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An interconnected network features a structural transition between two regimes [1]: one where the
network components are structurally distinguishable and one where the interconnected network functions
as a whole. Our exact solution for the coupling threshold uncovers network topologies with unexpected
behaviors. Specifically, we show conditions that superdiffusion, introduced in [2], can occur despite the
network components functioning distinctly. Moreover, we find that components of certain interconnected
network topologies are indistinguishable despite very weak coupling between them.

Several natural and human-made networks—such as
power grids controlled by communications networks, con-
tact networks of human and animal populations for trans-
mission of zoonotic diseases, and transportation networks
consisting of multiple modes (road, flights, railroads,
etc.)—cannot be represented by simple graphs and have led
[3] to the introduction of interdependent, interconnected,
and multilayer networks in network science [4, 5]. In-
terconnected networks are mathematical representations of
systems where two or more simple networks, possibly with
different functionalities, are coupled to each other. The
omnipresence of interconnected networks has spurred a
variety of research [6–9], with particular interest in dy-
namical processes such as percolation [10, 11], epidemic
spreading [12–15], and diffusion [2, 16].

Recently, Radicchi and Arenas [1], and Gomez et al. [2]
proposed a stylized interconnected network [17], consist-
ing of two connected networks, GA and GB , each of size
N , with one-to-one interconnection, as sketched in Fig. 1,
where the interconnection strength between the layers is
parametrized by a coupling weight p > 0.
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FIG. 1. One-to-one interconnection of two networksGA andGB ,
where the coupling weight is p > 0.

Radicchi and Arenas [1] demonstrated the existence of a
structural transition point p∗. Depending on the coupling
weight p between the two networks, the collective inter-
connected network can function in two regimes: if p < p∗,
the two networks are structurally distinguishable; whereas
if p > p∗, they behave as a whole.

While studying diffusion processes on the same type of
interconnected network in Fig. 1, Gomez et al. [2] ob-
served superdiffusion: for sufficiently large p, the diffusion
in the interconnected network takes place faster than in ei-
ther of the networks separately. Superdiffusion arises due
to the synergistic effect of the network interconnection and
exemplifies a characteristic phenomenon in interconnected
networks. Placement of the introduction point of superdif-
fusion with respect to the critical point p∗ is missing in the
literature.

Whereas the existence of a critical transition p∗ was re-
ported in [1], here, we determine the exact coupling thresh-
old p∗. Our exact solution illuminates the role of each in-
dividual network component and their combined configu-
ration on the structural transition phenomena and uncov-
ers unexpected behaviors. Specifically, we show structural
transition is not a necessary condition for achieving su-
perdiffusion. Indeed, superdiffusion can be achieved for
a coupling weight p even below the structural transition
threshold p∗, which is surprising because, intuitively, syn-
ergy is not expected if the network components are func-
tioning distinctly. Moreover, we observe that the structural
transition disappears when one of the network components
has vanishing algebraic connectivity [18–20], as is the case
for a class of scale-free networks. Therefore, components
of such interconnected network topologies become indis-
tinguishable despite very weak coupling between them.

Spectral analysis plays a key role in understanding in-
terconnected networks. Hernandez et al. [21] found the
complete spectra of interconnected networks with identi-
cal components. Sole-Ribalta et al. [22] studied the inter-
connection of more than two networks with an arbitrary
one-to-one correspondence structure. Sanchez-Garcia et
al. [23] employed eigenvalue interlacing [18] to provide
bounds for the Laplacian spectra of an interconnected net-
work with a general interconnection pattern. In addition, in
a similar context of structural transition as [1], D’Agostino
[24] showed that adding interconnection links among net-
works causes structural transition. For a class of random
network models, specified by an intralayer [25] and an in-
terlayer degree distribution, Radicchi [26] showed when
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the correlation between intralayer and interlayer degrees is
below a threshold value, the interconnected networks be-
come indistinguishable.

We study the interconnected network G of Radicchi and
Arenas [1], and Gomez et al. [2], as depicted in Fig. 1.
Matrices A and B represent the adjacency matrices of GA

and GB , respectively. The overall adjacency matrix and
Laplacian matrix [18] of the interconnected network G are

A =

[
A pI
pI B

]
and L =

[
LA + pI −pI
−pI LB + pI

]
,

where LA and LB are the Laplacian matrices of GA and
GB , respectively, and I is the identity matrix. The eigen-
values of the Laplacian matrix L, denoted by 0 = λ1 <
λ2 ≤ · · · ≤ λ2N , are the solutions of the eigenvalue prob-
lem [

LA + pI −pI
−pI LB + pI

] [
vA
vB

]
= λ

[
vA
vB

]
, (1)

where vA and vB contain elements of the eigenvector v =
[vTA, v

T
B]T corresponding to GA and GB , respectively, and

satisfy the following eigenvector normalization

vTAvA + vTBvB = 2N. (2)

The algebraic connectivity λ2(L) of the interconnected
network is the smallest positive eigenvalue of the Laplacian
matrix L and the Fiedler vector v2 is its corresponding
eigenvector. Algebraic connectivity of networks has been
studied in depth [18, 20] since Fiedler’s seminal paper [19].
Algebraic connectivity quantifies the connectedness of a
network and specifies the rate of convergence in a diffusion
process [27] to its steady state. The Fiedler vector plays a
key role in spectral partitioning of networks (see e.g. [18]).

Superdiffusion occurs if the algebraic connectivity
λ2(L) of the interconnected network is larger than the al-
gebraic connectivity of each network component [2],

λ2(L) > max{λ2(LA), λ2(LB)}. (3)

Condition (3) indicates that diffusion in the interconnected
network G spreads faster than in GA or GB if isolated.
This condition does not hold for all interconnected net-
works. Gomez et al. [2] proved a necessary condi-
tion for superdiffusion is to have 1

2
λ2(LA + LB) >

max{λ2(LA), λ2(LB)}. In this case, the criterion (3)
for superdiffusion is met for sufficiently large coupling
weights, since the algebraic connectivity λ2(L) is a mono-
tone function of the coupling weight p and increases from
0 when p = 0, to 1

2
λ2(LA + LB) as p→∞.

The structural transition phenomenon of [1] can be un-
derstood through the behavior of the Fiedler vector of the
interconnected network as a function of coupling weight p.
For the eigenvalue problem (1), λ = 2p and vA = −vB =
u , [1, . . . , 1]T is always a solution [1, 2]. Therefore, if
the coupling weight p is small enough, the algebraic con-
nectivity of the interconnected network is λ2(L) = λ =
2p. Thus, the Fiedler vector v2 = [uT ,−uT ]T correspond-
ing to λ2(L) = 2p indicates that networksGA andGB are

structurally distinct [1]. By increasing the coupling weight
p, the eigenvalue λ = 2p may no longer be the smallest
positive one. Radicchi and Arenas [1] showed the existence
of a structural transition at a threshold value p∗ such that for
p > p∗, the eigenvalue λ = 2p exceeds the algebraic con-
nectivity λ2(L), thus indicating an abrupt structural tran-
sition. Moreover, Radicchi and Arenas [1] argued that the
coupling threshold is upper-bounded by one fourth of the
algebraic connectivity of the superpositioned network Gs

with adjacency matrix A+B, which is equivalent to

p∗ ≤ 1

2
λ2

(
LA + LB

2

)
. (4)

Although coupling threshold p∗ is a critical quantity for
interconnected networks, little is known apart from the up-
per bound (4). We now explain our new method to find the
exact expression for the coupling threshold p∗.

