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Abstract

The algebraic connectivity µN−1, i.e. the second smallest eigenvalue of the Laplacian
matrix, plays a crucial role in dynamic phenomena such as diffusion processes, synchroniza-
tion stability, and network robustness. In this work we study the algebraic connectivity in
the general context of interdependent networks, or network-of-networks (NoN). The present
work shows, both analytically and numerically, how the algebraic connectivity of NoNs
experiences a transition. The transition is characterized by a saturation of the algebraic
connectivity upon the addition of sufficient coupling links (between the two individual net-
works of a NoN). In practical terms, this shows that NoN topologies require only a fraction
of coupling links in order to achieve optimal diffusivity. Furthermore, we observe a footprint
of the transition on the properties of Fiedler’s spectral bisection.

Keywords: Network of Networks, Synchronization, Laplacian, Spectral Properties, System
of Systems

1. Introduction

In the last decades, there has been a significant advance in understanding the struc-
ture and functioning of complex networks [1, 2]. Statistical models of networks are now
widely used to describe a broad range of complex systems, from networks of human con-
tacts to interactions amongst proteins. In particular, emerging phenomena of a population
of dynamically interacting units has always fascinated scientists. Dynamic phenomena are
ubiquitous in nature and play a key role within various contexts in sociology [3], and tech-
nology [4]. To date, the problem of how the structural properties of a network influences the
convergence and stability of its synchronized states has been extensively investigated and
discussed, both numerically and theoretically [5, 6, 7, 8, 9], with special attention given to
networks of coupled oscillators [10, 11, 12, 13].
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In the present work, we focus on the second smallest eigenvalue µN−1 of a graph’s Lapla-
cian matrix, also called algebraic connectivity. This metric plays an important role on,
among others, synchronization of coupled oscillators, network robustness, consensus prob-
lems, belief propagation, graph partitioning, and distributed filtering in sensor networks
[14, 15, 16, 17, 18]. For example, the time it takes to synchronize Kuramoto oscillators
upon any network scales with the inverse of µN−1 [19, 20, 21, 22]. In other words, larger
values of µN−1 enable synchronization in both discrete and continuous-time systems, even
in the presence of transmission delays [23, 24]. As a second application, graphs with “small”
algebraic connectivity have a relatively clean bisection, i.e. the smaller µN−1, the fewer
links must be removed to generate a bipartition [25]. Furthermore, we illustrate the role of
the algebraic connectivity in the diffusion dynamic process. For the sake of simplicity, we
model the diffusive dynamics as a commodity exchange governed by the following differential
equation:

dsi
dt
≈
∑
j∈Ni

(si(t)− sj(t)) ≈
∑N

j=1
Qijsj(t); (1)

where si represents the commodity or the state of the i − th component, Ni its neighbors,
and Q the Laplacian matrix, as further defined in section 2. The equilibrium state is that in
which all gradients in (1) reach zero, thus the rate of the slowest exponential decay (of the
deviation from the equilibrium) is proportional to the algebraic connectivity [26]. Hence,
the higher the algebraic connectivity of the Q matrix, the smaller the “proper time”.

Despite the latest advances in the research on synchronization and graph spectra, current
research methods mostly focus on individual networks treated as isolated systems. In real-
ity, complex systems are seldom isolated. For example, a power grid and a communication
network may strongly depend on each other. A power station depends on a communication
node for information, whereas a communication node depends on a power station for elec-
tricity [20]; similarly, a pathogen may spread from one species to another. Much effort has
been devoted to predict cascading effects in such interdependent networks [27, 28, 29]: the
largest connected component has been shown to exhibit a spectacular phase transition after
a critical number of faults is reached. Quite recently, a novel approach has been introduced
by resorting to the spectral analysis of interdependent networks. By means of the graph
spectra, the epidemic thresholds of interdependent networks have been estimated, and abso-
lute boundaries have been provided [27]. These scenarios motivated us to study the influence
of interdependent networks on diffusive processes via their spectral properties.

In this work, we show analytically and numerically how the algebraic connectivity of
interdependent networks experiences a phase transition upon the addition (or removal) of
a sufficient number of interlinks between two identical networks. As a direct consequence,
the proper time of a diffusion process on top of the NoN system is not affected by interlink
additions, as long as the number of interlinks is higher than a critical threshold. The
location of the described transition depends on the link addition strategy, as well as on the
algebraic connectivity of the single networks. Gomez et al. [30] applied perturbation theory
to approximate lower bounds for µN−1 in a multiplex scenario, for which they conclude that
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Figure 1: Two graphs, with 6 nodes, and 7 links each (solid lines) are subject to spectral partitioning based
on the Fiedler vector, i.e. the eigenvector corresponding to the algebraic connectivity. The two single graphs
are encircled with ovals, and the corresponding spectral partitioning is represented by rectangles. The single
graphs are progressively coupled with a) no interlinks, b) 1 interlink and c) 3 interlinks (dashed lines). As
we can see, adding 1 interlink causes the spectral partitioning algorithm to split the network into the two
original partitions. Upon the addition of 3 or more interlinks, the spectral partition experiences a brusque
transition, causing the single networks intralinks (solid lines) to become the new confining links.

interdependent networks speed up diffusion processes. Although the latter study hints the
existence of a sudden shift, their authors over-sighted the existence of a phase transition,
which we fully characterize via mean-field theory and by investigating additional spectral
properties for different values of N . In particular, we observe that the phase transition is
reflected in spectral partitioning algorithms, as illustrated in Figure 1.

