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ABSTRACT: In this paper we study a random graph with N nodes, where node j has degree Dj and
{Dj}N

j=1 are i.i.d. with P(Dj ≤ x) = F(x). We assume that 1−F(x) ≤ cx−τ+1 for some τ > 3 and some
constant c > 0. This graph model is a variant of the so-called configuration model, and includes heavy
tail degrees with finite variance. The minimal number of edges between two arbitrary connected nodes,
also known as the graph distance or the hopcount, is investigated when N → ∞. We prove that the
graph distance grows like logν N , when the base of the logarithm equals ν = E[Dj(Dj−1)]/E[Dj] > 1.
This confirms the heuristic argument of Newman, Strogatz, and Watts [Phys Rev E 64 (2002), 026118,
1–17]. In addition, the random fluctuations around this asymptotic mean logν N are characterized and
shown to be uniformly bounded. In particular, we show convergence in distribution of the centered
graph distance along exponentially growing subsequences. © 2005 Wiley Periodicals, Inc. Random
Struct. Alg., 26, 76–123, 2005

1. INTRODUCTION

The study of complex networks plays an increasingly important role in science. Examples
of such networks are electrical power grids and telephony networks, social relations, the
World Wide Web and Internet, co-authorship and citation networks of scientists, etc. The
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structure of these networks affects their performance. For instance, the topology of social
networks affects the spread of information and disease (see, e.g., [37]). The rapid evolution
in, and the success of, the Internet have incited fundamental research on the topology of
networks.

Different scientific disciplines report their own viewpoints and new insights in the broad
area of networking. In computer science and electrical engineering, massive Internet mea-
surements have lead to fundamental questions in the modelling and characterization of the
Internet topology [22,38]. These modelling questions drive the understanding of the Inter-
net’s complex behavior and allow to plan and to control end-to-end communication. The
pioneering work of Strogatz and Watts (see e.g. [34,41] and the references therein) have
triggered an immense number of research papers in the field of theoretical physics. Strogatz
and Watts proposed “small world networks” and illustrated how such small worlds can
arise due to underlying mechanisms in different practical networks such as social networks,
growing structures in nature, the Web, etc.

Albert and Barabási in [3] showed that preferential attachment of nodes gives rise to
a class of graphs often called ‘scale free networks’. See also [4, 8] and the references
therein. Scale free networks seem to explain the structure of the World-Wide Web, the
autonomous domain structure of Internet, citation graphs and many other complex networks
(see, e.g., [4, 33]). The essence of scale free networks is that the nodal degree is a power
law, or, alternatively, heavy-tailed, meaning that the number of nodes with degree equal
to k is proportional to k−τ for some power exponent τ > 1. On the World Wide Web, it
has indeed been shown that there are power law degree sequences, both for the in- and
out-degrees (see [16,29]). The work of Albert and Barabási have inspired substantial work
on scale-free graphs and can be seen as a way to understand the emergence of power law
degree sequences. In the model by Albert and Barabási [3], this power exponent is restricted
to τ = 3 [14], but in refinements of the model, different values of τ can be obtained. See,
e.g., [2, 10, 19, 30] and the references therein. We will comment on the relations between
our work and preferential attachment models in Section 1.4, below. For an overview of the
extensive field of random graphs, we refer to the books of Bollobás [9] and Janson, Łuczak,
and Rucinski [28].

The current paper presents a rigorous mathematical derivation for the random fluctuations
of the graph distance between two arbitrary nodes in a graph with finite variance degrees.
These finite variance degrees include power laws with power exponent τ > 3. We consider
the configuration model with power law degree sequences, a variation on a model originally
proposed by Newman, Strogatz, and Watts [35], prove their conjecture and proceed beyond
their results by combining coupling theory, branching processes and shortest path graphs.

1.1. Model Definition

Fix an integer N . Consider an i.i.d. sequence D1, D2, . . . , DN . We will construct an undirected
graph with N nodes where node j has degree Dj. We will assume that LN =∑N

j=1 Dj is even.
If LN is odd, then we add a stub to the N th node, so that DN is increased by 1. This single
stub will make hardly any difference in what follows, and we will ignore this effect. We
will later specify the distribution of D1.

To construct the graph, we have N separate nodes and, incident to node j, we have Dj

stubs. All stubs need to be connected to build the graph. The stubs are numbered in a given
order from 1 to LN . We start by connecting at random the first stub with one of the LN − 1
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remaining stubs. Once paired, two stubs form a single edge of the graph. Hence, a stub
can be seen as the left or the right half of an edge. We continue the procedure of randomly
choosing and pairing the stubs until all stubs are connected. Unfortunately, nodes having
self-loops may occur. However, self-loops are scarce when N → ∞.

We now specify the degree distribution we will investigate in this paper. The probability
mass function and the distribution function of the nodal degree D are denoted by

P(D = j) = fj, j = 0, 1, 2, . . . , and F(x) =
�x�∑
j=0

fj, (1.1)

where �x� is the largest integer smaller than or equal to x. Our main assumption is that for
some τ > 3 and some positive constant c,

1 − F(x) ≤ cx−τ+1 (x > 0). (1.2)

This condition implies that the second moment of D is finite. The often used condition
that 1 − F(x) = x−γ+1L(x), γ > 3, with L a slowly varying function is covered by (1.2),
because by Potter’s Theorem [23, Lemma 2, p. 277], any slowly varying function L(x) can be
bounded above and below by an arbitrary small power of x, so that (1.2) holds for any τ < γ .

The above model is closely related to the so-called configuration model, in which the
degrees of the nodes are often assumed to be fixed (rather than i.i.d.). See [33, Section 4.2.1]
and the references therein. We will review some results proved for the configuration model
in Section 1.4 below.

1.2. Main Results

We denote

µ = E[D], ν = E[D(D − 1)]
E[D] , (1.3)

and we define the distance or hopcount HN between the nodes 1 and 2 as the minimum num-
ber of edges that form a path from 1 to 2 where, by convention, the distance equals ∞ if nodes
1 and 2 are not connected. Since the nodes are exchangeable, the distance between two ran-
domly chosen nodes is equal in distribution to HN . Our main result is the following theorem:

Theorem 1.1 (Limit law for the typical nodal distance). Assume that τ > 3 in (1.2) and
that ν > 1. For k ≥ 1, let ak = �logν k� − logν k ∈ (−1, 0]. There exist random variables
(Ra)a∈(−1,0] such that as N → ∞,

P
(
HN − �logν N� = k

∣∣HN < ∞) = P(RaN = k) + o(1), k ∈ Z. (1.4)

In words, Theorem 1.1 states that for τ > 3, the graph distance HN between two randomly
chosen connected nodes grows like the logν N , where N is the size of the graph, and that
the fluctuations around this mean remain uniformly bounded in N . Theorem 1.1 proves
the conjecture in Newman, Strogatz, and Watts [35, Section II.F, (54)], where a heuristic
is given that the number of edges between arbitrary nodes grows like logν N . In addition,
Theorem 1.1 improves upon that conjecture by specifying the fluctuations around the value
logν N .
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We will identify the laws of (Ra)a∈(−1,0] in Theorem 1.4 below. Before doing so, we state
two consequences of the above theorem:

Corollary 1.2 (Convergence in distribution along subsequences). Fix an integer N1.
Under the assumptions in Theorem 1.1, and conditionally on HN < ∞, along the subse-
quence Nk = �N1ν

k−1�, the sequence of random variables HNk
− �logν Nk� converges in

distribution to RaN1
as k → ∞.

Simulations illustrating the convergence in Corollary 1.2 are discussed in Section 1.5.

