
Overview of Constraint-Based Path Selection Algorithms for QoS

Routing

F.A. Kuipers, Delft University of Technology
T. Korkmaz, University of Texas at San Antonio

M. Krunz, University of Arizona
P. Van Mieghem, Delft University of Technology

September 2, 2002

Abstract

Constraint-based path selection is an invaluable component of a full-ßedged quality of service
(QoS) architecture. It aims at identifying a path that satisÞes a set of constraints (e.g., bounded
delay, packet loss rate, etc.). Unfortunately, multi-constrained path selection problems are NP-
complete, and therefore often considered computationally intractable. This has led to the proposal
of many heuristic algorithms for these problems. The aim of this paper is to give an overview of
constraint-based routing algorithms, focusing on restricted shortest path and multi-constrained path
algorithms.

1 Introduction

In recent years, there has been an increasing demand for Internet-based multimedia applications. In

response to this demand, the research community has been extensively investigating several quality-

of-service (QoS) based frameworks, including the Integrated Services (IntServ), the Differentiated

Services (DiffServ), and Multi-Protocol Label Switching (MPLS). One of the key issues in all of these

frameworks is how to identify efficient paths that can satisfy the given QoS constraints, or what is

commonly known as the QoS-based routing problem.

In general, routing (be it QoS-based or not) involves two entities: routing protocols and routing

algorithms. Routing protocols capture the network state information (e.g., available resources) and

disseminate it throughout the network, while routing algorithms use this information to compute

appropriate paths. The current best-effort routing simply performs these tasks based on a single, rela-

tively static measure. In contrast, QoS-based routing needs to take into account both the applications

requirements and the availability of network resources. As a result, QoS routing has to deal with

some challenging issues that are not present in best-effort routing, including scalable dissemination

of dynamic (state-dependent) information, state aggregation, computation of constrained paths, etc.

In this paper, we focus on QoS-based unicast routing1. Our main goal is to shed some light on the

myriad of existing multi-constrained path selection algorithms. In all of these algorithms, we assume

1QoS-based multicast routing often faces different conceptual problems.

1

that the network-state information is temporarily static and has been disseminated throughout the

network using the underlying QoS-based routing protocol (e.g., QoS-enhanced OSPF).

Before formally deÞning the multi-constrained path problem, we Þrst describe the notation used

throughout this paper. Let G(N,E) denote a network topology, where N is the set of nodes and E

is the set of links. With a slight abuse of notation, we also use N and E to denote the number of

nodes and the number of links, respectively. The number of QoS measures (e.g., delay, hopcount) is

denoted by m. Each link is characterized by an m-dimensional link weight vector, consisting of m

non-negative QoS weights (wi(u, v), i = 1, ...,m, (u, v) ∈ E) as components. QoS measures can be
roughly classiÞed into additive (e.g., delay) and non-additive (e.g., available bandwidth, policy ßags).

In case of an additive measure, the QoS value of a path is equal to the sum of the corresponding

weights of the links along that path. For a non-additive measure, the QoS value of a path is the

minimum (or maximum) link weight along that path. Constraints are denoted by Li, i = 1, ...,m.

In general, non-additive measures can be easily dealt with by pruning from the graph all links (and

possibly disconnected nodes) that do not satisfy the requested QoS constraint. Additive measures

cause more difficulties. Hence, without loss of generality, we only consider additive measures. The

basic problem considered in this paper can be stated as follows:

DeÞnition 1 Multi-Constrained Path (MCP) problem: Consider a network G(N,E). Each link

(u, v) ∈ E is associated with m additive weights wi(u, v) ≥ 0, i = 1, ...,m. Given m constraints Li,

i = 1, ...,m, the problem is to Þnd a path P from a source node s to a destination node d such that:

wi(P)
def
=

P
(u,v)∈P

wi(u, v) ≤ Li for i = 1, ...,m.

