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Networks are often made up of several layers that exhibit diverse degrees of interdependencies. An interde-
pendent network consists of a set of graphs G that are interconnected through a weighted interconnection matrix
B, where the weight of each intergraph link is a non-negative real number p. Various dynamical processes, such
as synchronization, cascading failures in power grids, and diffusion processes, are described by the Laplacian
matrix Q characterizing the whole system. For the case in which the multilayer graph is a multiplex, where the
number of nodes in each layer is the same and the interconnection matrix B = pI , I being the identity matrix,
it has been shown that there exists a structural transition at some critical coupling p∗. This transition is such
that dynamical processes are separated into two regimes: if p > p∗, the network acts as a whole; whereas when
p < p∗, the network operates as if the graphs encoding the layers were isolated. In this paper, we extend and
generalize the structural transition threshold p∗ to a regular interconnection matrix B (constant row and column
sum). Specifically, we provide upper and lower bounds for the transition threshold p∗ in interdependent networks
with a regular interconnection matrix B and derive the exact transition threshold for special scenarios using the
formalism of quotient graphs. Additionally, we discuss the physical meaning of the transition threshold p∗ in
terms of the minimum cut and show, through a counterexample, that the structural transition does not always
exist. Our results are one step forward on the characterization of more realistic multilayer networks and might
be relevant for systems that deviate from the topological constraints imposed by multiplex networks.
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I. INTRODUCTION

An interdependent network, also called an interconnected
network or a network of networks, is a multilayer network
consisting of different types of networks that depend upon
each other for their functioning [1]. The most illustrative ex-
ample of these systems is perhaps given by multilayer power
networks, in which the power system is represented in one
layer which in turn is connected to a communication network
whose topology is encoded by another layer. The nodes in
the former are controlled by those in the second, whereas at
the same time the elements of the communication layer need
power to function [2], closing the feedback between the two
graphs. The study of the structure and dynamics of interdepen-
dent networks is of utmost importance, as critical infrastruc-
tures such as the previous one, and other telecommunications,
transportation, water-, oil-, and gas-supply systems, etc., are
highly interconnected and mutually depend upon each other.
As for the dynamics, the framework of multilayer interdepen-
dent networks constitutes a useful approach to address catas-
trophic events such as large-scale blackouts, whose causes are
rooted in the inherent vulnerability associated to the interde-
pendencies between the different components of a complex
multilayer system: the failure of one infrastructure propagates
to another infrastructure [3] and so on. Indeed, Little [4] has
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proposed to view critical infrastructures as systems of systems
so as to understand their robustness against cascading failures.

A key aspect of multilayer networks that has received less
attention is the coupling between the layers that make up the
whole system, as it can modify the outcome of dynamical
processes that run on top of them. For example, Buldyrev
et al. [5] showed that the collapse of interdependent networks
occurs abruptly while the failure of individual networks is
approached continuously. Also, the epidemic threshold for
disease spreading processes is characterized by both the topol-
ogy of each coupled network and the interconnection between
them [6–9]. On the other hand, the authors of [10] studied an
interdependent model consisting of two connected networks,
G1 and G2, with weighted interconnection links. The coupling
weight between the two networks is determined by a non-
negative real value p, which, for instance, can be interpreted
as the power dispatched by an element of the power layer
in the power-communication system above. The previous
interdependent system has been shown [10,11] to exhibit a
structural transition that takes place at a coupling value, p∗,
that separates two regimes: for p > p∗, the interdependent
network acts as a whole, whereas for p < p∗, the network is
structurally separated and the layers G1 and G2 behave as if
they were isolated. The explicit expression for the transition
threshold p∗ is determined in [12]. Rapisardi et al. [13] study
the algebraic connectivity of interdependent networks using a
perturbation approach. Their study reveals multiple structural
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FIG. 1. The figure depicts two interdependent networks that only
differ in their interlayer couplings: the left panel represents the
case studied in [10], which is however not commonly found in
real systems as it constrains all interlayer couplings to follow a
one-to-one interconnection pattern. On the contrary, the right panel
represents a scenario in which the interlayer connectivity follows a
k-to-k coupling scheme, and although still not fully realistic given
the regularity—i.e., homogeneity—of the interconnection pattern, it
is more complex and representative of real interdependent networks.
(a) one-to-one interconnection and (b) k-to-k interconnection (here
k = 2).

transitions, where each single layer dominates the dynamics
on the whole system.

The model in [10] focuses on a one-to-one interconnection
between nodes of different layers. This means that one node
in graph G1 connects to one and only one node in graph
G2 and vice versa. When the interconnection pattern is not
one to one, as in most real-world examples, the determination
of the transition threshold p∗ is more complex. Examples of
a multiple-to-multiple interconnection pattern can be found
in (i) smart grids consisting of coupled sensor networks and
power networks [14–16] where a sensor might control multi-
ple power stations due to cost and energy constraints; (ii) func-
tional brain networks modeled as multilayer networks where
one brain region in one layer might be functionally connected
to any node in another layer [17]; and (iii) infrastructures like
power networks and fiber-optic communication systems that
are geographically interconnected based on spatial proximity
[18,19]. Given the abundance of the previous examples and
similar scenarios, it is thus relevant to extend the study of
structural transitions to such cases.