Corollary 1.3 (Concentration of the hopcount). Under the assumptions in Theorem 1.1,

i. with probability 1 − o(1) and conditionally on HN < ∞, the random variable HN is
in between (1 ± ε) logν N for any ε > 0;

ii. conditionally on HN < ∞, the random variables HN − logν N form a tight sequence,
i.e.,

lim
K→∞

lim sup
N→∞

P
(|HN − logν N | ≤ K

∣∣HN < ∞) = 1. (1.5)

We need a limit result from branching process theory before we can identify the limiting
random variables (Ra)a∈(−1,0]. In Section 2 below, we introduce a delayed branching process
{Zk}, where in the first generation, the offspring distribution is chosen according to (1.1) and
in the second and further generations, the offspring is chosen in accordance to g given by

gj = ( j + 1)fj+1

µ
, j = 0, 1, . . . . (1.6)

The process {Zk/µνk−1} is a martingale with uniformly bounded expectation and conse-
quently converges almost surely to a limit:

lim
n→∞

Zn

µνn−1
= W a.s. (1.7)

In the theorem below we need two independent copies W (1) and W (2) of W .

Theorem 1.4 (The limit laws). Under the assumptions in Theorem 1.1, and for a ∈
(−1, 0],

P(Ra > k) = E
[
exp{−κνa+kW (1)W (2)}∣∣W (1)W (2) > 0

]
, (1.8)

where W (1) and W (2) are independent limit copies of W in (1.7) and where κ = µ(ν −1)−1.

We will also provide an error bound of the convergence stated in Theorem 1.1. Indeed,
we show that for any α > 0, and for all k ≤ η logν N for some η > 0 sufficiently small,

P(HN > �logν N� + k) = E
(
exp{−κνaN +kW (1)W (2)})+ O((log N)−α). (1.9)

Unfortunately, due to the conditioning in Theorem 1.1, it is hard to obtain an explicit error
bound in (1.4).
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The law of Ra is involved, and can in most cases not be computed exactly. The reason
for this is the fact that the random variables W that appear in its statement are hard to
compute explicitly. For example, for the power-law degree graph with τ > 3, we do not
know what the law of W is. See also Section 2. There are two examples where the law of W
is known. The first is when all degrees in the graph are equal to some r > 2, and we obtain
the r-regular graph (see also [15], where the diameter of this graph is studied). In this case,
we have that µ = r, ν = r − 1, and W = 1 a.s. In particular, P(HN < ∞) = 1 + o(1).
Therefore, we obtain that

P(Ra > k) = exp

{
− r

r − 2
(r − 1)a+k

}
, (1.10)

and HN is asymptotically equal to logr−1 N . The second example is when the law g is
geometric, in which case the branching process with offspring g conditioned to be positive
converges to an exponential random variable with parameter 1. This example corresponds to

gj = p(1 − p)j−1, so that fj = 1

jcp
p(1 − p)j−2, ∀j ≥ 1, (1.11)

and cp is the normalizing constant. For p > 1
2 , the law of W has the same law as the sum

of D1 copies of a random variable Y , where Y = 0 with probability 1−p
p and equal to an

exponential random variable with parameter 1 with probability 2p−1
p . Even in this simple

case, the computation of the exact law of Ra is nontrivial. Although the laws Ra are hard
to compute exactly, Theorems 1.1 and 1.4 make it possible to simulate the hopcount in
random graphs of arbitrary size since the law of W is simple to approximate numerically,
for example using Fast Fourier Transforms.

In [27], the expected value of the random variable Ra is computed numerically, by
comparing it to E[log W|W > 0], where W is the almost sure limit of the associated
branching process in (1.7). One would expect that, with α as in (1.9), there exists some β

with 0 < β < α, satisfying

E[HN |HN < ∞] = �logν N� + E[Ra] + O((log N)−β). (1.12)

If so, an accurate computation of E[Ra] would yield the fine asymptotics of the expected
hopcount, and this would yield an extension of the conjectured results in [35, (54)]. Our
methods stop short of proving (1.12), and this remains an interesting question.

Our final result describes the size of the largest connected component and the maximal
size of all other connected components. In its statement, we write G for the random graph
with degree distribution given by (1.1), and we write q for the survival probability of the
delayed branching process {Zk} described above. Thus, 1 − q is the extinction probability
of the branching process.

Theorem 1.5 (The sizes of the connected components). With probability 1 − o(1), the
largest connected component in G has qN(1 + o(1)) nodes, and there exists γ < ∞ such
that all other connected components have at most γ log N nodes.

1.3. Methodology and Heuristics

One can understand Theorems 1.1 and 1.4 intuitively as follows. Denote by Z (1)

k , respec-
tively, Z (2)

k the number of stubs of nodes at distance k − 1 from node 1, respectively,
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node 2 (see Section 3 for the precise definitions). Then for N → ∞, the random process
Z (i)

1 , Z (i)
2 , . . . , Z (i)

k , which will be called shortest path graphs (SPGs), behave as a delayed
branching process as long as Z (i)

k is of small order compared to N . Thus, the local
neighborhood of the node i is close in distribution to a branching process.

We sample the stubs uniformly from all stubs, and thus, for large N , we attach the stubs
to the SPG proportionally to jfj. Moreover, when a new stub is attached to the SPG, the
chosen stub is used to attach the new node and forms an edge together with the present stub.
Therefore, the number of stubs of the freshly chosen node decreases by one and is equal to j
if the number of stubs of the chosen node was originally equal to j +1. This motivates (1.6).

The offspring of the node 1 is distributed as D1, whereas the offspring distribution of
Z (1)

2 , Z (1)

3 , . . . has (for N → ∞) probability mass function (1.6). Consequently, as noted in
[35, (51)], the mean number of free stubs at distance k is close to µνk−1, where ν =∑∞

j=1 jgj

is defined in (1.3). Moreover, a stub in Z (1)

k is attached with a positive probability to a stub
in Z (2)

k whenever Z (1)

k Z (2)

k is of order LN . The total degree LN is proportional to N by the law
of large numbers, because µ = E[D1] < ∞. Since both sets grow at the same rate, each
has to be of order

√
N . Therefore, k is typically 1

2 logν N , and the typical distance between
1 and 2 is of order 2k = logν N . This can be made precise by coupling Z (1)

1 , Z (1)

2 , . . . to a
branching process Ẑ (1)

1 , Ẑ (1)

2 , . . . having offspring distribution g(N)

j given by

g(N)

j =
N∑

i=1

I[Di = j + 1] Di

LN

= j + 1

LN

N∑
i=1

I[Di = j + 1], (1.13)

where I[E] is the indicator of the event E. This coupling will be described in Section 3.1.
In turn, the branching process Ẑ (1)

1 , Ẑ (1)

2 , . . . will be coupled, in a conventional way, to a
branching process Z (1)

1 , Z (1)

2 , . . . with offspring distribution {gj} defined in (1.6). The limit
result of Theorem 1.1 and Theorem 1.4 depends on the martingale limit for supercritical
branching processes with finite mean.

The proof of Theorems 1.1 and 1.4 are based upon a comparison of the local neighbor-
hoods of nodes to branching processes. Such techniques are used extensively in random
graph theory. An early example is in [15], where the diameter of a random regular graph
was investigated. See also [5, Chap. 10], where comparisons to branching processes are
used to describe the phase transition and the birth of the giant component for the random
graph G(p, N).

The proof of Theorem 1.5 makes essential use of results by Molloy and Reed [31, 32]
for the usual configuration model. We will now describe their result. When the number of
nodes with degree i in the graph of size N equals di(N) where limN→∞ di(N)/N = Q(i),
Molloy and Reed [31, 32] identify the condition

∑∞
i=1 i(i − 2)Q(i) > 0 as the necessary

and sufficient condition to ensure that a ‘giant component’ proportional to the size of the
graph exists. By rewriting the condition ν > 1 in Theorem 1.1 as E[D2] − 2E[D] > 0, we
see that a similar condition as in the model of Molloy and Reed is needed here. To prove
Theorem 1.5, we need to check that the technical conditions in [31, 32] are satisfied in our
model. In fact, we need to alter the graph G a little bit in order to apply their results, since
in [31] it is assumed that no nodes of degree larger than N

1
4 −ε exist for some ε > 0.