Since elements of the Laplacian matrix L are continu-
ous functions of p, so are its eigenvalues [28]. This im-
plies that the transition in the Fiedler vector of the intercon-
nected network is not a result of any abrupt transition of the
eigenvalues of L, but rather due to crossing of eigenvalue
trajectories as functions of p. Specifically, the Fiedler vec-
tor transition occurs precisely at the point where the second
and third eigenvalues of L coincide. Therefore, coupling
threshold p∗ is such that λ = 2p∗ is a positive, repeated
eigenvalue of L.

As detailed in the Supplemental Material [29, B.i.], we
find that repeated eigenvalues occur at λ = 2p∗ for N −
1 different values of p∗, namely p∗ = 1

2
λi(Q) for i ∈

{2, · · · , N}, where Q can be expressed in the following
forms [29, B.ii]:

Q , L̄− L̃L̄†L̃ (5)

= 2(LA −
1

2
LAL̄

†LA) = 2(LB −
1

2
LBL̄

†LB) (6)

= LAL̄
†LB = LBL̄

†LA, (7)

where L̄ , 1
2
(LA + LB), L̃ , 1

2
(LA − LB), and the

superscript † denotes the Moore–Penrose pseudo-inverse
[18]. Transition in the algebraic connectivity occurs at the
coupling threshold corresponding to the smallest positive
eigenvalue of Q, i.e.,

p∗ =
1

2
λ2(Q). (8)

Furthermore, the coupling threshold p∗ can be alternatively
obtained as [29, B.iii.]

p∗ =
1

ρ(L†A + L†B)
, (9)

where ρ(•) , λN(•) denotes the spectral radius [18].
The exact coupling threshold equation (8) depends, in a

nonlinear way, on the matricesLA, LB , L̄, and L̃ in Eq. (5-
7), and unveils that the structural transition phenomenon is
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jointly caused by A and B. Unfortunately, the exact solu-
tion (8) includes the joint influence of the network compo-
nents implicitly.

However, the exact solution for the coupling threshold
can lead to several lower and upper bounds for p∗ with
simple, physically informative expressions. Some of these
bounds can be expressed only in terms of of the algebraic
connectivity of each isolated network GA and GB , as well
as the superpositioned network Gs, as [29, B.iv., B.v.]

p∗ ≥ 1

λ−12 (LA) + λ−12 (LB)
, (10)

p∗ ≤ min{λ2(LA), λ2(LB),
1

2
λ2(L̄)}. (11)

We can furthermore find expressions that include explicit
quantities pertaining to the network components jointly.
We refer to such quantities as interrelation descriptors. As
an example, we have obtained a class of upper bounds
p∗ ≤ 1

ρ̂nA,nB

which depend on inner product of the eigen-
vectors ofGA andGB with tunable accuracy and low com-
putational cost as discussed in details in [29, B.viii.]. For
further discussions on the network interrelation concept,
readers can refer to [29, C.].

Expression (10) elegantly lower bounds p∗ by half of
the harmonic mean of λ2(LA) and λ2(LB), and is exact
if v2A = v2B . The upper bounds (11) not only include the
upper bound (4), proposed in [1], but also exhibit a funda-
mental property of interconnected networks: the coupling
threshold p∗ is upper bounded by the algebraic connectiv-
ity of each network component.

Interestingly, if the algebraic connectivity of one net-
work, say GA, is much smaller than that of the other net-
work GB , then the network component with the small-
est algebraic connectivity, here GA, prominently deter-
mines the coupling threshold; but neither GB , nor the su-
perpositioned network Gs, play a major role. Indeed, if
K , λ2(LB)/λ2(LA) > 3, then [29, B.vi.]

K

1 +K
λ2(LA) < p∗ ≤ λ2(LA). (12)

A corollary of (12) is if one of the network components
has a vanishing algebraic connectivity, which is the case
for a class of scale-free networks where λ2 ∼ (lnN)−2

[30], then p∗ → 0, indicating the transition point also dis-
appears. Therefore, in such cases, even a very small cou-
pling weight p leads to structural transition. This result is
physically intuitive because a network with a small alge-
braic connectivity is vulnerable and loses its unity in re-
sponse to external perturbations such as removal of a few
edges/nodes or, as our analysis suggests, a weak coupling
to another network.

Considering the opposite situation where the algebraic
connectivity values of both networks are close to each
other, we can show p∗ > 1

2
max{λ2(LA), λ2(LB)} if the

Fielder vectors are far from being parallel (see [29, B.vii.]).

As a consequence, for each coupling weight p satisfying
1
2

max{λ2(LA), λ2(LB)} < p ≤ p∗, we have

λ2(L) = 2p > max{λ2(LA), λ2(LB)}. (13)

Comparison of (13) with the superdiffusion criterion (3) re-
veals the counterintuitive finding that superdiffusion, a syn-
ergistic characteristic phenomenon of an interconnected
network, can occur for values of p < p∗, where the net-
work components function distinctly!

As mentioned above, the condition that Fielder vectors
of GA and GB are far from being parallel is necessary
for superdiffusion before structural transition. We find
that this condition is indeed general to superdiffusion, re-
gardless of structural transition; because close-to-parallel
Fielder vectors of GA and GB yields λ2(

LA+LB

2
) '

λ2(LA)+λ2(LB)

2
, thus the necessary condition for superdif-

fusion, i.e., λ2(
LA+LB

2
) > max{λ2(LA), λ2(LB)} can

never be satisfied even for p → ∞. This condition has
a very interesting physical interpretation. When p → ∞,
corresponding nodes in GA and GB become a single en-
tity. According to the important role of the Fiedler vector
in graph partitioning, having close-to-orthogonal Fiedler
vectors of GA and GB means that links of GB connect
those nodes that are far from each other in GA, and vice
versa. Therefore, with close-to-orthogonal Fiedler vectors
of GA and GB , the overall interconnected network gains
increased connectivity among its nodes compared to each
isolated component, thus making superdiffusion feasible.

