1, . . . ,δc); then the evolution of the system is governed
by the equation [which extends (4)]

d

dt
V (t) = −	 V (t) + βG AL,GV (t)

−βG diag[V (t)]AL,GV (t). (13)

The steady state V∞ is described by the following governing
equation:

δj vj ;∞ = βG(1 − vj ;∞)
c∑

m=1

ajmkmvm;∞

+βL(kj − 1)vj ;∞(1 − vj ;∞). (14)

The metastable steady state for the epidemic diffusion
is characterized by the solution of the previous formula.
Expanding in ε around the critical threshold, the solution is
V∞ = εx, where x is a vector with non-negative components;
then we approximate the generalized Laplacian and (8)
becomes, after division by ε,

Q
(

1
βG

δj
(1 − εxj )

− (kj − 1)βL

βG

)
x = 0,

which becomes, taking the limit ε → 0,

diag

⎡
⎣(

1
βG

δj

− (kj − 1)βL

βG

)−1
⎤
⎦ Aκx = x. (15)

Hence x is the eigenvector of

Ã := diag

⎡
⎣(

1
βG

δj

− (kj − 1)βL

βG

)−1
⎤
⎦ Aκ

belonging to the eigenvalue 1.
Let as assume that the following condition holds:

δj > (kj − 1)βL for all j = 1, . . . ,c. (16)

Thus Ã is a non-negative, irreducible matrix (to be precise,
we obtain the irreducibility of Ã from the same property
of A, which in turn is equivalent to the fact that the graph
is connected, which is an assumption underlying the whole
paper).

Under the above assumptions, the Perron-Frobenius The-
orem [14,29] states that Ã has a positive largest eigenvalue
μ̃max with a corresponding eigenvector whose elements are
all positive and that it is the only eigenvector with only non-
negative components. Since x has non-negative components,
it must be the eigenvector associated with μ̃max.

Theorem 3. The critical threshold is determined by the
vectors of the curing rates 	 = (δ1, . . . ,δn)T which imply
μmax(Ã) = 1.

Remark 1. In the homogeneous case δj ≡ δ, kj ≡ k, it holds
that

μ̃max =
(

1
kβG

δ

− (k − 1)βL

kβG

)−1

μmax, (17)

which leads to the critical threshold for δ

δ = (k − 1)βL + μmaxkβG,

where μmax is the positive largest eigenvalue of A. The
computation above is completely analogous to the one in the
example of Sec. III B.

In general, Theorem 3 does not lead to an explicit charac-
terization of the epidemic steady state, nor does it state any
explicit condition for the uniqueness of the epidemic steady
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FIG. 2. (a) Fraction of infected nodes for different values of k and τG = βG/δ, with fixed ratio βL/βG = 2 and the value δ = 1, for a
network of regular degree d = 10 and N = 500. Both the NIMFA and the exact ε = 10−3 SIS model are shown. The inset plot represents the
root mean square error between the simulated and the approximated fraction of infected nodes. (b) The corresponding value of the epidemic
threshold for the NIMFA and the exact ε-SIS model.
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FIG. 3. Difference between the exact ε-SIS model and the
NIMFA fractions of infected nodes as a function of τG and for different
values of k, for a network of regular degree d = 10 and N = 500.

state. Therefore, we can resort to the computation of Sec. III D
to get the following result:

Theorem 5. For a generic network with local clouds of
nonconstant size {kj }, a sufficient condition for the uniqueness
of the trivial epidemic steady state is the following:

∀ j = 1, . . . ,c,
dj kj βG + (

1 − 1
kj

)
βL

δj

<
1

kj

.

V. NUMERICAL EVALUATIONS

In this section, we describe numerical results for the two-
scale community model.

A. Effect of cluster size

We depict first in Fig. 2(a) the impact of the cluster size
k on the fraction of infected nodes in the metastable state as
derived from (8), and compare the results of our model to
the exact ε-SIS model. We consider a range for the normalized

intercommunity infection rate, i.e., τG := βG

δ
, for constant ratio

βL/βG = 2 with respect to the normalized intra-community
infection rate τL := βL

δ
. The epidemic threshold is measured as

the smallest value of τG which determines a nonzero epidemic
state, while, for the ε-SIS model, it is measured as the value
of τG where the second derivative of the steady-state fraction
of infected nodes equals zero.

The sample network has constant degree d = 10 and order
N = 500. The cluster size k is the same for all communities:
curves are drawn for increasing values of k (k = 1,2,5,10),
where k = 1 denotes the absence of local clusters. The
threshold effect is well visible in the graphs depicted in Fig. 2
(a). As can be further observed, our model and the exact SIS
model are in good agreement and the root mean square error
between them decreases with k.