The novelty of our results is that we investigate typical distances in random graphs. In
random graph theory, it is more customary to investigate the diameter in the graph, and
in fact, this would also be an interesting problem. The research question investigated in
this paper is inspired by the Internet. In a seminal paper [22], Faloutsos, Faloutsos, and
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Faloutsos have shown that the degree distribution of autonomous systems in Internet follows
a power law with power exponent τ ≈ 2.2. Thus, the power law random graph with this
value of τ can possibly lead to a good Internet model on the autonomous systems (AS) level
(see [22, 38]). For the Internet on the more detailed router level, extensive measurements
exist for the hopcount, which is the number of routers traversed between two typical routers,
as well as for the AS-count, which is the number of autonomous systems traversed between
two typical routers. To validate the configuration model with i.i.d. degrees, we intend to
compare the distribution of the distance between pairs of nodes to these measurements in
Internet. For this, a good understanding of the typical distances between nodes in the degree
random graph are necessary, which formed the main motivation for our work. The hopcount
in Internet seems to be close to a Poisson random variable with a fairly large parameter.
In turn, a Poisson random variable with large parameter can be approximated by a normal
random variable with equal expectation and variance. See, e.g., [34, 40] for data of the
hopcount in Internet.

From a practical point of view, there are good reasons to study the typical distances in ran-
dom graphs rather than the diameter. For one, typical distances are simpler to measure, and
thus allow for a simpler validation of the model. Also, the diameter is a number, while the dis-
tribution of the typical distances contains substantially more information. Finally, the diam-
eter is rather sensitive to small changes to a graph. For instance, when adding a string of a few
nodes, one can dramatically alter the diameter, while the typical distances in the graph hardly
change. Thus, typical distances in the graph are more robust to modelling discrepancies.

1.4. Related Work

There is a wealth of related work which we will now summarize. The model investigated
here was also studied in [36], with 1 − F(x) = x−τ+1L(x), where τ ∈ (2, 3) and L denotes
a slowly varying function. It was shown in [36] that the average distance is bounded from
above by 2 log log N

| log(τ−2)| (1 + o(1)). We plan to return to the question of average distances and
connected component sizes when τ < 3 in three future publications [24–26].

There is substantial work on random graphs that are, although different from ours, still
similar in spirit. In [1], random graphs were considered with a degree sequence that is
precisely equal to a power law, meaning that the number of nodes with degree k is precisely
proportional to k−τ . Aiello, Chung, and Lee [1] show that the largest connected component
is of the order of the size of the graph when τ < τ0 = 3.47875 . . ., where τ0 is the solution
of ζ(τ − 2) − 2ζ(τ − 1) = 0, and where ζ is the Riemann Zeta function. When τ > τ0,
the largest connected component is of smaller order than the size of the graph and more
precise bounds are given for the largest connected component. When τ ∈ (1, 2), the graph
is with high probability connected. The proofs of these facts use couplings with branching
processes and strengthen previous results due to Molloy and Reed [31,32] described above.
For this same model, Dorogovtsev et al. [20, 21] investigate the leading asymptotics and
the fluctuations around the mean of the distance between arbitrary nodes in the graph from
a theoretical physics point of view, using mainly generating functions.

A second related model can be found in [17] and [18], where edges between nodes i
and j are present with probability equal to wiwj/

∑
l wl for some “expected degree vector”

w = (w1, . . . , wN). Chung and Lu [17] show that when wi is equal to CN i−
1

τ−1 , for some
constant CN depending on the size of the graph N the average distance between pairs of
nodes is proportional to log N(1+o(1)) when τ > 3, and equal to 2 log log N

| log(τ−2)| (1+o(1)) when
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τ ∈ (2, 3). The difference between this model and ours is that the nodes are not exchangeable
in [17], but the observed phenomena are similar. This result can be heuristically understood
as follows. First, the actual degree vector in [17] should be close to the expected degree
vector. Second, for the expected degree vector, we can compute that the number of nodes
for which the degree is larger than or equal to k equals

|{i : wi ≤ k}| = |{i : CN i−
1

τ−1 ≤ k}| ∝ k−τ+1,

where the proportionality constant depends on N . Thus, one expects that the number of
nodes with degree at most k decreases as k−τ+1, similarly as in our model. In [18], Chung
and Lu study the sizes of the connected components in the above model. The advantage
of this model is that the edges are independently present, which makes the resulting graph
closer to a traditional random graph.

All the models described above are static, i.e., the size of the graph is fixed, and we have
not modeled the growth of the graph. As described in the Introduction, there is a large body
of work investigating dynamical models for complex networks, often in the context of the
World Wide Web. In various forms, preferential attachment has been shown to lead to power
law degree sequences. Therefore, such models intend to explain the occurrence of power
law degree sequences in random graphs. See [2–4,10–14,19,30] and the references therein.
In the preferential attachment model, nodes with a fixed degree m are added sequentially.
Their stubs are attached to a receiving node with a probability proportionally to the degree
of the receiving node, thus favoring nodes with large degrees. For this model, it is shown
that the number of nodes with degree k decays proportionally to k−3 [14], the diameter is
of order log N

log log N when m ≥ 2 [11], and couplings to a classical random graph G(N , p) are
given for an appropriately chosen p in [13]. See also [12] for a survey.

It can be expected that our model is a snapshot of the above models, i.e., a realization of
the graph growth processes at the time instant that the graph has a certain prescribed size.
Thus, rather than to describe the growth of the model, we investigate the properties of the
model at a given time instant. This is suggested in [4, Section VII.D], and it would be very
interesting indeed to investigate this further mathematically, i.e., to investigate the relation
between the configuration and the preferential attachment models.

The reason why we study the random graphs at a given time instant is that we are interested
in the topology of the random graph. In [38], and inspired by the observed power law degree
sequence in [22], the configuration model with i.i.d. degrees is proposed as a model for the
AS-graph in Internet, and it is argued on a qualitative basis that this simple model serves
as a better model for the Internet topology than currently used topology generators. Our
results can be seen as a step towards the quantitative understanding of whether the hopcount
in Internet is described well by the average graph distance in the configuration model.

In [33, Table II], many more examples are given of real networks that have power
law degree sequences. Interestingly, there are also many examples where power laws are
not observed, and often the degree law falls off faster than a power law. These observed
degrees can be described by a degree distribution as in (1.1) with 1 − F(x) smaller than
any power, and the results in this paper thus apply. Such examples are described in more
detail in [4, Section II]. Examples where the tails of the degree distribution are lighter than
power laws are power and neural networks [4, Section II.K], where the tails are observed
to be exponential, and protein folding [4, Section II.L], where the tails are observed to be
Gaussian. In other examples, a degree distribution is found that for small values is a power
law, but has an exponential cut off. An example of such a degree distribution is

fk = Ck−γ e−k/κ , (1.14)
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for some κ > 0 and γ ∈ R. The size of κ indicates up to what degree the power law still
holds, and where the exponential cut off starts to set in. For this example, our results apply
since the exponential tail ensures that (1.2) holds for any τ > 3 by picking c > 0 large
enough. Thus, we prove the conjectures on the expected path lengths in [35, (55), (56)]
and [4, Section V.C, (63) and (64)] for this particular model.