In this paper, we investigate the structural threshold p∗ of
interdependent networks with a general k-to-k (k is a positive
integer) interconnection; see Fig. 1 and Sec. II, where we
introduce these networks. In Sec. III, we derive upper and
lower bounds for the structural threshold p∗ and report on
certain topologies whose exact transition threshold can be
calculated from its quotient graph. The physical interpretation
of the structural threshold p∗ with respect to the minimum cut
is presented in Sec. IV. Next, in Sec. V, we derive the exact
structural threshold p∗ for special cases of interconnectivity
and present a counterexample for the nonexistence of the
structural threshold p∗. Section VI concludes the paper.

II. INTERDEPENDENT NETWORKS

Let the graph G(N,L) represent an interdependent, multi-
layer network consisting of two layers (networks), described

by graph G1 with n nodes and graph G2 with m nodes.
The total number of nodes in G is thus N = n + m. An
interdependent link connects a node i in network G1 to a node
j in network G2. Within this paper, we use mainly the ter-
minology of interdependent networks or multilayer networks.
The relations and the differences between terminology, like
multiplex networks, interacting networks, and interconnected
networks, are reviewed in [20, Table 1]. The adjacency matrix
A of the interdependent network G has a block structure of
the form

A =
[

(A1)n×n Bn×m

(BT )m×n (A2)m×m

]

,

where A1 is the n × n adjacency matrix of G1, A2 is the m ×
m adjacency matrix of G2, and B is the n × m coupling or
interconnection matrix encoding the connections between G1
and G2. If each interdependent link is weighted with a non-
negative real number p, the matrix B is a weighted matrix
with elements bij = p if node i in G1 connects to node j in
G2, otherwise bij = 0. Note that the definition for B used in
[1] is more general, as the weights of each interdependent link
can be different. Here, the matrix B corresponds to a scenario
in which each interdependent link has a weight p, the same
for all links of this kind.

A k-to-k interconnection, where k = 1, 2, . . . , min(n,m),
means that one node in graph G1 connects to k nodes in graph
G2 and vice versa. We only consider undirected interconnec-
tion links. The k-to-k interconnection requires a square matrix
B with n = m, because the number kn of interconnection
links computed in graph G1 must be equal to the number
km computed in graph G2, i.e., kn = km. For the rest of
this article, we focus on a square interconnection matrix B
with n = m and the subscript of matrix B is omitted. Further-
more, as noted before, the k-to-k interconnectivity pattern is a
generalization of the one-to-one scheme (B = pI ) studied in
[5,10,12].

For a square coupling matrix B, a k-to-k interconnection
can be constructed via a circulant matrix [21] with the form

B =

⎡

⎢⎢⎢⎢⎢⎢⎣

c1 c2 c3 · · · cn

cn c1 c2 · · · cn−1

cn−1 cn c1 · · · cn−2

...
...

...
. . .

...
c2 c3 c4 · · · c1

⎤

⎥⎥⎥⎥⎥⎥⎦
, (1)

where the row vector (c1, c2, . . . , cn) has exactly k elements
equal to p and n − k elements that are 0. A circulant matrix
is a matrix where each row is the same as the previous one,
but the elements are shifted one position to the right and
wrapped around at the end. Circulant topology is commonly
used to represent the periodic and discrete filters in the field of
discrete signal processing [22]. The circulant representation
enables filtering the input signals by using matrix-vector
multiplication and outputting the linear combinations of the
input signals. The circulant representation enables filtering
the input signals by using matrix-vector multiplication and
outputting the linear combinations of the input signals. The
circulant interconnection topology is commonly used in core
telecommunication networks. Such networks often consist of
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a primary network and a back-up network. Each node in
the primary core is typically connected to two nodes in the
back-up network, for the sake of redundancy. The resulting
interconnection topology is circulant. Circulant matrices are
commutative [23]. For example, a symmetric matrix B for a
2-to-2 (k = 2) interconnection can be written as

B =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 p 0 · · · p

p 0 p · · · 0
0 p 0 · · · 0
...

...
...

. . .
...

p 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Analogous to the definition of the Laplacian matrix Q =
! − A in a single network, where ! is the diagonal matrix of
node degrees, we use the following diagonal matrices:

!1
def= diag(Bu), !2

def= diag(BT u)

to define the Laplacian matrix Q of the interdependent net-
work G as

Q =
[
Q1 + !1 −B

−BT Q2 + !2

]

,

where Q1 and Q2 are the Laplacian matrices of networks G1
and G2, respectively. The all-one vector is denoted by u and
the subscript of u is used if the dimension is not clear. Since
the Laplacian matrix Q is symmetric, the eigenvalues of Q
are non-negative and at least one is zero [21]. We order the
eigenvalues of the Laplacian matrix Q as 0 = µN ! µN−1 !
· · · ! µ1 and denote the eigenvector corresponding to the
j -largest eigenvalue by xj . The second smallest eigenvalue
of the Laplacian matrix Q was coined by Fiedler [24] as
the algebraic connectivity µN−1 of a graph G. The algebraic
connectivity plays a key role in different aspects related to
the structure and dynamics of networks, such as in diffusion
processes [11,25], synchronization stability [26], and network
robustness against failures [27].

