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Pseudoinverse of the Laplacian and best spreader node in a network
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Determining a set of “important” nodes in a network constitutes a basic endeavor in network science. Inspired
by electrical flows in a resistor network, we propose the best conducting node j in a graph G as the minimizer
of the diagonal element Q

†
jj of the pseudoinverse matrix Q† of the weighted Laplacian matrix of the graph

G. We propose a new graph metric that complements the effective graph resistance RG and that specifies the
heterogeneity of the nodal spreading capacity in a graph. Various formulas and bounds for the diagonal element
Q

†
jj are presented. Finally, we compute the pseudoinverse matrix of the Laplacian of star, path, and cycle graphs

and derive an expansion and lower bound of the effective graph resistance RG based on the complement of the
graph G.
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I. INTRODUCTION

We are interested to find the best spreader node in a
network and we investigate the pseudoinverse matrix Q† of
the weighted Laplacian Q̃ of a graph G on N nodes. The
major motivation is the appearance of the pseudoinverse Q†

in electrical current flow equations and the relation of Q† to
the effective resistance matrix � of the network as reviewed
in Sec. II. The overview of known properties of the Laplacian
pseudoinverse Q† in Sec. II illustrates the connection with
conservation laws and distance problems. Section III presents
new electrical matrix equations, in which the matrix Q̃�

plays a central role. The symmetric weighted Laplacian Q̃

and the Laplacian pseudoinverse Q† have the same orthogonal
eigenvector matrix Z, with eigenvectors in its columns. Each
such orthogonal matrix Z contains a double set of orthogonal
vectors, the column vectors—eigenvectors of Q̃ and Q†—and
the row vectors. This property of orthogonal matrices was
called “double orthogonality” and studied in Ref. [1]. The
row vectors of Z now possess an interesting property: After
scaling by the eigenvalues, they represent N points that form a
simplex in RN−1 as explained in Secs. II B and III B. Since the
effective resistance matrix � can be regarded as a distance
matrix, containing the squared distances between those N

points, a relation between the volume of that simplex and the
number of spanning trees in the graph G is found. We argue
that, besides the effective graph resistance RG, this volume
can act as an additional graph metric. Furthermore, we show
in Sec. IV that the best electrical spreader node in a graph
is the minimizer of the diagonal elements in pseudoinverse
matrix Q†. The vector ζ of those diagonal elements in (8)
can be regarded as a graph metric vector, further motivated
in Sec. V, where we compare the vector ζ in (8) to the
betweenness vector, closeness vector, degree vector, and the
principal eigenvector of the adjacency matrix. We complement
the weighted effective graph resistance R̃G, defined in (10),
with the upper bound �R in (29) of the variance of the
components in the vector ζ , that specifies the heterogeneity
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of the spreading capacity of nodes in a graph. Thus,
√�R

can be regarded as an error bar on the graph metric R̃G: a
small (large) �R increases (decreases) the importance of R̃G

as graph specifier. Finally, Appendix B analyzes the diagonal
elements of the Laplacian pseudoinverse Q†, Appendix C
presents the derivations of the exact pseudoinverse matrix Q†

of the Laplacian matrix of a star, path, and cycle graphs and
Appendix D studies the Laplacian and its pseudoinverse of the
complement of a graph.

II. BACKGROUND

A. Electrical voltage-current equations in networks

We consider an electrical network, whose topology is
specified by a graph G consisting of a set N of N nodes
and a set L of L weighted links. The link between the nodes i

and j possesses a resistance rij , that results in the link weight
ãij = 1/rij . The weighted symmetric adjacency matrix Ã has
elements ãij = 1

rij
if a link (i,j ) ∈ L exists, otherwise ãij = 0.

The corresponding weighted symmetric Laplacian

Q̃ = diag

(
N∑

k=1

ãik

)
− Ã (1)

with element q̃ij = −ãij if i �= j , else q̃ii =∑N
k=1 ãik , has

zero row and column sum, Q̃u = 0, where u = (1,1, . . . ,1)
is the all-one vector. If each resistance is equal to rij = 1,
then the tilde in the matrix notations disappears and we obtain
the unweighted adjacency matrix A, the Laplacian Q, where∑N

k=1 aik = (Au)i reduces to the degree di of node i, which
is the number of nodes adjacent to i. The N × L incidence
matrix B has, for each link l = (l+,l−) ∈ L, a column with
+1 on the entry of node l+ and −1 on the entry of the other
node l−; thus, Bl+,l = +1 and Bl−,l = −1 so that B has a zero
column sum, uT B = 0. The incidence matrix is related [2] to
the Laplacian matrix by Q = BBT .

We further define the voltage vi of node i in the network
circuit and the current yl = yij through the resistors of link l

between node i and j , which is directed so that yij = −yji . We
call xi the external current injected into node i. The voltages
and currents are related by the law of Ohm and the laws of
Kirchhoff. Ohm’s law va − vb = rabyab states that the voltage
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difference va − vb over the resistor rab is proportional to the
current yab through the resistor. Using the incidence matrix B

of the network, Ohm’s law is written in matrix form as

y = diag

(
1

rl

)
BT v, (2)

where y is the L × 1 link current vector and v is the N × 1
vector with nodal voltages or potentials and the L × L diagonal
matrix diag( 1

rl
), in which rl is the resistance of link l, contains

all L link resistors in the graph G.
Kirchhoff’s current law is based on the conservation of

electrical charge and current and states that, for any node, the
net sum of currents flowing in and out of the node is zero.
Considering both the external N × 1 nodal current vector x

and the L × 1 link current vector y, the conservation law for
a node a is

∑
b∈N (a) yab = xa , where N (a) is the set of all

neighbors of node a. Using the incidence matrix B, leads to
the matrix equation

x = By, (3)

from which the basic conservation law for currents entering
and leaving the network follows as

uT x = 0 (4)

after multiplying both sides in (3) with uT and invoking the
characteristic property uT B = 0 of the incidence matrix B.
Substituting (2) into (3) yields x = Bdiag( 1

rl
)BT v. Alterna-

tively, we combine Kirchhoff’s current law
∑N

k=1 aikyik = xi

with Ohm’s law vi − vk = rikyik ,

xi =
N∑

k=1

aik

rik

(vi − vk) = vi

N∑
k=1

ãik −
N∑

k=1

ãikvk,

which is written in matrix form as

x =
(

diag

(
N∑

k=1

ãik

)
− Ã

)
v.

With the definition (1) of the weighed Laplacian Q̃, we obtain1

x = Q̃v, (5)

illustrating that the graph’s weighted Laplacian matrix Q̃

transforms nodal voltages to injected currents in nodes. In
addition, we find the weighted companion of the Laplacian
relation Q = BBT ,

Q̃ = Bdiag

(
1

rl

)
BT .

The inversion of the fundamental current-voltage relation
x = Q̃v in (5) between the N × 1 injected current flow vector
x into nodes of the network and the N × 1 voltage vector
v at the nodes is complicated by the fact that det Q̃ = 0,
which follows from the characteristic property Q̃u = 0 of the

1Although the current-voltage relation (5) has been derived for re-
sistances only, the analysis is readily generalized to x(s) = Q̃(s)v(s)
for inductive and capacitive passive elements with link impedance
rl + sLl + 1

s
Cl , after a Laplace transform of the electrical differential

equations in time t to the s domain.

weighted Laplacian. Although the inverse weighted Laplacian
matrix Q̃−1 does not exist, the current-voltage inversion
problem can be shown to be v = Q†x + uT v

N
u, where Q†

is the pseudoinverse of the weighted Laplacian Q̃, obeying
Q̃Q† = Q†Q̃ = I − 1

N
J with the all-one matrix J = uuT ,

and where the average voltage in the network equals vav = uT v
N

.
By choosing vav = 0 as the reference potential, the inverse of
x = Q̃v takes the elegant form of

v = Q†x, (6)

which is close to the usual matrix inversion. If the graph G is
unweighted, then Q̃ reduces to the Laplacian Q of G and Q†

to the pseudoinverse Q̂−1 of the Laplacian Q.
From the voltage-current relation (6), the effective resis-

tance matrix � can be derived [2,3] as

� = ζuT + uζT − 2Q†, (7)

where the vector

ζ = (Q†
11,Q

†
22, . . . ,Q

†
NN ) (8)

contains the diagonal elements of the pseudoinverse matrix Q†

of the weighted Laplacian Q̃ in (1). In particular, the effective
resistance between node a and b equals

ωab = (ea − eb)T Q†(ea − eb) = Q†
aa + Q

†
bb − 2Q

†
ab, (9)

where ek is the basic vector with the mth component equal to
(ek)m = δmk and δmk is the Kronecker-delta: δmk = 1 if m = k;
otherwise, δmk = 0. The weighted effective graph resistance
R̃G is defined as the sum of the effective resistances between
all possible pairs of nodes in the graph G,

R̃G =
N∑

i=1

N∑
j=i+1

ωij = 1

2
uT �u. (10)

B. Spectral analysis of the weighted Laplacian ˜Q
and its pseudoinverse Q†

If Q̃ =∑N−1
k=1 μ̃k̃zk̃z

T
k is the spectral decomposition of the

weighted Laplacian Q̃, where the normalized eigenvector
z̃k belongs to the k-largest eigenvalue μ̃k (thus μ̃1 � . . . �
μ̃N−1 > μ̃N = 0 implying that the graph G is assumed to
be connected), then the pseudoinverse Q† of the weighted
Laplacian Q̃ is defined as

Q† =
N−1∑
k=1

μ̃−1
k z̃k̃z

T
k . (11)

In general, the pseudoinverse Q† is not a weighted Laplacian,
because the off-diagonal elements of Q† can be positive
contradicting the definition (1) of the weighed Laplacian Q̃.
Both N × N matrices Q̃ and Q† are symmetric and share
the same set of eigenvectors z̃1,̃z2, . . . ,̃zN−1, normalized and
obeying z̃T

m̃zk = δmk , that are all orthogonal to the all-one
vector u = √

Nz̃N , which is the eigenvector of any Laplacian
matrix corresponding to the eigenvalue μ̃N = 0. Hence, we
have that both Q̃u = 0 and Q†u = 0, which implies that the set
of N − 1 orthogonal N × 1 vectors z̃1 ,̃z2, . . . ,̃zN−1 (without
z̃N = u√

N
) is insufficient to span the N -dimensional space but
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only the space of all vectors that are orthogonal to the all-one
vector u = √

Nz̃N . Thus, from Q†Q̃ = I − 1
N

J and Q†u = 0,
we can write

Q†(Q̃ + αuuT ) = I − 1

N
J,

where Q̃ + αuuT with J = uuT has full rank [i.e.,
det (Q̃ + αJ ) �= 0], provided α �= μN = 0. Hence, for any
nonzero number α, an alternative representation for the
Laplacian pseudoinverse Q† follows [2, p. 205] as2

Q† = (Q̃ + αJ )−1

(
I − 1

N
J

)
. (12)

Combining the definition (10) of the effective graph resis-
tance RG with that of � in (7) and the spectral decomposition
(11) shows that

R̃G = N tr(Q†) = N

N−1∑
k=1

μ̃−1
k . (13)

The effective graph resistance R̃G (of a weighted graph) is a
graph metric [4] that reflects the overall transport capability of
the graph G: The lower R̃G, the better the graph conducts
traffic. The effective graph resistance is related, as shown
in (13), to the eigenvalues of the Laplacian matrix [4], but
also to uniform spanning trees [5], random walks [6], and
the betweenness centrality [7]. Often, the effective graph
resistance RG appears as a robustness metric for power
grids [8–10]. The effect of the removal of links on RG

is analyzed in Ref. [11], and several bounds on RG are
deduced. A new, tighter lower bound (B12) for RG is derived
in Appendix B. The Laplacian pseudoinverse Q̂−1 of the
connected complement Gc of a connected graph G, together
with the effective graph resistance RGc (and bounds) are
studied in Appendix D.

Let Z denote the N × N orthogonal matrix with the
eigenvectors z̃1,̃z2, . . . ,̃zN in the columns and M =
diag(μ̃1,μ̃2, . . . ,μ̃N ), and then the spectral decomposition of
the weighted Laplacian Q̃ and its pseudoinverse Q† is Q̃ =
ZMZT and Q† = ZM†ZT , where M† = diag( 1

μ̃1
, 1
μ̃2

, . . . ,0).
Since the Laplacian eigenvalues are non-negative, we have that
M = M1/2M1/2 and similarly for M†, so that

Q̃ = ZM1/2M1/2ZT = Z
√

M(Z
√

M)T

and

Q† = Z
√

M
†(Z
√

M
†)T .