1.5. Simulation for Illustration of the Main Results

To illustrate Theorem 1.1, we have simulated the random graph with degree distribution
D = �U− 1

τ−1 , where U is uniformly distributed over (0, 1) and where for x ∈ R, �x is the
smallest integer greater than or equal to x. Thus,

1 − F(k) = P(U− 1
τ−1 > k) = k1−τ , k = 1, 2, 3, . . . ,

for which µ = 1 + ζ(τ − 1) and ν = 2ζ(τ − 2)/µ.
We observe that for τ = 3.5 and N = 25,000 and N = 125,000, the values aN =

−0.62 . . . are identical up to two decimals. We hence expect, on the basis of our main
theorem, that the survival functions P(HN > k) for these two cases are similar. Because
�logν 25,000� = 12 and �logν 125,000� = 14, we expect that the empirical survival function
for N = 125,000 is a shift of the empirical survival function for N = 25,000, over the
horizontal distance 14−12 = 2. Figure 1 supports this claim, given the statistical inaccuracy.
In Fig. 1 we have also included the empirical survival function for N = 75,000, for which
aN = −0.99 . . . , as the bold line. This empirical survival function clearly has a different
shape. Thus, the empirical survival function for N = 75,000 is not a shift of the empirical
survival function for N = 25,000 or N = 125,000.

We finally demonstrate Corollary 1.2 for τ = 3.5 in Fig. 2. In this case ν2 ≈ 5 and

Fig. 1. Empirical survival functions of the hopcount for τ = 3.5 and the values N = 25,000,
N = 75,000 (bold), and N = 125,000, based on samples of size 1,000.
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Fig. 2. Empirical survival functions of the hopcount for τ = 3.5 and the four values Nk =
5000ν2k , k = 0, 1, 2, 3, based on 1000 runs.

Nk = N1ν
2k , k = 0, 1, 2, 3. We take N1 = 5,000, and so N2 = 25,000, N3 = 125,000, N4 =

625,000. For these values of N1, . . . , N4, we have simulated the hopcount with 1,000 repli-
cations and we expect from Corollary 1.2 that the survival functions run parallel at mutual
distance 2.

1.6. Organization of the Paper

We will first review the relevant literature on branching processes in Section 2. We will
then explain how we can couple our degree model to independent branching processes in
Section 3. This section is also valuable for our coming paper [24], where we study the case
τ ∈ (2, 3). In particular, in [24], we will use Lemmas A.2.2 and A.2.8 and Proposition
A.3.1. The bounds for the coupling are formulated in Sections 3.1, 3.2, and 3.3. In these
sections, we will state the results on the coupling that are needed in the proof of the main
results, Theorems 1.1 and 1.4. Parts of this section apply more generally, i.e., to τ ∈ (2, 3).
We prove Theorems 1.1 and 1.4 in Section 4 and Theorem 1.5 in Section 5. The technical
details of the coupling of {Ẑ (i)

k } to {Z (i)
k } for i = 1, 2 are contained in Section A.1, while the

details of the coupling of {Z (i)
k } to {Ẑ (i)

k } for i = 1, 2 are in Section A.2. Finally, we prove that
at any fixed time m, with probability converging to 1, Z (i)

m = Z (i)
m for i = 1, 2 in Section A.3.

2. REVIEW OF BRANCHING PROCESS THEORY WITH FINITE MEAN

Since we rely heavily on the theory of branching processes, we will briefly review this
theory in the case where the expected value of the offspring distribution is finite. The theory
of branching processes is well understood (see, e.g., [7]).
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For the formal definition of the delayed branching process (BP) that we consider here,
we define a double sequence {Xn,i}n≥1,i≥1 of i.i.d. random variables each with distribution
equal to the offspring distribution {gj}∞

j=0, where we recall

gj = ( j + 1)fj+1

µ
, j = 0, 1, . . . . (2.1)

We further let X0,1 have probability mass function f in (1.1), independently from {Xn,i}n≥1,i≥1.
The BP {Zn} is now defined by Z0 = 1 and

Zn+1 =
Zn∑
i=1

Xn,i, n ≥ 0.

Because τ > 3, we have that both E[Z1] = E[X0,1] = µ < ∞ and ν = E[X1,1] < ∞.
We further assume that ν = E[X1,1] > 1, so that the BP is supercritical. Given that the
(n − 1)st generation consists of m individuals, the conditional expectation of Zn equals
mν, independently of the size of the preceding generations, so that for n ≥ 1, we have
E[Zn|Zn−1] = Zn−1ν. Hence, Wn = Zn

µνn−1 , is a martingale. Since E[|Wn|] = E[Wn] = 1,
the sequence E[|Wn|] is uniformly bounded by 1 and so by Doob’s martingale convergence
theorem [42, p. 58] the sequence Wn converges almost surely. If we denote the a.s. limit by
a proper random variable W , we obtain (1.7).

There are only few examples where the limit random variable W is known. It is known
that W has an atom at 0 of size p ≥ 0, equal to the extinction probability of the (delayed-)BP
(q = 1 − p). Conditioned on nonextinction the limit W has an absolute continuous density
on (0, ∞).

We need a result that follows from [6] concerning the speed of convergence of Wn to
W . Define

Rn = Wn

ν

∫ ∞

νn/nα

x dG(x), α > 0,

where G is the distribution function of the offspring with probabilities {gj}. Since

µα =
∫ ∞

0
x[log+ x]α dG(x) < ∞ (log+ x = max(0, log x)),

for each α > 0, it follows from ([6, p. 8, line 4]) that, with probability 1,

W − Wk +
∞∑

n=k

Rn = o(k−α). (2.2)

An immediate consequence of (2.2) is that if |W − Wk| > k−α , then
∑∞

n=k Rn > k−α .
Hence, using E[Wn] = 1 and partial integration,

P(|W − Wk| > k−α) ≤ P

( ∞∑
n=k

Rn > k−α

)
≤ kα

∞∑
n=k

E[Rn]

= −
∞∑

n=k

kα

ν

∫ ∞

νn/nα

x d [1 − G(x)]

=
∞∑

n=k

kα

ν

[
1 − G

(
νn

nα

)]
+

∞∑
n=k

kα

ν

∫ ∞

νn/nα

[1 − G(x)] dx.
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Since 1 − F(x) ≤ c · x1−τ (see (1.2)), we find 1 − G(x) ≤ c′ · x2−τ so that for each α > 0,
and with k = � 1

2 logν N�,

P
(|W − Wk| > (log N)−α

) ≤ O((log N)α)

∞∑
n=k

(
νn

nα

)3−τ

= O(e−β log N) = O(N−β),

(2.3)
for some positive β, because τ > 3 and ν > 1.

3. GRAPH CONSTRUCTION AND COUPLING WITH A BP

In this section, we will describe how the shortest path graph (SPG) from node 1 can be
obtained, and we will couple it to a BP. This coupling works for any degree distribution. In
Sections 3.2 and 3.3 below, we will obtain bounds on the coupling.

The SPG from node 1 is the random graph as observed from node 1, and consists of the
shortest paths between node 1 and all other nodes {2, . . . , N}. As will be shown below, it
is not necessarily a tree because cycles may occur. Recall that two stubs together form an
edge. We define Z (1)

1 = D1, and for k ≥ 2, we denote by Z (1)

k the number of stubs attached
to nodes at distance k − 1 from node 1, but are not part of an edge connected to a node
at distance k − 2. We will refer to such stubs as “free stubs.” Thus, Z (1)

k is the number of
outgoing stubs from nodes at distance k − 1.

