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This paper presents the exact asymptotics of the steady state behavior of a broad 
class of single-node queueing systems. First we show that the asymptotic probability 
functions derived using large deviations theory are consistent (in a certain sense) with 
the result using dominant pole approximations. Then we present an exact asymptotic 
formula for the cumulative probability function of the queue occupancy and relate it 
to the "cell loss ratio", an important performance measure for service systems such as 
ATM networks. The analysis relies on a new generalization of the Taylor coefficients 
of a complex function which we call "characteristic coefficients". Finally we apply our 
framework to obtain new results for the M/D/1 system and for a more intricate multiclass 
M/D/n system. 
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1. Introduction 

The asynchronous transfer mode (ATM), the current driving force in telecom- 
munication, has dramatically increased the importance of the asymptotic behavior of  

queues. In ATM, services are offered with a certain guaranteed quality of service 
(QOS). An important QOS performance measure in ATM is the cell loss ratio (be- 
sides, e.g., the mean cell delay, the cell delay variation and the end-to-end delay [14]), 

where a "cell"  denotes the unit of flow similar to a "job" or "customer" in queueing 
theory. The cell loss ratio, which will be precisely defined in section 7, is closely 
related to the buffer overflow probability which is the steady state probability that 
the limited buffer is fully occupied. Before allowing a new connection to send ATM 
cells into the network, the connection admission control (CAC) management  checks 
whether the QOS of  all existing connections and the new one can be guaranteed. To 
provide ATM services with such stringent QOS as a cell loss ratio on the order of  
10 -10, the CAC of  the network must know the asymptotic behavior of  the queue 

lengths in the network. 
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This article focuses on two methods, the large deviations theory and the domi- 
nant pole approximation, to explore the asymptotic behavior of queues employing as 
a mathematical device the concept of characteristic coefficients introduced in the next 
section. 

Large deviations theory (see, e.g., Dembo and Zeitouni [8] and Weiss [27] 
and references therein) is the natural vehicle to study the asymptotic behavior of 
stochastic phenomena. Large deviations theory furnishes the theoretical justification 
for the important concept of equivalent bandwidth (see, e.g., [15, 11, 10, 13, 16] and 
the recent journal JSAC, Vol. 13, No. 6, 1995). Equivalent bandwidth is the effective 
bandwidth needed for a connection to obey its QOS requirements and is widely used to 
formulate practical CAC-rules in ATM. However, most of the large deviations results 
assume the limit of some quantity (e.g., the buffer size K) at infinity. In practice, 
therefore, it is highly desirable to know when this asymptotic regime applies or what 
the error is if large deviations theory is applied for finite values of the quantity under 
consideration. 

The dominant pole approximation is derived from the partial fraction expansion 
of the probability generating function (pgf) G(s) of a random variable of interest 
and is broadly used in discrete-time analyses [5]. The relation between both methods 
will be discussed in section 3. Section 4 presents an asymptotic expansion for the 
overflow probability and questiones the use of the well-known rate-function I(s) when 
log G(s) is highly asymmetrical around its minimum. The remainder of the article is 
devoted to the dominant pole approximation. A formal expansion for the dominant 
pole in queues with a particular form for the pgf is proposed and applied to the M/D/1 
and the convolved M/D/1 systems. The last section uses these results in computations 
of the cell loss ratio in ATM networks. 

2. Characteristic coefficients of a complex function 

The problem of finding the Taylor coefficients of G(f(z)), where G(z) is 
analytic, in terms of the Taylor coefficients ak of f(z) has inspired the introduction 
of characteristic coefficients. Although Taylor coefficients belong to the basics of 
the theory of complex functions, we only found expressions for the first few Taylor 
coefficients of G(I (z)) in terms of the Taylor coefficients of f(z) listed in abramowitz 
and Stegun [1, section 3.6]. At first glance, the lack of regularity in the patterns 
suggests that only very little can be gained that may lead to new results. However, 
while concentrating on this problem, we noticed that, under certain constraints, Taylor 
series of simple functions of a function f(z) could be elegantly written in terms of 
re-appearing quantities, that we called, therefore, characteristic coefficients. To our 
knowledge, this concept of characteristic coefficients has not been used before. 

In this section, we briefly introduce characteristic coefficients and refer to the 
appendix for used expansions in this article. However, we must refer to [20] for the 
complete mathematical framework because this article merely illustrates its applica- 
tions in queueing theory. 
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Let f ( z )  be an analytic function of z in a disk around z0 with power series 
f ( z )  = ~k~=o ak(zo) ( z -  zo) ~. Our general result, from,which most of the subsequent 
formulae are derived, is 

~176 ( ~  1 dkG(P) p=ao(zo) S[k,m])(z-zo)m, G( f ( z ) )  = G(ao(zo)) + E k! dp k 
m = l  k= l 

(1) 

where the characteristic coefficients s[k, m] are defined as 

k 

= Ilaj,( ~ > 0), (2) 
E~=l Ji=m i=l 

where the sum being over all possible ways one can write m as a sum of k integers 
consists of (~-~) terms. The characteristic coefficients satisfy the recursive equation 

= a (z0), 
m 

s[k,m] = E s [ 1 , m -  j + 1] s[k - 1,j - 1] (k > 1) 
j=k  

m--k+l 

= E s [ 1 , j l s [ k - l , m - j ]  ( k >  1). (3) 
j = l  

In particular, this recursive set enables to compute the presented expansion formally 
up to an arbitrary order provided the coefficients al~(zo) are known. As the technique 
of characteristic coefficients is formal, aspects of convergence are not investigated. 

3. The dominant pole approximation and large deviations 

In this section, we relate asymptotic results from the theory of generating func- 
tions [5] to those of the theory of large deviations. In the next section, we present 
our asymptotic expansion in continuous-time and compare it with established large 
deviations results. 

Concentrating on the buffer overflow probability in discrete-time, we will 
demonstrate the following proposition. 

Proposition 1. The buffer overflow probability derived from large deviations theory 
is asymptotically equivalent to its dominant pole approximation. 