If we define the N × N matrix S = (Z
√

M)
T

and S† =
(Z

√
M

†)
T

, then S and S† contain as columns the scaled row
vectors of Z. The column vectors of Z are the eigenvectors
of Q̃ (and Q†). The row vectors of Z also form an orthogonal
set of vectors spanning the N -dimensional space. Earlier
[1, Appendix], we have called this fundamental property

2For example, the pseudoinverse of the Laplacian QKN
= NI − J

of the complete graph KN follows from (12) after choosing α = 1 as
(Q̂−1)KN

= 1
N

QKN
.

“double orthogonality” that follows from the fact that any or-
thogonal matrix X satisfies XT X = XXT = I . Due to the zero
last row in S and S†, their column vectors do not span the N -
dimensional space, but only the subspace of RN orthogonal to
the all-one vector u. Hence, the weighted Laplacian Q̃ = ST S

and its corresponding pseudoinverse Q† = S†T S† are Gram
matrices (see, e.g., Refs. [12, Sec. 8.7], [2, p. 241], [13], as well
as Fiedler’s geometric interpretation [14]). In particular, the

diagonal element (Q†)jj =∑N−1
k=1 (s†j )

2

k
= ‖s†j‖

2

2
expresses the

Euclidean distance of the node j in RN−1, because the vector

s
†
j = (

(̃z1)j√
μ̃1

,
(̃z2)j√

μ̃2
, . . . ,

(̃zN−1)j√
μ̃N−1

,0)
T ∈ RN−1, featuring (s†j )

T
s
†
m =∑N−1

k=1 (s†j )
k
(s†m)k =∑N−1

k=1
(̃zk )j√

μ̃k

(̃zk)m√
μ̃k

= (Q†)jm. Thus, the set

(s†1,s
†
2, . . . ,s

†
N ) of N column vectors of S† are linearly

dependent because s
†
j ∈ RN−1 (due to the last zero vector

component); they are not orthogonal and their scalar products

or projections on each other, (s†j )
T
s
†
m = (Q†)jm, return the

elements of the pseudoinverse matrix Q†. Furthermore, the
distance between two nodes j and m with coordinates s

†
j and

s
†
m in RN−1, respectively, is

‖s†j − s†m‖2
2 = (s†j − s†m)T (s†j − s†m)

= (Q†)jj + (Q†)mm − 2(Q†)jm = ωjm

and equal to the effective resistance ωjm in (9) between the
nodes j and m in the weighted graph. Hence, the elements
of the effective resistance matrix � are squared distances
between two nodes in the N -dimensional s† basis. Based on
this distance notion, Ranjan and Zhang [15] have proposed
to consider 1

(Q†)jj
as the topological centrality of node j : The

closer node j is to the origin in the s† space, the higher its
topological centrality or importance.

C. Extension

While the weighted Laplacian Q̃ and its pseudoinverse
Q† were approached so far from an electrical point of view,
their applicability is far wider. First, a weighted Laplacian Q̃

describes many processes that are “linear” in or proportional to
the network topology when ignoring friction, e.g., in water flow
networks, mechanical systems such as a spring-mass network,
gas networks, and warmth diffusion in networks. The process
equivalence between those systems is illustrated in Table I.

Second, any infinitesimal generator of a continuous-time
Markov process is minus a weighted Laplacian Q̃ as mentioned
in Ref. [16, p. 207], where the nodes in the Markov graph
represent the states of the Markov process and the link

TABLE I. Equivalence between linear systems.

Electrical circuit Voltage Current

Hydraulic circuit Pressure Volume flow
(height of liquid)

Mechanical system Force Displacement velocity
Thermal system Temperature Heat flow
. . . . . . . . .
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weights are the transition rates between the states. In most
cases, however, the infinitesimal generator is not symmetric.
Furthermore, any stochastic process can be approximated
arbitrarily close by a continuous-time Markov chain provided
the state space (i.e., the number of states in the Markov
chain) is sufficiently large. While the unweighted Laplacian
Q (without tilde) specifies a property of the graph’s topology,
the weighted version Q̃ (with tilde and often the infinitesimal
generator has a much larger dimension than N , see, e.g.,
a Markovian epidemic process [17,18] whose state space is
2N ) can characterize approximately any dynamic process on
the graph. The stochastic connection explains why random
walks, which are relatively simple continuous-time Markov
processes on a graph, and the effective resistances are related
[4,13,19]. A random walk on the weighted graph G is a
stochastic process in which a random walker at node i has
probability Pij = ãij∑N

k=1 ãki

to visit node j in the next time step.

This discrete-time transition probability matrix P can also
be written in terms of the weighted adjacency matrix Ã of
G as P = {diag[(Ãu)i]}−1

Ã. Such random walks naturally
appear in Markov processes, where the discrete-time transition
probability matrix relates to the continuous-time infinitesimal
generator in the same way as the random-walk transition
probability matrix P relates to the weighted Laplacian Q̃.
The expected hitting time Hij equals the expected number of
steps of a random walker that starts at node i and stops at node
j . The commute time, defined as Cij = Hij + Hji , is then the
expected number of steps of a random walker that starts at node
i, arrives at j , and returns to i and conversely since Cij =
Cji . The connection between commute time and effective
resistance is given [19] by Cij = 2L̃ωij or, in matrix notation,
C = 2L̃�, where L̃ = 1

2uT Ãu is the sum of all the link weights
or simply the number L of links in an unweighted graph.

Finally, the continuous companion of the weighted Lapla-
cian is the Laplacian operator, whose inverse is related to the
Green operator and Green’s functions, for which we refer to
Refs. [20,21]. Using Green’s functions, Chung and Yau [20]
solve x = Qv for the vector x and the Green’s function G in
their analysis equals the pseudoinverse Q†.

III. NEW ELECTRICAL MATRIX EQUATIONS

From the definition (9) of the effective resistance, we
present an alternative expression that describes the N × 1
external current vector x and the N × 1 voltage vector v in
terms of the effective resistance matrix � in (7). All theorems
in this section are proved in Appendix A.

Theorem 1. In an electrical circuit on N nodes with
effective resistance matrix �, the external current x injected
in each node induces the nodal voltages,

v = − 1

2N
QKN

�x, (14)

where QKN
= NI − J is the Laplacian of the complete graph

KN on N nodes.
Since uT QKN

= 0, we observe from (14) that uT v = 0 and
vav = 0, which is our choice of voltage reference. Theorem 1

and the external current-voltage relation (6) lead to
Theorem 2. For a weighted Laplacian matrix Q̃ with cor-

responding effective resistance matrix �, the matrix − 1
2Q̃�

behaves like an identity matrix for right-multiplication of
vectors orthogonal to the all-one vector u. In other words,
for any vector x such that uT x = 0, we can write

x = − 1
2Q̃�x. (15)

The “voltage v versus external current x ” vector relation
v = − 1

2N
QKN

�x in (14) and v = Q†x in (6) are complemen-
tary: For any current vector x obeying xT u = 0, it holds that

Q†x = − 1

2N
QKN

�x, (16)

representing a computational method for the Laplacian pseu-
doinverse Q† when the effective resistance matrix � is
known or when � is more easily obtained than the Lapla-
cian pseudoinverse Q† (as illustrated for the path graph in
Appendix C 2 b).

A. Power-based definition of effective graph resistance

By forcing a current Ic between a pair of nodes a and
b and measuring the voltage difference vab = va − vb, the
effective resistance follows as ωab = vab/Ic, while a power
P = vabIc = I 2

c ωab is dissipated in the network (and thus
drained from the external source). We thus observe that the
effective resistance ωab between a pair of nodes a and b can
also be measured as the total dissipated power P = I 2

c ωab in
the network for a unit external current Ic = 1 A forced between
the nodes a and b. In general, the total dissipated power equals

P = xT v

and introducing the inverse relations x = Q̃v and v = Q†x
yields

P = vT Q̃v = xT Q†x. (17)

For any external current vector obeying xT u = 0, it follows
from the definition (7) of the effective resistance matrix � that

xT �x = −2xT Q†x. (18)

Hence, we arrive at the quadratic form for the power dissipation
in the network3

P = − 1
2xT �x.

For the specific external current vector x = Ic(ea − eb), we
obtain again with (A2)

P = − 1
2xT �x = − 1

2I 2
c (ea − eb)T �(ea − eb) = I 2

c ωab. (19)

We conclude that forcing a unit current Ic = 1 A between a pair
of nodes a and b results in two different ways to determine the
effective resistance ωab: one via the total power (19) dissipated
and the other via the local voltage difference (A1).

3Repeated introductions of (15) yields, for any integer n � 0,

P = (−1)n+1

2n+1
xT �(Q̃�)nx.
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Ghosh et al. [13] give a stochastic interpretation of the
effective graph resistance RG. Injecting a random external
current p in a network G, satisfying uT p = 0, with expectation
E[p] = 0 and covariance matrix E[ppT ] = I − J/N results
in an expected dissipated power of E[P] = 1

N
R̃G. Indeed,

taking the expectation of the power in (17), we compute

E[P] = E[pT Q†p] = E

⎡⎣ N∑
i=1

N∑
j=1

Q
†
ijpipj

⎤⎦
=

N∑
i=1

N∑
j=1

Q
†
ijE[pipj ] = trace(Q†E[ppT ]).

Introducing the projector orthogonal to the u vector, E[ppT ] =
I − J/N yields Q†E[ppT ] = Q† and, with (13), we arrive at
E[P] = 1

N
R̃G. For a random vector X, the covariance matrix

�X = E[XXT ] − E[X](E[X])T of the form �X = I − J/N

indicates that Cov[Xi,Xj ] = − 1
N

between each vector com-
ponent is equal. Such random vectors can be constructed from
a Gaussian vector with independent components [16, p. 75].
The observation of Ghosh et al. [13] is peculiar, because we
can show that E[P] = 1

N
R̃G only holds for the particular

covariance matrix �X = I − αJ/N where α = 1.

B. The matrix ˜Q� and the geometrical interpretation of �

With the definition (7) of �, we have Q̃� = Q̃ζuT +
Q̃uζ T − 2Q̃Q† and thus

Q̃� = Q̃ζuT − 2

(
I − 1

N
J

)
, (20)

which again leads to (15) for any vector x orthogonal to u.
All columns in the matrix Q̃ζuT are the same and equal

to the vector Q̃ζ and Q̃�u = N Q̃ζ , so that the vector
Q̃ζ = 1

N
Q̃�u, with mth component (Q̃ζ )m =∑N

k=1 q̃mkQ
†
kk ,

equals the average row sum of the matrix Q̃�. After taking the
transpose and invoking the symmetry of � and Q̃, the matrix
equation

�Q̃ = u(Q̃ζ )T − 2

(
I − 1

N
J

)
indicates that

Q̃� − �Q̃ = Q̃ζuT − u(Q̃ζ )T ,

implying that Q̃� and �Q̃ do not commute (unless the vector
Q̃ζ = 0 as in the complete graph KN ) and that eigenvectors
of � and Q̃ are generally different [2, p. 253]. Moreover,
�Q̃u = u(Q̃ζ )

T
u = 0 indicates that (Q̃ζ )

T
u = 0 or that the

sum of the elements of the vector Q̃ζ is zero.
Equation (15) in Theorem 2, Q̃�x = −2x, is an eigenvalue

equation: Each external nodal current vector, satisfying uT x =
0, is an eigenvector of the matrix Q̃� belonging to the
eigenvalue −2. The eigenvalues of the N × N asymmetric
matrix Q̃� in (20) are the zeros in λ of the characteristic
polynomial,

cQ̃�(λ) = det(Q̃� − λI ),

which is with (20) and J = uuT

cQ̃�(λ) = det

[(
Q̃ζ + 2

N
u

)
uT − (λ + 2)I

]
.

Invoking the “rank one update” formula [2, p. 256],
det (I + cdT ) = 1 + dT c, yields

cQ̃�(λ) = (−1)Nλ(λ + 2)N−1.

Hence, the matrix Q̃� has N − 1 eigenvalues equal to λ = −2,
belonging to each possible external current x orthogonal to u,
and one zero eigenvalue that must be a linear combination4 of
the eigenvector u and x. Hence,

Q̃�(au + bx) = aNQ̃ζ − 2bx = 0

so that x = aN
2b

Q̃ζ and the eigenvector belonging to λ = 0
equals u + N

2 Q̃ζ .
From the matrix relation (20), we find − 1

2Q̃�Q̃ = Q̃,
which suggests that we consider − 1

2� as a generalized inverse
of the Laplacian Q̃. Fiedler [22] points to a more elegant
approach in presenting a remarkable inverse block matrix
relation, from which we deduce

− 1

2

[
0 uT

u �

]
=
[

ζ T Q̃ζ + 4RG

N2 −(Q̃ζ + 2
N

u
)T

−(Q̃ζ + 2
N

u
)

Q̃

]−1

.