A path obeying the above condition is said to be feasible. Note that there may be multiple feasible

paths between s and d. A modiÞed (and more difficult) version of the MCP problem is to retrieve

the shortest �length� path among the set of feasible paths. This problem is known as the multi-

constrained optimal path (MCOP) problem, and is attained by adding a second condition on the path

P in DeÞnition 1: l(P) ≤ l(Q) for any feasible path Q between s and d, where l(.) is a path length

function. A solution to the MCOP problem is also a solution to the MCP problem, but not necessarily

vice versa. Considerable work in the literature has focused on a special case of the MCOP problem

known as the restricted shortest path (RSP) problem (also known as the delay-constrained least-cost

path, the minimum-cost restricted-time path, and the constrained shortest path). In the RSP problem,

there is only one constraint ∆, which bounds the permissible delay of a path. The length measure is

often referred to as the cost. For a path P , l(P) def=
P
(u,v)∈P l(u, v), where l(u, v) is a cost (= length)

for the link (u, v). A solution to the RSP problem is one where the least-cost path among the set of

delay-constrained paths is retrieved.

The MCP problem and its variants are known to be NP-complete [4]. Therefore, they are consid-

ered to be intractable for large networks. Accordingly, many heuristics have been proposed for these

problems. In the rest of this paper, we brießy describe the lion�s share of the published algorithms. To

simplify the discussion, we divide the discussed algorithms into two categories: restricted shortest path

algorithms in Section 2, and multi-constrained path algorithms in Section 3. Finally, we summarize

and conclude this paper in Section 4.

2

2 RSP Algorithms

Before presenting some of the efficient solutions for the RSP problem, we start by discussing its exact

(but computationally more strenuous) solutions.

2.1 Exact Algorithms

An exact solution to the RSP problem can be found by systematically examining every path between

s and d in a brute-force manner (e.g., using depth-Þrst search with backtracking). However, since the

number of paths grows exponentially with the size of the network, this method requires an exponential

number of operations in the worst case. Hence, it may not be useful in practice. An alternative

exact solution is known as the Constrained Bellman-Ford (CBF) algorithm. This algorithm Þnds

independent minimum-cost paths between a source and a set of destination nodes, each of which

has its own delay constraint. The basic idea behind this algorithm is to systematically discover the

lowest-cost paths while monotonically increasing their total delays. The algorithm maintains a list of

paths from the source node to every other node with increasing cost and decreasing delay. It selects

a node whose list contains a path that satisÞes the delay constraint and that has the minimum cost.

The algorithm then explores the neighbors of this node using a breadth-Þrst search, and (if necessary)

adds new paths to the list maintained at each neighbor. This process continues as long as the delay

constraint is satisÞed and there exists a path to be explored. Although this algorithm exactly solves

the RSP problem, its execution time grows exponentially in the worst case.

The RSP problem can also be solved exactly via pseudo-polynomial-time algorithms. In general,

the complexity of pseudo-polynomial-time algorithms depends on the actual values of the input data

(e.g., link delays and the given delay constraint) as well as the size of the network [4]. Pseudo-

polynomial-time algorithms incur long execution times if the value of the input data is large. This

can happen if the granularity is very small.

2.2 ²-Optimal Approximation Algorithms

One general approach to deal with NP-complete problems is to look for a polynomial-time algorithm

that guarantees Þnding an approximate, quantiÞable solution to the optimal one. An algorithm is said

to be ²-optimal if it returns a path whose cost is at most (1+²) times the cost of the optimal path,

where ² > 0. Two examples of ²-optimal approximation algorithms for the RSP problem were provided

in [6]. Their complexities are O((EN² + 1) log logB) and O(EN
2

² log(N²)), where B is an upper bound

on the cost of a path. It is assumed that the link weights are positive integers. The Þrst ²-optimal

approximation algorithm initially determines an upper bound (UB) and a lower bound (LB) on the

optimal cost denoted by OPT . For this, the algorithm initially starts with LB = 1 and UB equals

to the sum of the (N − 1) largest link-costs, and then it systematically adjusts these bounds using
a testing procedure. After computing LB and UB, the approximation algorithm bounds the cost of

each link by rounding and scaling it as follows: l0(u, v) =
j
l(u,v)(N−1)

²LB

k
∀ (u, v) ∈ E. It then applies

a pseudo-polynomial-time algorithm on these new weights. The second approximation algorithm is

basically an extension of the Þrst one, and is based on a technique called interval partitioning.

Approximation algorithms perform better in minimizing the cost of a returned feasible path as ²

3

goes to zero. However, a smaller value of ² leads to an increased complexity.