The first approach using the generating function G(z) of ~ is an immediate 
consequence of Lemma 1. 
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L e m m a  1. If G(z) is meromorphic with residues rk at the (simple) poles Pk ordered 
as 0 < [P0[ ~< [Pl[ ~< [P2[ ~<"" and if G(z) = o(z N+I) as z --+ ~ ,  then the following 
holds: 

rk zN+l (4) G(z)= Z g(k)zk'q- E pN+l(z_ik) 
k=O k=O k t, 

- - z  Pk + = . ( 5 )  

The normalization condition G(1) = 1 implies that 

N o o  rk 
P [ ~ > k ] = l - E g ( k ) = E p N + l (  l _ v  )" 

k = 0  k = 0  k ~ ~ k j  

(6) 

The lemma follows from [26, section 3.21]. Rewriting (5) gives 

k=O j = N + l  = 

z j (7) 

and hence, 
OG 

pj~l (J > N).  (8) 

The cumulative density function for j > N follows from (8) as 

0(3 OO 
rk 

g(k) = ~ pj+l (J > N). 
~=j+l ~=o k ( p k -  1) 

(9) 

This Lemma 1 means that, if the plot g(J) versus j exhibits a kink at j = N, then 
G(z) = O(z N) as z --+ ec. Alternatively, the asymptotic regime does not start earlier 
than j ~> N.  In terms of the queue occupancy in ATM, the initial 9(j)-regime for 
j < N reflects the cell scale, while the asymptotic regime j ~> N refers to the burst 
scale. For large K,  only the pole with smallest modulus, P0, will dominate. Hence, 

,~ r 0  

P[G > / ( ]  ~ P0 K+l (P0 - 1)" (10) 

This approximation we call the dominant pole approximation. 
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have 
The second approach is a large deviations approximation in discrete-time. We 

O 0  

- l o g P [ ~ > K ] = - l o g  Z g(J) 
j = K + I  

Oo 

>~ - log E 
j = K + I  

lo (x 
j=0  

32j-K-I g(j) ( x E R a n d x ~ > l  

-- (K + 1) l o g x -  logG(x)  . . . .  (11) 

This inequality holds for all real x ~> 1, To get the tightest bound, we determine the 
maximizer Xmax of (1 1), thus I (K)  = supz~> 1 [(K + 1) log x -  log G(x)]. There exists 
such a supremum on account of the convexity of I(K) because G(x)and tog G(x) 
are convex [3] for x />  1. Assuming that the maximum, say Xmax exists, then it is the 
solution of 

Xmax = (K + 1) G I ( x - -  m~) 
G (32max) 

and the large deviations estimate becomes 

P[~  > K]  ~ e - [ (K+I )  logxmax-logG(xmax))] f , ,  , (K+I) 
= t~[32max)Xmax (12) 

Comparing (12) and (10), we observe that, for large K,  we have that 32max = P0 
because 

lim - logP[G > K] 
K--+oo K --  PO = 32max- 

This illustrates Proposition 1. 

4. An asymptotic expansion for P[~ > K] 

Consider a continuous random variable U with probability density function 
9(32) = (d/dx)P[G < x] and probability generating function G(s) where 

G(s) = e~9(x ) dx. (13) 

We assume that all moments of ~ exists or, equivalently, that G(s) converges for 
0 < Re(s) < c*. Since (13) is a Laplace transform, by inversion we have 

1 I c+iec G(8) e s x  ds (c* > c > 0). (14) 
g(X) = ~ J c ic~ 
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Formally for all K ~> 0 holds 

where 

that 

P[~ > K] = g(x) dx 

l / K ~ f c + i ~ 1 7 6  
= 2rci ~ c-ic~ 

1 f c + i ~  

2rd ~ c-ioo 

= 1 [c+iao 

2rci,  c-ioo 

_ 1 I c+ie~ 

- -  27 r i  a c - i o c  

G(s) e -sx ds dx 

/5 G(s) ds e -~x dx 

e-Ks 
G(s) ds 

s 

1 f ~ o  e -J(c+it) dr, (15) e -J(s) ds = 2re oo 

J(s) = K s  - log G(s) (16) 
8 

The order of integration can be reversed because the Laplace transform exists. Let st* 
be an extremum of J(s) with J'(st*) = 0 and Re(J"(st*)) < 0. In case st* is real, it 
is clearly a maximum. From large deviations theory, it is known that there exists a 
supremum. We further assume that the maximum at st* also exists. Hence, we can 
expand J(s) = ~ - - o  ak(st*) (s - su) k. The convergence of this series requires that 
limk--+oo ak ( s t* ) = O. 

At this point, we invoke the concept of characteristic coefficients s[k, m] and 
use (80) for all K ~> 0, 

e-J(s~*) 1 + ~ Rm 
P[~ > K] = 2v/r  cla2(st*)] laa(%)lm , (17) 

r n = l  

where 

2'~ ( _ l ) k F ( h  + m + �89 s**[lv,2m](st*) 
= ,/Tk  a (st*) 

k = l  

The first three terms of this expansion are explicitly computed in the ap- 
pendix (81). Our formula gives the complete asymptotic series and is therefore more 
complete than the previous work of Daniels [7] on the saddle point method in statistics. 
Formula (17) exhibits the importance of the maximum st* that obeys 

r 1 
K G(st*) + --st* = 0 (18) 

and shows that st* is a function of K. In particular, from 

0s.u = 1 1 
- -  > 0 ( 1 9 )  

OK , ~ ( ~ , ~ 2  2 a2(st*) 
s~ + r - \Gj(~,,)] 

it is seen that st, is strictly increasing in K. 
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We will immediately contrast our result with classical large deviations theory. 
Elwalid et al. [9] have estimated Pig ~> K] for K --+ oo as 

e-I(s*) 
P[g ~> K ] =  s. or(s.) v/~7 [1 + o(1)], (20) 

where I (s)  is the rate function 

I(s)  = Ks  - log G(s) (21) 

in large deviations theory and where I(s*) = sups>0 I(s)  and cr2(s) = 02 log I(s)/O2s 
or, explicitely, cr 2 (8) = Gj  (8) / Gd(8) - (G 5 (8) / Gd(8) )2. Ignoring the limit assumption 
K --+ oo, the formula of Elwalid et al. (20) is very close to the first term in our exact 
asymptotic expansion (17) and basically differs from ours in that they use, to determine 
the maximum, I(s)  instead of d(s) and thus obtain s* instead of su. Hence, large 
deviations theory neglects the small difference of log s between d(s) and I(s).  

We now consider the situation in the limit when K --+ oo. Since s~ is strictly 
increasing in K, we observe from (18) that for sufficiently large K, sl, --+ s* and 
simultaneously that d(s~) --+ I(s*). Furthermore, from the convexity of log G(s) for 
all s > 0 and limK+oo s~ = oo, it follows that for K -+ oo that la~(s~) I -+ co for 
k < 3. Thus, even if all ak(sl, ) grow to infinity at nearly the same rate (which is 
certainly not the case for sufficiently large k on the convergence of the power series of 
d(s) around su as lim~-4oo a~(s~) = 0 for all su), the m-sum in (17) vanishes in the 
limit K --+ cx~, because in each m-term a2(s,) appears in the numerator to a higher 
power than whatever other coefficient in the denominator (see, e.g., (81) although this 
can be proved in general using properties of s[k, m]). Hence, our formula (17) tends 
to the large deviations result (20) in the limit K --+ oo. 

However, from a practical point of view, it is of interest to know how fast the 
asymptotic 'large deviations regime' is attained. Unfortunately, all derivatives 

1 1 
ak(st~) = - l~! ds k-] \ G(s) ] -s ] 

S~Sl, 

for k ~> 2 are function of K via s~. From (81) (with x = I), it can be seen that rapid 
convergence requires that a2(s#) >> ak(s~) for k > 2. If all derivatives are about 
the same order of magnitude, i.e., if the plot log G(s) versus s is highly asymmetrical 
around sl, even though log G(s) is convex for all s > 0, convergence is expected to 
be slow and the asymptotic expansion is of limited practical use, and therefore, so is 
the large deviations result (12) or (20). 