It is important to distinguish between speed of diffu-
sion, determined by the smallest positive eigenvalues of
the Laplacian matrix, and the mode of diffusion, deter-
mined by the corresponding eigenvectors. Superdiffusion
concerns the speed of diffusion, while structural transition
corresponds to an abrupt change in modes of diffusion. It
would be a wrong idea to assume p < p∗ indicate that
GA and GB are independents (expect for the trivial case
of p = 0). The key point is that having p < p∗ sim-
ply implies that GA and GB are distinguishable. Before
the structural transition the network components do inter-
act with each other, and as we showed, can even positively
favor the diffusion process speed as the result of increased
overall connectivity in the interconnected network.

To illustrate our analytical assertions, we perform several
numerical simulations. We generate an interconnected net-
work with N = 1000, where the graph GA is a scale-free
network according to the configuration model [31] with ex-
ponent γ = 3, andGB is a random geometric network [32]

with threshold distance rc =
√

5 logN
πN

. For generating the
random geometric network,N nodes are uniformly and in-
dependently distributed in [0, 1]2 at random, and nodes of
at most distance rc are connected to each other. For these
networks, λ2(LA) ' 0.355 and λ2(LB) ' 0.332. Fig.
2 shows the algebraic connectivity λ2(L) of the intercon-
nected network as a function of the coupling weight p, and
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FIG. 2. Algebraic connectivity λ2(L) of an interconnected net-
work with scale-freeGA and random geometricGB as a function
of the coupling weight p. For p < p∗ ' 0.27 , algebraic connec-
tivity is λ2(L) = 2p. For p > p∗, eigenvalue λ = 2p is no longer
the algebraic connectivity of the interconnected network; thus,
denoting a structural transition at p = p∗.

illustrates that Eq. (8) predicts the coupling threshold ex-
actly. Furthermore, this simulation supports the analytic
results for bounds in (11) and (10).

In order to investigate structural implications of inter-
connected networks, we design numerical experiments em-
phasizing the role of network interrelation. We generate
a set of interconnected networks with identical superposi-
tioned networks. Therefore, differences in the outcomes do
not depend on the superpositioned network. We generate
A = [aij] and B = [bij] according to the following rule:
aij = aji = pijwij and bij = bji = (1 − pij)wij , where
wij is an element of the weighted Karate Club adjacency
matrix [33, Fig. 3], and pij is identically independently dis-
tributed on [0, 1] for j < i. Fig. 3 shows different bounds
for the coupling threshold versus the exact values. The up-
per bound 1

2
λ2(L̄) remains constant, even though the exact

threshold p∗ has a broad distribution. When p∗ is small,
the upper bound 1

2
λ2(L̄) is loose, while the upper bound

min{λ2(A),λ2(B)} is tight, as supported by Eq. (12).
If one network component possesses a relatively small al-
gebraic connectivity, Eq. (12) predicts that the coupling
threshold p∗ is determined by the algebraic connectivity of
that component.

In conclusion, we derive the exact critical value p∗ for
the coupling weight in an interconnected network of Fig.
1. In addition to graph properties of each network compo-
nents individually, we find that the inner product of Fielder
vectors of network components is an important interre-
lation descriptor for the structural transition phenomenon
(see [29, A.iv. Fig. 4] for supporting numerical experi-
ments). Other interrelation descriptors, such as the com-
monly used degree correlation [34–37], do not necessar-
ily yield similar results [29, A.iv. Fig.5]. Even though the
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FIG. 3. Bounds for the coupling threshold versus the exact values
for a set of interconnected networks with identical averaged net-
work. For each generated network, we compute different bounds
for the coupling threshold and compare them with the exact value.
The closer to the black dashed line y = x, the more accurate the
bounds.

analysis has been performed for interconnection of two net-
works, we demonstrate in [29, D.] that our method can be
readily generalized to multiple, interconnected networks.

Our exact solution reveals diversified behaviors in in-
terconnected networks; encompassing the case where the
slightest coupling between network components results in
a structural transition, as well as the case where coupling
strength that is sufficiently large to cause superdiffusion is
not large enough to cause structural transition. This em-
phasizes the importance and power of deliberate design for
interconnected networks. In particular, our finding of su-
perdiffusion without structural transition encourages fur-
ther exploration of dynamical processes and interconnec-
tion architectures which allow the very benefits of inter-
connections while preserving the autonomy of each sub-
system.
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A. ADDITIONAL NUMERICAL SIMULATIONS

A.i. An Illustrative Example for Structural Transition

When the coupling weight is less than the threshold value, i.e., p < p∗, the Fiedler vector of the interconnected

network G is v2(L) =

[
u
−u

]
, indicating that nodes of GA are distinguishable from nodes of GB . When p > p∗, the

interconnected network G functions as a whole and nodes of GA are no longer distinguishable from nodes of GB . To
illustrate this, Fig. 2 shows the response of diffusion dynamics Ẋ = −LX, for two cases where coupling is weak and
strong. Here X , [XA,1, . . . , XA,N , XB,1, . . . , XB,N ]T denotes the nodal states of the interconnected network G, and
XA and XB are those related to nodes of graphs GA and GB , respectively.
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FIG. 1: Diffusion processẊ = −LX for the interconnected network of Fig. 1 in the main text. When coupling is weak (left),
i.e., the coupling weight is below the coupling threshold, the two networks function separately: nodal states of GA (dashed
blue) and GB (solid red) converge together separately, and later, the whole interconnected network slowly converges to a single
steady-state value. When coupling is strong (right), i.e., the coupling weight is larger than the coupling threshold, it is not
possible to distinguish nodes of the two networks: the interconnected network functions as a whole.
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A.ii. An Illustrative Example for Superdiffusion and Structural Transition

The purpose of this illustrative example is to show the behavior of diffusion dynamics when superdiffusion happens
while network components function distinctly. Fig. 2 shows the response of the diffusion dynamics Ẋ = −LX for
different values of the coupling weight p.
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FIG. 2: Diffusion processẊ = −LX for different values of coupling weight p. Top left: There is no coupling (p = 0): each
network component reach its own steady state. Top right: The coupling weight is much less than the coupling threshold.
Here nodal states of GA (solid blue) and GB (dashed red) converge together separately, and later, the whole interconnected
network slowly converges to a same steady state. Bottom left: The coupling weight is still below the coupling threshold,
however it is large enough that superdiffusion can take place, i.e., 1

2
max{λ2(LA) < p < p∗. Here still the two components

function distinctly, yet the overall diffusion of the interconnected network happens faster than diffusion processes in case of no
coupling, shown in top left figure. Bottom right: The coupling weight is larger than the threshold, i.e., p > p∗. It is not
possible to distinguish nodes of the two networks and the interconnected network functions as a whole.