The Laplacian eigenvalue equation for the eigenvector
xk = (xT

1 , xT
2 )T , where x1 and x2 are n × 1 vectors, associ-

ated to the eigenvalue µk is
[
Q1 + !1 −B

−BT Q2 + !2

][
x1

x2

]

= µk

[
x1

x2

]

. (2)

The normalized vector xN = 1√
N

(uT
n , uT

n )T is an eigenvector
associated to the smallest eigenvalue µN = 0 of the Laplacian
Q. We briefly present a theorem (in [1, Theorem 3]) to intro-
duce a nontrivial eigenvalue and eigenvector of the Laplacian
Q.

Theorem 1. Only if the n × m interconnection matrix B̃

has a constant row sum equal to µ∗

N
m and a constant column

sum equal to µ∗

N
n, which we call the regularity condition for

B̃n×m,

B̃um = µ∗

N
mun

B̃T un = µ∗

N
num

then

x = 1√
N

[√
m

n
uT

n , −
√

n

m
uT

m

]T

is an eigenvector of Q associated to the eigenvalue

µ∗ =
(

1
n

+ 1
m

)
uT

n B̃n×mum

and uT
n B̃n×mum equals the sum of the elements in B̃, rep-

resenting the total strength of the interconnection between
graphs G1 and G2.

Corollary 1. Consider an interdependent graph G with N
nodes consisting of two graphs each with n nodes, whose
interconnections are described by a weighted interconnection
matrix B. For a k-to-k interconnection pattern with the cou-
pling weight p on each interconnection link, the vector

x = 1√
N

[
uT

n , −uT
n

]T (3)

is an eigenvector of the Laplacian matrix Q of graph G
associated to the eigenvalue

µ∗ = 2kp. (4)

Proof. For a k-to-k interconnection, the row and column
sum of the interconnection matrix B is a constant equal to kp,

Bun = kpun, BT un = kpun,

which obeys the regularity condition in Theorem 1. With
n = m and the total coupling strength uT

n B̃n×mum = kpn in
Theorem 1, we establish Corollary 1. !

Corollary 1 shows the existence of an eigenvalue µ∗ =
2kp. When graphs G1 and G2 are connected and the coupling
weight p → 0, the eigenvalue µ∗ → 0 and all the other N − 2
eigenvalues (excluding eigenvalues zero and µ∗) approach
xT

1 Q1x1 + xT
2 Q2x2 > 0. Therefore, for p sufficiently small,

the eigenvalue µ∗ = 2kp can be made the smallest posi-
tive eigenvalue, which then equals the algebraic connectivity
µN−1 of the whole interdependent network G. By increasing
the coupling weight p, at some point, the nontrivial eigenvalue
µ∗ = 2kp no longer is the second smallest eigenvalue. Hence,
there exists a transition threshold p∗ such that µN−1 ̸= 2kp
when p > p∗. Because the eigenvalues of the Laplacian Q
are continuous functions of the coupling weight p, the second
and third smallest eigenvalues coincide [12] at the point of the
transition threshold p∗.

Finally, the Laplacian matrix Q for a k-to-k interconnec-
tion can be written as the sum of two matrices,

Q =
[
Q1 O

O Q2

]

+
[

kpI −B

−BT kpI

]

.

Moreover, according to the interlacing theorem for the sum
of two matrices [21], a lower bound for the third smallest
eigenvalue µN−2 of the Laplacian matrix Q follows

µN−2(Q) " min(µn−2(Q1), µn−2(Q2)), (5)

where µn−2(Q1) and µn−2(Q2) are the third smallest eigen-
value of graphs G1 and G2, respectively.
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FIG. 2. Accuracy of the upper and lower bounds for the transition threshold p∗ in interdependent networks consisting of (a) two Erdős-
Rényi graphs and (b) two Barabási-Albert graphs with n = 500 and average degree dav = 6. The interconnection pattern is a 2-to-2 scheme,
i.e., k = 2.

III. BOUNDS AND EXACT EXPRESSION FOR THE
TRANSITION THRESHOLD p∗

This section derives both upper and lower bounds for the
transition threshold p∗ of interdependent networks with k-
to-k (k " 1) interconnection patterns. We find topologies of
interdependent networks where an exact analytical expression
for the transition threshold can be attained.

A. Upper and lower bounds for p∗

For a given interconnection matrix B with a k-to-k inter-
connection, i.e., Bu = BT u = kpu, the Laplacian matrix Q
can be written as

Q =
[
Q1 + kpI −B

−BT Q2 + kpI

]

. (6)

For any normalized vector x = (xT
1 , xT

2 )T , the quadratic form
xT Qx of the Laplacian Q follows

xT Qx = kp + xT
1 Q1x1 + xT

2 Q2x2 − 2xT
1 Bx2. (7)

Let x1 be an eigenvector associated to the second smallest
eigenvalue µn−1(Q1) of Q1 and x2 = 0. For the vector x =
(xT

1 , 0)T , its normalization reads xT x = xT
1 x1 = 1. Thus, the

quadratic form in (7) follows xT Qx = kp + µn−1(Q1). Anal-
ogously, we have xT Qx = kp + µn−1(Q2) when x1 = 0 and
x2 is the eigenvector associated to µn−1(Q2). Applying the
Rayleigh inequality [21] to the algebraic connectivity µN−1
yields

µN−1 ! xT Qx

xT x
.