(21)

Relation (21) can be verified from the general inverse formula
for block matrices [23, p. 123]. In the block matrix at the
right-hand side of (21) appears the eigenvector Q̃ζ + 2

N
u of

the matrix Q̃� belonging to the zero eigenvalue.5 Equation
(21) is particularly interesting for at least two reasons.

First, the block matrix relation (21) transforms the function
in a network via measurements or observations resulting in
the � matrix (left-hand side) to the structure of the network
(right-hand side), specified by Q̃ in (1). Especially in networks,
such as the human brain, whose internal topology is opaque
and only at special places outside the skull can be measured,
the new block matrix relation (21) may shed new light on the
relation between the functional brain (left-hand side) to the
anatomical brain (right-hand side), whose study is timely (see,
e.g., Refs. [25,26]).

Second, the block matrix relation (21) reveals a geometric
interpretation of the � matrix. Recall from Sec. II that by
the Gram equivalent Q† = S†T S†, where S† = (Z

√
M†)T ,

we found that ωij = ||s†i − s
†
j ||22. Although the orthogonal

eigenvector matrix Z includes the normalized all-one vector
u√
N

belonging to the zero eigenvalue μ̃N = 0 in the N th

column, the corresponding N th row in S† is the null vector,
which we can exclude, so that the matrix S† effectively has

4Since Q̃� is not symmetric, the eigenvectors are not necessarily
orthogonal but independent.

5We can geometrically interpret the term ζ T Q̃ζ + 4RG

N2 . If R is the
radius of the circumsphere of the simplex, defined by the Gram matrix
S† of the pseudoinverse Laplacian, then the relation R2 = ζ T Q̃ζ +
4RG

N2 holds. The circumsphere of the simplex was first described by
Coxeter [24] in 1930.
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the dimensions (N − 1) × N . Thus, the ith column vector
s
†
i in S† can represent a point pi in the N − 1-dimensional

space with coordinates s
†
i ∈ RN−1 and ωij = ||s†i − s

†
j ||22 is

the squared Euclidean distance between the points pi and pj .

In the field of distance geometry, the determinant det [0 uT

u H
],

where H is an N × N matrix with squared Euclidean distances
between a set of N points inRN−1, is called the Cayley-Menger
determinant and introduced by Menger [27]. For a consistent
distance matrix H , the Cayley-Menger determinant is related
[27] to the volume V of the convex hull of the N points (also
called the simplex of those points) by

V 2 = (−1)N

2N−1((N − 1)!)2 det

[
0 uT

u H

]
. (22)

The effective resistance matrix � obeys the characteristics of
a distance matrix H that corresponds [22] to a hyperacute
simplex of N points in RN−1 with squared distance matrix
H = �, which means that all (N − 2)-dimensional faces have
interior angles that are acute or right. In particular, Sharpe [28]
shows that problems on resistive networks are equivalent to
geometric problems on acute-angled simplices imbedded in a
multidimensional Euclidean space.

Now, if we call Ti ⊂ L the link set of a specific spanning
tree, then

∏
∀l∈Ti

wl is the product of all the link weights wl of
that specific tree Ti . The number of weighted spanning trees
then equals

ξ̃ =
∑
∀Ti

∏
∀l∈Ti

wl. (23)

Interestingly, this number ξ̃ of weighted spanning trees can
also be expressed [2, p. 77] in terms of the Laplacian
eigenvalues as

ξ̃ = 1

N

N−1∏
k=1

μ̃k.

Combining the block matrix relation (21) and the relation
between minors of the Laplacian and the number of spanning
trees (i.e., the matrix-tree theorem [2, p. 75]), we can express
the Cayley-Menger determinant of � in terms of the number
of weighted spanning trees.

Theorem 3. Consider a graph G with weighted Laplacian
matrix Q̃, effective resistance matrix �, and the number ξ̃

of weighted spanning trees. The volume VG of the simplex
formed by N points pi ∈ RN−1, with the columns of

√
M†ZT

(but excluding the N th row in ZT ) as coordinates, is given by

VG = 1

(N − 1)!
√

ξ̃
. (24)

The main interest of Theorem 3 lies in the connection
with the effective graph resistance R̃G. If “∝” denotes
proportionality in

R̃G = N

N−1∑
k=1

μ̃−1
k ∝

N−1∑
k=1

1

μ̃k

, (25)

VG =
√

N

(N − 1)!
√∏N−1

k=1 μ̃k

∝
√√√√N−1∏

k=1

1

μ̃k

, (26)

then (25) illustrates that the effective graph resistance R̃G is
proportional to the arithmetic mean of the inverse Laplacian
eigenvalues, while (26) shows that the simplex volume VG

is related to the geometric mean of the inverse Laplacian
eigenvalues.6 As a result, the simplex volume VG and the
effective graph resistance R̃G capture “similar information” in
the sense that both represent a mean of the inverse Laplacian
eigenvalues and “complementary information” in that for
different graphs with the same effective graph resistance
R̃G, the simplex volume VG will differ and thus allows us
to discriminate between these graphs. Moreover, for a fixed
arithmetic mean, the geometric mean represents the spread of
the elements around the mean, for certain notions of “spread”
[29]. Finally, the harmonic, geometric and arithmetic mean
inequality (D2)

N − 1

2L̃
� N−1

√
((N − 1)!)2

N
V 2

G � R̃G

(N − 1)N
,

where L̃ = 1
2uT Ãu is the sum of the link weights in the

graph G, indicates that an increase in the simplex volume VG

cannot lead to a decrease in the effective graph resistance R̃G.
Alternatively, less (weighted) spanning trees ξ̃ , equivalent by
(24) to a larger volume VG of the simplex in RN−1, complicate
currents to flow over the network, resulting in higher effective
resistances and, thus, a higher R̃G.

IV. THE BEST ELECTRICAL SPREADER NODE

We define the node k∗, that is electrically best connected
to all other nodes, as the minimizer over all nodes j ∈ G

of (�u)j =∑N
i=1 ωij , which is the sum of the effective

resistances between node j and any other node i in the graph
G. In other words, if a current Ic is injected in node k∗ and
all other nodes in G are sinks, then the potential of node k∗ is
the lowest among all nodes. Hence, we may consider (�u)j as
a graph centrality metric, in addition to eigenvector centrality
metrics [1], that reflects how good node j spreads information
to all other nodes. Formula (B2) for i = j ,

Q
†
jj = 1

N

N∑
i=1

ωij − R̃G

N2
(27)

indicates that Q
†
jj equals the average effective resistance from

node j to all other nodes in G minus the overall graph’s mean
effective resistance [see (10)]. Furthermore, (27) illustrates that
the electrically best connected node k∗ minimizes the diagonal
element in Q†, thus Q

†
k∗k∗ � Q

†
jj for any 1 � j � N . Another

argument from the injection of a current Ic in node j , while
all others are sinks, leads to a current vector x = Ic(ej − 1

N
u)

with components xk = − Ic

N
for k �= j and xj = (N−1)

N
Ic. The

6For a set of numbers x1,x2, . . . ,xn, the arithmetic mean MA is
defined as MA = 1

n

∑n

i=1 xi , while the geometric MG is defined as

MG = n
√∏n

i=1 xi (see Ref. [16, p. 99]). This implies that V
2

N−1
G , a

monotonically increasing function of VG corresponds to the geo-
metric mean. Both means satisfy the harmonic-geometric-arithmetic
inequality (D2).
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voltage/potential vector v = Q†x in (6) then equals for a unit
current Ic = 1 A

v = Q†
(
ej − u

N

)
= Q†ej = colj Q†

and

vj = Q
†
jj (28)

is the largest positive potential in colj Q†, as follows physi-
cally. The proof that Q

†
jj � Q

†
kj for any 1 � k � N is given

in Corollary 1 in Sec. B. Since we have chosen as reference
in Sec. II the average potential vav = 1

N

∑N
i=1 vi equal to zero,

we can reinterpret (28) slightly more generally as

Q
†
jj = vj − vav = 1

N

N∑
i=1

(vj − vi),

indicating that the best spreader node minimizes the sum
of the potential differences between its potential vj and all
other nodal potentials. This interpretation coincides with the
“closeness” minimization of the average distance to all other
nodes (see Sec. III B): The best connected node lies in the
center of gravity.

In summary, node k∗ = arg min1�j�N (Q†
jj ) can be re-

garded as the best diffuser of a flow to the rest of the network, in
case a flow (of information or current) is injected in that node.
To some extent, node k∗ is most influential with respect to a
diffusion operation in the network. In a Markov process, the
node k∗ in the Markov graph of all states can be regarded as the
best, dynamically connected, state, through which the highest
probability flux streams towards all other states. In a random
walk (Sec. II), for example, the optimal spreader node k∗
possesses the lowest average commute time to all other nodes,
since k∗ = arg min1�j�N eT

j �u = arg min1�j�N eT
j Cu.

The extension to the best spreader pair of nodes in a graph
G is more complicated. Similarly as above, we now inject a
current Ic

2 in node i and node j , while all other nodes are sinks,
resulting in a current vector x = Ic( 1

2ei + 1
2ej − 1

N
u) with

components xk = − Ic

N
for k /∈ {i,j} and xi = xj = ( 1

2 − 1
N

)Ic.
From (6) and a unit current Ic = 1 A, the voltage vector is

v = Q†
(

1

2
ei + 1

2
ej − u

N

)
= 1

2
Q†ei + 1

2
Q†ej

= 1

2
(coli Q

† + colj Q†),

from which the voltage vk = 1
2 (Q†

ik + Q
†
jk) of node k /∈ {i,j},

while vi = 1
2 (Q†

ii + Q
†
ji) � 0 and vj = 1

2 (Q†
ij + Q

†
jj ) � 0.

The diagonal elements Q
†
ii of the pseudoinverse Laplacian

Q† are always non-negative [see (B1)], in fact, positive in a
connected graph by (B9), and the largest in their row or column
(Corollary 1), while the off-diagonal elements Q

†
ij = Q

†
ji

can be positive as well as negative (see the discussion after
Theorem 6 in Appendix B). Hence, the potential-voltage sum
vi + vj is positive, reflecting a joint emission from each
node in the pair (i,j ), while all other nodes in the graph
are receiving the diffusive items or information. Given the
current injection vector x = 1

2ei + 1
2ej − 1

N
u [that obeys the

conservation law (4)], the best spreader pair (i,j ) in the graph

minimizes the non-negative potential/voltage sum vi + vj ,

which is equivalent to min{i,j}∈N (
Q

†
ii+Q

†
jj

2 + Q
†
ij ). Since Q

†
ij

can posses either sign, the introduction of (B8) results in the
objective function to be minimized,

min
{i,j}∈N

(vi + vj ) = min
{i,j}∈N

(
Q

†
ii + Q

†
jj − 1

2ωij

)
,

from which a lower bound follows as

min
{i,j}∈N

(vi + vj ) � min
{i,j}∈N

(Q†
ii + Q

†
jj ) − 1

2 max
{k,l}∈N

(ωkl).

If equality in the lower bound can be attained for the node
pair (i,j ) equal to the pair (k,l), then the lower bound shows
that the best possible spreader pair (i,j ) minimizes the sum
Q

†
ii + Q

†
jj of two elements in the ζ vector in (8) and, at the

same time, has the largest effective resistance ωij between
themselves. The latter means that the best spreader pair, in
which each node is individually optimally “connected” to all
other nodes, is mutually badly interconnected or well separated
in the graph.7 While the determination of the kth best spreader
only consisted in a ranking of the elements in the ζ vector in (8),
finding the best spreader pair is clearly more involved and hints
to NP-completeness (see Sec. V): Just determining the best and
second best spreader [min{i,j}∈N (Q†

ii + Q
†
jj )] by ranking the ζ

vector is insufficient; also their mutual connectedness (ωij ) in
the graph matters. A further extension to find the best triplet of
nodes or best set of m nodes exhibits the same requirement of
satisfying a combined minimizing and maximizing part of the
objective function, which is a disguise of the NP-completeness
of the optimization problem.

V. THE ζ VECTOR AS A GRAPH METRIC VECTOR

Characterizing a network by a small set of metrics that are
relatively easy to compute and to understand lies at the heart
of network science. Many reviews [30–32] and books [16,33–
38] cover graph metrics, real numbers that can be computed
from the knowledge of the graph only (e.g., via its adjacency
matrix). Each graph metric represents and quantifies a certain
property of the graph. Here we propose the ζ vector in (8)
as a promising graph metric vector that quantifies the nodal
spreading capacity and we compare the ζ vector with other
graph vectors in Sec. V B. The nature of a graph metric restricts
us to demonstrate superiority of one established metric over
another in all graphs, which complicates the reduction of the
zoo of metrics to a basic set from which all others can be
derived. Each graph metric views the graph through its own
lenses and tells its limited story about the graph, much like
Plato’s famous “Allegory of the Cave.”

