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Explosive phase transition in susceptible-infected-susceptible epidemics
with arbitrary small but nonzero self-infection rate
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The ε–susceptible-infected-susceptible (SIS) epidemic model on a graph adds an independent, Poisson self-
infection process with rate ε to the “classical” Markovian SIS process. The steady state in the classical SIS
process (with ε = 0) on any finite graph is the absorbing or overall-healthy state, in which the virus is eradicated
from the network. We report that there always exists a phase transition around τ ε

c = O(ε− 1
N−1 ) in the ε-SIS

process on the complete graph KN with N nodes, above which the effective infection rate τ > τε
c causes the

average steady-state fraction of infected nodes to approach that of the mean-field approximation, no matter how
small, but not zero, the self-infection rate ε is. For τ < τε

c and small ε, the network is almost overall healthy.
The observation was found by mathematical analysis on the complete graph KN , but we claim that the phase
transition of explosive type may also occur in any other finite graph. We thus conclude that the overall-healthy
state of the classical Markovian SIS model is unstable in the ε-SIS process and, hence, unlikely to exist in reality,
where “background” infection ε > 0 is imminent.

DOI: 10.1103/PhysRevE.101.032303

I. INTRODUCTION

The network science [1] definition of a network rests
upon the duality between the network’s structure, called the
graph or topology, and the network’s function, also called the
process or service that runs over the graph. One may also sim-
plistically regard a network as consisting of “hardware” (the
structure) and “software” (the function). Grip on complexity
in many processes today starts by understanding the interplay
between structure and function. For most functions in com-
plex networks, the governing equations are beyond reach; just
think, for example, about the processes in the brain, biological
and chemical interactions, even man-made networks such as
the Internet, steered by transfer control protocol (TCP), and
the stock market. The principle of science, top-down analysis
(αναλυειν: release completely), and bottom-up synthesis
(συντ ιθεναι: place together) suggests us to embrace the
simple models that we understand. Undoubtedly, one of the
simplest functions on a graph is diffusion, in particular, the
spread of items described as an infection [2,3]. Recently, for
a broad range of dynamics, Hens et al. [4] disentangled the
function from the network structure by regarding propagation
characteristics. Of all epidemic models, the simplest one is,
perhaps, the Markovian susceptible-infected-susceptible (SIS)
process that can be exactly described for any network [5], but
only solved for small graphs, roughly up to 15 nodes. Among
all those graphs, the analysis can be pushed further only in
surprisingly few graphs, such as the star and the complete
graph [6], but the time dynamics in even those graphs is
analytically beyond reach [7]. The present paper confines the
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function to SIS epidemics and the structure to the complete
graph. We first describe the function and then report the
phenomenon, which can occur in any graph.

In a graph G with N nodes, the viral state of a node i at time
t is specified by a Bernoulli random variable Xi(t ) ∈ {0, 1}:
Xi(t ) = 0 for a healthy node and Xi(t ) = 1 for an infected
node. A node i at time t can be in one of the two states:
infected, with probability vi(t ) = Pr[Xi(t ) = 1], or healthy,
with probability 1 − vi(t ), but susceptible to the virus. The
curing process per node i is a Poisson process with rate δ

and the infection rate per link is a Poisson process with rate
β. Besides infections over links from infected neighbors with
rate β, the node i can also infect itself by a Poisson process
with self-infection rate ε. Only when a node is infected, it can
infect its direct, healthy neighbors. All Poisson processes are
independent. This is the continuous-time description1 of the
self-infectious Markovian susceptible-infected-susceptible (ε-
SIS) process on a contact graph. The ε-SIS model reduces
to the “classical” SIS model when the self-infection rate is
ε = 0.

The ε-SIS epidemic process can model information spread
in social networks, where individuals themselves can generate
information, which is spread over links to neighbors. Hill
et al. [8] modeled happiness of persons by an ε-SIS infection
over a social contact network. In a similar vein, obesity

1In the ε-SIS heterogenous setting, the curing rate δi and self-
infection rate εi are coupled to a node i and the infection rate βi j

specifies the link from node i to node j. In any continuous-time
Markovian process, the interevent times are exponentially distributed
[24, p. 210]. Thus, a self-infection rate ε means that, on average 1/ε

time units, a self-infection event occurs.
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is known to have a self-infected component and its spread
has been described [9,10] by an ε-SIS type of infection on
social networks. The self-infection nodal process can also be
considered as a “drift field” [11] that drives the infection in
each node with the same strength. From a biological point
of view, when the virus dies out, the population will start
losing immunity against that virus, i.e., the curing rate δ

will decrease with time. A sudden reappearance of the virus
may wipe out the whole population, because the curing rate
δ has become very low. Hence, the existence of very few
infected nodes on average keeps the population fit against
the virus, meaning that the curing rate δ remains more or
less constant because their immunity system is constantly
challenged. The infectious environment may be modeled by
a self-infection process, usually with a small infection rate
ε as a “background” or “imminent” infection, in addition to
the disease or viral spread with infection rate β under study.
Related studies on contagion in networks consider a slightly
more complex local rule than in ε-SIS, with either memory of
infection doses [12] or a spontaneous self-infection dependent
on a fixed number of infected neighbors [13].

Earlier, the ε-SIS model was introduced in [14], mainly
motivated to compute a realistic steady state of the SIS
epidemic on any finite graph [15], which is different from
the uninformative absorbing state in the classical SIS process.
The existence of an absorbing state in the classical SIS
process causes a significant complication [11,6], leading to
a metastable or quasistationary regime and to an unrealis-
tically long absorption time [16]. In the ε-SIS model with
ε > 0, there is no absorbing state and the Markov process
is irreducible in a connected contact graph, which implies
that there is a unique steady state, which is, for specially
chosen self-infection rate ε as explained in [15], very close
to observations and to the SIS mean-field steady state.

II. EXPLOSIVE PHASE TRANSITION

Here, we report curious steady-state behavior of the ε-
SIS process with arbitrarily small self-infection rate ε > 0,
that does not exist in the classical ε = 0 SIS model. The
observation of a remarkable phase transition, increasingly

FIG. 1. The steady-state average fraction y∞;N (τ, ε∗) of infected
nodes vs the effective infection rate τ in the complete graph KN

with N = 100 nodes for various normalized self-infection rates ε∗ =
{10−3, 10−5, 10−10, 10−20, 10−30, 10−40, 10−50}.