2.3 Backward-Forward Heuristic Algorithms

In backward-forward algorithms, the graph is explored based on the concatenation of two segments:

(1) the so-far explored path from the source s to an intermediate node u, and (2) the least-delay

or the least-cost path from node u to the destination d. These algorithms can be used to Þnd one

or more paths, and can be implemented in centralized and distributed fashions. In one distributed

implementation [12], probing and backtracking are used, as follows. The algorithm sends a probe

packet over the preferred links one at a time. If the receiving node accepts the probe packet, it

forwards it to the next node. Otherwise, if the packet is rejected the algorithm tries the next preferred

link. In a centralized implementation, a backward-forward heuristic (BFH) can be implemented as

follows: BFH Þrst determines the least-delay path (LDP) and the least-cost path (LCP) from every

node u to destination d. BFH then starts from the source node s and explores the graph as in

Dijkstra�s algorithm with the following modiÞcation in the relaxation procedure [2]: link (u, v) is

relaxed if d[u] + d(u, v) + d[LDP from v to d] ≤ ∆ and l[u] + l(u, v) < l[v] (we use the notation d[u]

and l[u] to indicate, respectively, the total delay and total cost from source node s to node u). BFH

extracts the next node that has the minimum cost from the heap. The computational complexity of

the centralized BFH is three times that of Dijkstra�s algorithm (i.e., O(N logN +E)).

2.4 Lagrangian-Based Linear Composition Algorithms

In the Lagrangian-based composition approach, the algorithm linearly combines the delay and cost

of each link and Þnds the shortest path with respect to (w.r.t.) the composite measure. Thus, the

weight of a link becomes w(u, v) = αd(u, v)+βl(u, v), where α and β are called the multipliers. With

this approach, there is actually no guarantee that the returned path satisÞes the delay constraint.

A key issue in the Lagrangian-based composition approach is how to determine appropriate values

for the multipliers. This can be done systematically by iteratively Þnding the shortest path w.r.t.

the linear combination and adjusting the multipliers� values in the direction of the optimal solution.

The technique is similar to the well-known Lagrangian relaxation technique used in other constrained

optimization problems. It can be shown that if the weights of the paths are uniformly distributed

in the delay-cost space, then the search terminates after a Þnite number of iterations of Dijkstra�s

algorithm.

Several reÞnements have been proposed to the basic Lagrangian-based composition approach. For

example, one can use the k-shortest path algorithm2 to close the gap between the optimal solution and

the returned path based on the linear combination. Although the computational results indicate an

order of magnitude savings, the amount of time to determine an optimal path may be still excessive

in some cases.
2A k-shortest path algorithm does not stop when the destination has been reached for the Þrst time, but continues

until it has been reached through k different paths succeeding each other in length.

4

2.5 Hybrid Algorithms

It is also possible to devise efficient heuristics for the RSP problem using combinations of the afore-

mentioned approaches. One such heuristic has been provided by Guo and Matta [5]. According to

this heuristic, the cost of the least-delay path is selected as the cost constraint. The problem is then

solved by minimizing a nonlinear length function, analogous to the one used in TAMCRA (see Sec-

tion 3.3), that gives more priority to lower-cost paths. To minimize the nonlinear length function, a

k-shortest-path-based algorithm called DCCR is used. The performance of the DCCR algorithm de-

pends on k; if k is large, the algorithm gives good performance at the expense of an increased execution

time. In order to improve the performance with small values of k, Guo and Matta [5] tried to reduce

the search space and tighten the cost bound by using a Lagrangian-based algorithm before applying

DCCR. The complexity of this Þnal hybrid algorithm, which is known as SSR+DCCR, depends on

that of the Lagrangian-based algorithm and the k-shortest path algorithm. A worst-case complexity

of O(xE logN + kE log(kN) + k2E) was reported in [5], where x is an upperbound on the number of

iterations involved in the search-space reduction.

3 MCP Algorithms

In this section, we present a representative sample of the algorithmic solutions for the MCP problem,

and in some cases, for the more difficult MCOP problem.