In conclusion, we have presented an exact asymptotic series for the overflow 
probability from which limitations of the large deviations result (12) are deduced. 
Specifically, we propose to use d(s) defined in (16) instead of the rate function I(s) 
in (21). Furthermore, we suggest to calculate some terms of our expansion (17). In 
case these terms (of the m-summation in (17)) are small compared to unity, the large 
deviations result (20) is accurate. Otherwise, as follows from the general theory of 
asymptotic series [12], the last omitted term in (17) is approximately a measure for 
the accuracy of the truncated series. 
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5. The exact dominant pole 4 

For many queueing systems, the probability generating function (pgf) Q(z) of 
a queue-related random variable Q (such as the number of cells or the waiting time 
of cells in the queue) is of the Pollaczek-Khintchine form 

Z - - 1  eo 

Q(z) - z -  U(z) F(z) = E q(k)zk' (22) 
k=0 

where U(z) = ~ = o  u(k) z~ is a pgf of the random variable b/ related to the input 
process (e.g., the number of arrivals per unit time) while F(z) is an analytic function 
in the unit disk Izl ~< 1 with F(1) = 1 - U'(1). The probability density function (pdf) 
of the random variable Q is denoted as q(k) = P[Q = k]. For example, in a GI/D/1 
system, the steady state buffer occupancy pgf equals 

QGI/D/I(Z) = (1 - U'(1)) 
z - 1  

z-U(z)' (23) 

where U(z) is the pgf of the general independent arrival process. This section is 
limited to the characteristic coefficient approach of (22)-forms. 

The asymptotic behavior of (22)-forms depends on the dominant zero 4 of 
z - U(z) exceeding unity as q(K) = O(1/4 K) for K -+ oo as explained in section 
3. It is well known [5] that this zero 4 is real and larger than one. Moreover, it has 
the smallest modulus of all the zeros of z - U(z) apart from the trival zero at z = 1. 
In addition, 4 also equals the radius of convergence for the power series in (22) and 
it is a single zero if all moments of Q exist [4, appendix]. 

Theorem 1. Let the discrete-time pgfs Q(z) and U(z) of the random variables Q and 
b/ be related as Q(z) = ( ( z -  1 ) / ( z - U ( z ) ) ) F ( z )  where F(z) is analytic at least 
inside (and on) the disk [z[ ~ 4. Then, the probability density function of Q for large 
K equals 

( 4 -  1)F(4) 
q(K) ~ (U'(4) - 1)4/v+l '  (24) 

where 

with 

1 - - ~  oo 
4 = 1 + u-7~i-y + ~ g n ( 1  - A)n 

n=2 
(25) 

gn - -  ~ ( l ~  k=l  /g(?Z2(1))k 8*[/g, Y t -  1] (26) 

and E[b/] = )~ = Ul(1), uk(1) = U(k)(1)/k! and s*[k,m] are the characteristic 
, coefficients defined in appendix A. 
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Proof Formula (24) follows from Lemma 1. 
Since z = 1 is a trivial zero of z - U(z) in (22), but not a pole of Q(z), we 

will determine the zero of ( z -  U(z) ) / (z  - 1). The series expansion of U(z) around 
Z-- - - l ,  

O(3 

V(z) = ~ u k ( 1 ) ( z -  1) k 
k=O 

exists with uo(1) = 1 and is related to the Taylor series around z = 0 by 

j=k 
(27) 

These derivatives u~(1) are real and positive since uj(O) = u(j) are probabilities. 

z - 1  

Hence, we have 

- - z - l -  ~ k ( 1 ) ( z - 1 )  k 
z 1 k=l 

OO 

= 1 - ~ u k ( 1 ) ( z  - 1) k-1 

k=l  
O0 

= l -- u l  ( l  ) -- ~ Uk+l (1) (Z -- 1)k. 
k=l  

(28) 

The closest zero ~ to z = 1 follows from (77) for z0 = 1 and 

a0(1) = 1 - ul(1) = 1 - A, 

ak(1)----- -Uk+l (1). 

(29) 

(30) 

This proves relation (25). [] 

Explicitly summing the first five terms in (25) gives 

1 - A  u 3 ( 1 ) ( 1 - A ' ~  2 I (u3(1) '~2 u 4 ( 1 ) ] ( 1 - A )  
f f~  1 + u2(1) u z ( 1 ) \ u z ( 1 ) J  + 2 \ u ~ O ) J  u2(1)] 

/ u 3 ( 1 ) ~  3 u4(1) u3(1) u5(1)] / 1 -  A~ 4 
+-5\u-~i~ j  +5 u~(1) u2(1)J\u2(1)J 

(1 
+ 6 - - - -   2(1)  2(1)J 

(31) 
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Expressions (25) and (31) illustrate that ( -+ 1 in the heavy traffic limit A -+ 1. 
Also, when A is close to unity, only a few terms in (25) are needed to achieve 
sufficiently high accuracy. For intermediate or small values of A, the series (25) is 
very likely alternating in which case we advise Euler's method 1 of summation in 
order to accelerate convergence. In some cases, it may be instructive to use moments 
Mn = E[H r~] = ~ - o k n U ( k )  instead of the derivatives uk(1) both connected via 

n 

= Z (33) 
m = l  

n 

Mn= F_. (34) 
m = l  

where S(n m) and Sn (m) are Stirling numbers of the first and second kind respectively [1]. 
How fast (in terms of K) q(K) approaches the asymptotic (24) mainly depends 

on the distance of other poles of Q(z) to (. This is in general a difficult problem. 
The interest of (25) for CAC in ATM networks lies in the fact that the overflow 

probability P[Q > K] ~ F(( ) / (U ' ( ( )  - 1)( K+I is merely needed for relatively high 
loads A. In this case, only a few moments of the arriving traffic need to be known to 
estimate the overflow probability P[Q > K] or the cell loss ratio [24]. 

6. Application to the M/D/1 queue 

6.1. The dominant pole ( of the M/D/1 queue 

The pgf of the buffer occupancy in a M/D/1 queue is given by Q(z) = (1 - 
A)(z - 1)/(z - eA(Z-1)), and, hence, U(z) = e ~(z-1) and F(z) --- 1 - A in (22). The 
expansion 2 of (z - U(z))/(z  - 1) is readily found as 

Ak+l 
z -  U(z) = 1 -  A -  ~ (k + 1 ) ~  ( z -  1)k (36) 

z - 1  k=l 

1 The  Euler  s u m m a t i o n  me thod  

a n + l  
2..a ~ x  
n = 0  

= = , >  

n + l  

(32) 

is part icularly useful  for al ternating series [22]. The  influence of  the complex  number  q in (32) has  

been d i scussed  by Hardy [12]. 