4

A.iii. Example Simulations for Nonvanishing Coupling Threshold

As predicted by our model, the threshold goes to zero when one of the network components has vanishing algebraic
connectivity. We have performed simulations for the case where both network components are Erdös Rényi, which
are expanders in the connected region. Specifically, we have performed the simulation for two sizes N = 2000 and
N = 500. And for each one, Fig. 3 reported two sample outputs. Even though this simulation is not exhaustive in any
sense, it hints us that the size of the network does not play a major role here. Rather, it is the algebraic connectivity
of the components and their interrelation that are major players, as predicted by our analytical results.
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FIG. 3: Algebraic connectivity λ2(L) of different interconnected networks as a function of coupling weight p. Here, GA and

GB are Erdös Rényi graphs with parameters pA = 2 log(N)
N

and pB = 1.8 log(N)
N

, respectively. Top panel shows two realization
of such interconnected network with N = 500, while the bottom panel shows two realization for N = 2000. As can be seen,
different realizations can lead to different accuracy of upper bounds 1

2
λ2(L̄) and min{λ2(LA), λ2(LB)}.
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A.iv. Fielder Vectors Inner Product as an Interrelation Measure

We generate a set of interconnected networks with fixed adjacency matrix A, and construct the adjacency matrix
of GB as B = P−1AP , where P is a randomly chosen permutation matrix, so that GB is the same graph as
GA; however, with different node labels. Hence, GA and GB are isomorphic and have identical graph properties.
As a consequence, different outcomes are due to the interrelation between GA and GB . In our simulations, A is
the adjacency matrix of the weighted Karate Club network — adopted from Zackary [1, Fig. 3] — with N = 34
nodes. We uniformly and independently select m nodes at random and shuffle their labels, and then construct the
corresponding permutation matrix P . We repeat this procedure 10 times for each m = 2, ..., N , resulting in a total of
10× (34− 1) = 330 interconnected networks. For each such generated interconnected network, Fig. 4 shows several
bounds for the coupling threshold plotted versus the exact value. The upper bound min{λ2(A),λ2(B)} and lower
bound (λ−12 (A) + λ−12 (B))−1 are always constant, because these values only depend on the graph properties of GA
and GB , which are kept identical.
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FIG. 4: Bounds for the coupling threshold versus the exact values for a set of interconnected networks where network GA and
GB are isomorphic, and thus have identical graph properties. For each generated network, we compute different bounds for the
coupling threshold and compare them with the exact value. The closer to the black dashed line, the more accurate the bounds.

Fig. 5 shows the exact value p∗ of the coupling threshold versus the inner product vT2 (LA)v2(LB) of the Fiedler
vectors of LA and LB . We observe a significant negative correlation between the coupling threshold and the in-
ner product vT2 (LA)v2(LB). The coupling threshold p∗ is maximal when the two networks are uncorrelated (i.e.,
|vT2 (LA)v2(LB)| → 0 implying that the Fiedler vectors v2(LA) and v2(LB) tend to be orthogonal) and p∗ decreases
when the two networks become more correlated (|vT2 (LA)v2(LB)| → 1). Therefore a significant negative correlation
between the coupling threshold p∗ and the absolute value of the inner product |vT2 (LA)v2(LB)| of the Fiedler vectors
of GA and GB is observed: the coupling threshold p∗ is maximal, when the two networks are uncorrelated (i.e.,
|vT2 (LA)v2(LB)| → 0) and p∗ decreases when the two networks are more correlated (|vT2 (LA)v2(LB)| → 1).
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FIG. 5: Exact coupling threshold versus Fiedler vectors inner product when GB is a relabeling of GA.

As remarked in the main text, the correlation between GA and GB , measured in terms of their Fiedler vectors inner
product differs generaly from other correlation metrics such as degree correlation. Indeed, Figure 6 plots the exact
value p∗ of the coupling threshold versus the correlation coefficient r(dA, dB) between degree vectors of GA and GB
and illustrates a much weaker correlation between the coupling threshold p∗ and the degree correlation coefficient
r(dA, dB).
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B. PROOFS AND ANALYTIC DEDUCTIONS

B.i. Derivations for the Exact Coupling Threshold p∗ Expressed in (8)

Our approach to finding the exact value of coupling threshold p∗ employs an eigenvalue sensitivity analysis. The
key idea is that while a first-order differentiation of eigenvalue equation (1) determines the eigenvalue/eigenvector
derivatives for distinct eigenvalues [2], this method is not applicable to repeated eigenvalues [3]. Hence, in order to
determine when λ = 2p is a repeated eigenvalue, we study the system of equations for the eigenvalue and eigenvector
derivatives with respect to p and look for a critical value of p∗ such that a unique solution does not exist at λ = 2p.

Differentiating (1) and (2) with respect to p yields the governing equations for the eigenderivatives dvA
dp ,

dvB
dp , and

dλ
dp LA + pI − λI −pI −VA

−pI LB + pI − λI −VB
−V TA −V TB 0



dvA
dp
dvB
dp
dλ
dp

 =

VB − VAVA − VB
0

 . (B.1)

At λ = 2p, VA = −VB = u, we getLA − pI −pI −u
−pI LB − pI u
−uT uT 0



dvA
dp
dvB
dp
dλ
dp

 =

−2u
2u
0

 . (B.2)

As expected, for λ = 2p and vA = −vB = u, dvA
dp = dvB

dp = 0 and dλ
dp = 2 always satisfies (B.2). However, the key

idea is that when λ = 2p is a repeated eigenvalue, the eigenderivative equation (B.2) does not have a unique solution.
This occurs when the matrix

W ,

LA − pI −pI −u
−pI LB − pI u
−uT uT 0

 (B.3)

is singular. A singular matrix possesses a zero eigenvalue. Hence, the coupling threshold p∗ must obey W (p∗)x = 0,
explicitly, p∗ is the solution of the generalized eigenvalue problem: LA 0 −u

0 LB u
−uT uT 0

x = p∗

I I 0
I I 0
0 0 0

x. (B.4)

Applying the coordinate change y = Tx, where the orthonormal transformation T is defined as

T =

 1√
2
I 1√

2
I 0

− 1√
2
I 1√

2
I 0

0 0 1

 , (B.5)

to the generalized eigenvalue problem (B.4), we obtain LA+LB

2
LA−LB

2 −
√

2u
LA−LB

2
LA+LB

2 0

−
√

2uT 0 0

y = p∗

2I 0 0
0 0 0
0 0 0

y. (B.6)

Multiplying the first row of both sides by uT yields y = [yT1 yT2 0]T . Therefore, the generalized eigenvalue problem
(B.4) reduces to

L̄y1 + L̃y2 = 2p∗y1, (B.7)

L̃y1 + L̄y2 = 0, (B.8)

where L̄ and L̃ are defined as

L̄ ,
LA + LB

2
and L̃ ,

LA − LB
2

. (B.9)
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The matrix L̄ is singular and thus cannot be inverted. Using the notion of Moore Penrose pseudo-inverse L̄†, defined
[4] as

L̄† ,
N∑
i=2

1

λi(L̄)
vi(L̄)vTi (L̄) = (L̄+

1

N
uuT )−1 − 1

N
uuT , (B.10)

where vi’s are the normalized eigenvectors of L̄, i.e., L̄vi = λi(L̄)vi and vTi vi = 1, we have L̃L̄†L̄ = L̃. Hence,
multiplying both sides of (B.8) by L̃L̄† from left, we find that L̃y2 = −L̃L̄†L̃y1. Replacing L̃y2 by −L̃L̄†L̃y1 in (B.7)
yields the eigenvalue equation

Qy1 = 2p∗y1, (B.11)

where the N × N matrix Q is defined as Q , L̄ − L̃L̄†L̃. Therefore, repeated eigenvalues occur at λ = 2p∗ for the
values of p∗ = 1

2λi(Q), for i ∈ {1, · · · , N}. For the transition in algebraic connectivity, the coupling threshold is the
smallest positive solution p∗ = 1

2λ2(Q). In section E.ii, we propose an alternative approach to determine p∗ through
directly finding zeros of det(W ).

