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In this paper, we focus on the link density in random geometric graphs (RGGs) with a distance-based
connection function. After deriving the link density in D dimensions, we focus on the two-dimensional
(2D) and three-dimensional (3D) space and show that the link density is accurately approximated by the
Fréchet distribution, for any rectangular space. We derive expressions, in terms of the link density, for
the minimum number of nodes needed in the 2D and 3D spaces to ensure network connectivity. These
results provide first-order estimates for, e.g., a swarm of drones to provide coverage in a disaster or
crowded area.
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I. INTRODUCTION

Random graphs are created from a set of N nodes, placed
in a space V ∈ RD, where each pair of nodes is connected by
a link with probability p, independently of the existence of
any other link [1]. If the node i at position ri and the node
j at position r j are connected with probability pi j = f (|ri −
r j |), where f (r) is a real function of the distance r, then we
talk about a random geometric graph (RGG). If f (r) = 1r<r0 ,
where 1x is the indicator function,1 then all nodes at distance
smaller than r0 are connected almost surely [2,3]. Moreover,
the position ri of each node i itself can be either deterministic
or stochastic. In the latter case, the link existence is doubly
stochastic and depends both on the distance function f (r) and
on the random placement of nodes described by a probability
distribution Pr[r1 � x1, · · · , rN � xN ].

There is extensive work in literature on the properties of
RGGs and their applications. RGGs can model transportation
networks such as wireless [4,5] and airline [6] networks as
well as infrastructural networks like power grids [7]. Also,
RGGs can be applied in analyzing the structure of large data
sets [8] and in modeling ad hoc networks, which are decen-
tralized networks that do not rely on a fixed infrastructure.
Applications of ad hoc networks include vehicular, disaster
relief, sensor, and flying swarm robotics networks [9,10].

In this work, we focus on the link density and the con-
nectivity of two-dimensional (2D) and three-dimensional (3D)
RGGs, with an application to wireless networks. We define
the link density as the ratio of the expected number of links
over the maximum possible number of links in an undirected
graph and the connectivity as the probability that a path ex-
ists between any pair of nodes in the graph. Bettstetter [5]
studies the number of nodes needed to provide connectivity
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11x = 1 if condition x is true, else 1x = 0.

in a 2D RGGs and Dall and Christensen [11] provide the
critical connectivity threshold in D dimensions. Van Mieghem
[12] presents the exact solution for the link density and the
average number of paths between any two nodes, when the
graph is randomly generated in a square. Erba et al. [8]
compare the average number of subgraphs in highly dimen-
sional RGGs characterized by indicator-based and exponential
distance functions. Moreover, multiple approximations to the
nodal degree in bounded spaces are performed [13–15], how-
ever they are related to the 2D space and to indicator-based
distance functions.

Focusing on connectivity in wireless communications,
Hekmat and Van Mieghem [16] derive the giant component
size for 2D RGGs with a log-normal distance function and
show that it is a good measure for connectivity. Ng et al. [17]
provide upper and lower bounds for the critical density of 2D
and 3D RGGs with a log-normal distance function and under
the unit disk model. By distributing the nodes inside or on
the surface of a sphere, Khalid and Durrani [18] provide exact
expressions for the mean node degree and the node isolation
probability. They leave as an open problem the derivation of
these expressions when the nodes are distributed in a cube. Fi-
nally, Dettmann and Georgiou [19] derive the full connection
probability in 2D and 3D convex domains for various distance
functions.

The main contributions of this work are the following:
(1) We derive an exact expression for the link density for

an RGG in a D-dimensional prism and any distance function
f (r) allowing its graph properties to be elegantly and accu-
rately deduced from an Erdős-Rényi random graph Gp(N ),
whose theory is well developed [1].

For 2D and 3D RGGs modeling wireless networks that are
characterized by a simple distance-based path loss model and
Rayleigh fading:

(2) We derive an approximation of the link density in a
hypercube that illustrates the importance of the nodes placed
in its corners.
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FIG. 1. Example realization of a RGG with f (r) = e−0.07r2
and

N = 25 in a 3D rectangular prism, where the link color refers to
the connection probability between two nodes. For visualization
purposes, only links with f (r) > 10−3 are shown.

(3) We analytically demonstrate how the link density de-
pends on the path loss exponent and on the prism size and
shape. We further show that the link density in the 3D space
is smaller than or equal to that in the 2D space.

(4) We show that the complementary distribution function
of the Fréchet distribution accurately approximates the link
density for any path loss exponent, prism size, and prism
shape.

(5) We deduce a general closed-form expression in terms
of the link density to approximate the minimum density of
nodes to ensure a connected network.

The paper is structured as follows. Section II describes the
network model. The link density in the D-dimensional space
is derived in Sec. III, which also presents an approximation
of the link density in a hypercube. The impact of the wireless
environment and the hyperprism’s shape and volume on the
link density is assessed in Sec. IV. Additionally, Sec. IV illus-
trates the high accuracy of the link density approximation with
the Fréchet distribution as well as a brief motivation on the
approximation accuracy. In Sec. V, we derive the minimum
number of nodes needed for connectivity based on the link
density. Finally, Sec. VI concludes the paper with a summary
and the future work.

II. NETWORK MODEL

A graph G(N, L) consists of a set N of N nodes and a set
L of L links. We assume that nodes are placed uniformly at
random inside a hyperprism in D dimensions, with one vertex
at the origin and with length Zd in the dth orthogonal direction
of the coordinate axes. The distance function f (r) provides
the connection probability between two nodes placed at ri =
(ri1 , · · · , riD ) and r j = (r j1 , · · · , r jD ), where r = |ri − r j | de-
notes their mutual distance. Figure 1 draws an example of the
considered graph with f (r) = e−0.07r2

in the 3D space.
In wireless networks, the distance function f (r) is influ-

enced by the wireless channel between the nodes. The RGG
assumption on independent link existence for distinct node
pairs, is approximate for wireless networks, because wireless

transmissions interfere with each other, thus creating depen-
dency between the node pairs. Wireless networks that operate
on a dedicated frequency band or in isolation from other wire-
less networks and ensure orthogonal transmissions in, e.g.,
frequency or time, can be exactly modeled by RGGs.