In Fig. 2(b) the corresponding value of the epidemic
threshold τG for the NIMFA and the exactε-SIS model is
reported. As expected from (11), the critical threshold above
which an endogenous infection exists decreases with the size
of the clusters. Thus, for large values of the cluster size, a very
small value of τG is sufficient to cause epidemic outbreaks,
irrespective of the actual network structure. Moreover, the
NIMFA epidemic threshold well approximates the threshold
observed in reality especially for k > 1.

Figure 3 illustrates the difference between the NIMFA and
the ε-SIS fraction of infected nodes as a function of τG and
for various k, for the same network sample: we observe that
the maximum difference between the two models occurs when
τG equals the ε-SIS epidemic threshold. This means that for
τG greater than the ε-SIS epidemic threshold, the difference
between the two models decreases and the two models get
increasingly closer, according to our definition of the epidemic
threshold for the ε-SIS model.

Figures 4(a) and 4(b) have been derived after averaging
over 300 instances of Erdős-Rényi random graphs of order
c = 10 generated according to edge connection probability
p = 0.3 and setting βL/βG = 2. The confidence intervals for
the epidemic threshold is set to 98%. In particular, the bottom
curve represents the case k = 1, i.e., the absence of local
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FIG. 4. (a) Fraction of infected nodes for different values of k and τG, with fixed ratio βL/βG = 2, order c = 10, and the value δ = 1. (b)
The corresponding value of the epidemic threshold. All graphs have been obtained averaging over 300 instances of Erdős-Rényi random graphs
for p = 0.3; the level of confidence is set to 98%.
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FIG. 5. (a) Fraction of infected nodes as a function of τG and τL

for k = 5 and c = 10. (b) Detail of the epidemic threshold.

clouds. We interpret the threshold in the case k = 1 as the
capability of the cluster’s network to sustain a metastable
epidemic outbreak. Larger cluster sizes cause the epidemic
threshold to drop significantly: in our sample graphs and for

the considered cluster size range, it decreases by one order of
magnitude, i.e., it starts above 0.3 for k = 1 and it decreases
to around 0.1 already for k = 2, while it finally drops below
0.03 for k � 7.

By taking into account one instance of this set of Erdős-
Rényi graphs for k = 5, we report in Fig. 5(a) the behavior of
the fraction of infected nodes as a function of τG and τL. In
that figure, the epidemic threshold is represented by the line of
points where the fraction of infected nodes becomes positive:
we observe that it depends linearly on the infection rates βL

and βG, given the cloud dimension k, in agreement with the
expression derived in Theorem 5.

Finally, we compare the behavior of our model with respect
to the ε-SIS model by considering a sample Erdős-Rényi
network with order c = 20 and p = 0.3. Figures 6(a) and
6(b) show a good agreement between the two models for
cluster size k = 5,7,10. On the contrary, for networks with
few individuals, N = 20 corresponding to k = 1 and N = 40
for k = 2, the epidemic threshold of the NIMFA model is
less close to that of the ε-SIS model. The better agreement
between the NIMFA model and the ε-SIS model for larger N

is also verified in [25] for nonclustered complete graphs and
in [27] for nonclustered bipartite networks, star graphs, and
lattice graphs. As further observed from Fig. 7, the maximum
difference between the NIMFA and the ε-SIS fractions of
infected nodes corresponds to the ε-SIS epidemic threshold
only for networks with k = 5,7,10.

B. Effect of heterogeneity of the cluster size

One interesting question that concerns the two-scale epi-
demic model is the influence of the cluster size distribution
onto the epidemic threshold. In general, it is not obvious
whether, with all remaining system parameters fixed, a
constant cluster size will lead to a lower or larger epidemic
threshold for the same network.

In Fig. 8 we performed a test using a set of 300 sample
tree graphs. Each graph is the spanning tree of an Erdős-Rényi
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FIG. 6. (a) Fraction of infected nodes for different values of k and τG = βG/δ, with fixed ratio βL/βG = 2 and the value δ = 1, for an
Erdős-Rényi graph of order c = 20 and p = 0.3. Both the NIMFA and the exact ε = 10−3 SIS model are shown. The inset plot represents the
root mean square error between the simulated and the approximated fraction of infected nodes. (b) The corresponding value of the epidemic
threshold for the NIMFA and the exact ε-SIS model.
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FIG. 7. Difference between the exact ε-SIS model and the
NIMFA fractions of infected nodes as a function of τG and for different
values of k, for an Erdős-Rényi graph of order c = 20, p = 0.3.

graph of order c = 10 and p = 0.3. The ratio βL/βG is set to
8. Figure 8 draws the difference 
τG

between the epidemic
thresholds measured for homogeneous and inhomogeneous
cloud distributions. In particular, for each sample tree, we
considered different values of the average cluster size k =
5,10,15. In the case of heterogeneous cloud distribution half
of the nodes have cluster size 2 and half of them have cluster
size 2k − 2.