FIG. 2. The steady-state average fraction y∞;N (τ, ε∗) of infected
nodes on log scale vs the effective infection rate τ in the com-
plete graph KN with N = 100 nodes for the same normalized self-
infection rates ε∗ = {10−3, 10−5, 10−10, 10−20, 10−30, 10−40, 10−50}
as in Fig. 1. Each curve for ε∗ is distinguishable, because
y∞;N (0, ε∗) = ε∗

1+ε∗ .

explosive with the size N of the graph, was only possible by a
purely analytical study presented in Appendix, for which we
have limited ourselves to the complete graph KN . In particular,
we show that there always exists a phase transition around
τ ε

c in the ε-SIS process on KN , above which the effective
infection rate τ = β

δ
> τε

c causes the average steady-state
fraction y∞;N (τ, ε∗) of infected nodes, briefly called the preva-
lence, to approach the N-intertwined mean-field (NIMFA)
prevalence [17]

y(1)
∞;N (τ ) = 1 − 1

(N − 1)τ
τ >

1

N − 1
= τ (1)

c (1)

no matter how small, but not zero, the self-infection rate
ε∗ = ε

δ
is. The phase transition τ ε

c is a zero of an N th order
polynomial in τ (Theorem 4 in Appendix A 4), but can be
bounded by

1

e

(
10−s

ε∗(N − 1)!

) 1
N−1

< τε
c <

(
10−s

ε∗(N − 1)!

) 1
N−1

where s specifies an agreed level for the onset of the phase
transition at which y∞;N (τ, ε∗) = 10−s is first reached, when
τ is gradually increased from τ = 0 at y∞;N (0, ε∗) = ε∗

1+ε∗
on. Figure 1 illustrates the steady-state prevalence in a com-
plete graph2 with N = 100 nodes. Figure 1 indicates that
the classical ε = 0 SIS process is unlikely to model reality
of both biological and digital viral items, where “infectious
noise” with ε > 0 exists. In addition, the phase transition
can hardly be simulated for extremely small self-infection
rate ε∗. Although the observation of a rather explosive phase
transition is derived from the complete graph KN , we believe
that it may occur in any graph.3

2A similar plot for N = 500 appeared earlier in [16, Fig. 6] as a
curiosity.

3Analytic intractability prevents us from demonstrating the claim.
Perhaps the star graph, whose analysis [6] is already considerably
more complex than for the complete graph, might be beyond reach.

032303-2



EXPLOSIVE PHASE TRANSITION IN … PHYSICAL REVIEW E 101, 032303 (2020)

FIG. 3. The steady-state variance Var[X∞] of the fraction X∞ of
infected nodes vs the effective infection rate τ in the complete graph
KN with N = 100 nodes for the same normalized self-infection rates
as in Fig. 1.

The shape of the red curves in Fig. 1 for relatively small
normalized self-infection rates ε∗ = 10−q with 2 < q < 5
seems to correspond well with simulations of the classical SIS
process on any graph and may hint at the analytic behavior
of the steady-state prevalence around the epidemic threshold,
which is linear in ( 1

τ
(1)
c

− 1
τ

) in NIMFA [18], but unknown in
general for the classical SIS process. For large power law
graphs, Mountford et al. [19, Theorem 1.1] have specified
the exponent of the metastable prevalence in terms of the
power law degree exponent. Figure 2 illustrates that, above
the NIMFA epidemic threshold τ (1)

c = 1
N−1 , the steady-state

prevalence y∞;N (τ, ε∗) increases almost exponentially with
the effective infection rate τ , from about y∞;N (0, ε∗) = ε∗

1+ε∗
up to the NIMFA steady-state in (1).

The variance of the fraction of infected nodes in KN for
N = 100, computed via (A12) and corresponding to the same
graph and ε-SIS parameters as in Fig. 1, is presented in Fig. 3.
We can choose the parameter s in (A18) so that τ ε

c coincides
with the maximum of the variance. By scaling τ = xτ ε

c in the
variance (A12), all peaks align at x = 1 for sufficiently large
N > 50 and small ε.

The scaling of the steady-state prevalence y∞;N ( x
N−1 , ε∗)

with N is drawn in Fig. 4 versus normalized effective infection
rate x = τ

τ
(1)
c

= (N − 1)τ . For this normalization, the NIMFA

steady-state prevalence becomes y(1)
∞;N ( x

N−1 ) = 1 − 1
x , which

is independent of N . Figure 4 illustrates that the phase transi-
tion in the steady-state prevalence y∞;N ( x

N−1 , ε∗) from about
zero towards 1 − 1

x becomes increasingly steep and seems to
resemble4 a “product rule” type phase transition [20, Figs. 1,
12, and 16]. Figure 5 shows the scaling of the steady-state
prevalence y∞;N ( x

N−1 , e−zN√
2πN

) as derived in Appendix A 5,
versus the normalized effective infection rate x = (N − 1)τ
for the same values of N as in Fig. 4. Figure 5 illustrates
that y∞;N ( x

N−1 , e−zN√
2πN

) tends to a universal curve in z for large

4Explosive phase transitions can be continuous as well as discon-
tinuous [20]. Since y∞;N (τ, ε∗) is differentiable in τ and ε∗ > 0 for
finite N , but limN→∞ y∞;N (τ, ε∗) is a step function, Fig. 12 in [20]
points to a type II explosive, phase transition.

FIG. 4. The steady-state prevalence y∞;N ( x
N−1 , ε∗)

and NIMFA y(1)
∞;N (τ ) = 1 − 1

x vs normalized effective
infection rate x = τ (N − 1) = τ

τ
(1)
c

for various N ∈
{100, 200, 300, 400, 500, 1000, 2000} and normalized self-infection
rate ε∗ = 10−50.

N , close to (1 − 1
x )θ [x − xc(z)], where θ (u) is Heavyside’s

step function with a jump at xc(z) = (N − 1)τ ε(z)
c . The scaled

self-infection rate ε∗(z) = e−zN√
2πN

depends exponentially on the
size N of the complete graph. Clear phase transitions at xc(z)
occur slightly above x = e1+z, as derived in Appendix A 5,
and the approximate exponential law for the phase transition
point τ ε(z)

c � e1+z

N−1 for y∞;N ( x
N−1 , e−zN√

2πN
) has been verified for

various other values of z ranging from z = 0.1 to 2 (not shown
in Fig. 5).

The observations in Figs. 1–5 suggest that the classical SIS
steady state is instable in the following sense: by adding arbi-
trarily small “infection noise ε,” there always exists a critical
effective infection strength τ ε

c depending on the self-infection
rate ε above which the absorbing state is destroyed (τ > τε

c )
and switched to the mean-field steady state. Below the thresh-
old τ ε

c , on the other hand, the probability of infection is about
ε

1+ε
and, thus, small for small ε > 0, but not entirely zero.

The phenomenon can be regarded as a stochastic instability.