This paper is structured as follows. Section 2 introduces some required terminology,
the Laplacian matrix, and its corresponding spectra. Sections 3.1 and 3.2 provide some
analytical results for the algebraic connectivity of interdependent networks, based on both
mean-field approach and perturbation theory, respectively. Our models are able to predict
the fraction of links that will cause the algebraic connectivity transition. Finally, Section 4
validates our previous results through extensive numerical results. This section also exposes
results on regular, random, small-world, and scale-free networks. Conclusions are drawn in
Section 5.

2. Definitions

2.1. Graph Theory Basics

A graph G is composed by a set of nodes interconnected by a set of links G (N ,L).
Suppose one has two networks G1 = (N1,L1) and G2 = (N2,L2), each with a set of nodes
(N1,N2) and a set of links (L1,L2) respectively. For simplicity, in the following we will
suppose any dependence relation to be symmetric, i.e. all networks are undirected.

The global system resulting from the connection of the two networks is a network G
with N1 ∪ N2 nodes and L1 ∪ L2 ”intralinks” plus a number of ”interlinks” L12 joining

the two networks; that is N = N1 ∪ N2 and L = L1 ∪ L2 ∪ L12, thus (N ,L) = G
def
=

(N1 ∪N2,L1 ∪ L2 ∪ L12).
Let us denote Ni as the number of nodes in |Ni|, and Li as the number of links in as

|Li|, also N = N1 + N2, and L = L1 + L2; let A1 and A2 be the adjacency matrices of the
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two networks G1 and G2, and A that of the whole system G, whose entries or elements are
aij = 1 if node i is connected to node j, otherwise aij = 0. When the two networks are
disconnected (L12 = ∅), the matrix A is defined as the N ×N matrix:

A =

[
A1 0
0 A2

]
.

When an interaction is introduced (L12 6= ∅), the adjacency matrix acquires non-trivial
off-block terms denoted by Bij, defined as the Ni ×Nj interconnection matrix representing
the interlinks between G1 and G2. The interdependency matrix B is then

B =

[
0 B12

BT
12 0

]
.

and adjacency matrix of the total system can be written as:

A+ αB =

[
A1 αB12

αBT
12 A2

]
. (2)

where α represents the coupling strength of the interaction.
Similarly to the adjacency matrix, one may introduce the Laplacian matrix Q = D−A;

where D is the diagonal matrix of the degrees, where the degree of the i-th node is

di
def
=
∑

j aij. In the same vein, one may define the diagonal matrices:{
(D1)ii

def
=

∑
j(B12)ij,

(D2)ii
def
=

∑
j(B21)ij =

∑
j(B

T
12)ij;

.

and the Laplacian Q of the total system G reads:

Q = QA + αQB =

[
Q1 + αD1 −αB12

−αBT
12 Q2 + αD2

]
. (3)

where Q1 = Q2 is the Laplacian matrix of A1 = A2, and QB is the Laplacian only repre-
senting the interlinks:

QB = D −B =

[
D1 −B12

−BT
12 D2

]
. (4)

2.2. Fiedler Partitioning

A graph bipartition is defined as two disjoint sets of nodes {R,S}, where R ∪ S = N .
In addition, we define the natural partition of G as the bipartition that coincides with the
two original node sets: R = N1, and S = N2, as illustrated in Fig. 2. The number of nodes
in R and S is counted by their cardinality |R| and |S|, respectively.

Since Q is a non-negative real symmetric matrix, it has N real eigenvalues [26], which we
order non-decreasingly 0 = µN ≤ µN−1 ≤ · · · ≤ µ1. The eigenvector xN−1 corresponding to
the first non-zero eigenvalue µN−1 provides a spectral bipartition named after Fiedler, who
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Figure 2: The four main partition sets are displayed: N1 (set of black nodes), N2 (set of white nodes), R
(set of nodes within the gray rectangle), and S (set of nodes within the white rectangle). Both, the partition
sets and the interlinks (dashed lines) were arbitrary chosen for illustration purposes and do not represent
the corresponding Fiedler partition.

derived the majority of its properties [17, 31]. Since this paper only deals with the Fiedler
eigenvector, we will simplify the notation of the eigenpair (µN−1, xN−1) by simply writing
(µ, x). Fiedler partitioning bisects the nodes of N into two clusters, such that two nodes
i and j belong to the same cluster if xixj > 0, i.e. the corresponding components of the
Fiedler eigenvector x have the same sign. For example, if the coupling strength α in (3)
is zero, the bipartition resulting from Fiedler partitioning is equivalent to the two natural
clusters, i.e. R = G1 and S = G2.