In Section 3.1 we will describe a coupling that, conditionally on D1, . . . , DN , couples
{Z (1)

k } to a BP {Ẑ (1)

k } with the random offspring distribution

g(N)

j =
N∑

i=1

I[Di = j + 1]P(a stub from node i is sampled|D1, . . . , DN)

=
N∑

i=1

I[Di = j + 1] Di

LN

= j + 1

LN

N∑
i=1

I[Di = j + 1], (3.1)

where as before LN = D1 + D2 + · · · + DN . By the strong law of large numbers,
for N → ∞,

LN

N
→ E[D] and

1

N

N∑
i=1

I[Di = j + 1] → P(D = j + 1), a.s.

so that a.s.

g(N)

j → ( j + 1)P(D = j + 1)

E[D] = gj, N → ∞. (3.2)

Therefore, the BP {Ẑ (1)

k } with offspring distribution {g(N)

j } is expected to be close to a BP
with offspring distribution {gj} given in (1.6). Consequently, in Section 3.3, we will couple
the BP {Ẑ (1)

k } to a BP {Z (1)

k } with offspring distribution {gj}. This will allow us to prove
Theorems 1.1 and 1.4 in Section 4.

Throughout the paper we use the following lemma. It shows that LN is close to
E[LN ] = µN .
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Lemma 3.1 (Concentration of LN ). For each 0 < a < 1
2 , b = 1 − 2a and some constant

c > 0,

P

(∣∣∣∣ LN

E[LN ] − 1

∣∣∣∣ ≥ N−a

)
≤ cN−b. (3.3)

Proof. The proof is immediate from the Chebychev inequality, since

P

((
LN

E[LN ] − 1

)2

≥ N−2a

)
≤ N2a

(Nµ)2
Var(LN) = Var(D)

µ2
N2a−1,

so that b = 1 − 2a > 0 and c = Var(D)/µ2 < ∞.

3.1. Coupling with a Branching Process with Offspring g (N)

We will construct the SPG in such a way that we simultaneously construct a BP with
offspring distribution {g(N)

j } in (3.1). This BP is of course purely imaginary. The BP is
coupled with the SPG such that it enables us to control their difference.

As above, we will use the notation Z (1)

k and Z (2)

k to denote the number of stubs attached to
nodes at distance k − 1 from node 1, respectively, node 2, but not part of an edge connected
to a node at distance k − 2. For k = 1, Z (i)

k = Di. We start with a description of the coupling
of the SPG with root 1, and a BP with offspring distribution g(N) given in (3.1). The first
stages of the generation of the SPG are drawn in Fig. 3. We will explain the meaning of the
labels 1, 2, and 3 below.

We draw repeatedly and independently from the distribution {g(N)

j }. This is done condi-
tionally given D1, D2, . . . , DN , so that we draw from the random distribution (3.1). After each
draw we will update the realization of the SPG and the BP, and classify the stubs according
to three categories, which will be labelled 1, 2 and 3. These labels will be updated as the
growth of the SPG proceeds. The labels have the following meaning:

1. Stubs with label 1 are stubs belonging to a node that is not yet attached to the
SPG.

2. Stubs with label 2 are attached to the SPG (because the corresponding node has been
chosen), but not yet paired with another stub. These are called “free stubs.”

3. Stubs with label 3 in the SPG are paired with another stub to form an edge in the
SPG.

The growth process as depicted in Fig. 3 starts by giving all stubs label 1. Then, because
we construct the SPG starting from node 1, we relabel the D1 stubs of node 1 with the
label 2. We note that Z (1)

1 is equal to the number of stubs connected to node 1, and thus
Z (1)

1 = D1. We next identify Z (1)

j for j > 1. Z (1)

j is obtained by sequentially growing the SPG
from the free stubs in generation Z (1)

j−1. When all free stubs in generation j − 1 have chosen
their connecting stub, Z (1)

j is equal to the number of stubs labeled 2 (i.e., free stubs) attached
to the SPG. Note that not necessarily each stub of Z (1)

j−1 contributes to stubs of Z (1)

j , because
a cycle may “swallow” two free stubs in generation j − 1. This is the case precisely when
a stub with label 2 is chosen.
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Fig. 3. Schematic drawing of the growth of the SPG from the node 1 with N = 9 and the updating
of the labels. The stubs without labels have label 1. The first line shows the N different degrees. The
growth process starts by choosing the first stub of node 1 whose stubs are labeled by 2 as illustrated
in the second line, while all the other stubs maintain the label 1. Next, we uniformly choose a stub
with label 1 or 2. In the example in line 3, this is the second stub from node 3, whose stubs are labeled
by 2 except for the second stub which is labeled 3. The left-hand side column visualizes growth of the
SPG by the attachment of stub 2 of node 3 to the first stub of node 1. Once an edge is established, the
paired stubs are labeled 3. In the next step, the next stub of node one is again matched to a uniform
stub out of those with label 1 or 2. In the example in line 4, it is the first stub of the last node that
will be attached to the second stub of node 1, the next in sequence to be paired. The last line exhibits
the result of creating a cycle when the first stub of node 3 is chosen to be attached to the last stub of
node 9 (the last node). This process is continued until there are no more stubs with labels 1 or 2. In
this example, we have Z (1)

1 = 3 and Z (1)

2 = 6.

For the BP, we start with Ẑ (1)

1 = D1, and grow from the free stubs available in the BP
tree by sequentially growing from the stubs (alike for the SPG). For the coupling, as long as
there are free stubs in both the BP and the SPG in a given generation, we couple the BP and
SPG in the following way. At each step we will take an independent draw from all stubs,
according to the distribution (3.1). Since the stubs are specified by their label (1, 2, or 3),
we can now present the construction rules for the BP and the SPG.

1. If the chosen stub has label 1, then in both the BP and the SPG we will connect the
present stub to the chosen stub to form an edge and attach the remaining stubs of the
chosen node as children. We update the labels as follows. The present and chosen
stub melt together to form an edge and both are assigned label 3. All “brother” stubs
(except for the chosen stub) belonging to the same node of the chosen stub receive
label 2.

2. In this case we choose a stub with label 2, which is already connected to the SPG.
For the BP, the chosen stub is simply connected to the stub which is grown, and the
number of free stubs is the number of “brother stubs” of the chosen stub. For the
SPG, a self-loop is created when the chosen stub and present stub are “brother” stubs
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Fig. 4. Example of the coupling when a cycle occurs. Edges have twice the length of stubs. In the
SPG the two dotted stubs in the left picture are to be connected. The middle picture gives the result
of creating the cycle in the SPG where the bold line is the edge creating the cycle. The third figure
draws the BP where the cycle is removed and the degree of the circled node is 3.

Fig. 5. An example of the coupling where we need to perform a redraw. In the draw from g(N), we
draw the dotted stub in the SPG with degree 3. In the BP, we keep this degree, while in the SPG we
draw again from the conditional distribution given that we do not draw a stub with label 3. In this
example, this redraw gives the value D = 2.

which belong to the same node. When they are not “brother” stubs, then a cycle is
formed. Neither a self-loop nor a cycle changes the distances in the SPG. Note that
for the SPG two free stubs are used, while for the BP only one stub is used. This is
illustrated in Fig. 4.
The updating of the labels solely consists of changing the label of the present and the
chosen stub from 2 to 3.

3. A stub with label 3 is chosen. This case is illustrated in Fig. 5. This possibility of
choosing an already matched stub with label 3 must be included for the BP which
relies on the property that all subsequent iterations in the process are i.i.d. Note that
this includes the case where we draw the present stub, which of course is impossible
for the SPG.
The rule now for the BP is that the corresponding node with the prescribed number
of stubs is simply attached. Since for the SPG, we sample without replacement, we
have to resample from distribution (3.1), until we draw a stub with label 1 or 2. This
procedure is referred to as a redraw. Since we sample uniformly from all stubs, the
conditional sampling until we hit a stub with label 1 or 2 is also uniform out of the set
of all stubs with labels 1 and 2, so that it has the correct distribution. Obviously there
are two cases: Either we draw a stub with label 1 or one with label 2. When we draw
a stub with label 1 in the SPG, then we update as under rule 1 above, while when we
draw a stub having label 2 in the SPG, we update as under rule 2 above.
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Clearly, the redraws and the cycles cause possible differences between the BP and the
SPG: The degrees of the chosen node are possibly different. We will need to show that the
above difference only leads to an error term.