FIG. 5. The steady-state prevalence y∞;N ( x
N−1 , ε∗(z)) with

ε∗(z) = e−zN√
2πN

and NIMFA y(1)
∞;N (τ ) = 1 − 1

x vs normalized
effective infection rate x = τ (N − 1) = τ

τ
(1)
c

for various

N ∈ {100, 200, 300, 400, 500, 1000, 2000} as in Fig. 4 for
z = 0.5, 1, 1.3.
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In the theory of equilibrium processes (see, e.g., the review
of Schnakenberg [21]) two processes balance each other on
average, which implies for the ε-SIS process that the average
number of cured and healthy nodes in the graph remains
about constant over time. The individual nodes of the graph,
however, continue alternating to the infectious state, and the
process fluctuations around the mean, here the prevalence
[22, Fig. 7], tend to a Gaussian as proved by Feller [23]
and specified for Markov processes in [24, Theorem 9.3.7 on
p.196].

In the classical SIS process, the curing process has a slight
advantage over the infection process, because the curing pro-
cess has the power to destroy the infection process, whereas
the reverse is not possible. Indeed, let m be the number of
infected nodes at some time in the metastable state (τ > τc).
If the curing process generates a sequence of m healings, each
of them so rapidly that the infection process has no occasion
to create a single new infectious event, then the infection is
eradicated and the actual steady state, the absorbing state,
of the classical SIS process is reached and lasts forever.
Eventually and after an average time E [T ] = O(eN ln τ

τc )—the
precise average time E [T ] to absorption for the complete
graph for τ > τc is given in [16]—the epidemic disappears
in the classical SIS Markovian process, due to a rare event of
m consecutive healings before an infection is generated. The
situation is comparable to winning in a casino m successive
games, which is possible, but its probability sharply decreases
with m. Alternatively, one needs to play for an unrealistically
long time to win. For the classical SIS Markovian process,
such a rare event is extremely hard to simulate in graphs of
realistic size N , and impossible if simulation acceleration is
not available like in our ε-SIS process here.

In the ε-SIS process with self-infection rate ε > 0, the in-
equality between curing and infection is removed and neither
of the processes can destroy the other. Even if a rare succes-
sion of m healings occurs and the infection is momentarily
removed from the graph, the self-infection process will again
create an infection, which means that the zero infection state
is not absorbing (in the sense that the process cannot leave
that state anymore). We would then expect that, in the steady
state, the balance between the number of infected and cured
nodes is about constant forever. However, we found that the
steady state appears in two “flavors.” For any arbitrary small,
but not zero, self-infection rate ε > 0, the steady state lies
in the realm of the classical SIS process, without virtually
an infection in the graph when the effective infection rate
τ < τε

c . On the other hand, when τ > τε
c , the steady-state

fraction of infected nodes jumps to a significantly higher ratio,
roughly equal to that predicted by a mean-field analysis. It
appears that, when τ > τε

c , a reversed rare event of successive
infections occurs starting from an almost healthy graph up to
an equilibrium between the number of infected and healthy
nodes in a fair competition between infection and curing
process, well described by mean-field theory. For a given
strength ε of the self-infection, the effective link infection
strength τ below τ ε

c has insufficient power to cause a spread.
For τ > τε

c and τ ε
c > τ (1)

c above the classical SIS mean-
field epidemic threshold τ (1)

c , the infection violently spreads
over the entire network, irrespective of how improbable, but
not impossible, that infection is; thus, the mere existence

of an infection (ε > 0) causes the endemic state above a
certain link propagation strength τ > τε

c > τ (1)
c . Alternatively,

the stationary or equilibrium regime favors the least energy
or lowest potential in a physical system, that can generally
be represented by a convex Lyapunov function, such as the
Kullback-Leibner divergence for a Markov process [21]. Rare
fluctuations far from equilibrium are pulled forcefully back to
the stationary or equilibrium state. We argue that the almost
exponential growth in Fig. 2 is a fingerprint of a multiplicative
process with many infection events in a row, that create on the
linear scale in Fig. 1 the jump around τ ε

c . Such a multiplicative
process agrees with the product rule type phase transition [20,
Figs. 1, 12, and 16] mentioned above.

As illustrated in Fig. 5 with exponentially small self-
infection rate ε∗(z) = e−zN√

2πN
, the “exponential sensitivity” of

the steady state in the simple ε-SIS model came as a surprise.
Zooming out from the ε-SIS toy model to real dynamics
(viz., the climate), whose processes and their interactions are
incomparably more complex, the observations in Figs. 1–5
caution against the unexpected consequences of small per-
turbations of steady-state behavior. Evolution in biology is
believed to happen by certain, rare mutations that result in
a superior species, that relatively rapidly replaces the older
one by the principle of the survival of the fittest. Such rare
mutations are generated at low rate, comparable here to the
self-infection rate ε, but just as with the explosive phase
transition in ε-SIS they create a phase of new species.
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APPENDIX: ε-SIS EPIDEMICS ON
THE COMPLETE GRAPH KN

We confine ourselves to the complete graph KN because
exact computations are possible. The time T to reach the
absorbing state in an SIS epidemic is an exponential random
variable with mean E [T ], that is precisely computed in [16]
for the complete graph. The analysis of the steady-state
fraction of infected nodes in the ε-SIS epidemic process on
KN is presented here, after reviewing earlier work in [14,
Appendix], [7], and [24, Sec. 17.3].

1. Review of our previous analyses

The number of infected nodes M(t ) in an ε-SIS epidemic at
time t in the complete graph KN is a continuous-time Markov
process on {0, 1, . . . , N} states with the following rates:

M �→ M + 1 at rate (βM + ε)(N − M ),

M �→ M − 1 at rate δM.

Every infected node heals with rate δ, whereas every
healthy node (of which there are N − M) has exactly
M infected neighbors each actively transferring the virus
with rate β, in addition to the self-infection rate ε. This
Markov process M(t ) is, in fact, a birth and death pro-
cess with birth rate λ j = (β j + ε)(N − j) and death rate
μ j = jδ, whose steady-state probabilities π0, . . . , πN , where
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π j = limt→∞ Pr [M(t ) = j], can be computed exactly [24, p.
209] as

π0 = 1

1 +∑N
k=1

∏k−1
m=0

(βm+ε)(N−m)
(m+1)δ

, (A1)

π j = π0

j−1∏
m=0

(βm + ε)(N − m)

(m + 1)δ
, 1 � j � N. (A2)

Simplified, in terms of the normalized self-infection rate ε∗ =
ε
δ
, the steady state with j infected nodes in the ε-SIS process

on KN has probability

π j = π0

(
N

j

)
ε∗τ j−1 �

(
ε∗
τ

+ j
)

�
(

ε∗
τ

+ 1
) (A3)

and the healthy steady-state probability (A1) becomes

π0 = 1∑N
k=0

(N
k

)
τ k �

(
ε∗
τ

+k
)

�

(
ε∗
τ

) . (A4)

In [7], we have derived a linear, second order differential equa-
tion for the probability generating function ϕ(x, t ) = E [zM(t )]
and demonstrated that a time-dependent analytic solution will
be difficult to find. Therefore, we return here again to the
“simple” steady state of the ε-SIS process on KN , that is
analytically characterized by (A3) and (A4).