In order to quantify the effect of the Fiedler partition on interdependent networks, we
will study the three following spectral partitioning metrics:

• Fiedler cut-size
def
= l(R,S)

L1+L2
, where l (R,S) = l (S,R) equals the number of links with

one end node in R another end node in S. The Fiedler cut-size represents the fraction
of links with one end in R and another end in S (irrespective of the directionality of
the link) over the starting number of links.

• interdependence angle, defined as the angle between the normalized Fielder vector x
and the versor x(0) = 1√

N
(1, . . . , 1,−1, . . . ,−1), which we explain in detail in Appendix

A. The interdependence angle is minimized when the Fiedler vector is parallel to x(0),
i.e. when the Fiedler partition matches the natural partition.

• entropy H of the squared Fiedler vector components H
def
= −∑N

i=1 xi
2 log xi

2. Based
on Shannon’s information theory metric, the entropy indicates how homogeneous the
values in x are, similarly to the participation ratio or vector localization. The higher
the entropy, the lower the dispersion among the values in x.
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Some partition quality metrics may be undefined if the Laplacian matrix Q is defective
[32]. In particular, if the second and third smallest eigenvalues of QA + αQB are equal
µN−1 = µN−2 then any linear combination x′ = axN−1 + bxN−2 is also an eigenvector of
Q with eigenvalue µN−1, thus the Fiedler vector is not uniquely defined. However we will
ignore these cases, which tend to occur only in graphs with deterministic structures (e.g.
the cycle graph [26]).

3. Analytical Results

This section introduces two independent analytical approaches to compute µ for the
interdependent graph setup described in the previous section. The two approaches are
based on mean-field theory and perturbation theory, which span Section 3.1 and Section 3.2,
respectively. For a small number of added interlinks, both of the proposed theories are in
agreement with each other, which validates our analysis.

3.1. Exact results for mean-field theory

3.1.1. Diagonal interlinking

Let us start with the case of two identical networks connected by L12 corresponding
interlinks, which we refer to as “diagonal interlinking”. We can add as little as 1 link and as
many as N links. This strategy was chosen to achieve the maximum effect by meticulously
adding a small number of interlinks.

The mean-field approach to such a system consists in studying a graph of two identical
networks interacting via N1 weighted connections among all corresponding nodes. The
weight of each link, represented by α = L12

N1
, equals the fraction of nodes linked to their

corresponding neighbour in the exact network. In other words B12 = I, such that the
synchronization interdependence is modulated by the parameter α:

QA + αQB =

[
Q1 + αI −αI
−αI Q2 + αI

]
. (5)

In the language of physics, α represents the coupling constant of the interaction between
the networks. Consistently with the rest of the paper, this system will also be referred to
as the mean-field model of the diagonal interlinking strategy. Regardless of its origin, this
system exhibits some interesting properties worth discussing.

Let ξN1 , ξN1−1, ..., ξ1 be the set of eigenvectors for the Laplacian of the single network A1,
and ωN1 , ωN1−1, ..., ω1 be their relative eigenvalues. Since the perturbation QB commutes
with QA, all the eigenvectors of the interdependent graph are kept unchanged [26]. All
the (unperturbed) eigenvalues are degenerate in pairs and, hence, one may define a set of
eigenvectors based on those of the single networks:

x2i =

[
ξi
ξi

]
.

x2i+1 =

[
ξi
−ξi

]
.

(6)
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The eigenvalues for the total non-interacting system (i.e. α = 0) are the same as those
of the unperturbed system µ2i = µ2i+1 = ωi, hence, the ascending sequence of eigenvalues
for the non-interactive system is ωN1 = 0, 0, ωN1−1, ωN1−1 . . . , ω1, ω1. When the interaction
is switched on (i.e. α 6= 0), assuming that A1 = A2, a trivial proof shows that the even
eigenvalues are kept unaltered, while the odd ones increase linearly by the same amount 2α,{

µ2i = ωi,
µ2i+1 = ωi + 2α.

(7)

For α close to zero, the eigenvector ranking is kept unchanged µN = ωN1 = 0, µN−1 =
2α, µN−2 = ωN1−1, µN−3 = ωN1−1 + 2α, . . . , ω1, ω1 + 2α. However, when α >

ωN1−1

2
the

second and third smallest eigenvalues of the interdependent network (µN−1 and µN−2) swap.
Therefore, the first non-zero eigenvalue increases linearly with 2α up to the value of the
isolated networks ωN1−1 at which it reaches a plateau. In terms of equation (1), when α is
greater than the threshold αI =

ωN1−1

2
, the interactive system is capable of synchronizing

with the same promptness as the single isolated network. Thus when the system coupling
channel is quicker than the proper time, the time it takes the interactive system to reach
equilibrium equals that of the single network. The critical value αI for the exact model
corresponds to a critical value of links lI to be included to achieve the promptness of the
single network:

lI = αIN1 =
ωN−1 ·N1

2
. (8)

3.1.2. Random interlinking

As a variation of the localized diagonal interlinking, we have introduced a second strat-
egy that may be treated algebraically; it corresponds to the mean field approximation of
two identical networks interacting via L12 random connections, which we named random
interlinking strategy.