B.ii. Re-expressing Q as (6) and (7)

In order to show (6), we use the definitions of L̄ and L̃ in (B.9) and properties of Moore Penrose pseudo-inverse
operator [4] to obtain:

Q = L̄− L̃L̄†L̃
= L̄− (L̄− LB)L̄†(L̄− LB)

= L̄− L̄L̄†L̄+ LBL̄
†L̄− LBL̄†LB + L̄L̄†LB

= L̄− L̄+ LB − LBL̄†LB + LB

= 2

(
LB −

1

2
LBL̄

†LB

)
. (B.12)

Similarly, it can be shown that Q = 2
(
LA − 1

2LAL̄
†LA

)
. Relation (7) follows as

Q = L̄− L̃L̄†L̃
= L̄− (LA − L̄)L̄†(L̄− LB)

= L̄− LAL̄†L̄+ LAL̄
†LB + L̄L̄†L̄− L̄L̄†LB

= L̄− LA + LAL̄
†LB + L̄− LB

=
[
2L̄− (LA + LB)

]
+ LAL̄

†LB

= LAL̄
†LB , (B.13)

and similarly, Q = LBL̄
†LA.

B.iii. Derivations of Expression (9) for p∗

According to (7), 2p∗ is a positive eigenvalue of Q = LBL̄
†LA = LB(LA+LB

2 )†LA = 2LB(LA +LB)†LA. Therefore,
1
p∗ is a positive eigenvalue of

[
LB(LA + LB)†LA

]†
= L†A(LA + LB)L†B = (L†A + L†B). Furthermore, since 2p∗ is the

smallest positive eigenvalue of Q, then 1
p∗ must be the largest eigenvalue of (L†A + L†B), which demonstrates (9).

B.iv. Derivations of the Lower Bound (10)

According to (9),

p∗ =
1

ρ(L†A + L†B)
≥ 1

ρ(L†A) + ρ(L†B)
=

1

λ−12 (LA) + λ−12 (LB)
, (B.14)
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where we have used the inequality ρ(L†A + L†B) ≤ ρ(L†A) + ρ(L†B) and the fact that ρ(L†A) = λ−12 (LA) and ρ(L†B) =

λ−12 (LB). Therefore, the coupling threshold p∗ is lower-bounded by
(
λ−12 (LA) + λ−12 (LB)

)−1
, yielding (10). The

above inequality is strict when v2(LA) 6= v2(LB) because ρ(L†A + L†B) = ρ(L†A) + ρ(L†B) only when v2(LA) = v2(LB).

B.v. Derivations of the Upper Bound (11)

In order to show (11), we can use expression (6) for Q = 2
(
LB − 1

2LBL̄
†LB

)
. Since both LBL̄

†LB and LAL̄
†LA

are positive semi-definite, p∗ = 1
2λ2(Q) ≤ 1

2λ2(2LB) = λ2(LB). Similarly, p∗ ≤ λ2(LA). Therefore, combining these
upper bounds with 4, we get p∗ ≤ min{λ2(LA), λ2(LB), 12λ2(L̄)}.

B.vi. Bound (12) in the Case λ2(LA) < 1
3
λ2(LB)

Suppose K = λ2(LB)/λ2(LA) > 3. When λ2(LA) < 1
3λ2(LB), we reported in the main text that

min{λ2(LA), λ2(LB), 12λ2(L̄)} = λ2(LA). In order to prove this, we have used the inequality [5]

λ2(L̄) ≥ λ2(LA) + λ2(LB)

2
, (B.15)

combined with the inequality λ2(LB) > 3λ2(LA) to obtain

1

2
λ2(L̄) ≥ 1

2

λ2(LA) + λ2(LB)

2
>

1

2

λ2(LA) + 3λ2(LA)

2
= λ2(LA), (B.16)

thus proving the claim min{λ2(LA), λ2(LB), 12λ2(L̄)} = λ2(LA).
From the lower bound (10),

p∗ ≥ 1

λ−12 (LA) + λ−12 (LB)
=

1

1 + λ2(LA)
λ2(LB)

λ2(LA) ≥ 1

1 + 1
K

λ2(LA) =
K

K + 1
λ2(LA).

Therefore, bound (12) is obtained.

B.vii. Superdiffusion condition (13) when λ2(LA) ' λ2(LB)

We investigate whether it is possible that an interconnected network achieves superdiffusion without going through
structural transition. As discussed in the main text, this situation requires p∗ > 1

2 max{λ2(LA), λ2(LB)} to hold.
Here, we show this condition is feasible if algebraic connectivities of GA and GB are close to one another. First, if
λ2(LA) = λ2(LB) and v2A 6= v2B , then p∗ > 1

2 max{λ2(LA), λ2(LB)}, because according to inequality (10),

p∗ >
1

λ−12 (LA) + λ−12 (LB)
,

which holds for v2A 6= v2B . Therefore, if λ2(LA) = λ2(LB) and v2A 6= v2B , then

p∗ >
1

2
λ2(LA) =

1

2
λ2(LB) =

1

2
max{λ2(LA), λ2(LB)}.