The impact of the wireless channel is reflected by the
received signal power Prx,i j , which depends on the distance
r between the transmitter i at location ri and the receiver j
at location r j . The average signal attenuation over distance
is given by the path loss, approximately characterized by a
power law. Assuming antenna gains Gi and Gj at the transmit-
ter and receiver, respectively, the received signal power Prx,i j

is [20]

Prx,i j (r) = Ptx,i jGiGjK
( rc

r

)γ

, (1)

with

K =
(

λ

4πrc

)2

< 1,

where Ptx,i j is the transmit power for communication from i
to j in watts [W], λ is the wavelength in meters [m], rc is the
reference distance for the antenna far field in meters [m], γ is
the path loss exponent and r > rc is given in meters [m]. The
reference distance rc ∈ [1, 100] depends on the propagation
environment and on the antenna characteristics [20] while it
further holds that rc � λ, which implies K < 1. The range
of the path loss exponent γ also depends on the propagation
environment with typical values [20] ranging between 2 and
6.5. Generally, the value of γ is determined by empirical
measurements. The smallest value γ = 2 corresponds to the
ideal case of free-space propagation.

Ignoring interference and thus assuming independent links,
the signal-to-noise ratio (SNR) �i j that the receiver j experi-
ences from the transmitter i is given by

�i j (r) = Prx,i j (r)

Pnoise
= Ptx,i jGiGjK

Pnoise

( rc

r

)γ

, (2)

where Pnoise is the thermal noise power. Assuming a fixed
transmission power Ptx,i j = Ptx, ji = Ptx at every node, two
nodes i and j are connected if and only if the �i j = � ji is
greater than the SNR threshold �min. Therefore,

f (r) = Pr[�i j (r) > �min].

Using Eq. (2), this can be rewritten as f (r) = Pr[r < r0],
where

r0 = rc

(
PtxGiGjK

Pnoise �min

)1/γ

, (3)

and thus r0 � rc, denotes the maximum allowed distance be-
tween node i and node j such that they are connected.

Since the received power Prx,i j reduces with distance r,
node i has a spherical coverage area and thus any node j
located within a sphere with radius r0 is connected to the
node i. Hence, the distance function can be written as a step
function f (r) = 1r<r0 .

In reality, the received signal power Prx,i j varies randomly
due to signal reflections, caused by the various objects in
the environment. Specifically, the received signal consists of
multiple copies of the transmitted signal, called multipath
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FIG. 2. Distance function f (r) with respect to the normalized
distance r

r0
when β = −127 dB, λ = 0.08 m, and rc = 1 m.

fading, where each copy is received with different power, at
a different time and with a shift in phase and/or frequency.
The movement of any object in the environment, including the
transmitter and the receiver, may therefore lead to a received
signal power variation, modeled by the time-varying nature of
multipath fading. The received signal power Prx,i j , at time t
and frequency ν, is given by

Prx,i j (r, t, ν) = PtxGiGjK
( rc

r

)γ

||Hi− j (t, ν)||2, (4)

where Hi− j (t, ν) is the channel response to multipath fading
at time t and frequency ν on the channel between transmitter
i and receiver j. With Eq. (4), the distance function f (r) =
Pr[�i j (r, t, ν) > �min] can now be written as

f (r) = Pr

[
||Hi− j (t, ν)||2 >

β

K

( r

rc

)γ
]
, (5)

where β is the minimum required channel gain given by

β = Pnoise �min

PtxGiGj
. (6)

Because generally Pnoise � Ptx, we have β < 1. For a “typ-
ical” drone-to-drone application, it is estimated that β <

10−10 = −100 dB.
Assuming that Hi− j (t, ν) is Rayleigh distributed [8], then

||Hi− j (t, ν)||2 is exponentially distributed with a mean of 1
and Eq. (5) becomes

f (r) = e− β

K ( r
rc )γ

. (7)

The distance function in Eq. (7) is commonly considered in
the literature with rc = 1 m for wireless networks [19], while
it also appears in studies on the properties of data sets and of
machine learning algorithms [8] in highly dimensional RGGs.
It is convenient to rewrite Eq. (7) with respect to the maximum
allowed distance r0, as derived for the case without multipath
fading, using Eqs. (3) and (6):

f (r) = e−( r
r0

)γ

, (8)

for which limγ→∞ f (r) = 1r<r0 and f (r0) = 1
e ≈ 0.3678.

Figure 2 illustrates the distance function f (r) for different
values of γ in terms of the normalized distance, defined as the
ratio of the distance r over the maximum allowed distance
r0. A wider value range of γ than [2,6.5] is considered to
understand the behavior of the distance function f (r) for all
real, positive numbers. Figure 2 exemplifies that for a given
γ , the distance function f (r) reduces with distance r. Further-
more, the distance function f (r) increases in γ for r < r0 but
decreases in γ for r > r0 since with a higher γ , the received
signal power Prx,i j attenuates more quickly over distance r.

III. LINK DENSITY IN D DIMENSIONS

We define the link density p = E [L]
Lmax

as the ratio of the
expected number E [L] of links over the maximum possible
number Lmax = N (N−1)

2 of links in an undirected graph. In this
section, we derive the link density of a RGG in a rectangular
hyperprism in D dimensions and provide an approximation to
the link density in a hypercube.

A. Link density analysis

The number of links L[{R}] in a RGG with nodal positions
{R} = {r1, r2, · · · rN } in space V ∈ RD is given by [12]

L[{R}] =
N∑

i=1

N∑
j=i+1

f (|ri − r j |),

where f (·) is the function generating an RGG with N . The
expected number of links E [L] is given by

E [L] =
∫

V
Pr [{R}]L[{R}]d[{R}],

where Pr[{R}] = g{r1,··· ,rN }(x1, · · · , xN ) is the probability den-
sity function (pdf) of the position of the set of nodes, given by

Pr [{R}] = d Pr[r1 � x1, · · · , rN � xN ]

dx1 · · · dxN
,

resulting in

E [L] =
∫

V
dr1 · · · drN g{r1,··· ,rN }(r1, · · · , rN )

×
N∑

i=1

N∑
j=i+1

f (|ri − r j |). (9)

We can proceed further if we assume independence in nodal
positions, i.e., Pr[r1 � x1, · · · , rN � xN ] = ∏N

n=1 Pr[rn �
xn], with corresponding pdf

g{r1,··· ,rN }(x1, · · · , xN ) =
N∏

n=1

grn (xn).