The above process stops in the jth generation when there are no more free stubs in
generation j − 1 for either the BP or for the SPG. When there are no more free stubs for the
SPG, we complete the jth generation for the BP by drawing from distribution (3.1) for all the
remaining free stubs. The labels of the stubs remain unchanged. When there are no more free
stubs for the BP, we complete the jth generation for the SPG by drawing from distribution
(3.1) iteratively until we draw a stub with label 1 or 2. This is done for all the remaining
free stubs in the jth generation of the SPG. The labels are updated as under 1 and 2 above.

We continue the above process of drawing stubs until there are no more stubs having
label 1 or 2, so that all stubs have label 3. Then, the construction is finalized, and we have
generated the SPG as seen from node 1. We have thus obtained the structure of the SPG,
and know how many nodes there are at a given distance from node 1.

The above construction will be performed similarly from node 2. This construction is
close to being independent as long as the SPGs from the roots 1 and 2 do not share any nodes.
More precisely, the corresponding BP’s are independent. Thus, we have now constructed
the SPGs and BPs from both node 1 and node 2.

3.2. Coupling with a BP with Offspring Distribution {g (N)

j }
In the previous section, we have obtained a coupling of the SPG and the BP with offspring
distribution {g(N)

j }. In this and the next section, we will summarize bounds on the couplings
that we need for the proof of Theorems 1.1 and 1.4. These results will be repeated in the
Appendix together with a full proof. We start with the coupling of the number of stubs Z (1)

j

in the SPG and the number of children Ẑ (1)

j in the jth generation of the BP with offspring
distribution {g(N)

j }.

Proposition 3.2 (Coupling SPG with the BP with random offspring distribution). There
exist η, β > 0, α > 1

2 + η, and a constant C, such that, for all j ≤ ( 1
2 + η) logν N,

P

(
(1 − N−αν j)Ẑ (1)

j ≤ Z (1)

j ≤ (1 + N−αν j)Ẑ (1)

j

)
≥ 1 − CjN−β . (3.4)

3.3. Coupling with a BP with Offspring Distribution {gj }
We next describe the coupling with the BP with offspring distribution {gj} and their bounds.
A classical coupling argument is used (see, e.g., [39]). Let X (N) have law {g(N)

j } and X have
law {gj}. We define Y (N) by

P(Y (N) = n) = min(g(N)

n , gn), P(Y (N) = ∞) = 1 −
∞∑

n=0

min(g(N)

n , gn) = 1

2

∞∑
n=0

|g(N)

n − gn|.
(3.5)

Let X̂ (N) = Y (N) when Y (N) < ∞, and P(X (N) = n, Y (N) = ∞) = g(N)
n − min(g(N)

n , gn), whereas
X̂ = X when Y (N) < ∞, and P(X = n, Y (N) = ∞) = gn −min(g(N)

n , gn). Then X̂ (N) has law g(N),
and X̂ has law g. Moreover, with large probability, X̂ (N) = X̂ due to Proposition 3.4 below.
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This coupling argument is applied to each node in the BP {Ẑ (1)

i }i≥0 and {Ẑ (2)

i }i≥0. The BPs
with offspring distribution {gj} will be denoted by {Z (1)

i }i≥0 and {Z (2)

i }i≥0. We can interpret
this coupling as follows. Each node has an i.i.d. indicator variable which equals 1 with
probability

pN = 1

2

∞∑
n=0

|g(N)

n − gn|. (3.6)

When at a certain node this indicator variable is 0, then the offspring in {Ẑ (1)

i }i≥0 or {Ẑ (2)

i }i≥0

equals the one in {Z (1)

i }i≥0 or {Z (2)

i }i≥0, and the node is successfully coupled. When the
indicator is 1, then an error has occurred, and the coupling is not successful. In this case,
the laws of the offspring of {Ẑ (1)

i }i≥0 or {Ẑ (2)

i }i≥0 is different from the one in {Z (1)

i }i≥0 or
{Z (2)

i }i≥0, and we record an error. Below we will use the notation PN to denote the conditional
expectation given D1, D2, . . . , DN and EN to denotes the expectation with respect to the
probability measure PN . Finally, we write

νN =
∞∑

n=0

ng(N)

n . (3.7)

In the following proposition, we prove that at any fixed time, we can couple the SPG to
the delayed BP with law {gj}:

Proposition 3.3 (Coupling at fixed time). For any m ∈ N fixed, there exist independent
branching processes Z (1), Z (2), such that

lim
N→∞

P(Z (i)
m = Z (i)

m ) = 1. (3.8)

In the course of the proof we will also rely on the following more technical claims:

Proposition 3.4 (Convergence in total variation distance). There exist α2, β2 > 0 such
that

P

( ∞∑
n=0

(n + 1)|g(N)

n − gn| ≥ N−α2

)
≤ N−β2 . (3.9)

Consequently,

P(|νN − ν| > N−α2) ≤ N−β2 , (3.10)

and

P(pN > N−α2) ≤ N−β2 . (3.11)

Proposition 3.5 (Coupling of sums). There exist ε, β, η > 0 such that for all j ≤
(1 + 2η) logν N, as N → ∞,

P

(
1

N

∣∣∣∣∣
j∑

i=1

Z (1)

�i/2Z (2)

�i/2� −
j∑

i=1

Ẑ (1)

�i/2Ẑ
(2)

�i/2�

∣∣∣∣∣ > N−ε

)
= O(N−β). (3.12)
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4. PROOF OF THEOREMS 1.1 AND 1.4

The proof consists of four steps.

1. We first express the survival probability P(HN > j) in the number of stubs {Z (k)

i }, k =
1, 2, of the SPGs. For j ≤ (1 + 2η) logν N , where η is specified in Proposition 3.2,
we will show that

P(HN > j) = E

[
exp

{−∑j+1
i=2 Z (1)

�i/2Z
(2)

�i/2�
LN

}
+ O(RMN( j))

]
, (4.1)

with

RMN( j) =
j+1∑
i=2

Z (1)

�i/2Z
(2)

�i/2�
∑�i/2

k=1 (Z (1)

k + Z (2)

k )

L2
N

.

2. We use Proposition 3.2 to show that in (4.1) we can replace {Z (i)
k }, i = 1, 2 by the BP

{Ẑ (i)
k }, i = 1, 2. The error term E[|RMN( j)|] and the error involved in replacing the

SPG by the BP is bounded by a constant times N−β , for some β > 0, uniformly in
j ≤ (1 + 2η) logν N .

3. In this step we show that there exists β > 0 such that for all j ≤ (1 + 2η) logν N , as
N → ∞,

P(HN > j) = E

[
exp

{−∑j+1
i=2 Z (1)

�i/2Z (2)

�i/2�
µN

}]
+ O(N−β), (4.2)

where Z (i)
k , i = 1, 2, denotes the delayed BP with offspring distribution (1.6).

4. We complete the proof of Theorem 1.1 and 1.4, using step 3, and the almost sure
limit in (1.7) applied to Z (1)

n and Z (2)
n . We finally use the speed of convergence of the

above martingale limit result to obtain (1.9).

Step 1 A formula for P(HN > j). The following lemma expresses P(HN > j) in terms of
Q

(k,l)
Z , the conditional probabilities given {Z (1)

s }k
s=1 and {Z (2)

s }l
s=1. For l = 0, we only condition

on {Z (1)
s }k

s=1.