Having non-identical Fielder vectors v2A and v2B is crucial for achieving superdiffusion without structural transition.
Indeed, if v2A = v2B then it is never possible to have p∗ > 1

2 max{λ2(LA), λ2(LB)}, because in this case

p∗ =
1

λ−12 (LA) + λ−12 (LB)
≤ 1

2
max{λ2(LA), λ2(LB)}

with equality only if λ2(LA) = λ2(LB).
The condition λ2(LA) = λ2(LB) is not a necessary condition though, i.e., having p∗ > 1

2 max{λ2(LA), λ2(LB)} is
not limited to interconnected networks for which λ2(LA) = λ2(LB). To show this, let us consider any two irreducible
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adjacency matrices A and C, and define LA and LC as the Laplacian matrices, such that λ2(LA) < λ2(LC) and
v2A 6= v2C . We construct an interconnected network consisting of A and B = αC, where α > 0 is a positive
scalar. For this interconnected network, the coupling threshold p∗(α) is a function of α. In order to have p∗(α) >
1
2 max{λ2(LA), λ2(LB)}, the function f(α) defined as

f(α) = p∗(α)− 1

2
max{λ2(LA), λ2(LB)}

= p∗(α)− 1

2
max{λ2(LA), αλ2(LC)}.

must be positive. Since matrix B is only a scale of C, v2B = v2C , hence v2A 6= v2B . Also, for α = λ2(LA)
λ2(LC) ,

λ2(LB) = λ2(αLC) = αλ2(LC) = λ2(LA). Thus, according to our argument about the case where λ2(LB) = λ2(LA),
f(α = λ2(LA)/λ2(LC)) > 0. Since f(α) is a continuous function of α, there exists ε, such that f(α) > 0 for

α ∈ λ2(LA)
λ2(LC) [1, 1+ε). Therefore, for λ2(LB)/λ2(LA) ∈ [1, 1+ε), f(α) > 0, indicating that p∗ > 1

2 max{λ2(LA), λ2(LB)}.
The value of ε depends on the structure of A and C. However, we know that ε cannot be greater than 1. This

comes from (11). If λ2(LB) ≥ 2λ2(LA), then

p∗ ≤ min{λ2(LA), λ2(LB)} = λ2(LA) ≤ 1

2
λ2(LB) =

1

2
max{λ2(LA), λ2(LB)}.

Therefore, superdiffusion can be achieved without structural transition, but only if algebraic connectivities ofGA and
GB are close to one another and their Fiedler vectors are not identical.

B.viii. Derivation of a Class of Upper Bounds with Explicit Interrelation Descriptors

Using formula (9), we derive a class of upper bounds p∗ ≤ 1
ρ̂nA,nB

with the eigenvectors corresponding to the nA

smallest positive eigenvalue of LA and the nB smallest positive eigenvalue of LB . The rationale for this upper bound
is that

ρ(L†A + L†B) = ρ

 N∑
i=2

1

λi(LA)
vAiv

T
Ai +

N∑
j=2

1

λj(LB)
vBjv

T
Bj


≥ ρ

nA+1∑
i=2

1

λi(LA)
vAiv

T
Ai +

nB+1∑
j=2

1

λj(LB)
vBjv

T
Bj

 , ρ̂nA,nB
. (B.17)

Therefore 1
ρ̂nA,nB

is an upper bound for p∗ = 1

ρ(L†A+L†B)
.

The special structure of the matrix
∑nA+1
i=2

1
λi(LA)vAiv

T
Ai+

∑nB+1
j=2

1
λj(LB)vBjv

T
Bj in (B.17) allows for a very efficient

computation of ρ̂nA,nB
.

Claim: For the upper bound 1
ρ̂nA,nB

, ρ̂nA,nB
can be computed as the spectral radius of an (nA + nB)× (nA + nB)

matrix H, i.e.,

ρ̂nA,nB
= ρ (H) , (B.18)

H ,

(
u(nA+nB)

[
λ−1(LA)

λ−1(LB)

]T)
◦
[
InA

vTAvB
vTBvA InB

]
, (B.19)

where ◦ denotes the Hadamard (entry-wise) product [6], λ−1(LA) , [λ−12 (LA), · · · , λ−1nA+1(LA)]T , vA =

[v2(LA), · · · , vnA+1(LA)] ∈ RN×nA , and λ−1(LB) and vB are defined similarly.
Proof: Suppose that µ is an eigenvalue of the matrix inside the parantethis in (B.17), i.e.,

nA+1∑
i=2

1

λi(LA)
vi(LA)vTi (LA)x+

nB+1∑
j=2

1

λj(LB)
vj(LB)vTj (LB)x = µx. (B.20)
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Multiplying both sides of (B.20) by vTk (LA) and vTh (LB), for k ∈ {2, ..., nA + 1} and h ∈ {2, ..., nB + 1}, and defining
ξAi , v

T
i (LA)x, ξBj = vTj (LB)x, and rij = rji = vTi (LA)vj(LB), we obtain:

1

λk(LA)
ξAk +

nB+1∑
j=2

1

λj(LB)
rkjξ

B
j = µξAk , (B.21)

nA+1∑
i=2

1

λi(LA)
rhiξ

A
i +

1

λh(LB)
ξBh = µξBh , (B.22)

for k ∈ {2, ..., nA + 1} and h ∈ {2, ..., nB + 1}. This equation can be written as

H

[
ξA

ξB

]
= µ

[
ξA

ξB

]
, (B.23)

where ξA , [ξA2 , ..., ξ
A
nA+1] and ξB , [ξB2 , ..., ξ

B
nB+1] and H is defined as (B.19). According the definition (B.17),

ρ̂nA,nB
is the largest eigenvalue of H, therefore based on (9), 1/ρ(H) is an upper bound for p∗, proving the upper

bound formula (B.18). �

The interesting aspect of the upper bound p∗ ≤ 1
ρ̂nA,nB

is not only its dependence on the smallest positive eigenvalues

of LA and LB , but also on the inner product of their corresponding eigenvectors, thus explicitly incorporating the
network interrelation. By computing a few eigenvectors of LA and LB , this upper bound gives very good estimates
with increasing precision as the number of eigenvectors nA and nB increases. The upper bound p∗ ≤ 1

ρ̂nA,nB
is

essentially different from (11), for it includes terms vTAvB denoting network interrelations, because the inner product
of the eigenvectors changes if component GB is reoriented with respect to GA.
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C. SOME NOTES ON NETWORK INTERRELATION

In the main text, we argued that the exact coupling threshold equation (8) depends, in a nonlinear way, on the
matrices LA, LB , L̃, L̄, and L̄† in Eq. (5-7), and unveils that the structural transition phenomenon is jointly caused
by A and B. Considering the network GA, GB , or the superpositioned network Gs separately, can only partially
characterize the structural transition phenomenon. The finer details, as (8) tells us, need all players collectively.
These results highlight a more fundamental aspect of interconnected/multilayer networks: the information embedded
in an interconnected network is more than the information embedded in graph properties of its components and their
aggregates.

Any behavior of the interconnected network G(A,B) is due to the joint influence of A and B simultaneously.
Therefore, a descriptor of this behavior must incorporate this joint influence. The challenge is that while network
science and graph theory provide advanced and established tools to study GA and GB individually, not many results
are known so far on how to characterize their joint effect. To the best of our knowledge, this concept is not yet
thoroughly understood in the context of joint graph analysis, though other analogous concepts are very familiar. In
multivariate probability theory, for example, we know that joint probability of a pair of random variables cannot be
explained by their marginal probabilities. Similarly, the joint influence of network components cannot be explained
in terms of graph properties of each component individually. In this line of analogy, as demonstrated in Table I, we
can think of interrelation descriptors for interconnected/multilayer networks having the same role that correlation
coefficient has for two random variables.