Then, the expected number of links in Eq. (9) reduces to

E [L] =
∫

V

N∏
n=1

drngrn (rn)
N∑

i=1

N∑
j=i+1

f (|ri − r j |)

=
N∑

i=1

N∑
j=i+1

∫
V

dri

∫
V

dr jgri (ri)grj (r j ) f (|ri − r j |).
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Assuming identical distributions Pr[rn � x] = Pr[r � x] and
a same pdf grn (x) = gr (x) for any node n ∈ N , the corre-
sponding link density p is

p = E [L]

Lmax
=

∫
V

dq
∫

V
ds gr (q)gr (s) f (|q − s|). (10)

When the nodes are placed uniformly at random inside
a D-dimensional rectangular hyperprism with edge lengths
Z1, Z2, · · · , ZD and volume v = ∏D

d=1 Zd , so that gr (x) = 1
v
,

the integral in Eq. (10) can be analytically evaluated. Nu-
merical evaluation of the more general expression given in
Eq. (10) is rather straightforward, given that the i.i.d. nodal
location density gr (x) is known. Choosing the uniform density
gr (x) = 1

v
and a square of size Z in 2D, the link density p

for an arbitrary distance function f (r) is derived in Ref. [12].
Appendix A generalizes the link density p to D dimensions
in a rectangular hyperprism. Because in Cartesian coordinates
the distance between nodes ri and r j is given by |ri − r j |2 =∑D

d=1(rid − r jd )2, we denote f (|ri − r j |) = h(|ri − r j |2) to
simplify the notation and Eq. (10) becomes

p = 2D
∫ Z1

0
du1 · · ·

∫ ZD

0
duD

D∏
d=1

(Zd − ud )

Z2
d

h

(
D∑

d=1

u2
d

)
,

(11)
where ud is the location variable in dimension d . The ana-
lytical derivation of Eq. (11) with D = 2 for general distance
function f (r) = h(r2) is presented in Appendix A. Analytical
derivation of Eq. (11) in higher dimensions D > 2 is cumber-
some.

Instead of integrating over the positions ud in D dimen-
sions, we can integrate over the distance between two nodes
and Eq. (11) is rewritten as the expectation of the distance
function f (R)

p = E [ f (R)] =
∫ rmax

0
f (r)gR(r)dr, (12)

where the random variable R ∈ [0, rmax] of the distance has
pdf gR(r). Even though Eqs. (11) and (12) are the same when
nodes are independently placed at random inside a hyper-
prism, Eq. (12) is implicit and assumes the knowledge of the
pdf gR(r).

B. Link density approximation in a hypercube

A number of papers, e.g., Refs. [14,15,19], study the
boundary effects of the considered space on the nodal degree
and connectivity. In this work, the boundary effects are cap-
tured in the derivation of the link density p in Eq. (11). We
approximate here the link density p in Eq. (11) for the case of a
hypercube with Z1 = · · · = ZD = Z to study the effects of the
nodes located at the corners of the hyperprism. Assuming that
one vertex of the hypercube is at the origin, we consider a part
of a hypersphere of radius Z and center at the origin, which is
entirely enclosed by the hypercube. Thus, in the 2D space, the
link density psquare-2D in a square is approximated by the link
density pcircle/4 in a quarter of a circle while in 3D, the link
density pcube-3D in a cube is approximated by the link density
psphere/8 in an octant of a sphere. In Appendix B 1 and B 2
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FIG. 3. Error from approximate solution of link density in
a square and a cube for rc = 1 m, K = 4.65 × 10−5, and β =
−103.3 dB.

we derive the link densities pcircle/4 and psphere/8, respectively,
leading to

psquare-2D =
∫ 1

0
h(Zx)(2πx − 8x2 + 2x3)dx + perror-2D, (13)

pcube-3D =
∫ 1

0
h(Zx)(4πx2−6πx3 + 8x4 − x5)dx + perror-3D,

(14)

where perror-2D and perror-3D denote the errors introduced by the
approximations in the 2D and 3D spaces, respectively.

Appendix B 3 solves pcircle/4 and psphere/8 for any value of
γ of the distance function (7). Comparing the link densities
pcircle/4 and psphere/8 with the exact link densities psquare-2D and
pcube-3D derived from Eq. (11), the errors perror-2D and perror-3D

are determined and shown in Fig. 3.
Figure 3 illustrates that the approximation of the link

density psquare-2D in the 2D space, as shown in Eq. (13),
is more accurate than the link density pcube-3D in the 3D
space, as shown in Eq. (14), regardless of γ . Indeed, the
partial circle/sphere does not cover the whole area/volume
of the square/cube and thus the nodes located in the dis-
tant corner are neglected. In general, the volume ratio of the
inscribed hypersphere over the hypercube is equal to vD =

π
D
2

�( D
2 +1)2D , which is independent of the size Z and rapidly

tends to zero with D. For example, v2 = π
4 = 0.7854, v3 =

π
6 = 0.5236, v4 = π2

32 = 0.3084, v5 = π2

60 = 0.1644, and v6 =
π3

384 = 0.0807. In other words, the higher the number of di-
mensions D, the worse the approximation and the larger the
ratio 1 − vD of the neglected “corner” volume. This explains
why the error perror-3D is larger than the error perror-2D.

Additionally, Fig. 3 depicts that even though the frac-
tion of the uncovered area/volume is fixed for any Z , the
approximations are accurate when Z

r0
is greater than about

2 and 2.8, for γ = 3 and γ = 2, respectively. In particu-
lar, the approximations are accurate when the link densities
psquare-2D and pcube-3D are greater than about 0.8 and 0.5, re-
spectively, and regardless of γ . Apparently, the corner nodes
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that are neglected from the approximate link densities pcircle/4

and psphere/8, have negligible influence on the link densities
psquare-2D and pcube-3D, respectively, for large Z . Typically,
links involving a corner node are characterized by a large
distance r and, consequently, a small connection probability
that tends to zero for large R. Furthermore, beside the size Z
of the hypercube, the accuracy also depends on γ : since the
distance function f (r) decreases in γ (for r > r0) the impact
of the corner nodes on the link density is less prominent for
large γ .