The average steady-state fraction of infected nodes, in short
the steady-state prevalence, is with (A3)

y∞;N (τ, ε∗) = 1

N

N∑
j=0

jπ j;N = π0;N

N

N∑
j=1

j

(
N

j

)
τ j �

(
ε∗
τ

+ j
)

�
(

ε∗
τ

)
(A5)

while a more general form, for any regular graph [24,
Eq. (17.20) on p. 456], leads for KN to

y∞;N (τ, ε∗) =
1
N E
[
wT

∞(J − I )w∞
]− ε∗

τ

N − 1 − 1+ε∗
τ

(A6)

where the N × 1 vector w∞ has as ith component the steady-
state infection X∞,i ∈ {0, 1} of node i. For τ = 0, we find that
π j = π0

(N
j

)
(ε∗) j and π0 = 1

(1+ε∗ )N , and thus y∞;N (0, ε∗) =
ε∗

1+ε∗ , which also follows from (A6). When ε∗
τ

= ε
β

= 1, then

π j = π0
N!

(N− j)!τ
j , which almost reduces to the steady state of

a Markov model with a forbidden absorbing state [6]. Using
j
(N

j

) = N
(N−1

j−1

)
and (A4), we obtain

y∞;N (τ, ε∗) =
∑N

k=1

(N−1
k−1

)
τ k�

(
ε∗
τ

+ k
)∑N

k=0

(N
k

)
τ k�

(
ε∗
τ

+ k
) . (A7)

A recursion in N for the steady-state prevalence y∞;N (τ ) is
derived in [14, Appendix]:

y∞;N (τ, ε∗) = 1

1 + 1
ε∗+(N−1)τy∞;N−1(τ,ε∗ )

, (A8)

that is equivalent to5

y∞;N (τ, ε∗) = 1 − 1

1 + ε∗ + (N − 1)τy∞;N−1(τ, ε∗)
.

Explicitly, for the first values of the number N of nodes in
complete graph KN , we list6

y∞;1(τ, ε∗) = ε∗

1 + ε∗ ,

y∞;2(τ, ε∗) = ε∗ 1 + ε∗ + τ

(1 + ε∗)2 + ε∗τ
,

y∞;3(τ, ε∗) = ε∗ (1 + ε∗)2 + (2 + 3ε∗)τ + 2τ 2

(1 + ε∗)3 + ε∗{(3 + 3ε∗)τ + 2τ 2} ,

y∞;4(τ, ε∗) = ε∗ (1+ ε∗)3+ [3+ 9ε∗+ 6(ε∗)2]τ + (6+ 11ε∗)τ + 6τ 3

(1+ ε∗)4+ 6ε∗{(1+ ε∗)2τ + (8+ 11ε∗)τ + 6τ 3} .

Since π j = 0 in (A3) when the self-infection rate is zero,
ε∗ = 0, for 1 � j � N and, consequently, π0 = 1 (due to the
fact that

∑N
j=0 π j = 1), we retrieve the classical Markovian

SIS process (with ε∗ = 0) in which, indeed, the absorbing
or overall-healthy state is the steady state for any graph with
finite size N .

2. Mean-field approximation for ε-SIS
epidemics on the complete graph KN

The heterogeneous Markovian ε-SIS governing equation
for node i in a graph G equals [24, Sec. 17.3]

dE [Xi(t )]

dt
=E

[
−δiXi(t )+[1−Xi(t )]

{
N∑

k=1

βkiakiXk (t )+εi

}]
.

(A9)

The ε-SIS governing equation (A9) states that the change over
time of the probability of infection E [Xi(t )] = Pr [Xi(t ) = 1]
of node i equals the average of two competing random vari-
ables: (a) if the node i is infected (Xi = 1), then E [Xi(t )]
decreases over time t with rate equal to the curing rate δi;
and (b) if node i is healthy (Xi = 0) it can be infected with
infection rate βki over any direct link aki from each infected
neighbor k plus its own self-infection with rate εi. The total
number of infected neighbors of node i is

∑N
k=1 akiXk , where

the adjacency matrix element aki is the explicit reference
to the underlying contact graph over which the epidemic
spreads.

5Suppose that we equate y∞;N−1(τ ) = y∞;N (τ ) = y; then the above
variant of the recursion (A8) leads to the quadratic equation (A14) in
Theorem 2 below with RN (τ ) = 1.

6Introducing the generating function of the Stirling numbers S(k)
m of

the first kind [25],

�(x + m)

�(x)
=

m−1∏
k=0

(x + k) =
m∑

k=0

S(k)
m (−1)m−kxk,

the steady-state prevalence (A7) can be written as

y∞;N (τ, ε∗) =
∑N

q=0

[∑N
k=q

(N−1
k−1

)
S(k−q)

k (ε∗)k−q
]
(−1)qτ q∑N

q=0

[∑N
k=q

(N
k

)
S(k−q)

k (ε∗)k−q
]
(−1)qτ q

.
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If the graph is fixed and undirected, then (A9) reduces to

dE [Xi(t )]

dt
= εi − (δi + εi )E [Xi(t )] +

N∑
k=1

βkiakiE [Xk (t )]

−
N∑

k=1

βkiakiE [Xi(t )Xk (t )], (A10)

which shows the complicating joint probabilities E [XiXj] =
Pr [Xi = 1, Xj = 1]. The mean-field approximation lies in as-
suming independence between infection states so that E [XiXj]
is replaced by E [X̃i]E [X̃ j], where the tilde in X̃i reflects the ap-
proximative step of NIMFA. The differential equation (A10)
in vi(t ) = E [X̃i(t )] of the heterogeneous ε-SIS NIMFA equa-
tion for node i becomes

dvi(t )

dt
= εi − (δi + εi )vi(t ) + [1 − vi(t )]

N∑
k=1

βkiakivk (t ),

(A11)
which is the same as replacing the random variable Xi in (A9)
by its mean E [X̃i].

We confine ourselves to the homogeneous setting in which
all curing rates δi = δ, all nodal self-infection rates εi = ε,
and all link infection rates βki = β are the same. In addition,
the graph is the complete graph KN and we limit ourselves
to the steady state vi∞ = limt→∞ vi(t ), where dvi∞(t )

dt = 0 and
symmetry in KN dictates that vi∞ = v∞ = y∞. Under these
conditions (A11) simplifies to

0 = ε − (δ + ε)v∞ + (1 − v∞)β(N − 1)v∞.