2 We demons t ra te  that it is necessary  to consider  the zero of  (z - e a ( ~ - l ) ) / ( z  - 1) rather than that o f  
z - e A(z-1) because  o f  the trivial zero appearing at z = 1. Alternatively, this impl ies  that a Lagrange  

series expans ion  around the origin is inadequate,  s ince it will converge to this trivial zero. Indeed, we 

have  that z - e  a (~- l )  = 0 i s  equivalent  to z e  - ~  = e - x .  Let  f(z) = z e  - x z  and w = e - : ' ,  then  
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and, hence, uk(1) = )]~/k! for k > 1. The coefficients (26), gn = (-1)n+l(bn/An+l), 
are calculated exactly in appendix B up to order 40. Since the series (25) for the M/D/1 
queue is clearly alternating, 

; = 1 - ;  (-1)~b~ - 1  , 
n=l 

(37) 

we invoke Euler 's summability method (32) to obtain 

(38) 

The coefficients 

C n = ~ ( ~ ) ( - 1 ) l + k b ( l + k )  (39) 
k=0 

are again computed in appendix B. The resulting dominant zero, accurate to order 11, 
is 

2 [ (1 - A) 2 2(1  - ,~)3 22(1  - -  , ~ ) 4  52(1  - ),)5 
= 1 + ~ [(1 - A) + ~ + ~ + 1-3-5 + -40-5 

20(1  -/~)6 3 8 2 4 ( 1 -  ~)7 1424(1 - ~)s 1 5 8 5 6 ( 1 -  ~)9 
+ + + + 

189 42525 18225 229635 

11714672189448875(1 - ),)10 44536288795685275(1 - ~)11 ] + + + o((1 - ),)11) 
o (40) 

The numerical data enclosed in appendix B clearly underline the power of the Euler 
summability: the slowly converging alternating series (37) is transformed into a much 
more rapidly converging series (38) with positive terms (A < 1). The positive sign of 
all terms in the transformed series (40) indicates that the numerical result computed by 
truncating the series at a finite number of terms, always forms a lower bound for the 
real zero. In the heavy traffic limit A --+ 1, the dominant zero is approximately equal 
to ~ ~ 1 + 2 (1 - A)/A and the resulting tail asymptotic for the buffer occupancy pdf  

clearly we obtain z = f-l(w). Using Lagrange series, for the sought zero we find 

(xz 

z = e n! ,ke -x . (35) 
n = 0  

oo (~ ( ze -~ )  r~ (see [19, II]), we readily observe that in (35) However, since e bz = 1 + b ~, ,=l  g7 
z =  1 for all 0 ~< ~ < 1. 
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is q(K)  ~ e - K l ~  ~ e - 2 K ( ( 1 - A ) / A )  corresponding to the classical result (see, e.g., 
[23]). 

The interest of the summation (37) lies in the observation that the coefficients 
bn are all close to 1.0 for n > 1. Hence 

( ~ 1 - ~  1 -  2 + ~  1 -  
n = l  

1 (1____~) [2 + 1 11 =l-x 

1 
= A- 5 .  (41) 

Expression (41) is a particularly simple approximation for the zero ( of e ;~(z-1) - z. 
The numerical data show that ( = 1/A 2 is within 1% for A > 0.84. In some cases 
of practical interest (see section 7.2 below) the load A lies in this regime. Moreover, 

= 1/A 2 is always larger than the exact zero. 

6.2. The convolved M/D/1 queue 

In telecommunication, several connections to a same direction i are multiplexed 
onto one physical link towards i. Often, the N input links to a switching fabric share 
one large buffer, called a shared buffer (sha), which is served by N deterministic 
servers S~, one for each direction i, as depicted in Fig. 1. But, since the ith server 
only processes cells of link i in FIFO order, the present shared buffer system is not 
work conservative [18] because it violates the basic property that no servers should be 

idle as long as the buffer is not empty. Especially when considering output queueing, 
we may assume that the aggregate flow on link i is Poissonean with parameter Ai 
and independent of flow j because the aggregate usually exist of many, none-of-them 
dominant single connections towards a same direction. Then, the buffer occupation 
pdf of a infinitely long shared buffer is the N-fold convolution of the separate M/D/1 
queues corresponding to a direction i. 

This kind of queueing system has not received much attention in the literature. 
Moreover, the dominant pole approximation really offers a computational advantage as 
explained below. Finally, the buffer pdf of a convolved M/D/1 system is an example 
of a pdf with a non-geometric tail. 

The exact expression for the buffer occupation pdf qN[m] with pgf 

N (1-- Ai) (Z --1) 
Qsha(Z) = I-[ ; - -  

i=1  

(42) 
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~5s163 

Fig. 1. A sketch of a shared buffer. The dashed open boxes represent the 'logical' output queues for 
the different N links. In practice, cells belonging to direction i are stored in positions known to the 
corresponding server S~ and served in FIFO order to obey the sequence integrity as required in ATM. 

is in general difficult to compute. Fortunately, in the special case where all Ai = A 
are the same, an exact formula for qu[m] can be derived as follows: 

(1 - ~ )N  (1 - ~)N 
Qsha(Z) = (~25-) - z) ~ -- E qN[k] z k (43) 

k:O 

(1 - ),)N (1 - z)Ne ;'N(1-z) 
(1 - zeA(1-z)) N 

This symmetrical traffic case is especially important for CAC in ATM [21]. Introducing 
the expansion (1 - x) -m-1 = ~ = m  (~) x~-m for Izl < 1 [1] gives 

Qsha(Z) ---- (1 - A) N (1 - z) N e ~N(l-z) 
OO 

E k=N-1 
IN ~_ l)Z k-N+l e ( k - N + l ) A ( l - z )  

= ( l - A )  N ( l - z )  N E  k + N - 1  zke(k+N);~e_(k+N)),z 
N - 1  

k=0 

= (1 - ~ ) u  (1 - ~ )u  Z k + N - 1 ? e(~+u)~, Z ( - ( k  + N)~,) '~ ~. 
N - 1  n! 

k=0 n=0 

N oo 

77%=0 s = 0  

o<3 

/=0 

" min(N,/) 

Z 
m = O  
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Fig. 2. The exact buffer pdf (45) and the exact dominant pole approximation (49) for several servers N 
and ), = 0.8. Observe the numerical instability of the exact buffer pdf (dotted line) given by (45) for 

m > 2 0 .  

where 

fls = ~ ( s -  n + N - 1 )  e(s-n+N))~ ( - ( s -  n + n! 
n=O 

Finally the buffer occupation pdf for this special case reads 

(44) 

qN[0] = (1 -- A) N e Nx, 
min(N,/) 

qN[l]=(1-A) N ~ (N)(-1)mfll_m. (45) 

m = 0  

Although an exact result, formula (45) is highly unfavourable for numerical 
computations as the buffer position increases (see Fig. 2, dotted line). In case N = 1, 
a transform to a Lagrange series (see (69) below) is possible. However, this Lagrange 
series converges very slowly for values of A close to unity. 