When the nodes are placed independently and uniformly at
random in a square of size Z , the pdf of the distance between
two nodes gR(r) in Eq. (12) is equal to Ref. [21], for 0 < r �
Z ,

gR(r) = 2πZ2r − 8Zr2 + 2r3

Z4
, (15)

and for Z < r �
√

2Z ,

gR(r) = −2r3 + 8Zr
√

r2 − Z2

Z4

+ 2Z2r
(
4 arcsin

(
Z
r

) − 2 − π
)

Z4
. (16)

After the transformation r = Zx, the pcircle/4 and perror-2D terms
in Eq. (13) are again found, using Eqs. (15) and (16) in
Eq. (12), respectively. Therefore, the approximation (13) in-
deed neglects all links between nodes located at the corner
of the square. Similar conclusions apply for any number of
dimensions D.

IV. EVALUATION WITH SIMULATIONS

For the distance function f (r) in Eq. (8), the link density
p in Eq. (11) is simulated and the influence of the path loss
exponent γ and of the geometry of the prism in 2D and 3D
is studied. We also show that the link density p is accurately
approximated by a Fréchet distribution. We denote the side
ratio ω = Z2

Z1
and the height ratio δ = Z3

Z1
and assume that Z1 �

Z2 and Z1 � Z3, implying that 0 < ω � 1 and 0 < δ � 1.

A. Impact of environment

Figure 4 shows the link density p2D and p3D in the 2D and
3D spaces versus the normalized length Z1

r0
of side Z1 w.r.t.

the maximum allowed distance r0, when varying γ . Figure 4
shows that the link density p increases with the loss exponent
γ when Z1

r0
is less than a threshold, that depends on the dimen-

sion and prism’s shape and size. For Z1 < r0, the majority of
distances between two nodes obeys r < r0 and thus the link
density p behaves similarly to the distance function f (r) for
r < r0 ( 1

e � f (r) � 1). When Z1 is sufficiently larger than r0,
the distance between two nodes r can be much greater than r0

and thus the distance function f (r) can take any value between
zero and one. This is also the reason why after a Z1

r0
threshold

value, the link density p behaves the same for any γ .
When Z1 ∼ r0, border effects play a role, as previously

explained. Equation (3) demonstrates that r0 decreases with
γ and the border effects influence the link density when γ

decreases, for a particular value of Z1. However, when Z1

is sufficiently larger than r0, the borders have no impact
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FIG. 4. Impact of the path loss exponent γ on the link density
p in the 2D and 3D spaces for ω = 0.75, δ = 0.5, rc = 1 m, K =
4.65 × 10−5, and β = −103.3 dB.

on the link density. Moreover, limγ→∞ f (r) = 1r<r0 and for
γ → ∞ in Eq. (3), it holds that r0 = rc. Thus, the limit of
γ → ∞ in Eq. (11), results in p = 0, due to the restriction
r > rc in wireless networks. Additionally, for Z1

r0
→ 0 the link

density p → 1 because either the distance r between any two
nodes is very small (r → 0), as an effect of Z1 → 0, and thus
limr→0 f (r) = 1, or because limr0→∞ f (r) = 1, as a result of
r0 � Z1.

The link density in Fig. 4 versus x = Z1
r0

is fitted by

p(x) = 1 − e−( x−a
b )−c

, (17)

where FX (z) = Pr[X � z] = e−( z−a
b )−c

1z�a is a scaled Fréchet
distribution of r.v. X � 0 and the parameters a ∈ (−∞,∞),
b ∈ (0,∞), and c ∈ (0,∞) are the location of the minimum,
scale and shape of the Fréchet distribution, respectively. The
values of (a2D, b2D, c2D) and (a3D, b3D, c3D) fitting the link
density p curves in the 2D and 3D spaces, respectively, as
shown in Fig. 4, are given in Table I along with their standard
error. The root-mean-square error (RMSE) of each fit is less
than 0.01 and emphasizes the remarkably high accuracy of
the Fréchet approximation (17). The dependence of the fitting
parameters a, b, c on γ , ω, and δ, shown in Appendix C,
highlights that the parameter c ≈ D approximately equals the
dimensions D, when the border effects are minimal.

In summary, the Fréchet distribution in Eq. (17) very accu-
rately approximates the link density with a distance function

TABLE I. Fit values for Eq. (17) with ω = 0.75, δ = 0.5, rc =
1 m, K = 4.65 × 10−5, and β = −103.3 dB.

γ 2 4 10

a2D −1.09 ± 0.02 −0.40 ± 0.02 0.00 ± 0.03
b2D 2.54 ± 0.02 2.05 ± 0.02 1.79 ± 0.03
c2D 2.28 ± 0.01 2.18 ± 0.02 1.99 ± 0.03
a3D −2.00 ± 0.02 −1.27 ± 0.03 −0.29 ± 0.01
b3D 3.31 ± 0.03 2.80 ± 0.03 1.94 ± 0.01
c3D 3.50 ± 0.02 3.62 ± 0.03 2.82 ± 0.01

024301-5



RAFTOPOULOU, LITJENS, AND VAN MIEGHEM PHYSICAL REVIEW E 106, 024301 (2022)
L

in
k
 d

e
n
si

ty
 p

0.0

0.2

0.4

0.6

0.8

1.0

pinf-2D

Fréchet distribution 
Simulation

0.8 1.0 1.2 1.4

0.8

1.0

0.9

0.7

FIG. 5. Link density comparison between the simulation of
Eq. (11) (blue), the fitting of a Fréchet (green) and the polynomial
solution from Eqs. (18) and (19) for a square of size Z and γ → ∞.

f (r) = e−( r
r0

)γ for any physically interesting γ and all prism
geometries. Therefore, this new insight motivates the use of
Eq. (17), instead of Eq. (11), in applications.