With x = (xT
1 , 0)T or x = (0, xT

2 )T , we arrive at

µN−1 ! min(µn−1(Q1), µn−1(Q2)) + kp. (8)

The previous equality holds when x is the eigenvector associ-
ated to the algebraic connectivity µN−1.

Next, note that the nontrivial eigenvalue µ∗ = 2kp in (4)
corresponding to the eigenvector x = 1√

N
(uT

n , −uT
n )T is no

longer the algebraic connectivity µN−1 when p > p∗. At the
transition threshold p∗ the algebraic connectivity is µN−1 =
2kp∗. Substituting µN−1 = 2kp∗ and p = p∗ in (8), we arrive
at an upper bound for the transition threshold p∗,

p∗ ! 1
k

min(µn−1(Q1), µn−1(Q2)). (9)

To obtain a lower bound, we apply the min-max theorem
to the quadratic term xT

1 Bx2 in (7), which yields

xT
1 Bx2 ! σ1x

T
1 x2,

where σ1 is the largest singular value of the matrix B which
equals the square root of the largest eigenvalue of the matrix
BT B, which equals kp. According to the Cauchy-Schwarz
inequality, we have that xT

1 x2 ! ||x1||||x2|| ! 1
2 . Thus, the

quadratic form for the Laplacian matrix Q reads

xT Qx " kp + xT
1 Q1x1 + xT

2 Q2x2 − σ1.

At the transition point p∗, we have

2kp∗ " min(µn−1(Q1), µn−1(Q2))
(
xT

1 x1 + xT
2 x2

)
.

With (xT
1 x1 + xT

2 x2) = 1, the transition threshold p∗ is lower
bounded by

p∗ " min(µn−1(Q1), µn−1(Q2))
2k

. (10)

Figure 2 shows the accuracy of the upper (9) and lower (10)
bounds for interdependent networks of size N = 1000 that
consist of two Erdős-Rényi graphs, panel (a) as well as two
Barabási-Albert graphs, panel (b), with average degree dav =
6. The interconnection pattern is a 2-to-2 (k = 2) scheme. As
can be seen in the figure, the upper bound is more accurate
for the two ER networks, whereas the lower bound seems
to work slightly better the other way around. We also note
that in [10], it was shown that the transition threshold p∗ is
upper bounded by p∗ ! 1

4µN−1(Q1 + Q2) when B = pI (the
k-to-k interconnection with k = 1). For this case, the exact
value of p∗ was determined in [12], however, the method
used cannot be readily generalized to a 2-to-2 nor to a general
k-to-k (k " 2) interconnection pattern.

012311-4



STRUCTURAL TRANSITION IN INTERDEPENDENT … PHYSICAL REVIEW E 99, 012311 (2019)

B. Exact expression using the quotient graph

In this subsection, we present an analytical approach to
calculate the exact transition threshold for a class of networks.
The approach uses partitions of graphs in each layer and the
corresponding quotient graph [28] whose transition threshold
is analytically solvable.

Let us first focus on the partitions of the graph in each layer.
For a k-to-k interconnection pattern, we assume the graph G1

of n nodes consists of n
k

subgraphs H
(1)
1 , . . . , H

(1)
n/k where

each subgraph has exactly k nodes and n
k

is an integer. In
other words, k is chosen in such a way that k | n, i.e., k is a
divisor of n. Analogously, a similar form is assumed for graph
G2, resulting in the subgraphs H

(2)
1 , . . . , H

(2)
n/k . Without loss

of generality, we demonstrate the whole approach by using
graph G1 and denote n

k
by m. After the division, subgraphs

Hi are ordered as a chain and each subgraph connects to its
neighboring subgraphs. The adjacency matrix A1 of graph G1,
consisting of divided subgraphs Hi and connected as a chain,
can be written as a block matrix

A1 =

⎡

⎢⎢⎢⎢⎢⎣

AH1 R1

RT
1 AH2 R2

. . .
. . .

. . .

RT
m AHm

⎤

⎥⎥⎥⎥⎥⎦
, (11)

where the k × k adjacency matrix for a subgraph Hi is denoted
by AHi

.
In order to calculate the exact transition threshold, we

perform a coarse-grained process by condensing each sub-
graph Hi into a node and two nodes are connected if two
subgraphs are connected. The resulting graph corresponding
to the partition is also called the quotient graph [28]. The link
between nodes i and j in the quotient graph is weighted by the
average degree d̃ij that a node in subgraph Hi has in subgraph
Hj . The adjacency matrix of the quotient graph of G1 reads

(
Ã1

)
m×m

=

⎡

⎢⎢⎢⎢⎢⎢⎣

d̃11 d̃12

d̃21 d̃22 d̃23

. . .
. . .