The mean-field approach leads to an interdependence matrix with all unitary compo-
nents: B12 = J , where J is the all ones matrix; the weight of each interlink is α = L12

N2
1

,

and

Q = QA + αQB =

[
Q1 + αN1I −αJ
−αJ Q2 + αN1I

]
. (9)

As in the previous case, the QB matrix commutes with QA, hence a common set of eigen-
vectors can be chosen (6). The null eigenvalue µN is always present, while all the others
experience some increase for a non-trivial α: all eigenvalues µi for i smaller than N − 1,
increase for a fixed amount αN1, while µN−1 increases by twice that quantity,

µN = 0,
µN−1 = 2αN1,
µi = ωi + αN1, for i ≤ N − 1.

(10)
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This different rate of growth again implies that there exists a critical value αJ beyond
which the second and third eigenvectors (µN−1 and µN−2) swap. The threshold αJ can be
obtained by imposing the crossing condition µN−1 = µN−2,

αJ =
ωN−1
N1

. (11)

Knowing that α = L12

N2
1

, we can estimate the critical number of links for the random inter-

linking strategy as

lJ = αJN
2
1 = ωN−1 ·N1. (12)

It is worth noting that, the critical number of interlinks corresponding to the mean-field
theory of the diagonal (8), and general (12) interlink strategies, differ simply by a factor of
two.

3.1.3. Physical interpretation

If we interpret network robustness as the ability of a system to perform its function upon
damage or attacks, then it is worth discussing what happens when two networks, A1 and
A2, originally fully connected by diagonal interlinking B, are subject to some interlink loss
or intentional attacks. Our simple, exact model shows that when these two fully connected
networks are subject to minor interlink loss, the response of the total interacting system
A+αB takes place at the same speed as the single component network A1. In other words,
when the operability of the control channel via α is mildly reduced, the global system
synchronizability does not decrease. However if the operability of the connection devices
degrades below the critical value αI , the synchronization process starts to slow down. From
the mean-field approach point of view, this means that the system may lose a fraction of
interlinks while keeping its synchronization time unchanged.

Following the statistical perspective, the parameter α can be regarded as a coupling
constant. If one identifies the Fiedler eigenvalue µN−1 with the internal energy of a ther-
modynamical system, then its first derivative exhibits a jump from zero to a finite value.
Nevertheless, this derivative does not diverge as expected for a second order1 transition [33].
On the other hand, if one employs the Fiedler eigenvalue as a metric for the synchronizabil-
ity and regards it as a thermodynamical potential such as the free enthalpy, its Legendre
transform corresponds to the internal energy and exhibits a discontinuity at α = αI . In this
perspective, one may interpret the observed abrupt change as a first order phase transition.
Despite this interesting parallel, it is worth noting that the Fiedler eigenvalue and its Leg-
endre transform are not extensive quantities and, hence, they cannot be properly regarded
as thermodynamical potentials. The question whether this abrupt change results from some
hidden statistical artifact remains open.

To understand the intimate nature of the phase transition, one may inspect the topo-
logical properties of the eigenvectors. Below the critical value αI , the cut links associated

1The order of a phase transition is the order of the lowest differential which shows a discontinuity.
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to the Fiedler partition are localized outside the original networks (i.e. interlinks are cut),
whereas just above the critical value, all cut links lay inside the originally isolated networks
(i.e. intralinks are cut). This means that, below αI , the synchronization is dominated by the
intralinks in αB, while beyond αI the synchronization involves the whole system, A+ αB.

3.2. Approximating µ using perturbation theory

In order to validate our mean-field analysis, we conducted a perturbative analysis of the
Laplacian spectra. Perturbation theory provides insights on diffusion processes by analyti-
cally describing µN−1 when the diffusive coupling between G1 and G2 is asymptotically small
or large.

The problem consists in finding the minimum of the associated quadratic form in the
unitary sphere (xTx = 1), with the constraint uTx = 0.

µ = µN−1 = inf
x 6=0,uT x=0

xTQx

xTx
; (13)

In our case, the matrix Q is the sum of a matrix QA linking only nodes inside the same
net, and a “perturbation” αQB that only connects nodes in different networks (QA +αQB).
Therefore, we want to find the minimum that satisfies the spectral equations:

(QA + αQB − µI)x = 0,
xTx = 1,
uTx = 0.