TABLE I: An analogy between interconnected/multilayer networks and multivariate probability.

Multilayer Network Multivariate Probability

Multilayer network G(A,B) Joint distribution fX,Y (x, y)

Graph layers GA and GB Marginal distributions fX(x) and fY (y)

Graph properties of each layer Statistics of each marginal distribution

Layers interrelation Correlation between random variables

Interrelation descriptors Correlation coefficient rX,Y

Interrelation descriptors quantify how one network component is positioned with respect to the other. One example
of interrelation descriptor is the node degree correlation across the two components r(dA, dB). Whether high-degree
nodes of GA correspond to high-degree nodes of GB can make a big difference on how the overall interconnected
network behaves. For example, it was shown [7] that for spreading of two competitive viruses in a multilayer network,
coexistence is more feasible if network layers have negative degree correlations, i.e, high-degree nodes of one layer
have a low degree in the other layer and vice versa. Other researchers have pointed out the interrelation concept
to some extent. For example, Lee et al. [8] studied how degree correlation of GA and GB impacts the size of the
giant component in a percolation process. Juher and Saldaña [9] studied how to align network layers, each with a
given degree distribution, to achieve maximal degree correlation. In our upper bound (B.18), we identified that the
inner product of Fielder vectors of each component is a relevant interrelation descriptor for the structural transition
phenomena, while the degree correlation between network components is not. For example, from Fig. 3 in the main
text and Fig. 5 in this Supplemental Material, it follows that when Fielder vectors are almost orthogonal, i.e., vT2Av2B
is small, the upper bound min{λ2(LA), λ2(LB)} is more accurate than 1

2λ2(L̄). While when the two Fiedler vectors
are almost aligned, i.e., vT2Av2B is large, then 1

2λ2(L̄) becomes more accurate. Furthermore, in this case, the lower

bound 1/(λ−12 (LA) + λ−12 (LB)) in Eq. (10) becomes more accurate.
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D. INTERCONNECTION OF MULTIPLE NETWORKS

We can extend our analysis to interconnection of multiple networks. As depicted in Figure 7, suppose m networks
are coupled to each other. How these networks are connected to each other can be arbitrary. We can show this by
a graph H, which we refer to as interconnection graph. Each node of this graph is a network and links of the graph

indicate coupling between networks. For the case of m = 2 in the main manuscript, H =

[
0 1

1 0

]
. For m > 2, H

can be any arbitrary connected graph. Furthermore, between each two network Gk and Gj , the interconnection is
determined by an N−by−N matrix B. In the case of the one-to-one correspondence structure studied in the main
text, i.e., node i in network Gk is connected to node i in network Gj , then B is equal to the identity matrix. With
this setup, the adjacency and Laplacian matrices can be written as

A =

m⊕
i=1

Ai + p(H ⊗B), (D.1)

L =

m⊕
i=1

Li + p(LH ⊗B), (D.2)

where matrices Ai and Li are the adjacency and Laplacian matrix of network i, respectively, and
⊕

denote matrix
direct sum. For example,

⊕m
i=1Ai , diag(A1, . . . , Am) is the block diagonal matrix with Ai matrices on its diagonal.

Additionally, H and LH are the m ×m adjacency and Laplacian matrix, respectively, of the interconnection graph
between the m networks. The matrix B specifies the same interconnection patterns between nodes in network Gk
and Gj , and ⊗ is the matrix Kronecker product [4]. Therefore, H ⊗B determines the overall interconnection pattern
for a positive coupling weight p > 0.

p

p

p

p

FIG. 7: Interconnection of multiple networks.

Claim: The eigenvalue equation of the mN ×mN Laplacian matrix L =
m⊕
i=1

Li + p(LH ⊗B) of the interconnected

network,

Lv = λv, (D.3)

has, besides the eigenvector v = u corresponding to λ = 0, another set of solutions

v = vk(LH)⊗ u, (D.4)

λ = λk(LH)αp, k ∈ {2, . . . ,m}, (D.5)
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provided the all-one vector u is an eigenvector of the matrix B corresponding to the largest eigenvalue λN (B) = α.
Proof: Right-multiplication of L by the mN × 1 vector w = x⊗ u yields

Lw =

m⊕
i=1

Liw + p(LH ⊗B) (x⊗ u) . (D.6)

Invoking the mixed-product [4, p. 254] of the Kronecker product,

(A1 ⊗B1) (A2 ⊗B2) = (A1A2)⊗ (B1B2) , (D.7)

and the fact that for any Laplacian matrix L, it holds that Lu = 0, leads to

L (x⊗ u) = p (LHx)⊗ (Bu) . (D.8)

The right-hand side vector v = x⊗ u is an eigenvector of L provided that

p (LHx)⊗ (Bu) = λ (x⊗ u) , (D.9)

which is equivalent to the condition that αpLHx = λx and Bu = αu. Only if the matrix B has an eigenvector u,
which must, by the Perron-Frobenius theorem correspond to the largest eigenvalue α = λN (B), the condition can
be satisfied. The eigenvalue equation αpLHx = λx corresponding to λ > 0, has m− 1 possible eigenvector solutions
vk (LH) belonging to eigenvalue λk (LH) of the matrix LH . �

Any regular connectivity pattern in which the row sum of B is constant, leads to an eigenvector u for B. If the

interconnected network consists of m = 2 networks, connected one-to-one so that B = I, then LH =

(
1 −1

−1 1

)
with λ2 (LH) = 2 so that λ (L) = 2p is an eigenvallue of L.

Since we are here concerned with the smallest, non-zero eigenvalue of L, we choose λk (LH) as small as possible but
non-negative, thus k = 2. Similar to section B.i, the eigenderivative equation at λ = λ2(LH)αp and v = v2(LH)⊗ u
becomes[⊕m

i=1 Li + p(LH ⊗B)− λ2(LH)αp(Im ⊗ IN ) −v2(LH)⊗ u
−vT2 (LH)⊗ uT 0

][
dv
dp
dλ
dp

]
=

[
−λ2(H)α(v2(LH)⊗ u)

0

]
. (D.10)

The critical coupling weight p∗ is the point where the eigenderivative equation does not have a unique solution. Hence,
p∗ must be the solution of the following generalized eigenvalue probelm[ ⊕m

i=1 Li −v2(LH)⊗ u
−vT2 (H)⊗ uT 0

]
x = p∗

[
λ2(LH)α(Im ⊗ IN )− (LH ⊗B) 0

0 0

]
x. (D.11)

The right-hand side matrix is block-diagonalizable using the following transformation,

T =

[
TH ⊗ IN 0

0 1

]
, (D.12)

where TH is the orthogonal matrix with the eigenvectors of LH in its columns.
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E. COMPLEMENTARY RESULTS

E.i. Upper Bound in terms of Dirichlet Energies

We showed in (8) that p∗ = 1
2λ2(Q), half of the smallest positive eigenvalue of Q = L̄ − L̃L̄†L̃. According to

min-max theorem for eigenvalues [4]