3.1 Jaffe�s Approximation Algorithm

In [7] Jaffe presented two algorithms for the MCP problem under two constraints (m = 2). The Þrst is

a pseudo-polynomial-time algorithm that has an unattractive worst-case complexity of O(N5b logNb),

where b is the largest weight in the graph. Because of this prohibitive complexity, we only discuss

Jaffe�s second algorithm, which we refer to simply as Jaffe�s algorithm. For each link (u, v) ∈ E,
the algorithm assigns a composite weight w(u, v) that is obtained by linearly combining the original

weights w1 and w2: w(u, v) = d1 ·w1(u, v)+d2 ·w2(u, v), where d1 and d2 are positive multipliers. The
algorithm then returns the path that minimizes the w weight. The minimization process is illustrated

pictorially in Figure 1. In this Þgure, all possible paths between the source and destination nodes

are indicated by black circles. Equal-length paths w.r.t. the composite weight w are indicated by

a line. The search for the minimum-length path is equivalent to sliding this line outward from the

origin until a path (black circle) is hit. This path is the one returned by the algorithm. Figure 1 also

illustrates that the returned path does not necessarily reside within the feasibility region deÞned by the

two constraints. Jaffe also noticed that and suggested using a nonlinear function whose minimization

guarantees Þnding a feasible path, if such a path exists. However, because no simple shortest path

algorithm is available to minimize such a nonlinear function, Jaffe did not pursue this option and

approximated it by using the above mentioned linear length function.

Jaffe�s work can be extended to an arbitrary number of constraints using the linear composition

function w(P) =
mP
i=1

diwi(P). In this case, it can be proven that for all positive values of the multipliers,

if there exists a feasible path in the graph, then the returned path P can at most exceed each constraint

by 100%.

5

1/d1

1/d2

w1(P)

w2(P)

L2

L1

Figure 1: Pictorial representation of the search process in Jaffe�s algorithm.

In the basic version of Jaffe�s algorithm, if the returned path is not feasible, the algorithm termi-

nates. However, the search could be continued by using different values for di, which might lead to

Þnding a feasible path. Such an approach is similar to that used in the Lagrangian-based algorithms

(see Section 2.4). Unfortunately, in some cases, even if all possible combinations of di are exhausted,

a feasible path may not be found using a linear search. In such cases, approximate minimization of a

nonlinear length function should be tried, as explained in Section 3.3.

3.2 Fallback Algorithm

In the fallback approach, the algorithm Þrst computes one or more shortest paths based on one QoS

measure, and then checks if all the constraints are met. If this is not the case, the procedure is repeated

using another measure until a feasible path is found or until all QoS measures are examined. The

complexity of the algorithm is polynomial. For example, if only one path is returned and Dijkstra�s

shortest path algorithm is used, the complexity is O(mN logN+mE). One problem with the fallback

approach is that there is no guarantee that optimizing path selection w.r.t. any single measure would

lead to a feasible path or even one that is close to being feasible. The fallback approach (just as Jaffe�s

algorithm) performs best when the link weights are positively correlated, because then if one weight

is small, the other weights are also likely to be relatively small, resulting in a path farthest from the

constraints.

3.3 TAMCRA and SAMCRA

TAMCRA [3] and its exact companion SAMCRA [13] are based on three fundamental concepts: (1)

a nonlinear measure for the path length, (2) the k-shortest path approach, and (3) the principle of

non-dominated paths. The Þrst concept can be explained pictorially using Figure 2 (with m = 2).

Part (a) of the Þgure depicts the search process using a linear composition function, similar to the

one used in Jaffe�s algorithm. If the two path weights are highly correlated, then the linear approach

tends to perform well. However, if that is not the case, then a nonlinear function is more appropriate.

6

L 2

L 1

w2(P)

L 2

L 1 (a) (b)

w2(P)

w1(P) w1(P)

Figure 2: Searching for a feasible path by minimizing: (a) a linear composite function, (b) nonlinear

composite function.

Part (b) of the Þgure depicts the search process using a nonlinear function. Ideally, the equal-length

lines should perfectly match the boundaries of the constraints, scanning the constraint area without

ever selecting a solution outside the constraint area. This can be achieved by taking:

l(P) = max
1≤i≤m

µ
wi(P)

Li

¶
(1)

where wi(P)
def
=

P
(u,v)∈P

wi(u, v). Any path P that satisÞes l(P) ≤ 1 is a feasible path, and hence is an
acceptable solution to the MCP problem. The obtained path, however, may not be optimal in terms

of its length. SAMCRA addresses this issue by allowing different length functions3. Note that the

function (1) treats all QoS measures equally.