(14)

When the solution is analytical in α, one may express µ and x by Taylor expansion as

µ =
∞∑
k=0

µ(k)αk (15)

x =
∞∑
k=0

x(k)αk (16)

Substituting the expansion in the eigenvalue equation (13) gives a hierarchy of equations.
Solving the latter up to the second order yields the following approximations,

µ(1) =
(
x(0)
)T
QBx

(0) (17)

µ(2) =
(
x(0)
)T
QB

(
x(1)
)

= −
(
x(1)
)T
QA

(
x(1)
)
≤ 0. (18)

Appendix A describes the process used to reach the solution. As expected, the first order
µ(1) only depends on the zero order eigenvector x(0); the second order µ(2) is negative thus
improving the estimate of the algebraic connectivity. The former perturbation estimates are
illustrated in Fig. 3 together with numerical simulations.
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Figure 3: Algebraic connectivity µN−1 of four graph models with N = 1000 nodes, as simulated over different
networks (solid lines) and approximated by second order perturbation theory (dashed lines). Interlinks
are added between single networks following two strategies: diagonal interlinks (left image) and random
interlinks (right image). Perturbation theory best approaches µN−1 for the parabolic region of the diagonal
interlinks strategy, which saturates after adding αTh·N

2 links, as we detailed in section 3.1.

4. Simulations

The previous section provided two analytical means to estimate the dependence of µN−1
on the topology of the interdependence links, namely mean field and perturbation theory. In
this section we will introduce four model networks to test the predictability and the limits
of our predictions.

4.1. Interdependent networks model

Our interdependent network model consists of two main components: a network model
for the single networks, and the rules by which the two networks are linked as defined in
Section 2. In other words, to model two interdependent networks one needs to select two
model networks and one interlinking strategy.

In the numerical simulations discussed here, we considered four different graph models
for our coupled networks:

• Random Regular (RR): random configuration model introduced by Bollobas [34].
All nodes are initially assigned a fixed degree di = k, i ∈ N . The k degree stubs are
then randomly interconnected while avoiding self-loops and multiple links.

• Barabási-Albert (BA): growth model proposed by Barabási et. al. [1] whereby new
nodes are attached to m already existing nodes in a preferential attachment fashion.
For large enough values of N , this method ensures the emergence of power-law behavior
observed in many real-world networks.

• Watts-Strogatz (WS): randomized circular lattice proposed by Watts et. al. [2]
where all nodes start with a fixed degree k and are connected to their k

2
immediate
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neighbors. In a second stage, all existing links are rewired with a small probability
p, which produces graphs with low average hopcount yet high clustering coefficient,
which mimics the small-world property found in real-world networks.

• Lattice (LA): a deterministic three-dimensional grid which loops around its bound-
aries (i.e. a geometrical torus).

These models exhibit a wide variety of topological features and represent the four different
building blocks of A1 and A2. The input parameters for each model are set such that all
graphs have the same number of nodes and links. In addition, all simulated graphs consist
of a single connected component, i.e. random graphs containing more than one connected
component were discarded.

In addition to the four model networks, we define two quenched strategies to generate
the interdependency matrix B

• diagonal interlinking strategy: links are randomly added to the diagonal elements of
B, thus linking single network’s analogous nodes.

• random interlinking strategy: random links are uniformly added to B without restric-
tions, generating a random interconnection pattern.

In Section 3.1 we analytically solved the annealed counterparts, which prove to be accu-
rate approximations for the proposed interlinking strategies.

In the next sections, we explore the effects of the two interlinking strategies on the
Fiedler partition of our interdependent model, which are testimony of the phase transition
experienced by µN−1.

4.2. Diagonal Interlinking Strategy

4.2.1. Initial and final states

We will refer to the natural, initial or unperturbed state as the scenario where there
exist no interlink connecting the two networks G1 and G2. In this scenario, the algebraic
connectivity dips to a null value due to the networks being disconnected [26]; the Fiedler
partition then becomes undetermined. Nevertheless, the sign of the x(0) components allows
splitting the network into two clusters P = G1 and Q = G2, corresponding to the two
unperturbed networks.

The final state of the diagonal interlink strategy corresponds to N1 added interlinks,
thus B = I and the Fiedler vector becomes the vector (x(Q1), x(Q1)), as proved in section
3.1. Therefore, the final partition depends exclusively on G1 and G2, independently of
B. Assuming that both networks are equal G1 = G2, the final cut consists of a subset
of intralinks of A1, as illustrated in Fig. 1c. The critical point for the diagonal strategy is
characterized by a transition from an interlink cut to an intralink cut as illustrated in Fig. 3.
The transition takes place after adding a set number of links, beyond which µ(Q) remains
constant. In other words, a phase transition occurs when the algebraic connectivity of the
interdependent network µ(Q) reaches the algebraic connectivity of the single networks µ(Q1).

11



1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

A
lg

e
b
ra

ic
 c

o
n
n
e
c
ti
v
it
y
 (

a
v
g
.)

0 0.2N1 0.4N1 0.6N1 0.8N1 N1

interlinks

 Random Regular
 Barabasi Albert
 Watts-Strogatz
 Lattice

for N1

 1000
 5000
 10000

(a) Algebraic Connectivity

0.25

0.20

0.15

0.10

0.05

0.00

F
ie

dl
er

 c
ut

 s
iz

e 
(a

vg
.)

0 0.2N1 0.4N1 0.6N1 0.8N1 N1

interlinks

(b) Fiedler cut

80

60

40

20

In
te

rd
ep

en
de

nc
e 

an
gl

e 
(a

vg
.)