Let τ = β

δ
and ε∗ = ε

δ
; then we arrive at the quadratic equa-

tion in y∞ = v∞:

y2
∞ −

(
1 − 1 + ε∗

(N − 1)τ

)
y∞ − ε∗

(N − 1)τ
= 0,

which is (A14) with RN (τ ) = 1. The mean-field prevalence
y∞ does not exhibit a phase transition for small self-infection
rates ε.

The ε-SIS steady state follows from (A6) with J =
u.uT , where u is the all-one vector, with wT

∞(J − I )w∞ =
(wT

∞u)2 − wT
∞w∞ = (wT

∞u)2 − wT
∞u and with wT

∞u = NX∞
as

y∞;N (τ, ε∗) = NE
[
X 2

∞
]− E [X∞] − ε∗

τ

N − 1 − 1+ε∗
τ

where the random variable X∞ denotes the steady infection
state of any node (by symmetry of the complete graph in
the steady state). Since E [X∞] = y∞;N (τ, ε∗) and E [X 2

∞] =
y2
∞;N (τ, ε∗) + Var[X∞], we find

y2
∞;N (τ, ε∗)

−
(

1 − 1 + ε∗

Nτ

)
y∞;N (τ, ε∗) + Var[X∞] − ε∗

Nτ
= 0.

The quadratic equation is a general feature of SIS epidemics
on a graph, resulting in a Riccati type of differential equation
for the time-variant prevalence as shown in [26]. Subtraction
from the quadratic equation (A14), derived below in terms of
RN (τ ) = y∞;N−1(τ,ε∗ )

y∞;N (τ,ε∗ ) , leads to an expression for the variance of
the fraction of infected nodes in KN :

Var[X∞] = 1 + ε∗

τN

(
N

(N − 1)RN (τ )
− 1

)
{y∞;N (τ, ε∗)

− y∞;N (0, ε∗)}. (A12)

3. Properties of the steady-state prevalence y∞;N (τ ) in KN

It follows from the recursion (A8) that

1

y∞;N (τ, ε∗)
− 1

y∞;N−1(τ, ε∗)
= τ [(N − 2)y∞;N−2(τ, ε∗) − (N − 1)y∞;N−1(τ, ε∗)]

[τ (N − 1)y∞;N−1(τ, ε∗) + ε∗][τ (N − 2)y∞;N−2(τ, ε∗) + ε∗]
.

If the right-hand side is negative, so is the left-hand side. Hence, the implication between two inequalities

{(N − 2)y∞;N−2(τ, ε∗) < (N − 1)y∞;N−1(τ, ε∗)} 	⇒ {y∞;N−1(τ, ε∗) < y∞;N (τ, ε∗)} (A13)

holds for all N .
Theorem 1. The steady-state prevalence y∞;N (τ, ε∗) in the complete graph KN satisfies the inequality y∞;N−1(τ, ε∗) <

y∞;N (τ, ε∗) for τ > 0, for ε∗ > 0 and for any N � 2.
Since y∞;N (0, ε∗) = ε∗

1+ε∗ for any N , Theorem 1 excludes τ = 0 and provides strict inequalities y∞;1(τ, ε∗) < y∞;2(τ, ε∗) <

· · · < y∞;N (τ, ε∗) < · · · for τ > 0.
Proof by induction. (a) We start by demonstrating that the inequality y∞;N−1(τ, ε∗) < y∞;N (τ, ε∗) holds for N = 2. Indeed,

from the explicit evaluation, we deduce for τ > 0 that

y∞;1(τ, ε∗) = ε∗

1 + ε∗ , y∞;2(τ, ε∗) = ε∗(1 + ε∗) + ε∗τ
(1 + ε∗)2 + ε∗τ

= ε∗

1 + ε∗
(1 + ε∗) + τ

(1 + ε∗) + ε∗
1+ε∗ τ

>
ε∗

1 + ε∗ = y∞;1(τ, ε∗).

Also the inequality (N − 2)y∞;N−2(τ, ε∗) < (N − 1)y∞;N−1(τ, ε∗) holds for N = 3, namely, y∞;1(τ, ε∗) < 2y∞;2(τ, ε∗).
(b) The induction hypothesis: Assume that (N − 2)y∞;N−2(τ, ε∗) < (N − 1)y∞;N−1(τ, ε∗) holds for N = n.

032303-6



EXPLOSIVE PHASE TRANSITION IN … PHYSICAL REVIEW E 101, 032303 (2020)

(c) We need to verify that inequality
(N − 2)y∞;N−2(τ, ε∗) < (N − 1)y∞;N−1(τ, ε∗) also holds
for N = n + 1. Now, the induction hypothesis for N = n in
(b),

(n − 2)y∞;n−2(τ, ε∗) < (n − 1)y∞;n−1(τ, ε∗),

implies by (A13) that

y∞;n−1(τ, ε∗) < y∞;n(τ, ε∗).

Since ( n−1
n )y∞;n−1(τ, ε∗) < y∞;n−1(τ, ε∗), the above inequal-

ity translates to ( n−1
n )y∞;n−1(τ, ε∗) < y∞;n(τ, ε∗) and is

equivalent to

(n − 1)y∞;n−1(τ, ε∗) < nyn(τ, ε∗),

which is the inequality to be verified for N = n + 1. This
proves the induction argument and Theorem 1. �

Theorem 2. The steady-state prevalence y∞;N (τ, ε∗) in the
complete graph KN satisfies the quadratic equation for τ > 0:

y2
∞;N (τ, ε∗) −

(
1 − 1 + ε∗

(N − 1)τRN (τ )

)
y∞;N (τ, ε∗)

− ε∗

(N − 1)τRN (τ )
= 0 (A14)

where RN (τ ) = y∞;N−1(τ,ε∗ )
y∞;N (τ,ε∗ ) , and its solution

y∞;N (τ, ε∗) =
(

1 − 1 + ε∗

(N − 1)τRN (τ )

)
1

2

⎧⎨⎩1 +
√

1 + 4ε∗RN (τ )

(N − 1)τ
[
RN (τ ) − (1+ε∗ )

(N−1)τ

]2

⎫⎬⎭. (A15)

Proof. Denoting the ratio RN (τ ) = y∞;N−1(τ,ε∗ )
y∞;N (τ,ε∗ ) , we rewrite the recursion (A8) as

y∞;N (τ, ε∗) = 1 − 1
ε∗

y∞;N (τ,ε∗ ) + (N − 1)τRN (τ, ε∗)
. (A16)

Next, we rewrite the recursion (A16) as the quadratic equation (A14), whose solution is

y∞;N (τ, ε∗) = 1

2

(
1 − 1 + ε∗

(N − 1)τRN (τ )

)
± 1

2

√(
1 − 1 + ε∗

(N − 1)τRN (τ )

)2

+ 4ε∗

(N − 1)τRN (τ )
.