. . .

d̃m,m−1 d̃mm

⎤

⎥⎥⎥⎥⎥⎥⎦
.

If the k-to-k interconnection is attained by fully connecting
subgraph H

(1)
i in graph G1 to the subgraph H

(2)
i in graph

G2, then the Laplacian of the quotient graph of the whole
interdependent network is

Q̃ =
[

(Q̃1)m×m + kpI −kpI

−kpI
(
Q̃2

)
m×m

+ kpI

]

, (12)

where

(Q̃1)ij =
{

−d̃ij if i ̸= j
∑m

s=1,s ̸=i d̃is if i = j
.

When the quotient Laplacian preserves the algebraic con-
nectivity of the original graph, then by applying the method
proposed in [12] to the quotient Laplacian (12), the transition
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FIG. 3. Example topology with k-to-k (k = 3) interconnections
whose transition threshold is calculated exactly by (13).

occurs at

p∗ = 1
2k

λm−1

[

Q̃1

(
Q̃1 + Q̃2

2

)†

Q̃2

]

, (13)

where † denotes the pseudoinverse [29] and λm−1 denotes the
second smallest eigenvalue. Figure 3 shows an example for
which the transition threshold is determined by (13).

Next, we construct a class of graphs whose algebraic con-
nectivity is preserved in the corresponding quotient graphs.
The Cartesian product Ĝ1"Ĝ2 of two graphs Ĝ1 and Ĝ2 with
node set N1 and N2 is a graph such that (i) the node set
of Ĝ1"Ĝ2 is N1 × N2 and (ii) two nodes i1i2 and j1j2 are
connected in Ĝ1"Ĝ2 if either i1 = j1 and i2 is connected to j2
or i2 = j2 and i1 is connected to j1. If all the subgraphs in (11)
are identical and the matrix R is the identity matrix, the two-
layer coupled network can be written as the Cartesian product
of the subgraph H

(1)
1 fully connected with subgraph H

(2)
1 and

the path graph Pm with m = n
k

nodes. The corresponding
quotient graph can be obtained by the Cartesian product of
a path graph with 2 (number of layers) nodes weighted by kp
and a path graph with m nodes. The adjacency matrix of the
original graph and the quotient graph thus follows

A =
[

AH
(1)
1

pJk×k

pJk×k AH
(2)
1

]

" APm
(14)

and

Ã =
[

0 kp

kp 0

]

" APm
, (15)

where " represents the Cartesian product. The example topol-
ogy in Fig. 3 can be obtained from the Cartesian product as
shown in Fig. 4.

If two graphs G1 and G2 have Laplacian eigenvalues
µ(G1) and µ(G2), then the Laplacian eigenvalues of the
Cartesian product [30] of G1 and G2 are µ(G1) + µ(G2).
Thus, the Laplacian eigenvalues of the quotient graph are
those of the path graph Pm plus those of P2 with weight
kp. The second smallest eigenvalue can be either 2kp of the
path P2 or µm−1(Pm) of the path Pm. Similarly, the Laplacian
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FIG. 4. The figure illustrates how the example topology in Fig. 3
can be obtained from the Cartesian product of subgraphs.

eigenvalues of the original graph are those of path graph Pm

plus those of the fully connected subgraphs H
(1)
1 and H

(2)
1 .

The second smallest eigenvalue can be either 2kp of the fully
connected H

(1)
1 and H

(2)
1 or µm−1(Pm) of the path Pm. For this

particular class of graphs, the quotient graph preserves the al-
gebraic connectivity, which follows min{2kp, µm−1(Pm)}, of
the original graph. The approach can be applied to the coarse
graining of these particular graphs such that certain Laplacian
eigenvalues are preserved, which is arguably a key issue to
analyze for large complex networks [31,32]. Moreover, Cozzo
and Moreno [33] employed coarse-grained or quotient graphs
to characterize multiple structural transitions of coupled (with
k = 1) multilayer networks.

IV. PHYSICAL MEANING OF p∗ IN TERMS
OF THE MINIMUM CUT

In graph theory, a cut [21] is defined as the partition of a
graph into two disjoint subgraphs G̃1 and G̃2. A cut set refers
to a set of links between subgraphs G̃1 and G̃2. For a weighted
graph, the minimum cut refers to a cut set whose cut weight
R is minimized, where the cut weight R is the sum of link
weights over all links in the cut set. In this paper, we consider
interdependent networks G that are weighted, where each link
within graphs G1 and G2 has weight 1 and each link between
graphs G1 and G2 has weight p.