0 0.2N1 0.4N1 0.6N1 0.8N1 N1

interlinks

(c) Interdependence angle

9

8

7

6

5

E
nt

ro
py

  (
av

g.
)

0 0.2N1 0.4N1 0.6N1 0.8N1 N1

interlinks

(d) Entropy

Figure 4: (Color online) Four metrics’ averages are displayed to evaluate the effect of adding interlinks
following the diagonal strategy: algebraic connectivity (µ), Fiedler cut (l (R,S)/L1 + L2), interdependence

angle (acos
(
xTx(0)/ ‖x‖

∥∥x(0)∥∥)), and entropy (−∑N
i=1 xi

2 log xi
2). All metrics experience a transition that

sharpens for increasing N . BA and RR graphs transition around 80% added interlinks, whereas WS and
LA graphs transition around 20%. The size of the network N1 has a relatively little impact on BA and
RR curves, which suggests that the transition is independent of the network size N1. The flat lines signaled
with arrows in the top left plot benchmark the average algebraic connectivity of the N1 = 1, 000 respective
single networks.

This transitional effect is clearly visible from the spectral partitioning metrics displayed in
Fig. 4; Fig. 5. shows how the transitional region narrows upon increasing N , as it approaches
an asymptotic value. Our mean field theory predicts this critical value to be lI = µ(Q1)·N1

2
,

as exposed in section 3.1.
The precise location of the jump in the simulated experiment, i.e. the critical value of

interlinks per node lI , depends on the graph model. Regardless, the phase transition is a
general phenomenon, which occurrence only depends on the fact that there exists a Fiedler
cut for the single networks.
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Figure 5: (Color online) The fluctuation σ2 of the Fiedler cut and the interdependence angle are displayed
to evaluate the effect of adding interlinks following the diagonal strategy. The narrowing peaks illustrate
the sharpening of the transition observed in Fig. 4. The narrowing effect is specially noticeable in the
Watts-Strogatz model (blue curves).

4.2.2. Spectral partitioning metrics

We further investigate the properties of the phase transition, by looking at how the
partition metrics displayed Fig. 4 evolve as interlinks are added to the B matrix.

The algebraic connectivity (Fig. 4a) starts at its minimum value ≈ 1
2N1

as predicted,
which increases almost linearly until it reaches its maximum value µ(Q1) when sufficient
interlinks are added. This means that a network with 100% diagonal interlinks and the
same network with 90% interlinks synchronize virtually at the same speed. Comparing the
final values of the algebraic connectivity, it is remarkable that random networks synchronize
faster than lattice networks. This is reasonably due to the longer average distance in the
latter.

The Fiedler cut (Fig. 4b) starts at 1
2L1

for a single added interlink. Notice that it increases
linearly with the percentage of interlinks, because all added interlinks directly become part
of the Fiedler cut. For all networks, we observe a tipping point (which depends on the
network type) upon which adding a single link abruptly readjusts the partition: the Fiedler
cut switches from pure interlink cutting to a cutting of an invariable set of intralinks.

The interdependence angle (Fig. 4c) tells us that the Fiedler vector starts being parallel
to the first order approximation x(0) for 1 added interlink. Progressively, the Fiedler vector
crawls the N -dimensional space up to the transition point, where it abruptly jumps to the
final (orthogonal) state (x(Q1), x(Q1)). Similarly to the interdependence angle, the high
values of entropy (Fig. 4c) reflect the flatness of x(0), where all components have (almost)
the same absolute value. At this initial point, entropy is maximum and almost equal to
log(2N1), which tells us that the initial partition consists purely of interlinks. When the
partition turns to the final state, the entropy is instantly shaped by the network topologies
of A1 thus dropping to relatively much lower values. Notice that, for all values of N , the
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highest final entropy is attained by the lattice graph due to its homogeneous structure, as
seen in Fig. 4.

4.3. Random Interlinking Strategy
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Figure 6: (Color online) Four metrics’ averages are displayed to qualitatively evaluate the effect of adding
interlinks following the random strategy: algebraic connectivity (µ), Fiedler cut (l (R,S)/L1 + L2), inter-

dependence angle (acos
(
xTx(0)/ ‖x‖

∥∥x(0)∥∥)), and entropy (−∑N
i=1 xi

2 log xi
2). The four metrics indicate

the existence of up to three regimes, but the regime transitions are not as sharp as in the diagonal strategy
scenario. The flat lines signaled with arrows in the top left plot represent the average algebraic connectivity
of the N1 = 1, 000 respective single networks.

Upon the progressive addition of random interlinks, the algebraic connectivity of all
models experiences two regimes, as observed in Fig. 6a. Initially, for a weak coupling,
the algebraic connectivity reaches a minimum as is the case for the diagonal strategy and
represents a good starting point for the perturbation theory. If we slightly increase the
number of interlinks, the average algebraic connectivity and Fiedler cut curves show a linear
increase. When we reach the critical number of links lJ = µ ·N , the algebraic connectivity µ
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swaps with µN−2, causing the slope to decrease by a factor of two, as can be seen from Fig.6a
and Fig. 6b. These observations are in perfect agreement with our theoretical prediction
(10). However, additional simulations revealed that not only the average, but also the
fluctuations steadily increase in the same fashion as in Fig. 5, which is expected due to the
large set of available graph configurations.