An important characteristic of nonlinear path-length functions such as the one in (1) is that sub-

paths of shortest paths are not necessarily shortest paths. In the path computation, this suggests

considering more paths than only the shortest one, leading us to the k-shortest path approach. In

SAMCRA the k-shortest path concept is applied to intermediate nodes i on the path from node s

to node d. While traversing the graph, the algorithm keeps track of multiple sub-paths from s to i.

Not all sub-paths are stored, but an efficient distinction is made based on the non-dominance of a

path. We say that a path Q is dominated by a path P if wi(P) ≤ wi(Q) for all i = 1, ..,m, with

an inequality for at least one i. SAMCRA only considers non-dominated (sub)-paths. This property

allows it to efficiently reduce the search space without compromising the solution. Dominance can be

regarded as a multidimensional relaxation; the latter being a key aspect of single-parameter shortest

path algorithms (such as Dijkstra and Bellman-Ford).

SAMCRA and TAMCRA have a worst-case complexity of O(kN log(kN) + k2mE). Clearly, for a

single constraint (m = 1 and k = 1), the complexity reduces to that of Dijkstra�s algorithm. SAMCRA

guarantees Þnding a feasible path, if one exists. Furthermore, it allocates buffer space only when truly

3SAMCRA provides a solution to the more difficult MCOP problem.

7

needed, and it self-adaptively adjusts the number of stored paths k at each node. Unfortunately, in

the worst case, this could lead to an exponentially growing k. In TAMCRA the allocated buffer space

k is predeÞned and Þxed, and therefore its worst case complexity is polynomial.

3.4 Chen�s Approximate Algorithm

Chen and Nahrstedt [1] provided an approximate algorithm for the MCP problem. This algorithm Þrst

transforms the MCP problem into a simpler one by scaling down m−1 (real-valued) link weights into
integer weights, as follows: w∗i (u, v) =

l
wi(u,v)·xi

Li

m
for i = 2, 3, . . . ,m, where the xi�s are predeÞned

positive integers. The simpliÞed problem reduces to Þnding a path P for which w1(P) ≤ L1 and

w∗i (P) ≤ xi, 2 ≤ i ≤ m. A solution to this simpliÞed problem is also a solution to the original MCP

problem, but not vice versa (since the conditions of the simpliÞed problem are stricter). Since the

simpliÞed problem can be solved exactly, Chen and Nahrstedt have shown that the MCP problem can

be exactly solved in polynomial time when at least m−1 QoS measures have bounded integer weights.
To solve the simpliÞed MCP problem, Chen and Nahrstedt proposed two algorithms based on

dynamic programming: the Extended Dijkstra�s Shortest Path algorithm (EDSP) and the Extended

Bellman-Ford algorithm (EBF). The algorithms return a path that minimizes the Þrst (real) weight

provided that the other m− 1 (integer) weights are within the constraints. When the graph is sparse
and the number of nodes is relatively large, EBF is expected to give better performance than EDSP in

terms of execution time. The complexities of EDSP and EBF are O(x22 · · ·x2mN2) and O(x2 · · ·xmNE),
respectively. To achieve good performance, high xi�s are needed, which makes this approach rather

computationally intensive for practical purposes. By adopting the concept of non-dominance, as in

SAMCRA, this algorithm could reduce its search-space, resulting in a faster execution time.

3.5 Randomized Algorithm

Korkmaz and Krunz [9] proposed a randomized heuristic for the MCP problem. The concept behind

randomization is to make random decisions during the execution of an algorithm so that unfore-

seen traps can potentially be avoided when searching for a feasible path. The proposed randomized

algorithm is divided into two parts: an initialization phase and a randomized search. In the initial-

ization phase, the algorithm computes the shortest paths from every node u to the destination node d

w.r.t. each link weight and w.r.t. a linear combination of all weights. The algorithm then starts from

the source node s and explores the graph using a randomized breadth-Þrst search (BFS). In contrast

to the conventional BFS, which systematically discovers every node that is reachable from a source

node s, the randomized BFS discovers nodes from which there is a good chance to reach a destination

node d. By using the information obtained in the initialization phase, the randomized BFS can check

whether this chance exists before discovering a node. If there is no chance, the algorithm foresees the

trap and does not consider such nodes any further. Otherwise, it continues searching by randomly se-

lecting discovered nodes until the destination node is reached. If the Þrst attempt of randomized BFS

fails, the search can be repeated again. Because of the nature of randomization, subsequent attempts

may succeed in returning a feasible path. The worst-case complexity of the randomized algorithm is

O(mN logN +mE).