A normalized index vector y for a cut of a graph G into
subgraphs G̃1 and G̃2 is defined as

yi =
√

1
N

{
1 if node i ∈ G̃1

−1 if node i ∈ G̃2
,

Coupling weight p

0.00 0.05

M
in
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FIG. 5. When p ! p∗, the minimum cut is achieved by cutting
all the interdependent links and the minimized cut weight follows
Rmin = N

4 µN−1.

where yT y = 1. The cut weight R follows [21] from the
quadratic form of the Laplacian matrix Q

R = N

4

(
∑

l∈Lintra

(yl+ − yl− )2 + p
∑

l∈Linter

(yl+ − yl− )2

)

= N

4
yT Qy,

where Lintra and Linter denote the set of links within layers
and between different layers, respectively. There is a factor
of N

4 because |yl+ − yl− | = 2√
N

if the starting node l+ and
the ending node l− of a link l belong to different subgraphs,
otherwise yl+ − yl− = 0. The minimum cut is [21]

Rmin = N

4
min
y∈Y

yT Qy,

where Y is the set of all possible normalized index vectors
of the N -dimensional space. Rayleigh’s theorem [21] states
that, for any normalized vector y orthogonal to the all-one
vector u, we have that µN−1 ! yT Qy

yT y
! yT Qy because yT y =

1, and the equality holds when y is an eigenvector associated
to µN−1. With µN−1 ! yT Qy, the minimum cut Rmin follows

Rmin " N

4
µN−1.

If the index vector y is an eigenvector of G associated to
the eigenvalue µN−1, then we obtain that Rmin = NµN−1

4 . On
the other hand, Corollary 1 implies that the eigenvalue µ∗ =
2kp can be made the second smallest eigenvalue µN−1 with
eigenvector x = 1√

N
[uT

n , −uT
n ]T if p < p∗. In this regime,

the partition corresponding to y = x results in the minimum
cut with Rmin = NµN−1

4 . The resulting subgraphs from that par-
tition are exactly graphs G1 and G2 and the cut set contains all
the interdependent links. Contrarily, when the coupling weight
p > p∗, the eigenvector x = 1√

N
[uT

n , −uT
n ]T is no longer an

eigenvector of graph G associated to the second smallest
eigenvalue µN−1 and, therefore, cutting all the interdependent
links is not guaranteed to be the minimum cut. Figure 5 shows
the minimum cut before and after the phase transition p∗ using
the same example as Fig. 3.

In summary, the physical meaning of p∗ in terms of the
minimum cut is that if p < p∗, the minimum cut can be
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obtained by cutting all the interdependent links and the min-
imum cut weight follows Rmin = N

4 µN−1, whereas above the
transition point, i.e., when p > p∗, the minimum cut involves
both links within each subgraph and interdependent edges
between the two subgraphs of the interdependent network G
and the minimum cut weight is lower bounded by N

4 µN−1.

V. EXACT THRESHOLD FOR SPECIAL STRUCTURES
OF INTERDEPENDENT NETWORKS

In this section, we analytically determine the structural
threshold p∗ for special graphs G1 and G2 or a special
interconnection matrix B.

A. Coupled identical circulant graphs

Let xn−1 be the eigenvector associated to the second
smallest eigenvalue µn−1(Q1) of the Laplacian matrix Q1 of
graph G1. For vector x = (xT

n−1, xT
n−1)T and Q2 = Q1, the

eigenvalue equation in (2) reads
[
Q1 + kpI −pB̂

−pB̂T Q1 + kpI

][
xn−1

xn−1

]

=
[
µn−1(Q1)xn−1 + kpxn−1 − pB̂xn−1

µn−1(Q1)xn−1 + kpxn−1 − pB̂T xn−1

]

, (16)

where B̂ is a zero-one matrix satisfying B̂ = B
p

. As mentioned
in Sec. II, circulant matrices are commutative. If two matrices
commute, the two matrices have the same set of eigenvectors
[21]. When Q1 and B̂ are symmetric circulant matrices, Q1
and B̂ commute, i.e., Q1B̂ = B̂Q1, and the eigenvectors of
Q1 and B̂ are the same [21]. The eigenvector xn−1 of the
Laplacian Q1 is also an eigenvector of matrix B̂ belonging

to the eigenvalue λ, where λ = xT
n−1B̂xn−1

xT
n−1xn−1

= 2xT
n−1B̂xn−1 be-

cause the normalization xT x = 2xT
n−1xn−1 = 1. Substituting

B̂xn−1 = λxn−1 in (16) yields
[
Q1 + kpI −pB̂

−pB̂T Q1 + kpI

][
xn−1

xn−1

]

= [mun−1(Q1) + kp − λp]

[
xn−1

xn−1

]

.

The vector x = (xT
n−1, xT

n−1)T is an eigenvector of Q associ-
ated to eigenvalue µ = µn−1(Q1) + (k − λ)p.

When the coupling weight p is small enough, the nontrivial
eigenvalue µ∗ = 2kp in (4) can be the algebraic connectivity
µN−1 and the eigenvalue µn−1(Q1) + (k − λ)p can be made
to be the third smallest eigenvalue µN−2. As already pointed
out before, by increasing the coupling weight p, a transition
of the algebraic connectivity µN−1 occurs, where µ∗ = 2kp
is no longer the second smallest one. As the transition occurs
at the point p∗ such that 2kp∗ = µn−1(Q1) + (k − λ)p∗, one
gets

p∗ = µn−1

k + λ
,

where λ = 2xT
n−1B̂xn−1.