As we can see from the interdependence angle in Fig. 6c, in the first regime the natural
partition is partially preserved up to lJ . At this turning point, the interdependence angle
experiences a sharp increase. This is due to the fact that the Fiedler cut in all our isolated
model networks scales less than linearly with the network size, which is consistent with the
picture of a phase transition between a Fiedler cut dominated by interlinks. As opposed to
the diagonal strategy, the final eigenvector of the random strategy is not strictly identical to
the Fiedler eigenvector of the isolated networks x, but it also involves interlink cuts. This
is due to the fact that in the general case x does not belong to the kernel of QB, as opposed
to the diagonal case.

The exact location of the phase transition can also be predicted employing perturbation
theory, by imposing the perturbed value x(Q) of the configuration to be equal to that
achieved starting from the x(Q1) initial state. However, the resulting formulas are not
particularly simple and their numerical calculation requires a time comparable with the
Fiedler eigenvalue evaluation of the sparse metrics. For this reasons such estimates are not
reported here.

4.4. Network Model Differences

In this section we briefly discuss the differences that arise between the four network
models. For the diagonal strategy, we observed that RR and BA synchronize relatively
faster than deterministic networks. This is due to random interconnections shortening the
average hopcount, thus the so called small-world effect [2]) is exhibited. For the particular
case of BA, we observe the emergence of a dominant partition which contains approximately
90% of the total number of nodes.

The difference between random and grid networks still exists for the random strategy, but
it is not as dominant as in the diagonal case. This effect is expected due to the randomization
resulting from the random addition of links to regular structures, which is the conceptual
basis of the WS model. In general, we observe that the optimal link addition strategy
depends on the network topology.

We observe from Fig. 6a that the random strategy synchronizes more slowly than that
of RR and BA. On the other hand, the random strategy synchronizes faster in WS and
LA models. Thus if we were to add precisely N1 random interlinks between two identical
networks, regular structures benefit more than random ones.

To test whether the phase transition is merely an artifact of our synthetic models, addi-
tional simulations were carried out using real topologies from a public dataset. Simulation
results verify that the transition from the natural partition to the final orthogonal partition
also occurs in real networks in the Koblenz Network Collection. The transition in real net-
works takes place very early in the link addition process, due to the poor synchronization
capabilities of networks not designed for such purpose. The positive interpretation of such
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result is that, to provide a real network with a complete backup mirror without adding
diffusive delays, a small number of interlinks are required.

5. Conclusions

Our contribution beacons a significant starting point to the understanding of diffusion
driven dynamics on interdependent networks. Having in mind synchronization applications,
this work focuses on the algebraic connectivity of interdependent networks. We provided
evidence that upon increasing the number of interlinks between two originally isolated net-
works, the algebraic connectivity experiences a phase transition. That is, there exists a
critical number of diagonal interlinks beyond which any further inclusion does not enhance
the algebraic connectivity µN−1 at all. Similarly, there exists a critical number of random
interlinks beyond which algebraic connectivity increments at half of the original rate.

We have observed that the phase transition is a generalized phenomena, which occur-
rence is independent of the graph models at hand. However, the precise number of links that
triggers the critical transition does depend on the topology of the graph models. In partic-
ular, we observed that the transition point shifts almost linearly with the µN−1 of the single
nets, and since µN−1 is monotonous with assortativity [35, 36], the transition point also
increases with assortativity. We have performed additional simulations for networks with
increasing assortativity, which confirm our prediction. We analytically derived the critical
transition threshold for both, the diagonal and random interlinking strategies, by mean field
approximations. The transitions occur upon adding: µ(Q1)·N1

2
links for the diagonal interlinks

strategy, and µ(Q1) ·N1 links for the random interlinking strategy. Moreover, we show that
the critical number of interlinks that trigger the transition can also be estimated looking at
the homogeneity of the NoN’s spectra, i.e. the entropy of the Fiedler vector.

Preliminary results show that heterogeneous interdependent networks do also experience
the same type of transition; analysis of this general case are subject of ongoing work. Other
extensions could encompass additional graph models and broader collections of interlinking
strategies.
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Appendix A. Approximating µ using perturbation theory

We want to find the minimum that satisfies the spectral equations:
(QA + αQB − µI)x = 0,

xTx = 1,
uTx = 0.

(A.1)

When the solution is analytical in α, one may express µ and x by Taylor expansion as

µ =
∞∑
k=0

µ(k)αk (A.2)

x =
∞∑
k=0

x(k)αk (A.3)

Substituting the expansion in the eigenvalue equation (13) gives the hierarchy of equations:
QAx

(k) + αQBx
(k−1) =

∑k
i=0 µ

(k−i)x(i) for all k,∑k
i=0 x

(k−i)x(i) = 0 for k ≥ 1,
uTx(k) = 0 for all k.