Lemma 4.1. For j ≥ 1,

P(HN > j) = E

[
j+1∏
i=2

Q
(�i/2,�i/2�)
Z (HN > i − 1|HN > i − 2)

]
. (4.3)

Proof. We first compute that

P(HN > j) = E
[
Q

(1,1)

Z (HN > j)
] = E

[
Q

(1,1)

Z (HN > 1)Q
(1,1)

Z (HN > j|HN > 1)
]
.

Continuing this further, and writing E
(k,l)
Z for the expectation with respect to Q

(k,l)
Z ,

Q
(1,1)

Z (HN > j|HN > 1) = E
(1,1)

Z

[
Q

(2,1)

Z (HN > j|HN > 1)
]

= E
(1,1)

Z

[
Q

(2,1)

Z (HN > 2|HN > 1)Q
(2,1)

Z (HN > j|HN > 2)
]
.
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Therefore,

P(HN > j) = E
[
Q

(1,1)

Z (HN > 1)E
(1,1)

Z

[
Q

(2,1)

Z (HN > 2|HN > 1)Q
(2,1)

Z (HN > j|HN > 2)
]]

= E
[
E

(1,1)

Z

[
Q

(1,1)

Z (HN > 1)Q
(2,1)

Z (HN > 2|HN > 1)Q
(2,1)

Z (HN > j|HN > 2)
]]

= E
[
Q

(1,1)

Z (HN > 1)Q
(2,1)

Z (HN > 2|HN > 1)Q
(2,1)

Z (HN > j|HN > 2)
]
,

where, in the second equality, we use that Q
(1,1)

Z (HN > 1) is measurable with respect to the
σ -algebra generated by Z (1,N)

1 . This proves the claim for j = 2.
More generally, we obtain that for k, l such that k + l ≤ j − 1,

Q
(k,l)
Z (HN > j|HN > k + l − 1) = E

(k,l)
Z

[
Q

(k,l+1)

Z (HN > j|HN > k + l − 1)
]

= E
(k,l)
Z

[
Q

(k,l+1)

Z (HN > k + l|HN > k + l − 1)Q
(k,l+1)

Z (HN > j|HN > k + l)
]
,

and, similarly,

Q
(k,l)
Z (HN > j|HN > k + l − 1)

= E
(k,l)
Z

[
Q

(k+1,l)
Z (HN > k + l|HN > k + l − 1)Q

(k+1,l)
Z (HN > j|HN > k + l)

]
.

In the above formulas, we can choose to increase k or l by 1, depending on {Z (1,N)
s }k

s=1 and
{Z (2,N)

s }l
s=1. We will iterate the above recursions, until k + l = j − 1, when the last term

becomes 1. This yields that

P(HN > j) = E

[
j∏

i=1

Q
(�i/2�+1,�i/2)
Z (HN > i|HN > i − 1)

]
. (4.4)

Renumbering gives the final result.

We will next prove (4.1). In order to do so, we start by proving upper and lower bounds
on the probabilities of not connecting two sets of stubs to each other. For this, suppose
we have two disjoint sets of stubs A with |A| = n and B with |B| = m out of a total of L
stubs. We match stubs at random, in such a way that two stubs form one edge, as in the
construction of the SPG. In particular, loops are possible.

Let p(n, m, L) denote the probability that none of the n stubs in A attaches to one of the
m stubs in B. Then, by conditioning on whether we choose a stub in A or not, we obtain the
recursion

p(n, m, L) = n − 1

L − 1
p(n − 2, m, L − 2) +

(
1 − m + n − 1

L − 1

)
p(n − 1, m, L − 2). (4.5)

Since p(n − 2, m, L − 2) ≥ p(n − 1, m, L − 2), because we have to match one additional
stub, we obtain

p(n, m, L) ≥
(

1 − m

L − 1

)
p(n − 1, m, L − 2) ≥

n−1∏
i=0

(
1 − m

L − 2i − 1

)
. (4.6)
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On the other hand, we can rewrite (4.5) as

p(n, m, L) =
(

1 − m

L − 1

)
p(n − 1, m, L − 2)

+ n − 1

L − 1
(p(n − 2, m, L − 2) − p(n − 1, m, L − 2)). (4.7)

We claim that

p(n − 2, m, L − 2)− p(n − 1, m, L − 2) = m

L − 3
p(n − 2, m − 1, L − 2) ≤ m

L − 3
. (4.8)

Indeed, the difference p(n − 2, m, L − 2) − p(n − 1, m, L − 2) is equal to the probability
of the event that the first n − 2 stubs do not connect to B, while the last one does. By
exchangeability of the stubs, this probability equals the probability that the first stub is
attached to a stub in B, and the remaining n−2 stubs are not. This latter probability is equal
to m

L−3 p(n − 2, m − 1, L − 2).
Equations (4.7) and (4.8) yield

p(n, m, L) ≤
(

1 − m

L − 1

)
p(n − 1, m, L − 2) + n − 1

(L − 1)

m

(L − 3)
.

Iteration gives the upper bound

p(n, m, L) ≤
[

n−1∏
i=0

(
1 − m

L − 2i − 1

)]
+ n2m

(L − 2n)2
. (4.9)

Since the event {HN > 1} holds if and only if no stubs of root 1 attaches to one of those
of root 2, we obtain, using (4.6) and (4.9), that

Z(1)
1 −1∏
i=0

(
1 − Z (2)

1

LN − 2i − 1

)
≤ Q

(1,1)

Z (HN > 1)

≤



Z(1)
1 −1∏
i=0

(
1 − Z (2)

1

LN − 2i − 1

)+ (Z (1)

1 )2Z (2)

1

(LN − 2Z (1)

1 )2
. (4.10)

Similarly,

Q
(2,1)

Z (HN > 2|HN > 1) ≥
Z(2)

1 −1∏
i=0

(
1 − Z (1)

2

LN − 2Z (1)

1 − 2i − 1

)
, (4.11)

with a matching upper bound with an error term bounded by
(Z(2)

1 )2Z(1)
2

(LN −2Z(1)
1 −2Z(2)

1 )2
.

We use that, for natural numbers n, m, M with M + n + m = o(L),

n−1∏
i=0

(
1 − m

L − M − 2i − 1

)
= e− nm

L + O

(
nm(M + n + m)

L2

)
, L → ∞. (4.12)
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Using (4.12), the bounds in (4.10) yield

Q
(1,1)

Z (HN > 1) = exp

{
−Z (1)

1 Z (2)

1

LN

}
+ O

(
Z (1)

1 Z (2)

1 (Z (1)

1 + Z (2)

1 )

L2
N

)
.

Similarly, we can conclude that, as long as
∑�i/2

k=1 (Z (1)

k + Z (2)

k ) = o(LN), we have

Q
(�i/2,�i/2�)
Z (HN > i − 1|HN > i − 2)

= exp

{
−Z (1)

�i/2Z
(2)

�i/2�
LN

}
+ O

(
Z (1)

�i/2Z
(2)

�i/2�(
∑�i/2

k=1 (Z (1)

k + Z (2)

k ))

L2
N

)
. (4.13)

Recall that

RMN( j) =
j+1∑
i=2

Z (1)

�i/2Z
(2)

�i/2�
∑�i/2

k=1 (Z (1)

k + Z (2)

k )

L2
N

.