Figure 6(a) shows the algebraic connectivity of an inter-
dependent network that consists of two identical circulant
graphs with a 2-to-2 (k = 2) interconnection. The size of
each circulant graph is n = 100 with average degree dav = 6.
When the coupling strength p ! p∗, the algebraic connec-
tivity µN−1 is 4p. When p " p∗, the algebraic connectivity
in Fig. 6(a) is analytically expressed as µN−1 = µn−1(Q1) +
(2 − λ)p. The transition occurs at the point p∗ = µn−1

2+λ
, where

λ = 2xT
n−1B̂xn−1.

B. n-to-n interconnection

For an n-to-n interconnection pattern, the Laplacian matrix
of the interdependent graph G reads

Q =
[
Q1 + pnI −pJn×n

−pJn×n Q2 + pnI

]

,

where the n × n all-one matrix J represents that one node in
graph G1 connects to all nodes in graph G2 and vice versa.
Graph G is the join [34] of graphs G1 and G2 if the coupling
weight p = 1.

Let x1 be the eigenvector associated to the eigenvalue
µn−1(Q1) of graph G1 and x2 be the eigenvector associated
to the eigenvalue µn−1(Q2) of graph G2. For vectors x =
(xT

1 , 0)T and x = (0, xT
2 )T , the eigenvalue equation for the

Laplacian matrix Q of G can be written as
[
Q1 + pnI −pJ

−pJ Q2 + pnI

][
x1

0

]

= [µn−1(Q1) + np]

[
x1

0

]

,

[
Q1 + pnI −pJ

−pJ Q2 + pnI

][
0

x2

]

= [µn−1(Q2) + np]

[
0

x2

]

.

Similarly to the previous derivation, also for an n-to-n (k = n)
interconnection, the nontrivial eigenvalue µ∗ = 2np can be
made equal to the algebraic connectivity µN−1(Q) of the
Laplacian Q if the coupling weight p is small. Moreover, the
eigenvalue min{µn−1(Q1), µn−1(Q2)} + np can be the third
smallest eigenvalue µN−2(Q) for small values of p. Taking
into account that the transition threshold p∗ occurs when
µN−1(Q) = µN−2(Q), we get

p∗ = min
{

µn−1(Q1)
n

,
µn−1(Q2)

n

}
. (17)

Figure 6(b) shows the algebraic connectivity of the in-
terdependent network consisting of two Erdős-Rényi graphs
Gp(n) with n = 500 nodes and average degree dav = 6. The
interconnection pattern in this figure is n to n. Figure 6(b)
demonstrates that when the coupling weight p is small,
the algebraic connectivity is µN−1 = 2np. With the increase
of p, the algebraic connectivity is described by µN−1 =
min{µn−1(Q1), µn−1(Q2)} + np. The transition occurs when
2np = min{µn−1(Q1), µn−1(Q2)} + np and the threshold p∗

obeys (17).

C. (n − 1)-to-(n − 1) interconnection

When B = p(J − I ) and G2 = G1, the eigenvalue equa-
tion for the Laplacian matrix Q reads, with vector x =
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FIG. 6. Exact transition threshold for special structures including (a) coupled circulant graphs, (b) fully coupled Erdős-Rényi graphs, and
(c),(d) a star graph fully coupled with its complementary graph.

(xT
n−1, −xT

n−1)T where xn−1 is an eigenvector associated to
the algebraic connectivity µn−1(Q1) of graph G1, as

[
Q1 + p(n − 1)I −p(J − I )

−p(J − I ) Q1 + p(n − 1)I

][
xn−1

−xn−1

]

= [µn−1(Q1) + (n − 2)p]

[
xn−1

−xn−1

]

. (18)

The nontrivial eigenvalue follows µ∗ = 2(n − 1)p for an
(n − 1)-to-(n − 1) interconnection. When p is small, the
eigenvalue 2(n − 1)p can be made equal to µN−1 and the
eigenvalue µn−1(Q1) + (n − 2)p can be the third smallest
eigenvalue µN−2. At the transition p = p∗, we have that
µN−1 = µN−2 from which the threshold p∗ follows as

p∗ = µn−1(Q1)
n

.

D. A graph coupled with its complementary graph

The complementary graph Gc
1 of a graph G1 has the same

set of nodes as G1 and two nodes are connected in Gc
1 if they

are not connected in G1 and vice versa [21]. The adjacency
matrix of the complementary graph Gc

1 is Ac
1 = J − I − A1.

The Laplacian of the complementary graph Gc
1 follows nI −

J − Q1.
For an interdependent graph G consisting of a graph G1

and its complementary graph Gc
1 with an n-to-n interconnec-

tion pattern, the Laplacian matrix Q of the interdependent

graph G reads

Q =
[
Q1 + npI −pJ

−pJ nI − J − Q1 + npI

]

.