Conceptually, the diagonal element Q
†
jj is most related to

the closeness cj . The closeness cj measures the total number of
hops in the shortest path tree rooted at a node j and is precisely
equal to cj = (�u)j = NQ

†
jj + RG

N
in an unweighted tree,

where there is only one path from each node to each other

7The best spreader pair optimization problem, consisting of both
a minimizing and maximizing part, makes intuitively sense when
thinking, for instance, about the best heat diffusion in a room with
two fireplaces.
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node. In a graph with cycles, the closeness cj � Q
†
jj , because

the closeness constraints traffic to follow only a shortest path,
whereas Q

†
jj allows traffic to flow over all possible paths. In the

terminology of optimization theory and linear programming,
the vector ζ is called a relaxation of the closeness vector c,
since the one-path constraint is removed in ζ . Moreover, as
demonstrated here, the vector ζ is founded on solid matrix
theory and is more analytically manageable than the closeness
vector c, even if the network is perturbed (i.e., by adding or
removing a link) as shown in Ref. [10].

Kitsak et al. [39] have proposed the coreness (also called
k-core or k-shell) as the best metric to find the most influential
spreader in a graph. Morone and Makse [40] proposed
a percolation type of solution to the problem of finding
the smallest set of nodes, whose removal fragments the
network. Although that problem is NP-complete, accurate
greedy methods exist as demonstrated by Kempe et al. [41]
based on submodular functions.8 Morone and Makse [40]
introduced the collective influence, a graph metric related to
the expansion around a node j up to h hops multiplied by
the degree dj − 1. They reported that their heuristic based
on collective influence outweighs the strategies based on
sequentially removing nodes with the highest degree, k-core,
principal eigenvector component, closeness and page rank.

Figure 1 illustrates that the betweenness, closeness, and ζ

vector perform similarly in a strategy to disconnect a graph
and question whether a single metric can outperform others
in an NP-complete problem. Strategies that determine the set
of m links, whose removal minimizes the spectral radius of
the adjacency matrix or, equivalently, maximizes the lower
bound on the epidemic threshold, are evaluated in Ref. [42],
while the influence of altering the assortativity on the spectral
radius and algebraic connectivity of a graph are investigated in
Ref. [43]. The correlation between the centrality metrics such
as betweenness, principal eigenvector, closeness, leverage, k-
shell index (a variant of k-core), and the degree mass is studied
in Ref. [44] and a graph of metric correlations is proposed in
Ref. [45]. The betweenness distribution in weighted networks
as here is analyzed in Ref. [46], while Hernandez et al. [47]
relates several variants of the weighted betweenness to the
algebraic connectivity μN−1.

A. Variance of the ζ vector and bounds on the
effective graph resistance RG

Alternative forms and bounds for the diagonal elements Q
†
jj

of the weighted pseudoinverse matrix Q† are derived in Ap-
pendix B. Summing the expression (B1) for Q

†
jj over all nodes

j and invoking the orthogonality condition
∑N

j=1 (̃zk)2
j = 1

8A submodular function f satisfies f (S ∪ {v}) − f (S) �
f (T ∪ {v}) − f (T ) for all elements v and all pairs of sets S ⊆ T ,
which formally describes a “diminishing returns” property: The
marginal gain from adding an element v to a set S is at least as
high as the marginal gain from adding the same element to a superset
T of S. The distance matrix H and effective resistance matrix � are
submodular matrices (each element is a submodular function), where
S is a subgraph of the graph T .

FIG. 1. The size of the giant component in three graphs: (a) a
Barbasi-Albert graph with N = 800, (b) an Erdos-Renyi graph with
N = 200 nodes, and (c) the IEEE 118 power grid both with N = 118
versus the removal of nodes according to five different strategies: The
node with optimal graph metric, computed in each resulting graph, is
removed.

for each integer subscript 1 � k � N referring to the kth
eigenmode of Q̃ with eigenvalue μ̃k yields

N∑
j=1

Q
†
jj =

N−1∑
k=1

μ̃−1
k

N∑
j=1

(̃zk)2
j =

N−1∑
k=1

μ̃−1
k = R̃G

N
,

where in the last step the definition (13) of the effective
graph resistance R̃G is used. Thus, the scaled effective graph
resistance R̃G

N2 can be regarded as the average over all nodes of
the spreading capacity of an individual node. Clearly, the best
and worst electrical spreader obey

min
1�j�N

(Q†
jj ) � R̃G

N2
� max

1�j�N
(Q†

jj ).

This interpretation suggests that we consider the variance of
the vector ζ = (Q†

11, . . . ,Q
†
NN ),

Var[ζ ] = 1

N

N∑
j=1

(
Q

†
jj − R̃G

N2

)2

= 1

N

N∑
j=1

(Q†
jj )2 − R̃2

G

N4
,
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that measures the deviation of the individual, nodal spreading
capacity from the mean R̃G

N2 in the graph. Since

(Q†2)jj =
N∑

k=1

Q
†
jkQ

†
kj =

N∑
k=1

(Q†
jk)2 = (Q†

jj )2

+
N∑

k=1;k �=j

(Q†
jk)2,

the Cauchy-Schwarz inequality [16, p. 109], combined with
Q†u = 0,

Q
†
jj = −

N∑
k=1;k �=j

Q
†
jk �

√√√√(N − 1)
N∑

k=1;k �=j

(Q†
jk)2,

leads to the inequality (Q†2)jj � (1 + 1
N−1 )(Q†

jj )
2
. After

summing over all j or taking the trace,9

N − 1

N

N−1∑
k=1

μ̃−2
k = N − 1

N

N∑
j=1

(Q†2)jj �
N∑

j=1

(Q†
jj )2,

we arrive at

Var[ζ ] � �R

N2
,

where

�R = (N − 1)
N−1∑
k=1

1

μ̃2
k

−
(

N−1∑
k=1

1

μ̃k

)2

. (29)

In summary, the maximum possible variance �R

N2 or the maxi-

mum standard deviation
√�R

N
in the nodal spreading capacity

from the overall average, equal to the scaled effective graph
resistance R̃G

N2 , can be regarded as a companion graph metric to
R̃G that further specifies R̃G. In particular, �R quantifies the
graph’s heterogeneity in spreading capacity and reflect how
good the effective graph resistance R̃G alone is representable
because, as

√
Var[ζ ] � max1�j�N (Q†

jj ) − min1�j�N (Q†
jj ),

most of the nodes have a spreading capacity lying the inter-

val ( R̃G

N2 − √
Var[ζ ], R̃G

N2 + √
Var[ζ ]) ⊂ ( R̃G−N

√�R

N2 ,
R̃G+N

√�R

N2 ).
If �R is large, then there is a large difference between the
best and worst spreader node in the graph, while a small �R

points to a homogeneous network, in which nearly all nodes

9Using (B1), we have that

N∑
j=1

(Q†
jj )2 =

N−1∑
k=1

N−1∑
l=1

μ̃−1
l μ̃−1

k

N∑
j=1

((̃zk)j (̃zl)j )2.

Invoking the Cauchy-Schwarz inequality and the orthogonality of
eigenvectors

N∑
j=1

((̃zk)j (̃zl)j )2 � 1

N

⎛⎝ N∑
j=1

(̃zk)j (̃zl)j

⎞⎠2

= 1

N
δkl

yields
∑N

j=1 (Q†
jj )

2 � 1
N

∑N−1
k=1 μ̃−2

k , while (B9) leads to∑N

j=1 (Q̂−1
jj )

2 � (1 − 1
N

)
4∑N

j=1
1
d2
j

.

FIG. 2. The probability density function fV (x) of the variance
V = Var[ζ ] and its the upper bound �R

N2 in the unweighted
Erdős-Rényi (ER) random graph Gp(N ) with N = 200 nodes and
link density p = 2pc for 106 realizations. The insert shows the
corresponding pdf of the ratio η = �R

N2Var[ζ ]
.

spread traffic (or information) equally well. For example, in the
complete graph KN , where μk = N for 1 � k < N , we find
that �R = 0. Finally, if the bound �R in (29) of the variance
Var[ζ ] is sharp and if ζ is approximately normal distributed,
then we may roughly estimate the best spreader capacity [e.g.
its lowest voltage as in (28)] by

min
1�j�N

(Q†
jj ) ≈ R̃G

N2
−

√�R

N
.

Figure 2 compares the variance Var[ζ ] and the upper bound �R

N2 ,
as well as their ratio η, in the unweighted Erdős-Rényi (ER)
random graph Gp(N ) with N = 200 nodes and link density
p = 2pc (where the critical link density pc ∼ ln N

N
for large

N ) for 106 realizations, illustrating that the upper bound is
reasonably close, and, on average, less than a factor of 2 off.

More surprising in Fig. 3 is the good approximation
RG

N2 −
√�R

N
for m = min1�j�N (Q†

jj ) as well as the forbidden

FIG. 3. The probability density function of m = min1�j�N Q
†
jj

and its estimate RG

N2 −
√

�R

N
for the same realizations as in Fig. 2.
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FIG. 4. The probability density function of m = min1�j�N Q
†
jj

and its estimate RG

N2 −
√�R

N
for 105 realizations of a Barabasi-Albert

graph on N = 500 nodes as described in Fig. 6. The insert shows the
corresponding pdf of the ratio η = �R

N2V ar[ζ ]
.

values of m = min1�j�N (Q†
jj ) in the unweighted ER random

graph G2pc
(200), reflected by the oscillations in the probability

density function fm(x) versus the values x. For certain x

values, fm(x) tends to zero, which means that these values
cannot occur almost surely.

At the moment, we do not have a precise explanation
why certain values of m = min1�j�N (Q†

jj ) in the unweighted
ER random graph G2pc

(200) are forbidden almost surely.
Oscillations also occur in the other components of ζ , as well
as in ER graphs with precisely L links and N nodes. Since the
diagonal elements (B1) of the Laplacian pseudoinverse depend
on the eigenvector components (as well as the eigenvalues),
Fig. 3 suggests the occurrence of possible restrictions on the
eigenvectors in G2pc

(200), because the eigenvalues [appearing
the upper bound in (29)] do not seem to be confined (black
line in Fig. 3).

Figure 4 plots m = min1�j�N (Q†
jj ) in the unweighted

Barabási-Albert (BA) random graphs on N = 500 nodes
and illustrates that our approximation RG

N2 −
√�R

N
for m =

min1�j�N (Q†
jj ) is less accurate than in ER random graphs,

although the ratio η = �R

N2Var[ζ ] (in the insert) is similar to that in
ER random graphs (insert in Fig. 2). Moreover, clear forbidden
values are less pronounced as the amplitude of oscillations in
the probability density function fm(x) are much smaller. Thus,
while power-law characteristics usually lead to the more exotic
behavior, here, the regularity and homogeneity of ER random
graphs produce fascinations.

The theory in Appendix B suggests to relate m =
min1�j�N (Q†

jj ) to the inverse of the maximum degree 1
dmax

.
The peaks in Fig. 3 in ER graph G2pc

(200) indeed correspond
to inverses 1

di
of the degree and, in the majority of the

realizations (about 70%), the node j that minimizes Q
†
jj

also possesses the largest degree. In power-law graphs, this
correspondence is less pronounced. A possible explanation
is the fairly localized value of the maximum degree in ER

FIG. 5. The probability density function fY (x) of the random
variable Y , which is either a projection or a correlation, in the
unweighted ER random graph Gp(N ) with N = 200 nodes and link
density p = 2pc. Since all considered linear correlation coefficients
are negative, their absolute value has been plotted in order to better
compare with the projections.

random graphs, in contrast to the broader distribution of dmax

in power-law random graphs.

B. Evaluation of the vector ζ = ( Q†
11, . . . , Q†

N N )

Several nodal “centrality” metrics are compared with
the vector ζ = (Q†

11, . . . ,Q
†
NN ), whose j th component Q

†
jj

measures how good node j spreads information to all other
nodes. Figure 5 shows the probability density function fY (x)
of either a correlation or projection between a known centrality
vector and the nodal spreader vector ζ . For example, the linear
correlation coefficient Y = ρ(ζ,d) = E[ζd]−E[d]E[ζ ]√

Var[ζ ]Var[d]
between

the degree vector d and the vector ζ is compared to the
projection dT ζ for 106 realizations of the unweighted ER
random graph Gp(N ) with N = 200 nodes and link density
p = 2pc. Next to the principal eigenvector x1 of the adjacency
matrix A belonging to the largest eigenvalue λ1(A) and
the degree vector d = Au, we considered also the nodal
betweenness vector b, defined in Ref. [47] and the closeness
vector c, defined in Ref. [16, Eq. (15.7) on p. 370]. All
considered centrality vectors have non-negative components
so that the mutual projections or scalar products are positive.
The betweenness bi of a node i is defined as the total number
of shortest paths between all possible pairs of nodes in the
graph that traverse the node i,

bi =
N∑

k=1

N∑
m=1

1{i∈P∗
km},

where the indicator function 1{X} = 1 if X is true, otherwise
1{X} = 0, and where P∗

km is the shortest path (denoted by *)
between node k and m.