λ2(Q) = min
‖x‖2=1,

uT x=0

xT
(
L̄− L̃L̄†L̃

)
x. (E.1)

Any arbitrary choice of x ⊥ u leads to an upper bound for p∗. Specifically, if we use the Fiedler vector of the
superpositioned network, i.e. the eigenvector v2(L̄) corresponding to λ2(L̄), we obtain:

λ2(Q) ≤ vT2
(
L̄− L̃L̄†L̃

)
v2

= λ2(L̄)−
N∑
i=2

1

λi
(vT2 L̃vi)

2. (E.2)

Equation (E.2) provides an upper bound for p∗ improving the upper bound 1
2λ2(L̄) of [10], because (E.2) always

gives a tighter bound as λi > 0. Interestingly, not only the summation of graph related matrices of the two networks
is important, their difference also plays a major role. To highlight this observation, we only consider the first term
i = 2 in the summation in (E.2)

λ2(Q) ≤ λ2(L̄)− 1

λ2(L̄)
(vT2 L̃v2)2

= λ2(L̄)

(
1− (

vT2 L̃v2
vT2 L̄v2

)2

)
. (E.3)

Using the definition L̃ = 1
2 (LA − LB), we find an alternative upper bound for the coupling threshold as

p∗ ≤ 1

2
λ2(L̄)

(
1−

(
EA(v2)− EB(v2)

EA(v2) + EB(v2)

)2
)
, (E.4)

where λ2(L̄) is half of the algebraic connectivity of the superpositioned network and v2(L̄) is its Fiedler vector [4].
Furthermore, EA(v2) , vT2 LAv2 and EB(v2) , vT2 LBv2 are Dirichlet energies [11]. For example, if we intereprete
graph GA as an electric circuit where links are resistors with unit resistance, then EA(v2) = vT2 LAv2 is the running
power in the circuit if v2 assigns a voltage to each node. Not only the upper bound (E.4) improves the upper bound
1
2λ2(L̄) of [10], it explicitly depends on the interrelation of GA and GB .

E.ii. A Shur’s Complement Approach to Finding p∗

Aside from the procedure in Section B.i, we can use Shur’s complement formula [4] for determinants to find values
of p such that W defined in (B.3) is singular. Computing determinant detW by Shur’s complement formula

det

[
A B

C D

]
= detAdet

(
D − CA−1B

)
(E.5)

results in

detW = det (LA − pI) det

([
LB − pI u

uT 0

]
−

[
pI

uT

]
(LA − pI)

−1
[
pI u

])
.

We first execute the last matrix product[
pI

uT

]
(LA − pI)

−1
[
pI u

]
=

[
p2 (LA − pI)

−1
p (LA − pI)

−1
u

puT (LA − pI)
−1

uT (LA − pI)
−1
u

]
. (E.6)



16

Since u is an eigenvector of (L − pI) corresponding to eigenvalue −p, it is also an eigenvector of (L − pI)−1

corresponding to eigenvalue − 1
p . Therefore,

(LA − pI)
−1
u = −1

p
u.

so that the matrix (E.6) simplifies to[
pI

uT

]
(LA − pI)

−1
[
pI u

]
=

[
p2 (LA − pI)

−1 −u
−uT −Np

]
,

and

detW = det (LA − pI) det

([
LB − pI u

uT 0

]
+

[
−p2 (LA − pI)

−1
u

uT N
p

])

= det (LA − pI) det

[
LB − pI − p2 (LA − pI)

−1
2u

2uT N
p

]
.

We now apply the variant [4] of (E.5)

det

[
A B

C D

]
= detD det

(
A−BD−1C

)
,

to the last block determinant,

det

(
LB − pI − p2 (LA − pI)

−1
2u

2uT N
p

)
=
N

p
det

(
LB − pI − p2 (LA − pI)

−1 − 4p

N
uuT

)
.

Therefore,

detW =
N

p
det (LA − pI) det

(
LB − pI − p2 (LA − pI)

−1 − 4p

N
uuT

)
,

which we can also write, using det (A) det (B) = det (AB) as

detW =
N

p
det

(
(LA − pI) (LB − pI)− p2 (LA − pI) (LA − pI)

−1 − 4p

N
(LA − pI)uuT

)
=
N

p
det

(
(LA − pI) (LB − pI)− p2I − 4p

N
((LA − pI)u)uT

)
=
N

p
det

(
LALB − p (LA + LB) +

4p2

N
uuT

)
.

Having detW = 0 requires that detZAB = 0, where

ZAB = LALB − p (LA + LB) +
4p2

N
uuT .

Further, detZAB = 0 is equivalent to the existence of an eigenvector yAB of ZAB belonging to a zero eigenvalue
such that ZAByAB = 0, hence,

LALByAB = p (LA + LB) yAB − p2
4
(
uT yAB

)
N

u. (E.7)

For p = 0, yAB = u solve the equation. For any other p 6= 0, yAB must be orthogonal1 to u, i.e., uT yAB = 0, in which

1 Multiplying (E.7) by uT from left yields:

uTLALByAB = puT (LA + LB) yAB − p2
4
(
uT yAB

)
N

(uTu)

which leads to
0 = 0− 4p2

(
uT yAB

)
.

Since, p 6= 0, uT yAB = 0.



17

case (E.7) simplifies to

LALByAB = p∗ (LA + LB) yAB . (E.8)

Similarly, we must have

LBLAyBA = p∗ (LA + LB) yBA. (E.9)

In general, LALB 6= LBLA, unless LA and LB commute. However, the above two equations are not contradicting.
Indeed, due to symmetry of LA and LB , yAB is the right generalized eigenvector of LBLA while yBA is its left
generalized eigenvector. Equation (E.8) is a generalized eigenvalue problem with nonsymetric matrices which can be
effectively solved using Lanczos-based methods [12].

The above formula for p∗ is consistent with previous expressions. Indeed, since yAB is orthogonal to u, we can
multiply E.8 by L†BL

†
A to get

1

p∗
yAB =

(
L†A + L†B

)
yAB ,

which is consistent with our previous results for p∗ as found in (9).
Apart from the upper bounds for p∗, deduced in previous sections from the matrix Q, we find from (E.8) (and

similarly for the LBLA case) after multiplying both sides with yTAB that

p∗ =
yTABLALByAB

yTAB (LA + LB) yAB
. (E.10)

Equation (E.10) expresses the coupling threshold p∗ as an optimization problem for the vector yAB , orthogonal to the
vector u, and bears resemblance with the Rayleigh inequalities [4] for eigenvalues of a matrix. A lower bound follows
from (E.10) for any non-zero vector y ⊥ u as

p∗ ≥
miny 6=0 and yTu=0 y

TLALBy

maxy 6=0 yT (LA + LB) y
.
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