Let xn−1 be the eigenvector associated to the eigenvalue
µn−1 of the graph G1 and x1 be the eigenvector associated
to the eigenvalue µ1. For vectors x = (xT

n−1, 0)T and x =
(0, xT

1 )T , the eigenvalue equation for the Laplacian matrix Q
of G can be written as

[
Q1 + npI −pJ

−pJ nI − J − Q1 + npI

][
xn−1

0

]

= [µn−1(Q1) + np]

[
xn−1

0

]

, (19)

[
Q1 + npI −pJ

−pJ nI − J − Q1 + npI

][
0

x1

]

= [n + np − µ1(Q1)]

[
0

x1

]

. (20)

Following the same procedure as in the previous examples,
at the transition point we have that the equality µN−1(Q) =
µN−2(Q) holds, which yields

p∗ = min
(

µn−1(Q1)
n

, 1 − µ1(Q1)
n

)
.
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E. An example of the nonexistence of the structural transition

In this subsection, we consider an interdependent network
consisting of a star graph G1 and its complementary graph Gc

1
while the interconnection pattern is n to n. For a star graph
with size n, the eigenvalues of the Laplacian [21] are 0, 1
with multiplicity n − 2 and n. Substituting µn−1(Q1) = 1 and
µ1(Q1) = n into eigenvalue equations (19) and (20) yields
two eigenvalues np and np + 1.

When the coupling weight p > 0, the nontrivial eigenvalue
µ∗ = 2np cannot be the second smallest eigenvalue of the
Laplacian Q because it is always larger than the eigenvalue
np. Hence, the transition between µ∗ and the algebraic con-
nectivity µN−1(Q) will never occur as shown in Fig. 6(c).
Nonexistence of such transition in multiplex networks of one-
to-one interconnection is also reported when at least one of the
two layers has vanishing algebraic connectivity [12]. Instead,
when p is small, the nontrivial eigenvalue µ∗ = 2np can be
made the third smallest eigenvalue µN−2(Q). By increasing
the coupling weight p, the eigenvalue µ∗ = 2np may no
longer be the third smallest eigenvalue of the Laplacian Q.
There exists a threshold denoted as p∗

N−2 such that µ∗ =
2np exceeds µN−2(Q) when p > p∗

N−2. When p ! p∗
N−2

then the third smallest eigenvalue follows µN−2(Q) = 2np.
Above the transition point p∗

N−2, the nontrivial eigenvalue
µ∗ = 2np exceeds eigenvalue 1 + np. The transition occurs
when 2np∗ = 1 + np∗ resulting in p∗

N−2 = 1
n

. Figure 6(d)
shows that the transition occurs at the point p∗

N−2 = 1
n

.
Note, however, that in the above example, the complemen-

tary graph Gc
1 of a star is a disconnected graph. The hub node

in the star G1 is an isolated node in graph Gc
1. The coupling is

stronger between graph G1 and the connected component in
graph Gc

1 than that between graph G1 and the isolated node in
Gc

1. The isolated node first decouples from the interdependent
network G before the connected component in Gc

1 decouples
from the interdependent graph G. As a result, the structural
transition in p occurs at the third smallest eigenvalue rather
than at the second smallest eigenvalue. The above example
also agrees with the upper bound in (9) in that the threshold
p∗ = 0 when µn−1(Q1) = 0 or µn−1(Q2) = 0. There is no
transition between the nontrivial eigenvalue µ∗ = 2kp and the
algebraic connectivity µN−1, if one of the coupled graphs is
disconnected.

VI. CONCLUSION

In this paper, we have studied the structural transition of
interdependent networks. We first generalized the one-to-one

interconnection coupling to a general k-to-k intercoupling
scheme for interdependent networks. This representation of
the couplings between the networks that made up the whole
system is more realistic and could represent more situations
of practical interest. However, we acknowledge that the inter-
connection matrix B representing the k-to-k interconnection
obeys regularity (constant row and column sum), which still
represents a simplification of real systems. Nonetheless, the
more complex scenario addressed here allows us to deduce
the nontrivial eigenvalue of such interdependent networks [1].

For the general k-to-k interconnection (B ̸= pI unless
k = 1) studied throughout this paper, a number of results
and properties of the transition threshold p∗ can be readily
obtained. For connected graphs G1 and G2, we showed that
the transition threshold p∗ is upper bounded by the mini-
mum algebraic connectivity of graphs G1 and G2 divided
by k. Additionally, we have shown that networks that are
divisible to regularly interconnected subgraphs show a tran-
sition threshold that is determined from the coarse-grained
or quotient graph. These results could be important in some
applications. For instance, the bounds and the exact value
of the transition threshold p∗ can be used to identify the
interactions and the multilayer coupling pattern of neural
networks, as they have been suggested to operate, in a healthy
human brain, around the transition point [17]. Our physical
interpretation of the threshold p∗ is also of interest. Namely,
we have argued that below the transition threshold p∗, the
minimum cut of the network includes all the interconnection
links, whereas above it, the minimum cut might contain both
the interconnection links between graphs G1 and G2 and
the links within G1 and G2. Finally, we have derived exact
expressions for the threshold p∗ for some special topologies,
and shown that if one of the graphs G1 or G2 is disconnected,
then the structural threshold p∗ for the algebraic connec-
tivity does not exist. Altogether, our results allow further
advances into the theory of multilayer networks and could
pave the way to similar studies that consider more realistic
networks.
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