8

3.6 H_MCOP

Korkmaz and Krunz [8] also provided a heuristic algorithm for the MCOP problem called H_MCOP.

This heuristic attempts to Þnd a feasible path for any number of constraints while simultaneously

minimizing a path length function. The search for a feasible path is done by approximating the

nonlinear function (1), which is also used in TAMCRA. To achieve its objectives, H_MCOP ex-

ecutes two modiÞed versions of Dijkstra�s algorithm in backward and forward directions. In the

backward direction, H_MCOP computes the shortest paths from every node to the destination node

d w.r.t. w(u, v) =
mP
i=1

wi(u,v)
Li

. Later on, these (reverse) paths are used to estimate how suitable the

remaining sub-paths are. In the forward direction, H_MCOP uses a modiÞed version of Dijkstra�s

algorithm called Look_Ahead_Dijkstra. Look_Ahead_Dijkstra starts from the source node s and

discovers each node u based on a path P , where P is a heuristically determined complete s-d path that

is obtained by concatenating the already travelled sub-path from s to u and the estimated remaining

sub-path from u to d. Since the algorithm considers complete paths before reaching the destination,

it can foresee some feasible paths during the search. If paths seem feasible, then the algorithm can

switch to explore these feasible paths based on the minimization of the single measure that deÞnes

the path length.

The complexity of H_MCOP algorithm is O(N logN+mE). If the algorithm is used for the MCP

problem only, then the execution can be stopped once a feasible path is found during the backward

search. This may reduce the execution time signiÞcantly. The performance of H_MCOP in Þnding

feasible paths can be improved by using the k-shortest path algorithm and by eliminating dominated

paths.

3.7 Limited Path Heuristic

Yuan [14] presented two heuristics for the MCP problem. The Þrst �limited granularity� heuristic

has a complexity of O(NmE), whereas the second �limited path� heuristic (LPH) has a complexity

of O(k2NE), where k corresponds to the queue size at each node. The author claims that when

k ∼ O(N2 log2N), the limited path heuristic has a very high probability of Þnding a feasible path,

provided that such a path exists. However, applying this value results in an excessive execution time.

The performance of both algorithms is comparable when m ≤ 3. For m > 3, the limited path heuristic

is better than the limited granularity heuristic.

The limited path heuristic is based on the Bellman-Ford algorithm and uses two of the fundamental

concepts of TAMCRA. Both algorithms use the concept of non-dominance and both maintain at most

k paths per node. However, while TAMCRA uses a k-shortest path approach, LPH stores the Þrst

(and not necessarily shortest) k paths. Furthermore, LPH does not check whether a sub-path obeys

the constraints; it only does this at the end for the destination node.

3.8 A*Prune

Liu and Ramakrishnan [10] considered the problem of Þnding not only one but multiple (K) shortest

paths that are within the constraints. The linear length function used is the same as that of Jaffe�s

algorithm. The authors proposed an exact algorithm called A*Prune. If there are no K feasible paths

9

present, the algorithm will only return those that are within the constraints.

For each QoS measure, A*Prune calculates the shortest paths from s to all nodes i ∈ N\{s} and
from d to all i ∈ N\{d}. The weights of these paths will be used to evaluate whether a certain sub-
path can indeed become a feasible path (similar look-ahead features were also used in the H_MCOP

algorithm). After this initialization phase, the algorithm proceeds in a Dijkstra-like fashion. The node

with the shortest predicted end-to-end length4 is extracted from a heap and then all of its neighbors

are examined. The neighbors that cause a loop or lead to a violation of the constraints are pruned.

The A*Prune algorithm continues extracting/pruning nodes until K constrained shortest paths from

s to d are found or until the heap is empty.