B. Hard RGG in a square and the Fréchet distribution

To motivate the accurate fitting with the Fréchet distri-
bution, we consider the special case of a hard RGG with
limγ→∞ f (r) = 1r<r0 . Then, the link density in Eq. (12) for
a square of size Z is equal to pinf-2D = GR(r) = Pr[R � r0].
Setting x = Z

r0
, Eq. (12) leads to, for 0 < r0 � Z ,

pinf-2D(x) = x−4

2
− 8x−3

3
+ πx−2, (18)

for Z < r0 �
√

2Z ,

pinf-2D(x) = −x−4

2
+ 8(x−2 − 1)3/2

3
+ 4

√
x−2 − 1

+ 4x−2 arcsin x − (2 + π )x−2 + 1

3
, (19)

and for r0 >
√

2Z , the link density pinf-2D = 1.
The link density pinf-2D can be approximated by a Poisson

point process (PPP), where N nodes are uniformly distributed
in a circle with radius Z . The probability in a PPP to have an
isolated node equals piso = e−ρπr2

0 , where ρ = N
πZ2 is the node

density. Hence, the probability to have a link is

Pr[R � r0] = 1 − e−ρπr2
0 .

Because pinf-2D = Pr[R � r0] we can write using x = Z
r0

:

pinf-2D-PPP(x) = 1 − e−( x
b )−2

, (20)

where b = √
N . Thus, pinf-2D-PPP(x) satisfies Eq. (17) with

parameters (0,
√

N, 2) of the Fréchet distribution.
Figure 5 shows the link density for a square and for

γ → ∞ as derived (i) via simulations from Eq. (11), (ii)
by fitting Eq. (11) with the Fréchet distribution in Eq. (20),
and (iii) by Eqs. (18) and (19). Figure 5 illustrates that the
Fréchet distribution approximates the link density in Eq. (11)
remarkably well. Specifically, the fit of the Fréchet distribution
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FIG. 6. Difference p2D − p3D of link density between the 2D and
3D spaces, for different values of γ when ω = 0.75, δ = 0.5, rc =
1 m, K = 4.65 × 10−5, and β = −103.3 dB.

with parameters (0, 1.65, 2) yields an RMSE of 0.005 and the
difference on a plot is hardly visible. The Fréchet distribution
is only slightly inaccurate when r0 ∼ Z , which is due to border
effects that are not captured in Eq. (20). Additionally, Fig. 5
shows that the link density in Eqs. (18) and (19) are the exact
solutions of Eq. (11). The simplicity of the Fréchet distribu-
tion compared to the complexity of the exact link density (11)
is remarkable and motivates its use in applications.

C. Difference in dimensions

Figure 4 illustrates that the link density p3D � p2D, re-
gardless of the value of γ . We identify three regions for Z1

r0
,

indicated by the encircled numbers in Fig. 4:
(1) p2D = p3D = 1: the distance between any two nodes is

small enough to provide a link.
(2) p2D upper bounds p3D: the 3D distance between any

two nodes is always larger than or equal to its projection in
the 2D space.

(3) p2D → 0 and p3D → 0: the distance between any two
nodes is too large to provide a link.

Figure 6 shows the link density difference p2D − p3D of
the Fréchet approximation (17). The difference p2D − p3D

behaves similarly for any γ and it is maximized at around
Z1
r0

= 2.75, which is dependent on the geometry given by ω

and δ.

D. Impact of shape and volume

The maximum distance between two nodes is

r2D,max =
√

Z2
1 + Z2

2 = Z1

√
1 + ω2,

r3D,max =
√

Z2
1 + Z2

2 + Z2
3 = Z1

√
1 + ω2 + δ2. (21)

For a given value of the side Z1 and the side length Z2 (and
thus ω), an increase of the height Z3 (and thus δ), reduces
the link density p3D because the maximum distance r3D,max

between two nodes increases, as also shown in Eq. (21).
Figure 7 illustrates the difference p2D − p3D in link density
between the 2D and 3D spaces, which increases with δ. For
δ � ω, e.g., ω = 1 and δ = 0.1, the effect of Z3 (and thus
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δ) in Eq. (21) becomes negligible and hence p2D − p3D ≈ 0.
Additionally, an increase of δ shifts the maximum difference
p2D − p3D to a smaller Z1

r0
value because the shape of the prism

becomes more symmetrical.
Similarly, based on Eq. (21), when considering a constant

side Z1 and height Z3 (and thus δ), an increase of the side
length Z2 (and thus ω) increases the size of the rectangle and
prism in the horizontal plane, given by Z1 and Z2. Thus, the
maximum distances r2D,max and r3D,max between two nodes in-
crease and hence both the link densities p2D and p3D decrease.
Figure 7 depicts that the difference p2D − p3D also decreases
with an increase of ω, which implies that p2D reduces faster
than p3D.

V. APPLICATION TO DRONE NETWORKS

In future telecommunication networks, drones are expected
to provide coverage in a disaster area or when a ground base
station fails or to serve incidental traffic hot spots. When a
swarm of drones is deployed, the drones in the swarm are
expected to communicate with each other to avoid collisions
and exchange necessary information for collaborative tasks.
Thus, any drone should be able to reach any other drone
in the swarm to establish a connected network. While many
studies in literature focus on deploying a swarm of drones to
provide coverage and/or capacity to the access network, the
connectivity among the drones is usually ignored [22,23]. In
this section, the minimum number Nmin of drones that need
to be deployed for a connected network is computed, based
on the link density p. We model the drone network with a
RGG. Because drones can be deployed at the same altitude or
at different altitudes, e.g., for scenarios where both terrestrial
users and users in high-rise buildings are considered, the 2D
and the 3D spaces are considered.

Previously we have shown that the link density p depends
on γ , ω = Z2

Z1
, δ = Z3

Z1
as well as on r0 and thus on β. To

evaluate the impact of each parameter, we refer to a baseline

TABLE II. Scenario configurations.