The discriminant of the quadratic equation (A14) is larger than (1 − 1+ε∗
(N−1)τRN (τ ) )

2
, which excludes the minus sign because

y∞;N (τ, ε∗) � 0. After some manipulations we find (A15). �
For RN (τ ) = 1 and self-infection rate ε∗ = 0, the steady-state prevalence y∞;N (τ, ε∗) in (A15) of the ε-SIS process on KN

reduces to the steady-state fraction y(1)
∞;N (τ ) = 1 − 1

(N−1)τ in (1) of infected nodes in NIMFA for the complete graph KN . We have

shown in [27] that NIMFA always upper bounds the probability of nodal infection, hence y(1)
∞;N (τ ) � y∞;N (τ ; 0). The argument

suggests us to consider the condition that RN (τ ) = y∞;N−1(τ,ε∗ )
y∞;N (τ,ε∗ ) = 1 as equivalent to the mean-field approximation, that assumes

independence between viral states of different nodes [27]. The second factor 1
2 {. . .} in (A15) is only slightly larger than 1 for

τ � τ (1)
c = 1

N−1 . However, the NIMFA quadratic equation of the steady-state prevalence [(A14) with RN (τ ) = 1] indicates that
NIMFA provides an envelope below or at which y∞;N (τ, ε∗) lies.

While intuition would hint that RN (τ ) � 1, at least for large N , as we did in [14, Appendix], the truth is surprisingly different:
computations show that 1 − RN (τ ) is near to y∞;N (τ, ε∗) for ε∗ = 10−a and a = 3, 5, 10, 20, 30, 40, 50.

4. Estimate of the onset τε
c of the ε-SIS phase transition for small self-infection rates ε

Theorem 3. For small self-infection rate ε, the steady-state prevalence y∞;N (τ, ε∗) in the complete graph KN is up to order
O(ε3)

y∞;N (τ, ε∗) = ε∗

τ

N∑
k=1

(N − 1)!τ k

(N − k)!
+
(

ε∗

τ

)2 N∑
k=1

(N − 1)!τ k

(N − k)!

k−1∑
j=1

1

j
+ O(ε3). (A17)

Proof. For small ε, we expand �(k + ε∗
τ

) in a Taylor series around z = k:

�

(
k + ε∗

τ

)
= �(k) + �′(k)

ε∗

τ
+ O(ε2) = �(k)

{
1 + ψ (k)

ε∗

τ
+ O(ε2)

}
where the digamma function is ψ (z) = �′(z)

�(z) (see [25, Sec. 6.3]). For integer z = k � 1, ψ (k) = −γ +∑k−1
j=1

1
j � 0 so that

�

(
k + ε∗

τ

)
= (k − 1)!

⎧⎨⎩1 +
⎛⎝−γ +

k−1∑
j=1

1

j

⎞⎠ε∗

τ
+ O(ε2)

⎫⎬⎭
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while

�

(
ε∗

τ

)
= τ

ε∗ �

(
ε∗

τ
+ 1

)
= τ

ε∗

[
1 − γ

ε∗

τ
+ �′′(1)

2

(
ε∗

τ

)2

+ O(ε3)

]
= τ

ε∗ − γ + �′′(1)

2

ε∗

τ
+ O(ε2)

and �′′(1) = d2�(z)
dz2 |

z=1
= 1.97811 (see [28, Appendix]). Substituted in steady-state prevalence, (A7) gives us

y∞;N (τ, ε∗) =
(N − 1)!

∑N
k=1

τ k

(N−k)!

{
1 + ψ (k) ε∗

τ
+ O(ε2)

}
�
(

ε∗
τ

)+ N!
∑N

k=1
τ k

k(N−k)!

{
1 + ψ (k) ε∗

τ
+ O(ε2)

}
=

(N − 1)!
∑N

k=1
τ k

(N−k)! + (N − 1)!ε∗∑N
k=1

τ k−1

(N−k)!ψ (k) + O(ε2)
τ
ε∗ − γ + �′′(1)

2
ε∗
τ

+ ε∗N!
∑N

k=1
τ k

k(N−k)! + (ε∗)2N!
∑N

k=1
τ k−1

k(N−k)!ψ (k) + O(ε3)
.

Up to order O(ε2), we have

y∞;N (τ, ε∗) =
(N − 1)!

∑N
k=1

τ k

(N−k)! + (N − 1)!ε∗∑N
k=1

τ k−1

(N−k)!ψ (k) + O(ε2)
τ
ε∗ − γ + ε∗(�′′(1)

2
1
τ

+ N!
∑N

k=1
τ k

k(N−k)!

)+ O(ε2)

= 1

τ

ε∗(N − 1)!
∑N

k=1
τ k

(N−k)! + (N − 1)!(ε∗)2 ∑N
k=1

τ k−1

(N−k)!ψ (k) + O(ε3)

1 − ε∗[ γ

τ
− ε∗(�′′(1)

2
1
τ 2 + N!

∑N
k=1

τ k−1

k(N−k)!

)]+ O(ε3)
.

Expanding the denominator with the geometric series results in

y∞;N (τ, ε∗) = 1

τ

(
ε∗(N − 1)!

N∑
k=1

τ k

(N − k)!
+ (N − 1)!(ε∗)2

N∑
k=1

τ k−1

(N − k)!
ψ (k) + O(ε3)

)

×
[

1 + ε∗ γ

τ
− (ε∗)2

(
�′′(1)

2

1

τ 2
+ N!

N∑
k=1

τ k−1

k(N − k)!

)]
.

Simplifying further up to O(ε3) demonstrates (A17). �
Theorem 4. For a small self-infection rate ε in an ε-SIS

epidemic on the complete graph KN , the phase transition in
the steady-state prevalence y∞;N (τ, ε∗) lies in between

1

e

(
10−s

ε∗(N − 1)!

) 1
N−1

< τε
c <

(
10−s

ε∗(N − 1)!

) 1
N−1

(A18)

where s specifies an agreed level for the onset of the phase
transition at which y∞;N (τ, ε∗) = 10−s is first reached, when
τ is gradually increased from τ = 0 at y∞;N (0, ε∗) = ε∗

1+ε∗ on.
Proof. Equating y∞;N (τ, ε∗) = 10−s and invoking (A17)

for τ > 0 up to first order in ε∗ results in

10−s

ε∗ =
N∑

k=1

(N − 1)!τ k−1

(N − k)!
, (A19)

which shows that the solution at τ = τ ε
c is a zero of a

polynomial of degree N − 1 in τ , which cannot be expressed
analytically in closed form for N > 5. After transforming∑N

k=1
(N−1)!τ k−1

(N−k)! = (N − 1)!τN−1∑N−1
k=0

τ− j

j! , the bounds 1 <∑N−1
k=0

τ− j

j! < e
1
τ for τ > 0 illustrate that the zero τ ε

c satisfies

(N − 1)!τN−1 <
10−s

ε∗ and
10−s

ε∗ < (N − 1)!τN−1e
1
τ

or, after inversion,(
10−s

ε∗(N − 1)!