The worst-case complexity is O(QN(m+h+logQ)), where h is the number of hops of the retrieved

path and Q is the number of stored paths. This complexity grows exponentially with the size of the

network. It is possible to implement a Bounded A*Prune algorithm, which runs polynomial in time

at the risk of losing exactness.

4 Summary and Conclusions

QoS routing is a fundamental block of any QoS architecture. Its main objective is to identify a

path that satisÞes a set of QoS constraints. Several works in the literature aimed at addressing spe-

cial yet important sub-problems in QoS routing. For example, researchers addressed QoS routing in

the context of bandwidth and delay. Routing with these two measures is not NP-complete. When

there exist certain speciÞc dependencies between the QoS measures (for example, as a result of using

speciÞc scheduling schemes at network routers), the path selection problem is also simpliÞed [11]. Un-

fortunately, the general constraint-based path selection problems are NP-complete and may therefore

become intractable in the worst case. We provided a high-level overview of the main solutions available

in the literature for constraint-based path selection, focusing on the restricted shortest path problem

and the multi-constrained path problem. Naturally, these solutions provide different trade-offs between

computational complexity and accuracy. An important property of multidimensional routing is that a

nonlinear length function is required to obtain exact results. QoS routing algorithms that use a linear

deÞnition for the path length will only prove useful when the link weights are positively correlated. In

all other cases a nonlinear function is necessary, which signiÞcantly complicates the problem, since no

simple shortest path algorithm is available to minimize such a nonlinear function. As a consequence,

multiple paths must be evaluated, through the use of a k-shortest path algorithm. This increase of

the search-space calls for efficient search-space reducing techniques. The most important encountered

techniques are non-dominance, look-ahead, and the constraint values themselves. If exactness is not

required, rounding and scaling the weights is also an option or simply bounding the number of paths

to be evaluated. Depending on the processing resources available, these techniques allow for devising

efficient tailor-made QoS algorithms.

4 If there are multiple sub-paths with equal predicted end-to-end length, the one with the so-far shortest length is

chosen.

10

Acknowledgments

The work of M. Krunz was supported by the National Science Foundation under grants ANI 9733143,

CCR 9979310, and ANI 0095626.

References

[1] S. Chen and K. Nahrstedt. On Þnding multi-constrained paths. In Proceedings of the ICC �98

Conference, volume 2, pages 874�879. IEEE, 1998.

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT press

and McGraw-Hill book company, sixteenth edition, 1996.

[3] H. De Neve and P. Van Mieghem. TAMCRA: A tunable accuracy multiple constraints routing

algorithm. Computer Communications, 23:667�679, 2000.

[4] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of NP-

Completeness. Freeman, San Francisco, 1979.

[5] L. Guo and I. Matta. Search space reduction in QoS routing. In Proceedings of the 19th IEEE

International Conference on Distributed Computing Systems, pages 142 � 149. IEEE, May 1999.

[6] R. Hassin. Approximation schemes for the restricted shortest path problem. Mathematics of

Operations Research, 17(1):36�42, 1992.

[7] J. M. Jaffe. Algorithms for Þnding paths with multiple constraints. Networks, 14:95�116, 1984.

[8] T. Korkmaz and M. Krunz. Multi-constrained optimal path selection. In Proceedings of the

INFOCOM 2001 Conference, volume 2, pages 834�843, Anchorage, Alaska, April 2001. IEEE.

[9] T. Korkmaz and M. Krunz. A randomized algorithm for Þnding a path subject to multiple QoS

constraints. Computer Networks, 36(2-3):251�268, 2001.

[10] G. Liu and K.G. Ramakrishnan. A*Prune: an algorithm for Þnding k shortest paths subject to

multiple constraints. In Proceedings of the INFOCOM 2001 Conference, pages 743�749, Anchor-

age, Alaska, April 2001. IEEE.

[11] Q. Ma and P. Steenkiste. Quality-of-service routing for traffic with performance guarantees. In

Proceedings of the Fifth International IFIP Workshop on Quality of Service, pages 115�126, May

1997.

[12] R. Sriram, G. Manimaran, and C.S.R. Murthy. Preferred link based delay-constrained least-cost

routing in wide area networks. Computer Communications, 21:1655�1669, 1998.