Scenario γ β ω δ

S0 2 −127 dB 0.75 0.5
Sγ 4 −127 dB 0.75 0.5
Sβ 2 −80 dB 0.75 0.5
Sω 2 −127 dB 0.1 0.5
Sδ 2 −127 dB 0.75 0.1

scenario S0, which can describe a realistic drone network
and we propose a set of scenarios by unilaterally varying
the parameters of the baseline scenario to an extreme value,
as shown in Table II. We simulate 104 realizations for each
scenario and for each prism’s size Z1 and derive the link
density p and the minimum number of nodes Nmin, such that
the network is connected. We measure connectivity via the
giant component size, which equals the number of nodes in
the largest cluster of the network divided by the total number
of nodes N in the network. When the giant component size
is equal to 1, the network is connected. The number of nodes
in the largest cluster are found after first creating N clusters,
where the nth cluster contains the nth node. Then, we merge
the clusters that have at least one common node. We repeat the
cluster mergers until no cluster shares a common node with
another cluster. The largest cluster is the one that contains the
most nodes. We regard the network as connected when the
giant component size is greater than or equal to 0.99.

Table II shows the chosen parameters for the considered
scenarios. Scenario S0 describes a network with a good prop-
agation environment (e.g., in high altitude), with a typical
minimum required channel gain β and drones placed in a
space where the horizontal plane is larger than the vertical
plane. In Scenario Sγ , the propagation environment is worse
(i.e., the path loss exponent γ is higher) than the one in Sce-
nario S0, which can indicate that the drones are flying closer
to the ground where there are many obstacles. The effects
of a higher minimum required channel gain β compared to
Scenario S0 are captured in Scenario Sβ , implying an increase
of the noise power and/or a reduction of the SNR threshold
and/or a reduction of the transmission power. Scenarios Sω

and Sδ capture the impact of the space where the drones are
located. Specifically, in Scenario Sω, the horizontal plane is
narrower than the vertical plane while in Scenario Sδ , the
vertical plane is much narrower than the horizontal plane.

Figure 8 shows the link density p and the minimum number
of nodes Nmin as derived from simulating the above-mentioned
scenarios. The fitted curves in Fig. 8 are deduced from all sce-
narios and follow a power law Nmin = apb where (a2D, b2D)
and (a3D, b3D) are the fitting parameters with their standard
error, in the 2D and 3D spaces, respectively:

a2D = 5.14 ± 0.32, b2D = −1.12 ± 0.04,

a3D = 4.35 ± 0.27, b3D = −1.23 ± 0.04.
(22)

The RMSE of the fitting is 2.96 and 2.73 for the 2D and 3D
spaces, respectively.

Figure 8 shows that the minimum number of nodes Nmin

needed for connectivity does not depend on the dimension
D of the space (2D or 3D), but only on the value of the
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FIG. 8. Minimum number of nodes Nmin needed for connectivity in respect to the link density p, for the scenarios shown in Table II, as
well as the fitting curves given by Eq. (22).

link density p. However, Fig. 8 also shows that the minimum
number of nodes Nmin needed for connectivity can vary per
scenario when the link density is less than about 0.5. For
example, when comparing Scenarios S0 and Sω, we observe
that a reduction of the parameter ω from 0.75 to 0.1, increases
the minimum number of nodes Nmin by about 10, when the
link density is equal to 0.2. Also, for link density p > 0.7,
the fitted curves are overestimating the minimum number of
nodes Nmin. Therefore, we can conclude that Eq. (22) provides
a rough approximation of the minimum number of nodes Nmin.

VI. CONCLUSIONS

We have computed the link density in D-dimensional
RGGs, generated by a general distance function f (r) and
we have demonstrated its remarkably accurate approximation
by the Fréchet distribution function (17) for any path loss
exponent γ and any prism geometry. Also, we indicated that
the link density p2D in the 2D space upper bounds that in
the 3D space, when the same propagation environment and
size of the horizontal plane are considered. Finally, based on
the giant component size, we have found that the minimum
number of nodes Nmin needed for connectivity is a power law
of the link density p. The above-mentioned insights can be
helpful in applications requiring the deployment of a swarm
of drones. For example, when the size of and the propagation
conditions in a disaster or crowded area that require coverage
or extra capacity are known, Nmin provides an estimation on
the minimum number of drones that should be deployed to
have a connected swarm of drones.

While the Fréchet distribution (17) accurately approxi-
mates the link density p, a method to easily derive the fitting
values for different scenarios is left for further research. Here,
we assumed that the fixed nodes are independent and uni-
formly distributed in the D-dimensional space. In future work,
we will investigate how the node mobility and the spatial
distribution influence the minimum number of nodes Nmin

needed for connectivity. In most wireless networks, the links
are dependent due to interference. Thus, the impact of inter-
ference and potential ways to mitigate interference will also
be addressed.
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APPENDIX A: LINK DENSITY IN A RECTANGULAR
HYPERPRISM

When nodes are placed uniformly at random inside the
prism, the link density p, given by

p = E [L]

Lmax
=

∫
V

dq
∫

V
ds gr (q)gr (s) f (|q − s|),

can be written as

p =
∫

V

dq

v

∫
V

ds

v
f (|q − s|), (A1)

where q = (x1, x2, . . . , xD) and s = (y1, y2, . . . , yD) are the
coordinates of two random nodes and f (|q − s|) is the prob-
ability that two nodes at distance |q − s| are connected
by a link. In Cartesian coordinates, the distance |x − y|2 =∑D

d=1(xd − yd )2. To simplify the notation, we denote h(|x −
y|2) = f (|x − y|) and the integral in Eq. (A1) becomes

p =
∫ Z1

0
dx1

∫ Z1

0
dy1 · · ·

∫ ZD

0
dxD

∫ ZD

0
dyD

h
[∑D

d=1(xd − yd )2
]

∏D
d=1 Z2

d

.

(A2)
We use symmetry to reduce the 2D-fold integral to a D-fold
integral. We concentrate on the integration over the d dimen-
sion and denote w2

d = ∑D
k=1;k 
=d (xk − yk )2 that is independent

of dimension d (i.e., of xd and yd ),

∫ Zd

0
dxd

∫ Zd

0
dyd h

⎡
⎢⎣(xd − yd )2 +

D∑
k=1
k 
=d

(xk − yk )2

⎤
⎥⎦

=
∫ Zd

0
dxd

∫ Zd

0
dyd h

[
(xd − yd )2 + w2

d

]
.
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After substitution ud = xd − yd , where yd is kept constant,
followed by partial integration, we obtain

∫ Zd

0
dxd

∫ Zd

0
dyd h

⎡
⎢⎣(xd − yd )2 +

D∑
k=1
k 
=d

(xk − yk )2

⎤
⎥⎦

= 2
∫ Zd

0
dud (Zd − ud )h

⎡
⎢⎣u2

d +
D∑

k=1
k 
=d

(xk − yk )2

⎤
⎥⎦.