Figure 5 shows that the closeness vector c is “closest” to
the vector ζ , because both E[ρ(ζ,c)] and E[cT ζ ] exceed the
others (the peaks of the blue curve corresponds to the highest
x values). Except for the closeness, Fig. 5 illustrates that
the average correlation is larger than the average projection.
Figure 5 also shows that most pdfs are not unimodal. The
precise reason for the appearance of several local maxima is
unclear, but it points to the fact that the vector ζ is not easily
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FIG. 6. The probability density function fY (x) of the random
variable Y , which is either a projection or a correlation, in the
unweighted Barabasi-Albert graph with N = 500 nodes, generated
from a set of 5 initially completely connected nodes and each new
node connects to 3 previous nodes in the graph. Since all considered
linear correlation coefficients are negative, their absolute value has
been plotted in order to better compare with the projections.

interchanged by another nodal centrality vector, which may
justify a study of the vector ζ , as presented here. The situation
in the Barabási-Albert graph in Fig. 6 closely follows that in
the ER random graph G2pc

(200) in Fig. 5: Correlations are
higher than projections, except for the closeness, but the range
on the x axis is broader, though narrower and unimodal around
the peaks, that are higher compared to ER graphs.

VI. CONCLUSION

Inspired by electrical current flows that satisfy conservation
laws, the weighted Laplacian Q̃ and its pseudoinverse Q†

are argued to be fundamental vehicles to explore properties
of graphs as well as dynamic processes in networks. New
matrix relations are presented as well as connections between
the effective resistance matrix � as a distance matrix and its
corresponding volume that reflects the number of weighted
spanning trees. The best electrical spreader, defined as the
node whose component in the vector ζ in (8), containing
the diagonal elements of the pseudoinverse Q†, is minimum,
has the lowest energy or potential in the network and is
thus best connected to all other nodes. The vector ζ can
thus be considered as a graph vector that was compared to
other centrality vectors such as the degree d, closeness c,
betweenness b, and principal eigenvector x of the adjacency
matrix. As expected, the correlation and projection of vector
ζ and the closeness vector c are the highest. Remarkable
oscillations in the potential value of the best spreader, stronger
in an ER graph than in a BA graph, were observed in Fig. 3
that point to forbidden regions. Sequentially removing the
best spreader nodes in the resulting graph (or removing nodes
according to the rank in the vector ζ ) is expected to be a good
strategy to fragment the graph. Conversely, protecting the best

spreader nodes in a network will result in a robustly designed
network.

ACKNOWLEDGMENT

We are very grateful to Xiangrong Wang and Zhidong He
for their comments on an earlier version.

APPENDIX A: PROOFS OF THEOREMS 1 TO 3

Proof of Theorem 1. Consider the effect of an external
current vector x = Ic(em − en), injected in node m and leaving
the circuit at node n, on the voltage difference vab = va − vb

between node a and b. The inverse relation (6) indicates that

vab = Ic(ea − eb)T Q†(em − en),

while the definition (9) of the effective resistance ωab =
vab

Ic
|
m=a;n=b

= (ea − eb)T Q†(ea − eb). The definition (7) of the
effective graph resistance shows that

(ea − eb)T �(em − en) = −2(ea − eb)T Q†(em − en)

so that

vab = − 1
2Ic(ea − eb)T �(em − en) (A1)

for any pair with injecting node m and leaving node n �= m.
Choosing the pair m = a and n = b, we thus find an alternative
expression of the effective resistance ωab = eT

a �eb as

ωab = − 1
2 (ea − eb)T �(ea − eb), (A2)

mainly due to the fact that ωjj = 0.
We can consider a more general external current vector

x. The conservation law (4) of external current, uT x = 0,
illustrates that the vector x can always be written as a linear
combination of (em − en) couples. Since Eq. (A1) is linear
in the vector (em − en), the resulting potential difference vab

from such a general external current vector x is given by

vab = − 1
2 (ea − eb)T �x,

which treats voltage differences only. Rewritten for an individ-
ual voltage yields va = − 1

2eT
a �x + c, where c is a constant

that does not depend on the node a and which becomes in
vector form v = − 1

2�x + cu. Since we have assumed that
the average voltage vav = 0 or uT v = 0, we obtain uT v =
− 1

2uT �x + cuT u = 0 from which c = 1
2N

uT �x. Introduced
into v = − 1

2�x + uc and invoking J = uuT yields

v = −1

2
�x + 1

2N
uuT �x = 1

2

(
1

N
J − I

)
�x.

Finally, since QKN
= NI − J , we arrive at (14). �

Proof of Theorem 2. From (6), we have v = Q†x = (Q̃ +
αJ )−1x. Additionally, (14) states v = − 1

2N
QKN

�x for uT x =
0. Combining both equations and QKN

= NI − J gives

x = 1

2N
(Q̃ + αJ )(J − NI )�x

= 1

2N
(Q̃J + αJ 2 − αNJI − NQ̃)�x.

Using Q̃J = (Q̃u)uT = 0 and J 2 = NJ , leads to (15). �
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Proof of Theorem 3. For a general vector a and scalar s in the
right-hand side of (21), we expand the block determinant along
the first row in cofactors, followed by a cofactor expansion of
the remaining first column,

det

[
s aT

a Q̃

]
= s det Q̃ +

N∑
i=1

(−1)i+1ai

×
N∑

j=1

(−1)j aj det(Q̃\ row i\ col j ).

Since the number of weighted spanning trees ξ̃ = (adjQ̃)ij =
(−1)i+j det (Q̃\ row i\ col j ) for each element [2, art. 82] and
det (Q̃) = 0, the above simplifies to

det

[
s aT

a Q̃

]
= −ξ̃

N∑
i=1

N∑
j=1

aiaj = −ξ̃ (uT a)2.

Let s = ζ T Qζ + 4RG

N2 and a = −(Q̃ζ + 2
N

u) be the eigenvec-
tor of Q̃� belonging to the zero eigenvalue, so that we find

det

[
ζ T Qζ + 4RG

N2 −(Q̃ζ + 2
N

u)T

−(Q̃ζ + 2
N

u) Q̃

]
= −4ξ̃ .

Using the inverse block matrix relation (21) and determinant
rules, the Cayley-Menger determinant of � is

det

[
0 uT

u �

]
= (−1)N2N−1

ξ̃
,

which leads to (24), after using the simplex’ volume (22). �

APPENDIX B: DIAGONAL ELEMENTS OF THE
PSEUDOINVERSE Q† OF THE WEIGHED LAPLACIAN ˜Q

We present different expressions and bounds for the
diagonal element Q

†
jj .

Theorem 4. Let Q† denote the pseudoinverse matrix of the
weighted Laplacian Q̃ of a graph G. The expression

Q
†
jj =

N−1∑
k=1

μ̃−1
k (̃zk)2

j (B1)

demonstrates that Q
†
jj � 0. Any element of Laplacian pseu-

doinverse

Q
†
ij = 1

2

(
1

N

N∑
k=1

ωik + 1

N

N∑
k=1

ωjk

)
− 1

2
ωij − R̃G

N2
(B2)

equals Q
†
ij = − 1

2N
eT
i QKN

�(ej − u
N

), which can be “electri-
cally” measured by injecting a current into node j while all
other nodes are sink and subsequently measuring the voltage
at node i. For any number α �= 0, the j th diagonal element of
Q† corresponding to node j equals

Q
†
jj = (Q̃ + αJ )−1

jj − 1

αN2

= det[Q̃\ row j\ col j + αJ(N−1)×(N−1)]

det(Q̃ + αJN×N )
− 1

αN2
, (B3)

where Q̃\ row j\ col j is the weighted Laplacian in which row j

and col j are deleted. Another form is

Q
†
jj = uT (Q̃\ row j\ col j )−1u

N2
, (B4)

where the quadratic form uT (Q̃\ row j\ col j )
−1

u equals the sum

over all elements in (Q̃\ row j\ col j )
−1

.
Proof. First, (B1) follows directly from (11).
Second, we start from the definition of an element in

a matrix M , mij = eT
i Mej , and invoke the property that

Q†u = 0,

Q
†
ij = eT

i Q†ej =
(
ei − u

N

)T

Q†
(
ej − u

N

)
.

Using xT Q†x = − 1
2xT �x in (18), which holds for any vector

x obeying xT u = 0, we obtain

Q
†
ij = −1

2

(
ei − u

N

)T

�
(
ej − u

N

)
= uT �

2N
(ei + ej ) − 1

2
ωij − uT �u

2N2
.

With the definition (10) of the effective graph resistance R̃G =
uT �u

2 , we arrive at (B2).

Next, let us consider Q
†
jj in (12),

Q
†
jj =

N∑
k=1

(Q̃ + αJ )−1
jk

(
I − 1

N
J

)
kj

= − 1

N

N∑
k=1

(Q̃ + αJ )−1
jk + (Q̃ + αJ )−1

jj

= − 1

N
((Q̃ + αJ )−1u)j + (Q̃ + αJ )−1

jj .

Since

Q̃ + αJ =
N−1∑
k=1

μ̃k̃zk̃z
T
k + αNz̃N z̃T

N

with the normalized eigenvector z̃N = u√
N

(obeying

z̃T
N z̃N = 1) belonging to eigenvalue μ̃N = αN , we

have that (Q̃ + αJ )
−1 =∑N−1

k=1 μ̃−1
k z̃k̃z

T
k + 1

αN
z̃N z̃T

N and

det (Q̃ + αJ ) = αN
∏N−1

k=1 μ̃k . Hence, we observe that

(Q̃ + αJ )
−1

u = 1
αN

u, so that

Q
†
jj = (Q̃ + αJ )−1

jj − 1

αN2
.

Invoking the definition of the inverse of a matrix B = adjB
det B ,

where the adjugate (or adjoint) adjB is the transpose of the
matrix of cofactors of B, yields (B3).

At last, we proof the expression (B4). Invoking [1]

(̃zk)2
j = det(Q̃\ row j\ col j − μ̃kI )∑N

n=1 det(Q̃\ row n\ col n − μ̃kI )

= det(Q̃\ row j\ col j − μ̃kI )

−c′
Q̃

(μ̃k)
. (B5)
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For k = N for which z̃N = u√
N

with corresponding eigenvalue
μ̃N = 0, we find that

det(Q̃\ row j\ col j ) = −
c′
Q̃

(0)

N
=− 1

N
c1(Q̃G) = 1

N

N−1∏
k=1

μ̃k = ξ̃ .

(B6)

Using the “rank one update” formula [2, p. 256]

det
(
An×n + Cn×1D

T
1×n

)
= det A det

(
1 + DT

1×nA
−1Cn×1

)
yields

det
(
Q̃\ row j\ col j + αuN−1.u

T
N−1

)
= det(Q̃\ row j\ col j )[1 + αuT (Q̃\ row j\ col j )−1u] (B7)

so that (B3) becomes

Q
†
jj = det(Q̃\ row j\ col j )[1 + αuT (Q̃\ row j\ col j )−1u]

det(Q̃ + αJN×N )
− 1

αN2

= 1

α

[
det(Q̃\ row j\ col j )

N
∏N−1

k=1 μ̃k

− 1

N2

]

+ det(Q̃\ row j\ col j )uT (Q̃\ row j\ col j )−1u

N
∏N−1

k=1 μ̃k

.

Using (B6) leads to (B4), which can also be proved by
differentiation both sides of (B3) with respect to α. �

The expression (B3) has an interesting form.10 For an
unweighted graph (and Laplacian Q with corresponding
pseudoinverse Q̂−1), the number of all possible spanning trees
in the graph [2, p. 76], called the complexity ξ (G), equals

det (Q + JN×N ) = N2ξ (G).

Corollary 1. In each row (or column) of the pseudoinverse
Q†, the diagonal element is the largest: Q

†
ii � Q

†
ij for each

row 1 � i � N .
Proof. Taking the difference Q

†
ii − Q

†
ij in (B2) and using

ωii = 0 gives

Q
†
ii − Q

†
ij = 1

2
ωij + uT �

2N
(ei − ej )

= 1

2N

N∑
k=1

{ωki − ωkj + ωij }.