) 1
N−1

e− 1
τε
c (N−1) < τε

c <

(
10−s

ε∗(N − 1)!

) 1
N−1

.

Clearly, the smaller e− 1
τε
c (N−1) , the sharper the bounds are. Since

the onset of the ε-SIS epidemic threshold τ ε
c exceeds, for

small ε, the NIMFA epidemic threshold τ (1)
c = 1

N−1 and, thus,

(N − 1)τ ε
c > 1, we have that 1 > e− 1

τε
c (N−1) > e−1 = 0.367,

which demonstrates Theorem 4. �
The bounds (A18) enable rapid numerical determination of

the zero τ ε
c . The phase transition at τ = τ ε

c obeys (A19):

τ =
(

10−s

ε∗(N − 1)!

) 1
N−1

(
1∑N−1

k=0
τ− j

j!

) 1
N−1

,

which we rewrite as an iterative system in m � 1:

φm =
⎛⎝ 10−s

ε∗(N−1)!

1 +∑N−1
k=1

φ
− j
m−1

j!

⎞⎠
1

N−1

with initial value φ0 = ( 10−s

ε∗(N−1)! )
1

N−1 . The Lagrange series
of (A19) is another analytic approach, that we omit here.

5. Scaling of the steady-state prevalence y∞;N+1(τ, ε∗)

We consider here the complete graph KN+1 to simplify
the computations, because N − 1 → N , so that the bounds7

7Since the maximum of the terms in
∑N

k=0
τ− j

j! with τ = x
N occurs

at j = [ N
x ], after which the terms start decreasing, the approximation

e
1
τ ≈ ∑N

k=0
τ− j

j! is only reasonable if x � 1, which is in agreement
with Sec. A 7.
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derived in the proof of Theorem 4 for small ε∗ are

ε∗N!τN < y∞;N+1(τ, ε∗) < ε∗N!τN e
1
τ .

Using the mean-field scaling τ = x
N and Stirling’s approxima-

tion N! = √
2πNNN e−N+ θ

12N for 0 < θ < 1 (see [25, 6.1.38]),
we find for KN+1 that

ε∗√2πNe(−1+ln x)N < y∞;N+1

( x

N
, ε∗

)
< ε∗√2πNe( 1

x −1+ln x)N e
θ

12N .

We also know that the NIMFA steady-state prevalence
y(1)
∞;N+1( x

N ) = 1 − 1
x upper bounds the steady-state prevalence

y∞;N+1( x
N , ε∗) and, above x > 1, the NIMFA upper bound is

considerably sharper than the above upper bound. Further-
more, if we choose ε∗ = e−zN√

2πN
, then

e(−1+ln x−z)N < y∞;N+1

(
x

N
,

e−zN

√
2πN

)
< 1 − 1

x
. (A20)

The scaled inequality (A20) means that, for effective infection
rate τ below the NIMFA epidemic threshold τ (1)

c = 1
N in

KN+1, corresponding to x = 1, the steady-state prevalence
y∞;N+1(τ, ε∗) <

√
2πNe

θ
12N ε∗ is thus negligibly small for

small ε∗, but y∞;N+1(τ, ε∗) starts to increase exponentially in
τ with “rate” at least −1 + ln x − z for x > 1 until the NIMFA
prevalence y(1)

∞;N+1(τ ) = 1 − 1
x is reached. Thus, for −1 +

ln x − z > 0 or x > ez+1, the lower bound in inequality (A20)
equals the maximum possible and indicates that an estimate of
the phase transition lies around x ≈ ez+1, which is confirmed
by numerical computations in Fig. 5.

6. Prevalence y∞;N (τ ) in terms of confluent
hypergeometric functions

Since ε∗
τ

+ k > 0 in any term of (A7), we use, as in [7],
Euler’s integral for the Gamma function �(z) =∫∞

0 e−uuz−1du for Re (z) > 0 in (A4),

�
(

ε∗
τ

)
π0;N

=
N∑

k=0

(
N

k

)
τ k�

(
ε∗

τ
+ k

)

=
N∑

k=0

(
N

k

)
τ k
∫ ∞

0
e−uu

ε∗
τ

+k−1du,

resulting in the inverse of the probability that the virus is
extinct in the steady state of the ε-SIS process on KN :

1

π0;N
= 1

�
(

ε∗
τ

) ∫ ∞

0
e−uu

ε∗
τ

−1(1 + τu)N du. (A21)

Let x = τu in (A21); then u = 1
τ

x:

1

π0;N
= 1

τ
ε∗
τ �
(

ε∗
τ

) ∫ ∞

0
e− 1

τ
xx

ε∗
τ

−1(1 + x)N dx,

which can be rewritten as a confluent hypergeometric function
[25, 13.2.5]

U (a, b, z) = 1

�(a)

∫ ∞

0
e−zxxa−1(1 + x)b−a−1dx,

Re(b) > Re(a) > 0, and Re(x) > 0

as8

1

π0;N
= 1

�
(

ε∗
τ

) N∑
k=0

(
N

k

)
τ k�

(
ε∗

τ
+ k

)

= τ− ε∗
τ U

(
ε∗

τ
, N + 1 + ε∗

τ
,

1

τ

)
. (A22)

The steady-state prevalence, after decreasing k → k − 1 in
the numerator of (A7), becomes

y∞;N (τ, ε∗) = τ

∑N−1
k=0

(N−1
k

)
τ k�

(
ε∗
τ

+ 1 + k
)∑N

k=0

(N
k

)
τ k�

(
ε∗
τ

+ k
)

and invoking (A22) leads to

y∞;N (τ, ε∗) = ε∗

τ

U
(

ε∗
τ

+ 1, N + 1 + ε∗
τ
, 1

τ

)
U
(

ε∗
τ
, N + 1 + ε∗

τ
, 1

τ

) . (A23)

There are a number of “contiguous” relations [25, 13.4.15-
13.4.20], coined by Gauss for three term relations between
hypergeometric functions, that provide recursion relations as
in (A8).