[13] P. Van Mieghem, H. De Neve and F.A. Kuipers. Hop-by-hop quality of service routing. Computer

Networks, 37(3-4):407�423, October 2001.

[14] X. Yuan. Heuristic algorithms for multiconstrained quality-of-service routing. IEEE/ACM Trans-

actions on Networking, 10(2):244�256, 2002.

11

Biographies

Fernando Kuipers (F.A.Kuipers@its.tudelft.nl): received the M.Sc. degree in Electrical Engineering

at the Delft University of Technology in 2000. Currently he is working towards his Ph.D. degree

in the Network Architectures and Services group at the same faculty. He is also a member of the

DIOC (Delft interdisciplinary research center) for the Design and Management of Infrastructures,

where he is taking part in the Telecommunications project. His Ph.D. work focuses on the algorithmic

aspects and complexity of unicast Quality of Service routing, but also includes multicast QoS routing,

multipath (link disjoint) QoS routing and efficient network-state update strategies for dynamic QoS-

based networks.

Turgay Korkmaz (korkmaz@cs.utsa.edu): received the B.Sc. degree with the Þrst ranking from

Computer Science and Engineering at Hacettepe University, Ankara, Turkey, in 1994, and two M.Sc.

degrees from Computer Engineering at Bilkent University, Ankara, and Computer and Information

Science at Syracuse University, Syracuse, NY, in 1996 and 1997, respectively. He received his Ph.D.

degree from Elec. and Computer Eng. at University of Arizona, Tucson, AZ, in December 2001. In

January 2002, he joined the University of Texas at San Antonio, where he is currently an Assistant

Professor of Computer Science department. His research interests include QoS-based routing, multiple

constrained path selection, efficient dissemination of network-state information, topology aggregation

in hierarchical networks, and performance evaluation of QoS-based routing protocols.

Marwan Krunz [M] (krunz@ece.arizona.edu): received his Ph.D. degree in Electrical Engineering

fromMichigan State University, Michigan, in 1995. From 1995 to 1997, he was a Postdoctoral Research

Associate with the Department of Computer Science and the Institute for Advanced Computer Studies

(UMIACS), University of Maryland, College Park. In January 1997, he joined the University of

Arizona, where he is currently an Associate Professor of Electrical and Computer Engineering. Dr.

Krunz�s research interests lie in the Þeld of computer networks, especially in its performance and

traffic control aspects. His recent work has focused on the provisioning of quality of service (QoS)

over wireless links, QoS routing (path selection, state aggregation), traffic modeling (video, WWW),

bandwidth allocation, video-on-demand systems, and power-aware protocols for ad hoc networks. He

has published more than 50 journal articles and refereed conference papers. Dr. Krunz is a recipient

of the National Science Foundation CAREER Award (1998-2002). He currently serves on the editorial

board for the IEEE/ACM Transactions on Networking, the Computer Communications Journal, and

the IEEE Communications Interactive Magazine. He is a guest co-editor of a special issue on Hot

Interconnects (IEEE Micro, Jan. 2002). Dr. Krunz was the Technical Program Co-chair for the

9th Hot Interconnects Symposium (Stanford University, August 2001). He has served and continues

to serve on the executive and technical program committees of many international conferences. He

served as a reviewer and a panelist for NSF proposals, and is a consultant for several corporations in

the telecommunications industry.

Piet Van Mieghem (P.VanMieghem@its.tudelft.nl): is professor at the Delft University of Tech-

nology with a chair in telecommunication networks and chairman of the basic unit Network Archi-

tectures and Services (NAS). His main theme of the research are new Internet-like architectures for

12

future, broadband and QoS-aware networks. Professor Van Mieghem received a Master�s and Ph.D. in

Electrical Engineering from the K.U. Leuven (Belgium) in 1987 and 1991, respectively. Before joining

Delft, he worked at the Interuniversity Micro Electronic Center (IMEC) from 1987 to 1991. From

1992 to 1993, he was a visiting scientist at MIT in the department of Electrical Engineering. During

1993 to 1998, he was a member of the Alcatel Corporate Research Center in Antwerp where he was

engaged in performance analysis of ATM systems and in network architectural concepts of both ATM

networks (PNNI) and the Internet.

13