Any other dimension can be treated similarly and the inte-
gral in Eq. (A2) is reduced to the integral

p = 2D
∫ Z1

0
du1 · · ·

∫ ZD

0
duD

D∏
d=1

(Zd − ud )

Z2
d

h

(
D∑

d=1

u2
d

)
.

(A3)
We can calculate the link density (A3) numerically for any

dimension D and analytically for D = 2,

prect-2D = 4

(Z1Z2)2

∫ Z1

0
du1

∫ Z2

0
du2 (Z1 − u1)

× (Z2 − u2) h
(
u2

1 + u2
2

)
. (A4)

Transformed to polar coordinates prect-2D = 4(pA+pB+pC )
(Z1Z2 )2 ,

where

pA =
∫ Z2

0
h(r)rdr

∫ π
2

0
(Z1 − r cos θ )(Z2 − r sin θ )dθ,

pB =
∫ Z1

Z2

h(r)rdr
∫ arcsin ( Z2

r )

0
(Z1 − r cos θ )

× (Z2 − r sin θ )dθ,

pC =
∫ √

Z2
1 +Z2

2

Z1

h(r)rdr
∫ arcsin ( Z2

r )

arccos ( Z1
r )

(Z1 − r cos θ )

× (Z2 − r sin θ )dθ.

Solving the θ -integrals of pA, pB, and pC separately, with

Q(θ ) =
∫

(Z1 − r cos θ )(Z2 − r sin θ )dθ

= Z1Z2θ + Z1r cos θ − Z2r sin θ − r2

4
cos(2θ ) + c,

where c is an integration constant, leads to the link density in
a rectangle

prect-2D = 4

Z2
1 Z2

2

(pA + pB + pC), (A5)

with

pA =
∫ Z2

0
h(r)r

[
Z1Z2π

2
− (Z1 + Z2)r + r2

2

]
dr,

pB =
∫ Z1

Z2

h(r)r

[
Z1Z2π − Z2

2

2
− Z1r

−Z1Z2 arccos
(Z2

r

)
+ Z1

√
r2 − Z2

2

]
dr,

pC =
∫ √

Z2
1 +Z2

2

Z1

h(r)r

[
Z1Z2π − Z2

1 − Z2
2

2

−Z1Z2 arccos
(Z1

r

)
− Z1Z2 arccos

(Z2

r

)

+Z1

√
r2 − Z2

2 + Z2

√
r2 − Z2

1 − r2

2

]
dr.

APPENDIX B: LINK DENSITY APPROXIMATION IN A
HYPERCUBE

For Z1 = Z2 = · · · = ZD = Z , Eq. (11) becomes

pDcube = 2D

Z2D

∫ Z

0
du1 · · ·

∫ Z

0
duD

D∏
d=1

(Z − ud )h

(
D∑

d=1

u2
d

)
.

We transform the integral from Cartesian to polar coordinates
using the transformation in [24]. Because the boundaries of
the hypercube are a bit more involved, we consider the integral
over a part of the hypersphere of radius Z and center at the
origin, that is entirely enclosed by the hypercube,

pDcircle = 2D

Z2D

∫ R

0
h(r)rD−1dr

∫ π
2

0
dϕ1 · · ·

∫ π
2

0
dϕD−1

×
D−1∏
d=1

(
Z − r cos ϕd

d−1∏
j=1

sin ϕ j

)

×
(

Z − r sin ϕD−1

D−2∏
j=1

sin ϕ j

)

×
D−1∏
d=1

sinD−1−d ϕd (B1)

and provides a lower bound for pDcube of the hypercube.

1. Two dimensions

Setting D = 2 and using ϕ1 = θ in Eq. (B1), assuming that
the coordinates of the circle with radius Z are given in (r, θ ),
we find for the 2D space

pcircle/4 = 4

Z4

∫ Z

0
h(r)rdr

∫ π
2

0
(Z − r cos θ )

× (Z − r sin θ )dθ. (B2)

Using Eq. (A5) and the transformation r = Zx, Eq. (B2) be-
comes

pcircle/4 =
∫ 1

0
h(Zx)(2πx − 8x2 + 2x3)dx. (B3)

2. Three dimensions

In the 3D space, we use ϕ1 = θ and ϕ2 = φ, assuming
that the coordinates of the sphere with radius Z are given in
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FIG. 9. Panels (a), (b), and (c) illustrate the fitting parameters a2D, b2D, and c2D, respectively, for different values of ω and γ , while panel
(d) illustrates the RMSE of each fit. Panel (c) is in log-log scale.

(r, θ, φ). Using Eq. (B1) we find

psphere/8 = 8

Z6

∫ Z

0
h(r)r2dr

∫ π
2

0
sin θ (Z − r cos θ )dθ

×
∫ π

2

0
(Z − r cos φ sin θ )(Z − r sin φ sin θ )dφ.

(B4)
The φ-integral becomes∫ π

2

0
(Z − r sin θ cos φ)(Z − r sin θ sin φ)dφ

= π

2
Z2 − 2rZ sin θ + r2 sin2 θ

2
. (B5)

Substituting Eq. (B5) in Eq. (B4), we get

psphere/8 = 8

Z6

∫ Z

0
h(r)r2dr

∫ π
2

0
sin θ (Z − r cos θ )

×
(

π

2
Z2 − 2rZ sin θ + r2 sin2 θ

2

)
dθ.