Figure 8 exemplifies that heterogeneity of the cluster size
lowers the epidemic threshold compared to the case of constant
size. This observation agrees with the theorem: among all
graphs with N nodes and L links, the regular graph has
the lowest spectral radius λ1. The theorem follows from the
inequality [29, (3.34) on p. 47]:

λ1 � 2L

N

√
1 + var[D]

(E[D])2
,

where D is the degree of a randomly chosen node in the graph.
Indeed, we have that the variance var[D] = 0 for a regular
graph and equality holds only for a regular graph. Hence,
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FIG. 8. Difference 
τG
between the epidemic threshold in the

cases of homogeneous and inhomogeneous cloud distributions for
different values of k (5,10,15), with fixed ratio βL/βG = 8.
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FIG. 9. The epidemic threshold in the cases of homogeneous and
inhomogeneous cloud distributions for different values of k, for a
spanning tree of an Erdős-Rényi graph of order c = 10 and p = 0.3.
Both the NIMFA and the ε-SIS thresholds are shown.

given that the number N of nodes and the number L of links
are fixed, the NIMFA epidemic threshold

τ (1)
c = 1

λ1
� N

2L

1√
1 + var[D]

(E[D])2

,

implying that the larger the variance in the degree D, the
lower the NIMFA epidemic threshold τ (1)

c . Unfortunately, since
τ (1)
c � τc, we cannot conclude that an increase in var[D] also

always lowers the exact epidemic threshold τc.
Figure 9 shows the epidemic thresholds measured for homo-

geneous and inhomogeneous cluster sizes, by considering one
instance of the previous set of spanning trees of an Erdős-Rényi
graph. We report both the results obtained for our model and
the results obtained for the ε-SIS model: the NIMFA epidemic
threshold well estimates the ε-SIS epidemic threshold in both
cluster size distributions.
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τG

between the epidemic threshold in the case of ring clusters and
fully connected clusters for different values of k.
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FIG. 11. Epidemic threshold in the case of ring and clique clusters
for different values of k, for an instance of Erdős-Rényi random graph
of order c = 10 and p = 0.3. Both the NIMFA and the exact ε-SIS
model thresholds are shown.

C. Effect of cluster structure

Finally, we complement the observations on our model
with the case when clusters have a structure which is not a
clique. The impact of the internal cluster structure is not part
of our model: in fact, as we mentioned in Sec. II, we consider
small-sized clusters where the full mesh assumption reflects
the fact that the contact rate within a community is larger than
outside. But if we consider clusters with a large number of
elements, assuming a clique as internal structure may not be
fully appropriate. Hence we consider hereafter sparser cluster
structures, e.g., a ring, and we show that, as we actually expect,
this increases the epidemic threshold.

Figure 10 illustrates the results for clusters with a ring
topology, compared to fully connected clusters. The figure
shows, for different values of k, the difference 
τG

between
the epidemic threshold in the case of ring clusters and
fully connected clusters. The results have been obtained by
averaging over 300 instances of Erdős-Rényi random graphs
(as before, c = 10, p = 0.3, and the level of confidence is
set to 98%). For k > 2, the difference in the value of the
epidemic threshold confirms that the cluster structure has a
major impact on the epidemic threshold. For those topologies,
the values of the threshold that our model generates should
be considered as a conservative lower bound. This behavior is
further observed in Fig. 11 where we compare the NIMFA and
the ε-SIS thresholds for the two cluster topologies. Moreover,

as for the previous test cases, the NIMFA epidemic threshold
is close to to that of the ε-SIS model.

VI. CONCLUSIONS

SIS epidemic spread in a network of N individuals
partitioned into c communities is analysed assuming a NIMFA-
like mean-field approximation. The existence of a nontrivial
persistent epidemic state is studied in terms of a few parameters
that determine the behavior of the network: the infection rate
per intracluster βG and per intercluster βL and the curing rate
for the clusters. Compared with the classical case of a single
network, our model satisfies a similar behavior but with an
additional feature, that is, the possibility that clusters behave
as sources of infections.

We address first the case in which all the communities have
the same size k and we discuss the existence of a threshold
level for the curing rate. Hence, we describe how the threshold
decreases with the size of communities and we show that
for a general cluster network structure, the threshold can
be estimated in terms of the maximum degree dmax in the
community network.

If each community nj has a different size, then it is possible
to provide a relation which ties together the main system
parameters, namely, the population size of each community
kj , its connection degree dj , and curing rate δj . In particular,
even in the case when intracluster infection rates are small, or
the network has small degree, an endemic epidemic state may
still occur due to the large order of clusters.

The sufficient condition expressed in Theorem 5 specifies
under which choice of parameters the system can be driven
to the trivial (i.e., overall healthy) epidemic steady state. The
result also indicates that clusters with large values of djkj

are most likely to breach the inequality of Theorem 5. As a
consequence, an efficient immunization policy for a network
partitioned into communities should put the main effort to
increasing the curing rate in those communities having a large
product djkj .
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