10Whereas for an adjacency matrix, the removal of row j and
column j implies that A\ row j\ col j = AG\{j}, where G\{j} is the
graph in which node j is removed, this property does not hold for
the Laplacian, i.e., Q\ row j\ col j �= QG\{j}, because Q\ row j\ col j u = aj

with the vector aj is equal to the j th column (or row) of A and
diag(Q\ row j\ col j ) contains the degrees of the graph G without degree
dj , while QG\{j}u = 0 and diag(QG\{j}) contains all the degrees of
the graph G\{j}. The interlacing theorem [2, p. 246] states that all
eigenvalues of Q\ row j\ col j lie in between the eigenvalues of Q,

μm+1(Q) � μm(Q\ row j\ col j ) � μm(Q) for 1 � m � N − 1,

while an analysis of the cone of G\{j} leads to (see Ref. [2, art. 116])

μm(G\{j}) + 1 � μm+1(G) for 2 � m � N − 1.

Since each element in the effective resistance matrix � satisfies
[3] the triangle inequality ωki + ωij � ωkj , we find, for
any j ,

Q
†
ii − Q

†
ij � 0,

implying that Q
†
ii � Q

†
ij , which ends the proof. �

Bounds of the Hölder type (see Ref. [16, Sec. 5.5,
Eq. (5.24)]), generalizing the triangle inequality ωki + ωij �
ωkj , are discussed in Ref. [48]. Definition (7) shows
that

uT � = uT ζuT + NζT = R̃G

N
uT + NζT

so that (B2) becomes

Q
†
ij = Q

†
ii + Q

†
jj

2
− 1

2
ωij . (B8)

For each positive semidefinite matrix P , it holds [16, p. 241]
that Pij � Pii+Pjj

2 , illustrating that (B8) provides the precise
relation between off-diagonal elements in terms of the mean
of two diagonal elements and a “correction” ωij equal to half
the effective resistance between node i and j .

Theorem 5. Let Q† denote the pseudoinverse of the
weighted Laplacian Q̃, and then the diagonal element Q

†
jj

is lower bounded by

Q
†
jj � 1

Q̃jj

(
1 − 1

N

)2

(B9)

and, for each positive real number α, it holds that

Q̃jj + αQ
†
jj

2
�

√
α

(
1 − 1

N

)
. (B10)

Proof. We multiply (B1) and

Q̃jj =
N−1∑
k=1

μ̃k (̃zk)2
j

and obtain

Q̃jjQ
†
jj =

N−1∑
k=1

N−1∑
l=1

μ̃k

μ̃l

((̃zk)j (̃zl)j )2

=
N−1∑
k=1

k−1∑
l=1

μ̃k

μ̃l

((̃zk)j (̃zl)j )2 +
N−1∑
k=1

N−1∑
l=k

μ̃k

μ̃l

((̃zk)j (̃zl)j )2.

After reversing the summation in the last equation

N−1∑
k=1

N−1∑
l=k

μ̃k

μ̃l

((̃zk)j (̃zl)j )2 =
N−1∑
l=1

l∑
k=1

μ̃k

μ̃l

((̃zk)j (̃zl)j )2

and then changing the index k → l and l → k, we have

Q̃jjQ
†
jj =

N−1∑
k=1

k−1∑
l=1

(
μ̃k

μ̃l

+ 1
μ̃k

μ̃l

)
((̃zk)j (̃zl)j )2 +

N−1∑
k=1

(̃zk)4
j .
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Since the function t + 1
t

� 2 for t � 0, we find the
inequality

Q̃jjQ
†
jj � 2

N−1∑
k=1

k−1∑
l=1

((̃zk)j (̃zl)j )2 +
N−1∑
k=1

(̃zk)4
j

=
N−1∑
k=1

N−1∑
l=1

(̃zk)2
j (̃zl)

2
j =

(
1 − 1

N

)2

,

which establishes the lower bound (B9). We can apply the
same idea to

Q̃jj + αQ
†
jj =

N−1∑
k=1

(
μ̃k + α

μ̃k

)
(̃zk)2

j .

Only when α is real and positive, the minimum of the function
f (t) = t + α

t
occurs t = √

α with f (
√

α) = 2
√

α. Hence, we
find the lower bound (B10) which complements the geometric
mean inequality (B9). �

Since both Q̃jj and Q
†
jj are non-negative, the arithmetic

mean upper bounds the geometric mean so that

Q̃jj + Q
†
jj

2
�
√

Q̃jjQ
†
jj �

(
1 − 1

N

)
.

There exists a large class of matrix function f that obey
f (Q̃) =∑N−1

k=1 f (μ̃k )̃zk̃z
T
k . For this class of functions, we

observe that the proof is readily generalized to any positive
function f of a positive semidefinite matrix, such that

(f (Q̃))jj (f (Q†))jj �
(

1 − 1

N

)2

.

The bound (B9) thus seems widely applicable and bears some
similarity to the famous Heisenberg uncertainty relation in
quantum mechanics (see, e.g., Refs. [49,50]). The difference is
that inequality (B9) lower bounds the product of any diagonal
element in a semidefinite matrix with its pseudoinverse,
instead of the product of variances of noncommuting operators
in Heisenberg’s uncertainty inequality. For an unweighted
Laplacian Q, the lower bound (B9) simplifies to

(Q̂−1)jj � 1

dj

(
1 − 1

N

)2

, (B11)

from which a lower bound for the effective graph resistance
follows with (13) as

RG � (N − 1)2

N

N∑
j=1

1

dj

= (N − 1)2E

[
1

D

]
, (B12)

which is sharper than the bound RG � (N−1)2

E[D] in Ref. [2,
Eq. (7.25) on p. 207], since the harmonic mean of the degree
E[ 1

D
] � 1

E[D] . The inequality (B11) is further used in Ref. [51]

to determine the Kemeny constant, defined by dT �d
4L

, where
d is the degree vector of the graph G. While the geometric
inequality (B11) leads to a new sharp bound (B12), the
arithmetic mean companion (B10) leads, after summing over
all j in an unweighted graph where

∑N
j=1 Qjj =∑N

j=1 dj =

2L and
∑N

j=1 (Q̂−1)ii = RG

N
, to

L + α
RG

2N
�

√
α(N − 1),

which is considerably weaker than (B12).
Theorem 6. Let Q̂−1 denote the pseudoinverse of the

unweighted Laplacian Q, and then the diagonal element
(Q̂−1)ii is upper bounded by

(Q̂−1)ii � 1

di

(
1 − 1

N

)
+ max

k �=i
(Q̂−1)ki , (B13)

where maxk �=i (Q̂−1)ki is the second-largest element on row i

of the pseudoinverse Q̂−1.
Proof. Yet another representation for Q

†
jj is deduced from

Q̃Q† = Q†Q̃ = I − 1
N

J , as

(Q̃Q†)ij = (Q†Q̃)ij =
(

1 − 1

N

)
1{i=j} − 1

N
1{i �=j},

where we write

(Q̃Q†)ij =
N∑

k=1

Q̃ikQ
†
kj = Q̃iiQ

†
ij +

N∑
k=1;k �=i

Q̃ikQ
†
kj .

If i = j , then we have

Q̃iiQ
†
ii =

(
1 − 1

N

)
−

N∑
k=1;k �=i

Q̃ikQ
†
ki

=
(

1 − 1

N

)
+

N∑
k=1;k �=i

ÃikQ
†
ki ,

which reduces in a unweighted graph to

(Q̂−1)ii = 1

di

(
1 − 1

N

)
+ 1

di

N∑
k=1;k �=i

aik(Q̂−1)ki . (B14)

Using mink �=i (Q̂−1)ki � 1
di

∑N
k=1;k �=i aik(Q̂−1)ki �

maxk �=i (Q̂−1)ki , we deduce the lower and upper bound

min
k �=i

(Q̂−1)ki �
{

(Q̂−1)ii − 1

di

(
1 − 1

N

)}
� max

k �=i
(Q̂−1)ki ,

leading to (B13). �
From Q†u = 0, which is equivalent to

∑N
k=1;k �=i Q

†
ki =

−Q
†
ii � 0, we know that mink �=i Q

†
ki � −Q

†
ii

N−1 � 0 is nonpos-

itive, but maxk �=i Q
†
ki � −Q

†
ii

N−1 could be positive. Hence, the
upper bound (B13) is the more interesting bound,

0 � (Q̂−1)ii − max
k �=i

(Q̂−1)ki � 1

di

(
1 − 1

N

)
<

1

di

,

which tells us that the difference between the diagonal element
(which is the largest) and the second largest element on the
row i associated with node i is upper bounded by 1

di
: the larger

the degree, the smaller the gap between the diagonal element
(Q̂−1)ii and the second largest element maxk �=i (Q̂−1)ki .
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Combining both lower bound (B11) and upper bound (B13)
yields

1

di

(
1 − 1

N

)2

� (Q̂−1)ii � 1

di

(
1 − 1

N

)
+ max

k �=i
(Q̂−1)ki .

Thus, if the pseudoinverse Q̂−1 is also a weighted Laplacian,
implying that maxk �=i (Q̂−1)ki � 0 for each node i, then we
arrive at

1

di

(
1 − 1

N

)2

� (Q̂−1)ii � 1

di

(
1 − 1

N

)
.

In summary, if the pseudoinverse Q̂−1 of a graph G with N

nodes is a weighted Laplacian, then for large N , we find that
(Q̂−1)ii → 1

di
for any node i and that the corresponding ζ

vector in (8) tends to ( 1
d1

, 1
d2

, . . . , 1
dN

).
Theorem 6 also underlines the importance of the second

largest row i element, maxk �=i (Q̂−1)ki . Combining (B14) and
(B11) yields

N∑
k=1;k �=i

aik(Q̂−1)ki � −
(

1 − 1

N

)
1

N

and from 1
di

∑N
k=1;k �=i aik(Q̂−1)ki � maxk �=i (Q̂−1)ki , we ob-

tain

max
k �=i

(Q̂−1)ki � −
(

1 − 1

N

)
1

Ndi

, (B15)

illustrating that maxk �=i (Q̂−1)ki � 0 tends to be non-negative
in any graph with large size N . If equality in this lower bound
(B15) can be attained, then the lowest possible upper bound
follows from (B13) as

(Q̂−1)ii � 1

di

(
1 − 1

N

)2

,

while the lower bound (B11) then indicates that equality must
hold

(Q̂−1)ii = 1

di

(
1 − 1

N

)2

.

Hence, if maxk �=i (Q̂−1)ki = −(1 − 1
N

) 1
Ndi

equals its minimum

value, then (Q̂−1)ii = 1
di

(1 − 1
N

)
2
, which also is the minimum

value.
Let H̃ij denote the weight of the shortest path P∗

ij from

node i to node j , which equals H̃ij =∑l∈P∗
ij

1
rl

. Clearly, in

an unweighted graph with rl = 1, the matrix H̃ reduces to the
hopcount or distance matrix H , where Hij equals the number
of hops or links in the shortest path P∗

ij . In general [4], the
inequality ωij � H̃ij holds. Indeed, equality occurs in a tree,
because there is only one shortest path and the inequality arises
from the fact that adding links can only decrease the effective
graph resistance, because there can be more than one path
between i and j and a flow traverses over all possible paths.
Hence, an upper bound follows from (B2) as

Q
†
ij � uT H̃

2N
(ei + ej ) − R̃G

N2
.

APPENDIX C: EXPLICIT COMPUTATIONS OF THE
PSEUDOINVERSE Q† IN SPECIAL GRAPHS

We derive the pseudoinverse Q† for three special type of
graphs: the complete bipartite graph Km,n on N = n + m

nodes, the path graph PN , and the cycle CN . We assume
constant resistances on the link weights, but for the path graph,
we also give the complete general case where each link k has a
resistance rk . Expressions for the path and cycle in this section
have been determined earlier by Bendito et al. [21], using a
different method, namely operator calculus.

1. Pseudoinverse of the Laplacian of a complete bipartite graph

The Laplacian of the complete bipartite graph Km,n, with
total number of nodes N = n + m, is [2, p. 130]

QKm,n
=
[
nIm×m −Jm×n

−Jn×m mIn×n

]
.

Theorem 7. The pseudoinverse matrix of the Laplacian QKm,n
of a complete bipartite graph Km,n with N = n + m nodes is

Q
†
Km,n

= 1

N2

[
1
n

((n + m)2Im×m − (2n + m)Jm×m) −Jm×n

−Jn×m
1
m

((n + m)2In×n − (2m + n)Jn×n)

]
. (C1)

Proof. The expression (12) for α = 1 of the pseudoinverse of the Laplacian Q suggests us to compute

(QKm,n
+ J )−1 =

[
nIm×m + Jm×m Om×n

On×m mIn×n + Jn×n

]−1

=
[

(nIm×m + Jm×m)−1 Om×n

On×m (mIn×n + Jn×n)−1

]
.