(A.4)

Appendix A.1. Explicit approximations up to the second order

The zero order expansion of (A.4) provides a simple set of equations:
QAx

(0) = µ(0)x(0),
x(0)x(0) = 1,
uTx(0) = 0.

(A.5)

Let (µN−1)A1 , (µN−1)A2 and (xN−1)A1 , (xN−1)A2 denote the smallest non-zero eigenvalue
and the corresponding eigenvector of Q1, Q2, respectively. Similarly{

(xN1)A1 = 1/
√
N1(1, 1, . . . , 1, 0, 0, . . . , 0),

(xN2)A2 = 1/
√
N2(0, 0, . . . , 0, 1, 1, . . . , 1).

(A.6)

will represent the null eigenvectors of network G1 and G2, respectively. When the networks
are put together, any combination of the former is a null eigenvector. Two special combi-
nations are worth employing: the trivial solution corresponding to the constant vector:
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xN =
1√
N

(1, . . . , 1) =

√
N1

N
(xN1)A1 +

√
N2

N
(xN2)A2. (A.7)

and the other combination orthogonal to the former that represents a useful starting point
for the perturbation theory:

x
(0)
N−1 = x(0) =

1√
N

(1, . . . , 1,−1, . . . ,−1) =

√
N1

N
(xN1)A1 −

√
N2

N
(xN2)A2. (A.8)

which satisfies the zero order approximation (A.5). The zero order approximation to the
Fiedler eigenvalue is then null:

µ(0) = 0. (A.9)

The first order approximation equations follow from (A.4) as:
QAx

(1) + αQBx
(0) = µ(1)x(0)(

x(0)
)T
x(1) = 0

uTx(1) = 0.

(A.10)

Taking the projection over x(0) of the first equation of (A.10), one obtains the first order
correction µ(1) that depends on the zero order eigenvector only:

µ(1) =
(
x(0)
)T
αQBx

(0) (A.11)

A simple case to analyze is that where only one interlink joins A1 with A2: (B12)ij =
δikδkj; in this case (d1)kk = δik and (d2)ll = δjl and the perturbation estimate gives:

µ(1) = (
1

2
(1 + 1) + 1)(ηi)

2 =
2

N1

≥ µN−1(Q). (A.12)

where η is the single net (N1 dimensional) unitary vector η
def
= 1/

√
N1(1, 1, . . . , 1). When

k interlinks are included, QB is just the sum of k contributions of the previous type thus
µ(1) = 2k

N1
. That is, the first order correction to the Fiedler eigenvalue increases linearly with

the number of interlinks. The first order correction to the eigenvector can be evaluated from
(A.10) as a solution of the linear equation:

QAx
(1) = −

(
QB − µ(1)

)
x(0). (A.13)

where the operator QA is invertible out of its kernel (QAv = 0); since
(
αQB − µ(1)

)
x(0) is

orthogonal to the kernel, (A.13) is solvable.
The second order equations follow from (A.4) as


QAx

(2) + αQBx
(1) = µ(0)x(2) + µ(1)x(1) + µ(2)x(0)(

x(0)
)T
x(2) +

(
x(1)
)T
x(1) +

(
x(2)
)T
x(0) = 0
ux(2) = 0

(A.14)
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that is, the second order correction is quadratic and equals:

µ(2) =
(
x(0)
)T
QB

(
x(1)
)

= −
(
x(1)
)T
QA

(
x(1)
)
≤ 0. (A.15)

As expected µ(2) is negative, thus improving the estimate of the algebraic connectivity. The
former perturbation estimates are illustrated in Fig. 3 together with numerical simulations.

Perturbation theory may also be applied to any initial eigenvector of the unperturbed
networks. Different perturbations αB will have different effects on the quadratic form of
(13) associated with all initial eigenvectors. Therefore, it may happen that the perturbed
value of µ obtained starting from x(0) is smaller than the quadratic form associated with the
xN−1 (the unperturbed eigenvector in (6)) or some other educated guess. This is precisely
the origin of the phase transition.

The estimates resulting form the second order perturbation theory are compared in Fig. 3
with the results of numerical calculations. As can be seen, for both the diagonal and the
random strategies the agreement is good up to the phase transition where the starting point
of the perturbation theory should be changed.

Appendix A.2. Perturbative approximations and exact upper bounds

Since we are dealing with a constraint optimization problem, finding a minimum of a
positive form, any test vector v provides an upper bound for the actual minimum value:

µ = µN−1 ≤
vTQv

vTv
. (A.16)

The perturbation theory provides natural candidates as test vectors. The zero order
solution provides the simplest inequality:

µN−1(Q) ≤ α
(x(0))TQx(0)

(x(0))Tx(0)
= αµ(1). (A.17)

The first order approximation provides a better (i.e. lower) upper bound:

µN−1(Q) ≤ (x(0) + αx(1))TQ(x(0) + αx(1))

(x(0) + αx(1))T (x(0) + αx(1))
.

that is:

µN−1(Q) ≤ αµ(1) + α2µ(2) + α3(x(1))TQBx
(1)

1 + α2(x(1))2
. (A.18)

which for small enough α is always lower than αµ(1).
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