We now present the dominant pole approximation. We have for the general 
case 

N 1  fL U i = I (  --  /~i) (Z - -  1) N d z  
qAr[m] = -2~i- z~+-T N e~i(~_l) , m > 0, (46) - ) 



P. Van Mieghem / The asymptotic behavior of queueing systems 41 

where the contour encloses the whole complex plain except for the origin. Approxi- 
mating this integral by the residue at the dominant poles ~i corresponding to Ai yields 

N N N 

q N [ m ] ~ _ H ( l _ A i )  i ~  1 ( ~ - - 1 )  N 1ii# / 1 
~%-i - --- r - e ~j (r I) �9 i=1 .= < ( 1 - ~ A i )  j__ . i 

(47) 

When all l i  = A, expression (46) reduces to 

_ ( l - A )  N f ( z - l )  N dz 
qN[m] 2". i ]L -z -~T7 (z -- eA(z-l)) N" (48) 

However, the dominant pole approximation requires the computation of a Nth- 
order residue at the dominant pole C, 

-- dN-1 [ (z --1)N (z -- r ] (1 A)N lim - - - - - -  
(N - 1)[ z - - + r  z m~7 ~ - -  e;~(z-g)N 

( 1 - A ) N ~ I ( N k l )  dN-l-k [ ( z - -1 )N1  hk, 

~ - - -  ]-))i k=0 dzN-l-k k zm+l J z=r 
(49) 

where we used the Leibniz rule with 

hj=limdJ[ (Z--~)N ] 
z - <  -s ( z  - " 

(50) 

Again invoking characteristic coefficients [20] where s* [k, m] is defined in appendix A, 
we can compute hj exactly as 

J 
hj = j! ~ ( - 1 ) k (  n + k -  1)s*[k,m]aln-k(r 

k = l  k 
(51) 

where ak(~) = - ~  Ak/k! (for k > 1) and al (~) = 1 - A< are the Tailor coefficients 
of z - e ;~(z-0 around z = r 

The comparison between the exact buffer occupancy pdf (45) and the dominant 
pole approximation (49) is plotted in Fig. 2, for A = 0.8 and N = 1 , . . .  ,5 and 
illustrates the limited use of the exact result (45). The dominant pole approximation 
is remarkably good except for the very small values of m around zero. For a single 
queue N = 1, the approximation 

1 - A  
q(m) ]kr ]  m+l 

is surprisingly accurate for m ~> 2 and A ~> 0.5. For A = 0.5 we found that at least 3 
significant digits are correct if m >/2. The reason for the success of the dominant pole 
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Fig. 3. The exact dominant pole approximation (49) for a large number of servers (and links) N and 
A = 0.8. 

approximation in a M/D/1 system is due to the relatively large separation between the 
dominant and its next neighbour pole together with decreasing residus. 

Figure 3 illustrates the behavior of the shared buffer occupancy pdf as function 
of the buffer position m and the number of links N.  Observe that the maximum of 
qN[m] is reached around the mean buffer occupancy in a shared buffer (sha) with 
infinite length Q~sha(1)  = NA2/2(1 - A) which equals N times the mean buffer occu- 
pancy in the corresponding single buffer. Further the plot also explains the efficiency 
gain of a shared buffer over a single buffer. Indeed, it is much less probable to have 
an empty shared buffer in contrast to a single buffer that is empty most of the time. 

7. The cell loss ratio 

Due to its importance in ATM, the QOS performance measure, the cell loss 
ratio, deserves some attention. The cell loss ratio clr is defined as the ratio of the 
long-time average number of lost cells because of buffer overflow to the long-time 
average number of cells that arrive in steady state. There are typically two different 
views to describe the cell loss ratio: a conservation-based and a combinatorial one. 
The conservation law simply states that cells entering the system also must leave it. 
The average number of entering cells are all those offered per time slot minus the 
ones that have been rejected, thus (1 - c/r)A. On the other side, the average number 
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of cells that leave the system are related to the server activity as (1 - q(0))#, where 
# is the service rate. Hence, we have 

( 1 -  ~l~):~ = ( 1 -  q(O)).. (52) 

In the combinatorial view, only the arrival process is viewed from a position in the 
buffer and the number of ways in which cells are lost are counted, leading to 

oc K 
1 

clr - Ul(1 ) E i E q(K - j )u(j  + i) (53) 
i=0 j=0 

with U'(1) = A. Although equation (52)is simple, its practical use is limited since the 
quantities involved are to be known with extreme high accuracy if clr is of the order 
of 10 - l ~  . Therefore, we confine ourselves to the combinatorial result and present an 
other form for (53) as 

clr U'(1) -- dS(z)  z = l  dz ' (54) 

where 

oc K 

S(z) = ~ z ~ ~ q(K - j )~(j  + ~) (55) 
i = 0  j = 0  

oo K 

= ~ ~ q(K - j)~-J~(j + ~)z~ 
i = 0  j = 0  

= } 2  q(K - j)z-J ~ ~(j + ~);+i 
j =0 i=0 

j - -1  

= ~ q(K - j)z-J u(~) - F ,  ~(i); 
j =o i=o / 

K K j - I  
= U(z) z -~  ~ q(K - j)z ~-j  - ~ q(K - j)z-J ~ ~(i); 

j = 0  j = 0  i = 0  

K K - j - I  

= z-~U(z)Q(z) - z -~  } 2  q(J)~J ~ "(i) z~, 
j = 0  i = 0  

(56) 

where we have introduced the generating function for the buffer occupancy: 

K 

Q(z) = ~ q(i)z ~, 
i = 0  

(57) 
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since q(i) = 0 for i > K.  In order to express the cell loss ratio entirely in terms of 
the generating functions U(z) and Q(z), we need the following result: 

n 

i=O 

-- zi(~--~ljcY(W) dw ) 
�9 i = 0  

12~ri  ~ Y(aJ-----)-) [1 - ( z )  n+l] d W c o  - z 

Y(z) - ~ w - z (58) 

where C is a contour enclosing the origin AND the point z and lying within the 
convergence region of Y(z). Combining (56) and (58), we rewrite S(z) as 

1 s 
S(z) = z-frU(z)Q(z) - z-gQ(z)U(z) + ~ i  (w - z)w K dw 

1 / c  U(a~)Q(w) 
- (59) 

Finally, our expression for the cell loss ratio in an GI/G/1/K system, reads 

1- ~ U(w)O(w) 
clr = 27riU'(1) (-~ - - 1 ~  dw, (60) 

where the contour encloses both the origin and the point z = 1 and lies in the 
convergence region of U(z). Usually, U(z) is known while Q(z) proves to be much 
more complicated to obtain. The product Q(z)U(z) is known as the pgf of the system 
content. 