After substitution of the θ integral∫ π
2

0
sin θ (Z − r cos θ )

(
π

2
Z2 − 2rZ sin θ + r2 sin2 θ

2

)
dθ

= πZ3

2
− 3πZ2r

4
+ Zr2 − r3

8

and letting r = Zx, we arrive at

psphere/8 =
∫ 1

0
h(Zx)(4πx2 − 6πx3 + 8x4 − x5)dx. (B6)

3. Formal solution of pDcircle in Eq. (B1) in higher dimensions

Both integrals (B3) and (B6) are of the form

pDcircle =
∫ 1

0
h(Zx)pn(x)dx,

where pn(x) = ∑n
j=0 a jx j is a polynomial of degree n in x.

The integral can be elegantly solved if h(z) is an entire func-
tion.2 Here, we confine to h(z) = e−βzγ

, which is not an entire
function if γ is not an integer. With α = βRγ , the general

2An entire (also called integral) function is a complex function
without singularities in the finite complex plane (see Ref. [25, Chap-
ter VIII]).
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TABLE III. Fit values for parameter c3D.

ω ψ ξ RMSE

0.1 1.38 ± 0.05 0.06 ± 0.03 0.03
0.2 1.62 ± 0.11 0.04 ± 0.05 0.07
0.3 1.85 ± 0.08 0.01 ± 0.03 0.05
0.4 2.15 ± 0.04 0.05 ± 0.01 0.03
0.5 2.48 ± 0.03 0.13 ± 0.01 0.02
0.6 2.79 ± 0.05 0.21 ± 0.01 0.03
0.7 2.98 ± 0.07 0.26 ± 0.02 0.03
0.8 3.05 ± 0.09 0.27 ± 0.02 0.04
0.9 3.06 ± 0.10 0.28 ± 0.03 0.05
1.0 3.03 ± 0.10 0.27 ± 0.03 0.05

integral above becomes3

pDcircle =
n∑

j=0

a j

∫ 1

0
e−αrγ

r jdr. (B7)

From the definitions in Refs. [26, 6.5.3,6.5.4], �(a, z) =
�(a)[1 − zaγ ∗(a, z)] and Refs. [26, 6.5.29], it follows that

γ ∗(a, z) = 1

�(a)

∞∑
k=0

(−z)k

k!(a + k)
. (B8)

A second powerful series is

γ ∗(a, z) = e−z
∞∑

k=0

zk

�(a + 1 + k)
. (B9)

The entire incomplete � function γ ∗(a, z) is an entire function
so that Eqs. (B8) and (B9) converge for all a and all z. With

3We can transform the integral by letting x = αrγ and r = ( x
α

)
1
γ =

α
− 1

γ x
1
γ , thus dr = α

− 1
γ 1

γ
x

1
γ −1dx and

∫ 1

0
e−αrγ

r jdr = α
− j+1

γ

γ

∫ α

0
e−xx

j+1
γ −1dx.

The right-hand side integral can be written in terms of the incom-
plete � integral is �(a, z) = ∫ ∞

z e−xxa−1dx, which is not an entire
function.

this preparation, we return to the integral (B7) and find, after
Taylor expansion of the exponential and invoking Eq. (B8),

pDcircle =
n∑

j=0

a j

∞∑
k=0

(−α)k

k!( j + 1 + γ k)

= 1

γ

n∑
j=0

a jγ
∗
(

j + 1

γ
, α

)
�

(
j + 1

γ

)
.

The other series (B9) leads to

pDcircle = e−α

γ

n∑
j=0

a j

∞∑
k=0

�
( j+1

γ

)
�

( j+1
γ

+ 1 + k
)αk .

Using �(x+m)
�(x) = ∏m−1

l=0 (x + l ) then results into a factorial se-
ries (see, e.g., Ref. [27]),

pDcircle = e−α

n∑
j=0

a j

j + 1

∞∑
k=0

αk∏k
l=1

( j+1
γ

+ l
) ,

that converges for all α.

APPENDIX C: FRÉCHET FITTING OF THE LINK
DENSITY

The highly accurate Fréchet distribution for the link den-
sity,

p(x) = 1 − e−( x−a
b )−c

,

has parameters a, b, c, that depend upon the path loss expo-
nent γ and the prism geometry.

For the 2D space, Fig. 9 shows the influence of the path
loss exponent γ on the fitting parameters (a2D, b2D, c2D)
for different values of ω = Z2

Z1
. In particular, Fig. 9 shows

that −1.5 < a2D � 0, 1 < b2D < 3 and 1 < c2D < 3. Also,
for a given ω and γ it holds | a2D

b2D
| < 0.5. Additionally, the

plot of c2D versus the path loss exponent γ in Fig. 9(c)
roughly illustrates two regimes for ω � 0.3 and for ω >

0.3. The lower values of ω � 0.3 indicate the convergence
of the 2D space toward the 1D space in which the link
density p is more confined by the border effects. Hence,
the Fréchet fitting is slightly less accurate for ω � 0.3 than
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FIG. 10. Fitting parameters (a3D, b3D, c3D) for different values of ω and δ and for γ = 5.
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for higher values of ω > 0.3 and reflected by the RMSE
in Fig. 9(d), although the maximum RMSE <0.01 is still
very low.

The parameter c2D represents the shape of the Fréchet
distribution and Fig. 9(c) exhibits that the parameter c2D fol-
lows closely a power law c2D(γ ) = ψγ −ξ . The values and
the standard error of the fitting parameters (ψ, ξ ) and the
RMSE of each fitting are given in Table III. Additionally,
Fig. 9(c) illustrates that for ω > 0.3, the parameter c2D � 2
and approaches c2D → 2 for higher values of γ , because of the
minimal border effects as explained in Sec. III B. Generally,

when the border effects are minimal, the parameter c2D is
approximately equal to the dimensions D = 2.

A similar analysis for the 3D space in Fig. 10 illustrates the
dependence of (a3D, b3D, c3D) on δ = Z3

Z1
for γ = 5. Similarly

to the 2D space, the parameter c3D is approximately equal
to the dimensions D = 3 for graphs where the border effects
are minimal, i.e., for large ω, δ and γ . Additionally, when
ω → 0 and for large δ (to minimize the border effects) the
3D space reduces to the 2D space and thus c3D ≈ c2D ≈ 2.
Due to symmetry, when δ → 0 and for large ω, it again holds
c3D ≈ c2D ≈ 2.
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