Rather than using the theory of confluent hypergeomet-
ric functions, we concentrate on the integral representa-
tion (A21):

y∞;N (τ, ε∗) = τ

∫∞
0 e−uu

ε∗
τ (1 + τu)N−1du∫∞

0 e−uu
ε∗
τ

−1(1 + τu)N du
. (A24)

Splitting the denominator into two integrals after using
(1 + τu)N = (1 + τu)N−1(1 + τu), we find that

y∞;N (τ, ε∗) = 1

1 +
∫∞

0 e−uu
ε∗
τ −1(1+τu)N−1du

τ
∫∞

0 e−uu
ε∗
τ (1+τu)N−1du

. (A25)

Similarly, since τ
∫∞

0 e−uu
ε∗
τ (1 + τu)N−1du =∫∞

0 e−uu
ε∗
τ

−1τu(1 + τu)N−1du and τu(1 + τu)N−1 =
(1 + τu)N − (1 + τu)N−1, we have

y∞;N (τ, ε∗) = 1 −
∫∞

0 e−uu
ε∗
τ

−1(1 + τu)N−1du∫∞
0 e−uu

ε∗
τ

−1(1 + τu)N du
. (A26)

Invoking (A21), we find

y∞;N (τ, ε∗) = 1 − π0;N

π0;N−1
. (A27)

Since y∞;N (τ, ε∗) > 0 for ε∗ > 0, we establish that π0;N−1 >

π0;N for all N and τ . Alternatively, using ∂
∂z (1 + τu)z =

(1 + τu)z log (1 + τu) � 0 for u � 0 for any real z and thus
also for z = N , (A21) shows that 1

π0;N
increases (even strictly

monotonously if ε∗ > 0) with N and 1
π0;N

→ ∞ when N →
∞. Hence, the viral extinction probability π0;N decreases with
N and tends to zero with N → ∞, which implies that the

8Alternatively, with Kummer’s transformation [25, 13.1.29],
U (a, b, z) = z1−bU (1 + a − b, 2 − b, z), we have

1

π0
= τNU

(
−N, 1 − N − ε∗

τ
,

1

τ

)
.
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absorbing state is almost surely impossible in an infinitely
large complete graph, provided the self-infection rate ε∗ > 0.

Partial integration of the numerator in (A24),∫ ∞

0
e−uu

ε∗
τ (1 + τu)N−1du

= 1

Nτ

∫ ∞

0
e−uu

ε∗
τ (1 + τu)N du

− ε∗

τ

1

Nτ

∫ ∞

0
e−uu

ε∗
τ

−1(1 + τu)N du,

yields

Ny∞;N (τ, ε∗) + ε∗

τ
=

∫∞
0 e−uu

ε∗
τ (1 + τu)N du∫∞

0 e−uu
ε∗
τ

−1(1 + τu)N du
.

Introducing (A25) shows that

τ

(
1

y∞;N (τ, ε∗)
− 1

)
= 1

(N − 1)y∞;N−1(τ, ε∗) + ε∗
τ

,

which is again equivalent to the recursion (A8).

7. Large N asymptotics

We let τ = a
N in

∑N
k=0

(N
k

)
τ k�( ε∗

τ
+ k) =∫∞

0 e−uu
ε∗
τ

−1(1 + τu)N du, because(
1 + au

N

)N
= eau

[
1 + O

(
1

N

)]
illustrates that a linear scaling of τ leads to a finite, nontrivial
result9 for large N . Hence, we obtain, for 0 < a < 1,∫ ∞

0
e−uu

Nε∗
a −1

(
1 + au

N

)N
du

=
∫ ∞

0
e−u(1−a)u

Nε∗
a −1

[
1 + O

(
1

N

)]
du

= �
(

Nε∗
a

)
(1 − a)

Nε∗
a

[
1 + O

(
1

N

)]
while the integral diverges for a > 1. In order to have a same
exponent of (1 + τu), we consider (A25)

y∞;N (τ, ε∗) = 1

1 +
∫∞

0 e−uu
ε∗
τ −1(1+τu)N−1du

τ
∫∞

0 e−uu
ε∗
τ (1+τu)N−1du

= 1

1 + N
a

∫∞
0 e−uu

Nε∗
a −1(1+ a

N u)N−1
du∫∞

0 e−uu
Nε∗

a (1+ a
N u)N−1

du

.

With

N

a

∫∞
0 e−uu

Nε∗
a −1

(
1 + a

N u
)N−1

du∫∞
0 e−uu

Nε∗
a

(
1 + a

N u
)N−1

du

9All other scalings τ = a
Nα do not, unless α = 1. A linear scaling

also agrees with NIMFA.

= N

a

∫∞
0 e−u(1−a)u

Nε∗
a −1

[
1 + O

(
1
N

)]
du∫∞

0 e−u(1−a)u
Nε∗

a

[
1 + O

(
1
N

)]
du

= N

a

�
(

Nε∗
a

)
(1 − a)

Nε∗
a +1

(1 − a)
Nε∗

a �
(

Nε∗
a + 1

) = (1 − a)

ε∗

we have, provided 0 < a < 1 (thus below the NIMFA epi-
demic threshold, significantly), in the thermodynamic limit
for N → ∞,

y∞;N

( a

N
, ε∗

)
→ 1

1 + (1−a)
ε∗

= ε∗

1 + ε∗ − τN

where the right-hand side is an upper bound for y∞;N (τ, ε∗),
as shown in [24, p. 486], consistent with Theorem 1. Due to
the integral convergence constraint a < 1, we cannot deduce
the explosive phase transition τ ε

c for N → ∞.
More elegantly, we take the limit N → ∞ of a variant of

the recursion (A8),

y∞;N (τ, ε∗) = 1 − 1

1 + ε∗ + (N − 1)τy∞;N−1(τ, ε∗)
,

denote the “size limit prevalence” by y =
limN→∞ y∞;N (τ (N ), ε∗(N )), and obtain

y = 1 − 1

1 + E + Ty

where T = limN→∞ (N − 1)τ (N ) and E = limN→∞ ε∗(N ).
The two extremes, T = 0 and ∞, lead to

E

1 + E
� y � 1.

The bounds emphasize that large E (irrespective of T ) results
in the less interesting case of a prevalence approaching 1.
Rewriting y = 1 − 1

1+E+Ty as a quadratic equation

Ty2 + (1 + E − T )y − E = 0

leads, after maintaining only the positive root, to

y = 1

2

⎡⎣1 −
(

1 + E

T

)
+
√(

1 − 1 + E

T

)2

+ 4
E

T

⎤⎦,

which means that roughly the ratio r = 1+E
T is determining

y = 1

2

(
1 − r +

√
(1 + r)2 − 4

T

)
.

The finite T case, in between the extremes T = 0 and ∞, is
the more interesting situation. If T = 1, which represents the
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ε = 0 SIS epidemic threshold around τ → 0, then

y = E

2

{√
1 + 4

E
− 1

}
where limE→∞ E

2 {
√

1+ 4
E −1}=1 and limE→0

E
2 {

√
1+ 4

E −1}=0. Moreover,
y is increasing in E with a derivative limE→0

dy
dE = ∞, while

limE→∞ dy
dE = 0, again illustrating that around ε → 0 the

changes in the “size limit prevalence” are phenomenal and
explosive.
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