7.1. Properties and applications 

Lemma 2. If Q(z) and U(z) are meromorphic functions and if 

U(z) Q(z) 
lim (z---i-)ff)--U_ l = 0, 

z - - + o o  

the contour C in (60) can be closed over Iwl > 1 to get 

1 N-" Res U(w)Q(co) cl - (61) 

where p are the poles of U(z)Q(z) outside the unit circle. 
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Hence, if the conditions of Lemma 2 are met, a non-trivial evaluation of the 
cell loss ratio can be obtained. As frequently done, one may approximate the buffer 
pgf of the finite system by that of the infinite system.. In case the buffer pgf of the 
finite system is known, then Q(z) is a polynomial of degree at most K so that the 
only pole of Q(z)/z g is zero and limz--+oc Q(z)/z K = q(K) ~< 1. In this case the 
requirements of Lemma 2 simplify to limz-+oo [z U(z)/(z - 1)2] = 0. Executing (60) 
then leads to 

1 ~ Q(p) Res U(co), (62) cl - v'(1) 1)2 

where only the poles p of the arrival process U(z) play a role. As a simple application 
of (62), if the number of arrivals u(k) = (1 - c~)~ k with 0 ~< c~ ~< 1 has a geometric 
distribution with generating function [2], Ugeo(Z) = (1 - @/(1  - c~z), then the above 
requirements are met and we obtain from (62) 

clrgeo= ctKQ,(1). (63) 

An important class excluded from (61) consists of integral functions U(z) that 
possess a Taylor series expansion converging for all complex variables z. The gen- 
erating function of a Poisson process with parameter A, g P o i s s o n ( Z )  = e ;~ (z-l), is an 
important representative of that class. For a Poissonian arrival process, (60) reads 

e-) '  ~ e;~~ 
drPoisson -- 27riA ( a ~  1-~7  K dco. (64) 

Deforming the contour to enclose the negative half co-plane (Re(co) < c), we obtain 

e-k, [c+ioc e),~OQ(co) 
d T P o i s s o n  - -  27riA  c-io  2 dco, (65) 

where the real number c exceeds unity. This 
Laplace transform, 

e-;~ L_ 1 F 
c/rPoisson- ~ A [ 

expression is recognized as an inverse 

Q(co) 1 
(co _- ~ COK]" (66) 

Since the argument of L~ 1 is a rational function, an exact evaluation of (66) is possible 
leading, however, again to (53). Hence, the combinatorial view does not offer much 
insight immediately suggesting to consider a conservation-based approach. Indeed, it 
is well known that, owing to the PASTA property [28, 29], an exact expression [4, 25, 
6] in continuous-time for the cell loss ratio in a M/G/1/K system can be derived with 
as result 

P [ Q  > K - 1] 
C[TM/G/I/K;cont = (1 -- P) I ---p]~[-Q ~ K - 1] ' (67) 
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where, as usual, the traffic intensity p = A/# and P[Q > K - 1] is  the overflow 
probability in the corresponding infinite system, M/G/1. Transforming (67) to discrete- 
time using 

clrcont 
c/rdisc p(1 -- C/rcont) 

yields 
1 - p  e[Q> K -  1] 

ClrM/G/1/K;disc - -  T 1 - -  P[Q > K - 1] " (68) 

7.2. The cell loss ratio in a discrete-time M/D/1/K system 

Although for a M/D/1 the exact expression of the overflow probability [25] is 
known as 

oo n n + K  

P[Q > K -  1] = (1 - A)As( E (n + K)! (Ae-;~)n' (69) 
n=l 

this form is severely handicaped by the slow convergence for high traffic intensities 
p = A (since p = 1) so that fast executable expressions are desirable. 

From (68) it follows that the cell loss ratio in a M/D/IlK system is reasonably 
well approximated for sufficiently large K as 

clr(A) ~ 1 - Ap ~ -  [Q > K - 1]. (70) 

Invoking the exact dominant pole approximation 

gives 

1 - A  ~-K 
P[Q > s ( -  1]-  5 ( 7  i 

(1-  a)2 
clr(A) ~ )~(--A~ - ]-) if-K, (71) 

where ~ is the non-trivial solution of z = e ;~(z-1) with ]z I > 1 as computed in 
section 6.1. For sufficiently high loads A > 0.8 we use the approximation (41), 

~ A -2, to obtain the new result 

c l ~ ( a ) ~ ( 1  - ~) ~2~. (72) 

As the estimate for the root is always larger than the real root, our approximate relation 
(72) is always a lower bound for (71). 

Formula (72) is of a particularly remarkable form since it frequently appears in 
probability theory [17]. First of all (1 - p )  pk represents the geometric distribution with 
parameter p and can be regarded as the probability distribution of a stochastic variable 
Z that counts the number of successes - the occurrence of each, independent success 
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has the probability p - prior to the first failure. In an M/M/1 system, Pk =- (1 - p) pk 
is the steady state probability that this systems contains h members (or equivalent is 
in state k). And finally, the exact expression for the cell loss ratio in an M/M/I/K 
system [17] reads 

ClrM/M/1/K(p ) _ (1 - p) pK 1 - p K + l  (73) 

When using (68) instead of (70), we find the more precise result with A = p 

p2K 
ClrM/D/UK(p ) = (1 -- p) 1 - p Z K + l  �9 (74) 

Comparing both (73) and (74), we observe that, for sufficiently high p, the M-server 
(in continuous-time) needs approximately twice as much place to guarantee a same 
cell loss ratio as in the corresponding D-server system (in discrete-time)i As well- 
known for continuous-time [17, pp. 191], the mean waiting time in a M/M/1 system 
is exactly twice of that in a M/D/1. 

Further, our simple formula (72) is particularly useful to engineer buffers or to 
dimension simple queueing networks. The buffer length K in case of Poisson traffic 
given the cell loss ratio requirement clr and the traffic intensity A > 0.8 is immediate 
from (72) as 

[logclr - log(1 - A)I 
K = L 2 -l~gg ~ . + 1, (75) 

where Ix] denotes the integral part of x. In addition, denoting clr = fK(A), then the 
inverse function is A = f~;l(clr). For (72) we find the relatively simple f~ l (w)  = 
limn__+~ fn(w) with f l ( w ) =  w 1/(2K) and 

wl/(2K) 
fn(w) = [1 - fn_l(w)]l/(2I() " (76) 

This continued fraction (76) converges rapidly. 

8. Summary 

Characteristic coefficients have been employed to generate asymptotic expan- 
sions of the steady state behavior of queues in both the large deviations settings as in 
the generating function approach. 