The inverse of a “rank one update” can be deduced from the Sherman-Morrison-Woodbury formula as

(A + cdT )−1 = A−1 − A−1cdT A−1

1 + dT A−1c
. (C2)

Since Jm×m = um.uT
m, where um denotes the (m × 1) all-one vector, applying the above expression yields

(nIm×m + Jm×m)−1 = 1

n

(
Im×m − 1

n + m
Jm×m

)
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so that

(QKm,n
+ J )−1 =

[
1
n

(
Im×m − 1

n+m
Jm×m

)
Om×n

On×m
1
m

(
In×n − 1

n+m
Jn×n

)].

The pseudoinverse (12) of the Laplacian Q of the complete bipartite graph Km,n is

Q† =
[ 1

n

(
Im×m − 1

n+m
Jm×m

)
Om×n

On×m
1
m

(
In×n − 1

n+m
Jn×n

)][Im×m − 1
n+m

Jm×m − 1
n+m

Jm×n

− 1
n+m

Jn×m

(
In×n − 1

n+m
Jn×n

)]

=
[

1
n

(
Im×m − 1

n+m
Jm×m

)2 − 1
n+m

1
n

(
Im×m − 1

n+m
Jm×m

)
Jm×n

− 1
n+m

1
m

(
In×n − 1

n+m
Jn×n

)
Jn×m

1
m

(
In×n − 1

n+m
Jn×n

)2
]
.

With (Im×m − 1
n+m

Jm×m)
2 = Im×m − 2n+m

(n+m)2 Jm×m and

(Im×m − 1
n+m

Jm×m)Jm×n = n
n+m

Jm×n, we finally arrive at
(C1). �

The pseudoinverse Q† of the Laplacian almost equals the
Laplacian QKm,n

, except that the diagonal block matrices are
different. The star graph K1,n on N = n + 1 nodes possesses
the pseudoinverse of the Laplacian,

Q
†
star = 1

N2

[
n −J1×n

−Jn×1 (n + 1)2In×n − (2 + n)Jn×n

]
.

2. Pseudoinverse of the Laplacian of a path graph

a. Algebraic solution

For a path graph with equal link weights b, the Laplacian
Q̃ can be written (see Ref. [2, p. 125]) as

Q̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b −b 0 . . . 0 0
−b 2b −b 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 −b 2b −b

0 0 . . . 0 −b b

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= bQP .

The positive eigenvalues μk of the weighted Laplacian Q̃

of the path graph [2, pp. 126–128] are

(μ̃P )N−k = 2b

[
1 − cos

(
πk

N

)]
= 4b sin2

(
πk

2N

)
,

where 1 � k � N − 1 [and μ0 = (μ̃P )N = 0]. The normal-
ized eigenvector elements of the Laplacian Q of the path graph,
corresponding to μk = (μ̃P )N−k , are known as

(zk)v =
√

2√
N

cos

(
πkv

N
− πk

2N

)
,

where 1 � v � N points towards node v in the path graph.
The elements of the pseudoinverse of the path graph Laplacian

follow from (11) as

Q
†
ij =

N−1∑
k=1

(zk)i(zk)j
μk

= 1

Nb

N−1∑
k=1

cos
(

πki
N

− πk
2N

)
cos
(

πkj

N
− πk

2N

)
1 − cos

(
πk
N

)
= 1

2Nb

N−1∑
k=1

cos
[

πk(i+j−1)
N

]+ cos
[

πk(i−j )
N

]
1 − cos

(
πk
N

) .

Theorem 8. If we define the trigonometric sum

qN (m) =
N−1∑
k=1

cos
(

πkm
N

)
1 − cos

(
πk
N

) = 1

2

N−1∑
k=1

cos
(

πkm
N

)
sin2

(
πk
2N

) , (C3)

which is an even function in m, i.e., qN (m) = qN (−m) and
equal, for 0 � m � 2N , to

qN (m) = m2

2
− m

(
N + 1

2

)
+ (2m + 1) + (−1)m+1

4

+ N2 − 1

3
, (C4)

then we can compactly express each element (i,j ) of the
symmetric pseudoinverse matrix Q

†
path of the path graph as

(Qpath)†ij = 1

2Nb
{qN (i + j − 1) + qN (i − j )}. (C5)

In fact, (C5) shows that the symmetric pseudoinverse matrix
Q† is the sum of two symmetric matrices Q1 and Q2, where all
elements in Q1 along parallels of the antidiagonal are the same,
whereas all elements in Q2 along parallels of the diagonal are
the same. Since cos [πk

N
(m + 2jN )) = cos (πk

N
m + 2πkj )] =

cos (πk
N

m) for any integer j , we find periodicity in N ,

qN (m) = qN (m + 2jN ).

Invoking (C19), we have

qN (0) = 1

2

N−1∑
k=1

1

sin2
(

πk
2N

) = N2 − 1

3
, (C6)

which is the maximum value of qN (m), because |qN (m)| �
1
2

∑N−1
k=1

| cos ( πkm
N

)|
sin2 ( πk

2N
)

� 1
2

∑N−1
k=1

1
sin2 ( πk

2N
)
= qN (0).
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Proof of Theorem 8. The trigonometric sum qN (m) in (C3)
is evaluating by first deriving a difference equation for qN (m),
which is then solved.

(a) Difference equation for qN (m). Using

cos

(
πkm

N

)
− cos

(
πk(m − 1)

N

)
= −2 sin

(
πkm

N
− πk

2N

)
sin

(
πk

2N

)
,

the difference qN (m) = qN (m) − qN (m − 1) is

qN (m) = 1

2

N−1∑
k=1

cos
(

πkm
N

)− cos
[

πk(m−1)
N

]
sin2

(
πk
2N

)
= −

N−1∑
k=1

sin
(

πkm
N

− πk
2N

)
sin
(

πk
2N

) ,

from which we find that qN (m)|m=0 = qN (0) − qN (−1) =
qN (0) − qN (1) = N − 1. Observing that

sin

(
πk(m + 1)

N
− πk

2N

)
− sin

(
πkm

N
− πk

2N

)
= 2 sin

(
πk

2N

)
cos

(
πkm

N

)
,

the second-order difference 2qN (m + 1) = qN (m + 1) −
qN (m) = qN (m + 1) − 2qN (m) + qN (m − 1) is

2qN (m + 1) = −
N−1∑
k=1

sin
[

πk(m+1)
N

− πk
2N

]− sin
(

πkm
N

− πk
2N

)
sin
(

πk
2N

)
= −2

N−1∑
k=1

cos

(
πkm

N

)
.

With (C17), we obtain, for m �= 0,

2qN (m + 1) = −2
(−1)m−1 − 1

2
= 1 − (−1)m−1,

while, for m = 0,

2qN (m + 1)|m=0 = −2(N − 1).

The second-order difference 2qN (m + 1) is equivalent to the
difference equation, for m �= 0,

qN (m + 1) − 2qN (m) + qN (m − 1) = 1 + (−1)m (C7)

and, for m = 0,

qN (1) − 2qN (0) + qN (−1)

= 2[qN (1) − qN (0)] = −2(N − 1). (C8)

(b) Solving the difference equation (C7) for qN (m). The
general solution of the difference equation qN (m + 1) −
2qN (m) + qN (m − 1) = f (m) for integers m �= 0 and an
arbitrary function of f (m) can be deduced with generating
functions,

T (z) =
∞∑

m=0

qN (m)zm. (C9)

After multiplying both sides by zm and summing over all m >

0, the difference equation becomes

∞∑
m=1

qN (m + 1)zm − 2
∞∑

m=1

qN (m)zm +
∞∑

m=1

qN (m − 1)zm

=
∞∑

m=1

f (m)zm

Written in terms of F (z) =∑∞
m=0 f (m)zm and T (z),(

1

z
− 2 + z

)
T (z)

= F (z) + {qN (1) − f (0) − 2qN (0)} + qN (0)

z
.

Invoking the conditions (C8) and qN (0) − (N − 1) = qN (1)
yields

T (z) = z

(1 − z)2 F (z) − {(N − 1) + qN (0) + f (0)}

× z

(1 − z)2 + qN (0)

(1 − z)2 .

After expanding the Taylor series around z = 0 and
using the Cauchy product

∑∞
m=0 fmzm

∑∞
m=0 gmzm =∑∞

m=0 (
∑m

k=0 fm−kgk)zm, we obtain

T (z) =
∞∑

m=0

{
m∑

k=0

kf (m − k) − m{(N − 1)

+ qN (0) + f (0)} + qN (0)(m + 1)

}
zm,

where we have used the derivative of the geometric se-
ries, d

dz
1

1−z
= 1

(1−z)2 =∑∞
m=1 mzm−1. Equating corresponding

powers in z yields the general solution as a function of f (m)
and the initial conditions qN (0),

qN (m) =
m∑

k=0

kf (m − k) − m{(N − 1) + f (0)} + qN (0).

(C10)

For the specific case of f (m) = 1 + (−1)m, the sum in the
general solution (C10) becomes

m∑
k=0

kf (m − k) =
m∑

k=0

k[1 + (−1)k−m]

= m(m + 1)

2
+ (2m + 1) + (−1)m+1

4
,

so that (C10) reduces to

qN (m) = m(m + 1)

2
− m(N + 1)

+ (2m + 1) + (−1)m+1

4
+ qN (0).

Finally, with (C6), we arrive at (C4), for 0 � m � 2N due to
periodicity and qN (−m) = qN (m). �

032311-17



P. VAN MIEGHEM, K. DEVRIENDT, AND H. CETINAY PHYSICAL REVIEW E 96, 032311 (2017)

b. Electrical solution

We compute the nodal voltages in a path graph under a
uniform external current x = ej − u

N
. The node indexed as 1

is at an end of the path and the resistance between node k and
k + 1 is rk . For a tree, the effective resistance between any
pair of nodes equals the weighted path length between those
nodes, see, for example, Refs. [4,13]. The effective resistance
between node i and j in the path graph equals ωij =∑j−1

k=i rk ,
for i < j , and simplifies for unit resistances, where ri = 1 for
all links, to ωij = |i − j |. Using J = uuT , we rewrite (14) as

v = 1

2

(
uuT

N
− I

)
�x.

Filling in the external current x = ej − u
N

gives

v = 1

2N

(
uuT

N
− I

)
�(Nej − u)

= 1

2N

[
u(uT �ej ) − 1

N
u(uT �u) − N�ej + �u

]
(C11)

and the ith component of the voltage vector v is

vi = 1

2N

(
uT �ej − 1

N
uT �u − Nωij + eT

i �u

)
. (C12)

We calculate the four terms in expression (C12) for vi using
ωab =∑b−1

k=a rk for a < b. First, we have

uT �ej =
N∑

i=1

ωij =
j∑

i=1

j−1∑
k=i

rk +
N∑

i=j+1

i−1∑
k=j

rk

=
j−1∑
k=1

krk +
N−1∑
k=j

(N − k)rk.

Second,

1

N
uT �u = 1

N

N∑
i=1

N∑
k=1

ωik = 2

N

N∑
i=1

⎛⎝ i∑
j=1

i−1∑
k=j

rk

⎞⎠
= 2

N

N∑
i=1

i−1∑
k=1

krk = 2

N

N−1∑
k=1

k(N − k)rk.

Third,

eT
i �u = uT �ei =

i−1∑
k=1

krk +
N−1∑
k=i

(N − k)rk.

Substituting these terms in (C12) and solving for i � j

specifically gives

vi = 1

2N

(
uT �ej − 1

N
uT �u − Nωij + uT �ei

)

= 1

2N

⎡⎣j−1∑
k=1

krk +
N−1∑
k=j

(N − k)rk − 2

N

N−1∑
k=1

k(N − k)rk

− N

j−1∑
k=i

rk +
i−1∑
k=1

krk +
N−1∑
k=i

(N − k)rk

]

= 1

2N

⎡⎣N−1∑
k=1

2k2/Nrk +
N−1∑
k=j

2(N − k)rk −
j−1∑
k=i

2krk

⎤⎦
= 1

N2

N−1∑
k=1

k2rk + 1

N

N−1∑
k=j

(N − k)rk − 1

N

j−1∑
k=i

krk.