The dominant pole approximation, a natural asymptotic method arising from 
the generating function approach, has been applied to M/D/l-like systems. A series 
expansion for the dominant pole in a MUD/1 queue has been given explicitly and the 
probability density function of the N-fold convolved M/D/1 system is calculated. The 
important quality of service parameter in ATM, the cell loss ratio, has been studied 
and an elegant, approximate result for the M/D/1 queue is presented. 
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Appendix 

A. Useful results 

The zero ((z0) of f(z) closest to z0 is given in terms of the coefficients ak(zo) 
of the power series of f(z) around z0 as 

~(zo) = f -1  (0) = zo 
ao(~o) 
al(~O) 

-I- E k(al(zO))k n=2 L k=l 
~*[k ,~-  1] a~(~o) ' (77) 

where s* [k, n[ = s[k, n[ Iw: ara(zo)--+am+l (zo)" Formula (77) is another representation 
for Lagrange's expression [19, II, pp. 88] 

f - ' (O)  = zo + ~ ~ L ~  \ f (~)  _ f(zo) (_l)nfn(zo). 
n=l 

(78) 

For most functions, Lagrange's formula (78) rapidly becomes unfeasible to calculate, 
while our formula (77), due to its recursive character, can be formally computed to 
an arbitrary order provided the Taylor coefficients ak(zo) are known. For example, 
the series (37) could only be computed with conventional execution of (78) and with 
current personal computers to order 11, while with characteristic coefficients (77), no 
such limitations were encountered. Therefore, we found it instructive to give the exact 
coefficients up to order 40 in section B. 

Explicitly summing the first five terms (n ~< 5) in (77) yields 

 o(zo) [_ a (zo)] 
~(zo)=zo ~,(zo) ~ \a,(~o)) + \~,(zo)) +a,(zo)l\a,(zo)J 

_[_[_ 5(a2(z0)) 3 a3(z0) a2(z0) g4(z0)] fa0(z0)~ 4 
\ a , (~o) )  + s - -  h a~(~o) al(~O) aq-(2go)J \a~(~o))  

§ I -  14 (a2(z~ ~ 4-t- 21 a3(zo) (a2(zo))2 _ 3 (a3(z0)~2 
~', al (ZO) J ~ \al(zO)] ~al(zO)J 

 s( o/1 
al(zO~)al(zO~ ) al(zO) j tal(zO)j -l-Otal(zo)] (79) 
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Let f (z)  be an analytic function of z in a disk around the extremum zF, with 
expansion 

O<3 

f ( z )  = - 

k=O 
where with al (z~,) = O. The asymptotic expansion for 

1 I c+ioc e x f(s) ds 
R = ~ ~ ~-ioo 

reads 

e x a0 (z.) 
R =  

2 v/xrr a2(zt, ) 

( oc [2k~__m](_l)kF(k+m+l) s**[k 2m] ( -1)  m ') (80) 
• 1 +  Z v/_~k! 2 t , ak2(z.) ' 

where s**[k,n] = s[k,n]lvm: ~(zu)~a~+2(z.) and Re(xaz(z~,)) < 0. This expansion 
is only exact if f (z)  is an integral function. In the other cases (as is most usual 
for asymptotic expansions [12]), the infinite series diverges. Hence, the practical 
applicability is limited to the first few terms in the m-sum that are decreasing in 
magnitude. 

Although compact in form, when written explicitly, (80) rapidly becomes im- 
pressive. For only three terms in the m-summation, we find 

eXa~ {1-- [15a2(z#) 3a4(z#) 1 1 
R=2X/xrca2(z.)-- _ [16a32(z~,) 4a2(zu)J x 

-3465a4(zl,) 945a2(zl,)a4(z.) 105(a42(zt,) + 2a3(z.)a5(z.)) 
+ _ 512a26(z.) 64a25(z.) + 32a4(z.) 

15a6(z.)l  1 I765765a6(z,) 675675a~(z,)a4(z,) 
8a3(zl.) J ~ - ~_ 8192a9(z,) - 2048a28(zl.) 

45045 a2(zl.)[3a2(zl~) + 2a3(zu)a5(zl.)] 
+ 512aT(z/~) 

3465[a](zl,) + 6a3(zl,)a4(ztz)as(z**) + 3a2(zl,)a6(z**)] 

945[a2(z/,)+ 2a4(zF,)a6(zt~)+ 2a3(zl~)a7(z.) ] 105as(z.) 1 1 
+ 64a52 (ztz) ~ J x 3 
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B. Numer ica l  coefficients of  the d o m i n a n t  pole  expans ion  for the M/D/1  
queue  

Since  the expans ion  for  ~ is an exact  result, not  obtainable with convent iona l  

techniques  as expla ined in the previous  appendix,  we list the first four ty  coefficients 
in (25) 9n = ( - 1 )  n+l b,~ . )~n+ 1 �9 

4 
bl = 2, b2 = ~ = 1 .33333,  

10 136 
b3 - 9 - 1.11111,  b4 - 135 - 1.00741, 

386 524 
b5 - 405 - 0 .953086,  b6 - 567 - 0 .924162,  

38698 16496 
b7 - 4 2 5 2 ~ -  0 .910006,  b8 - 1 8 2 2 ~ -  0 .90513,  

1040686 172739156 
b 9 - - 0 .906383,  blO - -  

1148175 189448875 
--  0 .911798,  

732086318  13121928056 
hi1 - --  0 .92007,  hi2 = 

795685275  14105329875 

4 3 8 3 6 6 0 1 7 4 3 8  
4 6 5 4 7 5 8 8 5 8 7 5  = 0 .941759,  hi4 = 

321365923826  
= 0 .966564,  b16 = 

332482775625  

hi3  = 

h i5  = 

1 2 3 5 7 2 1 7 3 3 9 1 2 6 6 6 6  

12463116844303125  
= 0 .991503,  b17 = 

2 5 1 5 7 3 1 0 0 9 4 7 7 6 0 0 4  

2 5 0 7 2 8 5 8 5 9 2 6 5 6 8 7 5  
= 1.00337, b18 = 

3 5 6 7 6 7 9 9 7 5 9 7 0 6 2 2 4 0 7 1 8  

3 5 1 6 4 6 8 4 1 7 6 2 0 1 2 6 7 1 8 7 5  
= 1.01456, b19 = 

1 1 3 8 1 4 2 6 4 5 2 5 2 3 8 0 9 8 3 2  

11104637108274084375  
= 1.02493, b20 = 

4 5 8 2 8 0 1 3 2 8 2 2 0 1 8 0 2 3 7 0 0 2  

4 4 3 0 7 5 0 2 0 6 2 0 1 3 5 9 6 6 5 6 2 5  
= 1.03432, b21 = 

2 2 7 6 8 0 4 0 9 3 9 9 6 0 2 6 3 2 7 1 0 5 7 2  

2 1 8 3 7 2 6 8 8 7 3 4 2 0 9 8 6 9 2 3 4 3 7 5  
= 1.04262, b22 = 

= 1.04975, 
5 1 7 2 0 2 7 4 3 9 6 9 0 1 0 7 5 0 3 1 6 8 7 8  

b23 = 4 9 2 6 9 2 0 9 9 3 7 5 5 3 1 3 5 7 8 5 9 3 7 5  

= 0 .930282,  

102475021588 

107417512125 
= 0 .953988,  

369799304676448  

377670207403125  
= 0 .979159,  
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b24 = 

b25 = 

b26 = 

b27 = 

b28 = 

/929 = 

b30 = 

b31 = 

b32 = 

b33 = 

b34 = 

b35 = 

b36 = 

b37 =-- 

l)38 = 

b39 = 

2736149442418265808257104 

2591988870627795404390625 
= 1.05562, 

4740230682068871716934972106 

4471180801832947072573828125 
= 1.06017, 

570547150460378858384921252 

536541696219953648708859375 
= 1.06338, 

29675590935592413532223620618 

27858895765266824067575390625 
= 1.06521, 

2585460914758641190954371396898808 

2426147655509791907572938043359375 
= 1.06567, 

221421777877975638219432824420246 

207955513329410734934823260859375 
= 1.06476, 

124001539976502789031080018848217028 
= 1.06251, 

116706068256419300381525812775390625 

913942879519589340576250740113307218374 
= 1.05898, 

863041374756220726321383385474013671875 

12578379301403075966500674215988023744 
= 1.05422, 

11931447577274940916885484591806640625 

542842766602892099722217105771465167274 
= 1.04831, 

517824824853732435792830031284408203125 

2515578482169070458311758207863571382948 
= 1.04135, 

2415689972403775717215355409101904296875 

395033002495493164785568330959976069381726 
= 1.03344, 

382251997132302202721642700038741748046875 

93914499320242784200953318701498359349091796875 

78660797482558424580284131747519877025764452082318 

96233377841696313802167001118702932417401233576 
= 1.02469, 

= 1.01525, 
77479461939200296965786487928736146463000732421875 

6315069369486955738316923926967417028650004084836 
= 1.00525, 

6282118535610834889117823345573201064567626953125 

36511312679874517872142333330607187865438511694658 
= 0.994837, 

36700797760673824878530441650453964114052978515625 

6493310939847396596343462122216690160482900896929136 

b4o = 6597674182053440672394280164393147241118600830078125 = 0.984182. 
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The  exac t  coef f ic ien ts  c~ o f  the cons ide rab ly  faster  c o n v e r g i n g  Eule r  series (38) are 

1 
c 0 = 1, c 1 = ~ = 0 .333333,  

2 22 
c2 = ~ = 0 .222222 ,  c3 - . . ~ -  0 .162963,  

3 1 3  

52 20 
C 4 - -  - - - -  0 .128395 ,  c5 - - - - - -  0 .10582,  

405 189 

3824 1424 
c6 - -  42525  --  0 .0899236 ,  c7 --  1 8 2 2 ~ - -  0 .0781344,  

15856 11714672 
c8 - 229635  - 0 .0690487 ,  e9 - 189448875 - 0 .0618355,  

44536288  720976352  
ClO --  795685275  --  0 .0559722 ,  c l l  = 14105329875 = 0 .0511138,  

4 4 6 6 9 6 7 0 4  4676141056  

c12 - -  9499507875  --  0 .0470231 ,  c13 = 107417512125 = 0 .0435324,  

5 7 7 3 6 6 8 3 5 2  157416967271936  

C 1 4  = 142492618125  = 0 .0405191 ,  c15 = 4154372281434375  = 0 .0378919 ,  

4 4 3 4 5 4 5 1 8 5 4 8 7 3 6  
c16 = = 0 .0355813,  

12463116844303125  

4 2 0 3 9 2 9 3 5 3 5 4 0 3 5 2  

c17 = 1 2 5 3 6 4 2 9 2 9 6 3 2 8 4 3 7 5  = 0 .0335337 ,  

1 5 9 2 7 9 2 8 2 5 2 9 9 0 8 2 7 5 2  
c18 = = 0 .0317067,  

5 0 2 3 5 2 6 3 1 0 8 8 5 8 9 5 3 1 2 5  

2 3 8 4 8 4 3 2 6 6 1 5 1 8 4 8 9 6  
C19 = = 0 .0300665,  

7 9 3 1 8 8 3 6 4 8 7 6 7 2 0 3 1 2 5  

2 3 0 2 8 7 4 7 0 8 0 9 1 8 9 4 7 8 4  

e 2 0  = 8 0 5 5 9 0 9 4 6 5 8 2 0 6 5 3 9 3 7 5  = 0 .0285862,  

5 9 4 9 2 0 0 6 5 7 6 5 0 5 7 3 1 7 9 9 0 4  
c21 = = 0 .0272433,  

2 1 8 3 7 2 6 8 8 7 3 4 2 0 9 8 6 9 2 3 4 3 7 5  

1 4 1 0 1 7 4 5 3 8 4 0 4 9 6 2 9 7 9 5 5 3 2 8  
C22 = = 0 .0260198,  

5 4 1 9 6 1 3 0 9 3 1 3 0 8 4 4 9 3 6 4 5 3 1 2 5  

5 1 6 3 3 4 3 6 2 4 8 5 5 9 2 1 9 9 1 6 8  
e23 = = 0 .0249005,  

2 0 7 3 5 9 1 0 9 6 5 0 2 2 3 6 3 2 3 5 1 2 5  

1 1 7 2 9 5 2 3 4 9 5 1 8 4 7 6 8 9 8 9 1 0 2 0 8  

e24 = 4 9 1 3 3 8 5 4 9 6 5 1 9 7 2 2 0 5 7 7 7 3 4 3 7 5  = 0 .0238726,  
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C25 

C26 = 

e27 ~-- 

C28 =-  

C29 = 

C30 ~- 

C31 ~--- 

C32 ----~ 

C33 = 

C34 ---~ 

e35 

C36 

(337 ~-  

C38 = 

C39 z 

12300437912575510371319808 

536541696219953648708859375 = 0.0229254, 

614284081156169940217462784 

27858895765266824067575390625 
= 0.0220498, 

2711931937654987022357728821248 

127691981868936416188049370703125 = 0.0212381, 

21298203069420574857246681202688 

1039777566647053674674116304296875 = 0.0204834, 

135791474759634027035813085052928 

6865062838612900022442694869140625 = 0.0197801, 

1500358140479337730077037053966548992 

78458306796020066029216671406728515625 = 0.019123, 

140524783458986895116147773606592512 

7592739367356780583472581103876953125 = 0.0185078, 

175493303763489815736885968175104 

9787379928965181350677410556640625 = 0.0179306, 

2501800068923129951546989270480388096 

143881220926870654003422422485693359375 = 0.017388, 

39997681949043936890956198527081627123712 

2369962382220273656874184740240198837890625 = 0.0168769, 

10618697470281124462254171805441866590191616 

647686202208570925523815991044816271373046875 = 0.0163948, 

4999856088388263552383905457357872879124611072 
= 0.0159392, 

313682032142511323748123432909862941145751953125 

7494130203484134345834288708222145009430560768 

483239887354679606855217180428707774197509765625 
= 0.0155081, 

110832384255127797120257891458129122408694546432 
= 0.0150995, 

7340159552134764975706088330090792822810595703125 

97062386824406589150020290855217454312390013222912 

6597674182053440672394280164393147241118600830078125 
= 0.0147116, 

42701059751811496437354176328266586584916102742016 
c4o = = 0.014343. 

2977132316860478187708493363436907763347732275390625 
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