After a similar computation for i > j , we arrive at the nodal
voltage for general resistances rk ,

vi = Q
†
ij =

{
1

N2

∑N−1
k=1 k2rk + 1

N

∑N−1
k=j (N − k)rk − 1

N

∑j−1
k=i krk if i � j

1
N2

∑N−1
k=1 k2rk + 1

N

∑N−1
k=i (N − k)rk − 1

N

∑j−1
k=j krk if i > j

. (C13)

For unit resistances [rk = 1 for all k in (C13)], we find

vi = −N2 − 1

6N
+ (N − i)(N − i + 1)

2N
,

consistent with (28) and (C5) with b = 1.

3. Pseudoinverse of the Laplacian of a cycle

Theorem 9. The element (i,j ) of the symmetric pseudoinverse matrix Q
†
C of the Laplacian QC of a cycle (also called circuit

or ring) with N nodes is

(Q†
C)ij = 1

N

[
qN

2
(i − j ) + (−1)i−j

4

]
, (C14)

where qN (m) is defined in (C3) and (C4).
Proof. The Laplacian eigenvalues of the cycle are [2, p. 123], for m = 1, . . . ,N ,

(μC)m = 2 − 2 cos

[
2π (m − 1)

N

]
= 4 sin2 π (m − 1)

N

with

rm = α

[
1, cos

2π (m − 1)

N
, cos

4π (m − 1)

N
, . . . , cos

2(N − 1)π (m − 1)

N

]
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and

wm = α

[
0, sin

2π (m − 1)

N
, sin

4π (m − 1)

N
, . . . , sin

2(N − 1)π (m − 1)

N

]
are two real, orthogonal eigenvectors belonging to the same real eigenvalue (μC)N−(m−2) = (μC)m, with normalization α. In the
sequel, we separate between even and odd number of nodes N .

(a) N is even. It follows from (11) that, if N is even,

(Q†
C)ij =

[ N
2 ]∑

m=2

(rm)i(rm)j
(μC)m

+
(
r[ N

2 +1]

)
i

(
r[ N

2 +1]

)
j

(μC)[ N
2 +1]

+
N∑

m=[ N
2 +2]

(wm)i(wm)j
(μC)m

= 2

N

⎡⎣[ N
2 ]∑

m=2

cos 2πi(m−1)
N

cos 2πj (m−1)
N

+ sin 2πi(m−1)
N

sin 2πj (m−1)
N

4 sin2 π(m−1)
N

+ cos (πi) cos (πj )

8

⎤⎦
and

(Q†
C)ij = 1

2N

⎧⎨⎩
[ N

2 −1]∑
m=1

cos 2π(i−j )m
N

sin2 πm
N

+ cos [π (i − j )]

2

⎫⎬⎭,

which we can rewrite in terms of qN (m) defined in (C3) leading to (C14).
(b) N is odd. If N is odd, then (11) becomes

(Q†
C)ij =

N−1∑
k=1

(zk)i(zk)j
μk

=
[ N+1

2 ]∑
m=2

(rm)i(rm)j
(μC)m

+
N∑

m=[ N+3
2 ]

(wm)i(wm)j
(μC)m

= 2

N

[ N+1
2 ]∑

m=2

cos 2πi(m−1)
N

cos 2πj (m−1)
N

+ sin 2πi(m−1)
N

sin 2πj (m−1)
N

4 sin2 π(m−1)
N

and

(Q†
C)ij = 1

2N

[ N+1
2 ]∑

m=2

cos 2π(i−j )(m−1)
N

sin2 π(m−1)
N

= 1

2N

[ N−1
2 ]∑

m=1

cos 2π(i−j )m
N

sin2 πm
N

def= 1

N
[q∗

N (m)].

We mimic some steps in proofs of Theorem 8 to find the difference equation for q∗
N (m). Observing that q∗

N (m + 1) − 2q∗
N (m) +

q∗
N (m − 1) = −(N − 1) results in the general solution for q∗

N (m)

q∗
N (m) =

m∑
k=0

kf (m − k) − m

{
(N − 1)

2
+ f (0)

}
+ q∗

N (0), (C15)

where q∗
N (0) = N2−1

12 and f (m − k) = f (0) = 1. Equation (C15) can be reduced to

q∗
N (m) = m(m + 1)

2
− m

(N + 1)

2
+ N2 − 1

12
= qN

2
(m) + (−1)m

4
,

which leads to the same equation (C14) for (Q†
C)

ij
as in the N is even case. �

4. Trigonometric sums

Invoking the known formula due to Euler [52], which
follows after taking the real part of the geometric sum∑n−1

k=0 eikx = einx−1
eix−1 = e

i(n−1)x
2

sin ( nx
2 )

sin ( x
2 ) ,

n−1∑
k=0

cos kx = sin
[
x
(
n − 1

2

])
2 sin

(
x
2

) + 1

2
(C16)

yields

N−1∑
v=1

cos
(πm

N
v
)

= (−1)m−1 − 1

2
(C17)

for m �= 0 (nor m = 2kN ), else
∑N−1

v=1 cos (πm
N

v) = N − 1.
Theorem 10. For any integer n > 1, it holds that

r(n) =
n−1∑
v=1

1

sin2
(

πv
n

) = n2 − 1

3
(C18)

and

h(n) =
n−1∑
v=1

1

sin2
(

πv
2n

) = 2

(
n2 − 1

3

)
= 2r(n). (C19)
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Proof. (a) We will first show that r(n) = 1
2h(n). We start

from the definition

r(n) =
n−1∑
v=1

1

sin2
(

πv
n

) =
n−1∑
v=1

1

4 sin2
(

πv
2n

)
cos2

(
πv
2n

)
= 1

4

n−1∑
v=1

1

sin2
(

πv
2n

) + 1

4

n−1∑
v=1

1

cos2
(

πv
2n

) .
Let k = n − v in the last sum, then

n−1∑
v=1

1

cos2
(

πv
2n

) =
n−1∑
k=1

1

cos2
(

π
2n

(n − k)
) =

n−1∑
k=1

1

sin2
(

π
2n

k
) .

Combined, it yields

r(n) = 1

2

n−1∑
v=1

1

sin2
(

πv
2n

) = 1

2
h(n).

Since the equality (C19) directly follows from the truth of
equality (C18), it remains to demonstrate the equality (C18)
for r(n).

(b) Consider

r(2n) =
2n−1∑
v=1

1

sin2
(

πv
2n

) =
n−1∑
v=1

1

sin2
(

πv
2n

) +
2n−1∑
v=n

1

sin2
(

πv
2n

) .
The last sum equals

2n−1∑
v=n

1

sin2
(

πv
2n

) =
n−1∑
v=0

1

sin2
(

πv
2n

+ π
2

) =
n−1∑
v=0

1

cos2
(

πv
2n

)
=

n−1∑
v=1

1

cos2
(

πv
2n

) + 1.

Thus,

r(2n) = 1 +
n−1∑
v=1

[
1

sin2
(

πv
2n

) + 1

cos2
(

πv
2n

)]

= 1 +
n−1∑
v=1

1

sin2
(

πv
2n

)
cos2

(
πv
2n

) = 1 + 4
n−1∑
v=1

1

sin2
(

πv
n

)
and this relation establishes the recursion

r(2n) = 4r(n) + 1. (C20)

In addition, r(2) = 1
sin2 ( π

2 ) = 1. A few times iterating (C20)
yields

r(n) = 4kr
( n

2k

)
+ 4k − 1

3
.

If n = 2.2k , then

r(2k) = (2k)2r
( n

2k

)
+ (2k)2 − 1

3

= (2k)2r(2) + (2k)2 − 1

3
= 4(2k)2 − 1

3
,

which suggests that

r(n) = 4(n/2)2 − 1

3
= n2 − 1

3
.

Indeed, we readily verify that the right-hand side of (C18)
satisfies the recursion (C20):

(2n)2 − 1

3
= 4

n2 − 1

3
+ 1 = (2n)2 − 4 + 3

3
,

which proves (C18). �
The second identity in Theorem 10 does not seem to appear

in textbooks. The expression r(n) was earlier derived in Ref.
[2, p. 207] and Ref. [4], because the effective graph resistance
of the path on n nodes equals R(n−1)hop path = (n−1)n(n+1)

6 =
n
2 r(n).

APPENDIX D: LAPLACIAN PSEUDOINVERSE
OF THE COMPLEMENT OF A GRAPH

The adjacency matrix of the complement of a graph is Ac =
J − I − A: If there is a link between node i and j in G, then
there is no link between node i and j in its complement Gc.
Thus, the remainder of this section concentrates on unweighted
graphs. The Laplacian Qc of the complement of a graph has
[2] the same set of eigenvectors as that of the Laplacian Q. If
Q =∑N−1

k=1 μkzkz
T
k , then

Qc =
N−1∑
k=1

(N − μk)zkz
T
k .

Consequently, assuming that both the graph G and its comple-
ment Gc are connected, 0 < μN−1 < μ1 < N , the Laplacian
pseudoinverse of the complement of a graph is

(̂Qc)
−1 =

N−1∑
k=1

1

N − μk

zkz
T
k

and, in matrix form,

(̂Qc)
−1 = Z(NI − M)−1ZT = (αI − Q)−1

∣∣
α=N

,

where (αI − Q)−1 is known [2, p. 243] as the resolvent of Q.
From (B1), the diagonal element corresponding to node j in
Laplacian pseudo-inverse of Gc is

(̂Qc)
−1
jj =

N−1∑
k=1

1

N − μk

(zk)2
j

and (13) shows that the effective graph resistance of the
complement Gc is

RGc = N

N−1∑
k=1

1

N − μk

. (D1)

1. The effective graph resistance RGc of the
complement Gc of the graph G

Introducing the Taylor expansion 1
N−μk

= 1
N(1− μk

N
)
=∑∞

m=0 μm
k

1
Nm+1 , convergent because of the assumption μ1 <

N , into (D1) yields

RGc =
∞∑

m=0

1

Nm

N−1∑
k=1

μm
k .
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Since
N−1∑
k=1

μm
k = μm

1

N−1∑
k=1

(
μk

μ1

)m

= μm
1

[
1 +

N−1∑
k=2

(
μk

μ1

)m
]

< μm
1

[
1 + (N − 2)

(
μ2

μ1

)m]
< μm

1 (N − 1),

the mth term in the series∑N−1
k=1 μm

k

Nm
<
(μ1

N

)m

(N − 1)

decreases exponentially in m because μ1

N
< 1. Moreover, since

all terms are positive, we obtain the lower bound

RGc >

K∑
m=0

1

Nm

N−1∑
k=1

μm
k

for each finite integer K . Using
∑N−1

k=1 μk = 2L,
∑N−1

k=1 μ2
k =

2L +∑N
k=1 d2

k , and
∑N

k=1 μ3
k =∑N

k=1 d3
k + 3

∑N
k=1 d2

k −
6�G as derived in Ref. [2], we obtain

RGc = N − 1 + 2L

N
+ 2L +∑N

k=1 d2
k

N2

+
∑N

k=1 d3
k + 3

∑N
k=1 d2

k − 6�G

N3
+ O

(∑N−1
k=1 μ4

k

N4

)

= N − 1 + E[D] + E[D] + E[D2]

N

+ E[D3] + 3E[D2]

N2
− 6�G

N3
+ (N − 1)O

[(μ1

N

)4
]
,

which holds for any pair of connected graphs and com-
plementary graphs and thus excludes the complete graph
that attains the minimum possible effective graph resistance
minG RG = N − 1. Thus, for any connected graph G whose
complement Gc is also connected, we can write

RG > N − 1 + E[Dc] + E[Dc] + E[(Dc)2]

N

+ E[(Dc)3] + 3E[(Dc)2]

N2
− 6�Gc

N3
,

where Dc = N − 1 − D is the degree of a random node in
the complementary graph. The smaller the largest Laplacian
eigenvalue μ1, the sharper the lower bound is.

Invoking the harmonic, geometric, and arithmetic mean
inequality [53]

n∑n
j=1

1
aj

� n

√√√√ n∏
j=1

aj � 1

n

n∑
j=1

aj (D2)

yields

N − 1∑N−1
k=1

N
μk(N−μk)

� 1

N (N − 1)

N−1∑
k=1

μk(N − μk)

= E[D] − E[D2]

(N − 1)
.

With

RGc + RG

N
=

N−1∑
k=1

N

μk(N − μk)
,

we thus find that

N (N − 1)

E[D] − E[D2]
N−1

� RGc + RG.

For a connected ER random graph Gp(N ) and its connected
complement Gc

p(N ) = G1−p(N ), the last inequality becomes

RGp(N) + RG1−p(N) � N (N − 1)

(N − 1)p − (N − 2)p2 − p

= N (N − 1)

(N − 2)p(1 − p)

or, simplified,

RGp(N) + RG1−p(N) >
N

p(1 − p)
.
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