With the assumption that
∑�i/2

k=1 (Z (1)

k + Z (2)

k ) = o(LN), the bound in (4.1) becomes evident
by applying (4.3). We will show at the end of step 2 that for all j < (1 + 2η) log N , we have∑�j/2

k=1 (Z (1)

k + Z (2)

k ) = o(LN) and that there exists a β > 0 such that

E[RMN( j)] = O(N−β). (4.14)

Step 2 Coupling of SPG to the BP with offspring {g(N)

j }. We start by showing that for some
β > 0 and uniformly in j ≤ (1 + 2η) logν N , the main term in (4.1) satisfies

E

[
exp

{−∑j+1
i=2 Z (1)

�i/2Z
(2)

�i/2�
LN

}]
= E

[
exp

{−∑j+1
i=2 Ẑ (1)

�i/2Ẑ
(2)

�i/2�
LN

}]
+ O(N−β). (4.15)

We will deal with the error term (4.14) at the end of this step. Bound

∣∣∣∣∣
j+1∑
i=2

Z (1)

�i/2Z
(2)

�i/2� − Ẑ (1)

�i/2Ẑ
(2)

�i/2�

∣∣∣∣∣ ≤
j+1∑
i=2

Z (1)

�i/2
∣∣Z (2)

�i/2� − Ẑ (2)

�i/2�
∣∣+ j+1∑

i=2

Ẑ (2)

�i/2�
∣∣Z (1)

�i/2 − Ẑ (1)

�i/2
∣∣.

By Proposition 3.2 and uniformly in j ≤ (1 + 2η) logν N , we have, with probability
exceeding 1 − O(N−β logν N), that

max

(
j+1∑
i=2

Z (1)

�i/2
∣∣Z (2)

�i/2� − Ẑ (2)

�i/2�
∣∣, j+1∑

i=2

Ẑ (2)

�i/2�
∣∣Z (1)

�i/2 − Ẑ (1)

�i/2
∣∣)

= O(ν( 1
2 +η) logν N N−α)

j+1∑
i=2

Ẑ (1)

�i/2Ẑ
(2)

�i/2�.
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Since α > 1
2 + η, we have ν( 1

2 +η) logν N N−α = N
1
2 +η−α = N−α1 , for some α1 > 0. Hence,

for any ε with 0 < ε < α1, where as before PN denotes the conditional probability given
the degrees D1, D2, . . . , DN , and EN the expectation with respect to PN , we have

PN

(
1

N

∣∣∣∣∣
j+1∑
i=2

Z (1)

�i/2Z
(2)

�i/2� − Ẑ (1)

�i/2Ẑ
(2)

�i/2�

∣∣∣∣∣ > N−ε

)

≤ O(N−β logν N) + PN

(
1

N

j+1∑
i=2

Ẑ (1)

�i/2Ẑ
(2)

�i/2� > O(Nα1−ε)

)

≤ O(N−β logν N) + O(N ε−α1−1)

j+1∑
i=2

EN [Ẑ (1)

�i/2Ẑ
(2)

�i/2�],

where we have applied the Markov inequality in the last line. The involved conditional
expectation can be computed explicitly, and we obtain

j+1∑
i=2

EN [Ẑ (1)

�i/2Ẑ
(2)

�i/2�] = D1D2

j+1∑
i=2

ν
�i/2−1
N ν

�i/2�−1
N = D1D2

j−1∑
i=0

ν i
N ≤ cD1D2ν

j
N ,

for some constant c. Proposition 3.4 implies that we can bound ν
j
N by ν j(1 + N−α2)j, with

probability exceeding 1 − N−β2 , for some α2, β2 > 0, whereas Lemma 3.1 implies L−1
N can

be replaced by (µN)−1 with probability exceeding 1 − N−β3 , for some β3 > 0. Putting this
together, we obtain, after taking the expectation with respect to D1, D2, . . . , DN ,

P

(
1

LN

∣∣∣∣∣
j+1∑
i=2

Z (1)

�i/2Z
(2)

�i/2� − Ẑ (1)

�i/2Ẑ
(2)

�i/2�

∣∣∣∣∣ > N−ε

)

≤ O(N−β logν N) + O(N−β1) + O(N−β2) + O(N−β3) + O

(
ν j(1 + O(logν N/Nα2))

N1+α1−ε

)
.

Since ν j ≤ N1+2η for j ≤ (1 + 2η) logν N , we obtain

P

(
1

LN

∣∣∣∣∣
j+1∑
i=2

Z (1)

�i/2Z
(2)

�i/2� − Ẑ (1)

�i/2Ẑ
(2)

�i/2�

∣∣∣∣∣ > N−ε

)
= O(N−β), (4.16)

for some β > 0 by taking β, β2, β3, η, and ε sufficiently small. For x−y small, and x, y ≥ 0,
we find e−y = e−x + O(x − y), so that

exp

{
−
∑j+1

i=2 Z (1)

�i/2Z
(2)

�i/2�
LN

}
− exp

{
−
∑j+1

i=2 Ẑ (1)

�i/2Ẑ
(2)

�i/2�
LN

}
= O(N−ε),

with probability exceeding 1 − O(N−β). In combination with the inequality e−x ≤ 1 for
x ≥ 0, we obtain (4.15).

We turn to the proof of (4.14). In the course of the proof of (4.14) we have to verify
that the assumption

∑�j/2
k=1 (Z (1)

k + Z (2)

k ) = o(LN) holds for all j ≤ (1 + 2η) logν N . From
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Proposition 3.2 and, uniformly in j ≤ (1 + 2η) logν N , we have with probability exceeding
1 − O(N−β logν N) that

�j/2∑
k=1

(Z (1)

k + Z (2)

k ) ≤ (1 + O(N
1
2 +η−α))

�j/2∑
k=1

(Ẑ (1)

k + Ẑ (2)

k ), (4.17)

so that, for all i ≤ j,

PN

(∑�i/2
k=1 (Z (1)

k + Z (2)

k )

L3/4
N

> N−ε

)

≤ O(N−β logν N) + (1 + O(N
1
2 +η−α))EN

[∑�j/2
k=1 (Ẑ (1)

k + Ẑ (2)

k )

N−εL3/4
N

]
.

Bounding the expectation of Ẑ (i)
k , we find for 0 < ε < 1/4 and for all i ≤ j ≤ (1+2η) logν N ,

P

(∑�j/2
k=1 (Z (1)

k + Z (2)

k )

L3/4
N

> N−ε

)
≤ N−β + (1 + O(N−α1))

N
1
2 +η

N
3
4 −ε

= O(N−β),

for some β > 0. In particular, we find that
∑�j/2

k=1 (Z (1)

k + Z (2)

k ) = o(LN) with probability
exceeding 1 − O(N−β). Hence, for ε1 > 0,

P

(
j+1∑
i=2

Z (1)

�i/2Z
(2)

�i/2�
∑�i/2

k=1 (Z (1)

k + Z (2)

k )

L2
N

> N−ε1

)
≤ O(N−β)+P

(
j+1∑
i=2

Z (1)

�i/2Z
(2)

�i/2�
L5/4

N

> N ε−ε1

)
.

By Proposition 3.2, the product Z (1)

�i/2Z
(2)

�i/2� can be bounded by (1 + O(N
1
2 +η−α))Ẑ (1)

�i/2Ẑ
(2)

�i/2�
and E

[∑j+1
i=2 Ẑ (1)

�i/2Ẑ
(2)

�i/2�
] ≤ N1+2η, while L5/4

N is of order N5/4. Therefore, we obtain from
the Markov inequality that

P

(
j+1∑
i=2

Z (1)

�i/2Z
(2)

�i/2�
∑�i/2

k=1 (Z (1)

k + Z (2)

k )

L2
N

> N−ε1

)
≤ O(N−β),

for some β > 0. Since RMN( j) is the difference of two numbers between 0 and 1 and hence
|RMN( j)| ≤ 1, we obtain that, when ε1 ≥ β,

E[RMN( j)] ≤ N−ε1 + P

(
1

L2
N

j+1∑
i=2

Z (1)

�i/2Z
(2)

�i/2�

�i/2∑
k=1

(Z (1)

k + Z (2)

k ) > N−ε1

)
≤ O(N−β).

(4.18)

This proves (4.14).

Step 3 Coupling to the BP with offspring {gj}. Proposition 3.5 combined with Lemma 3.1
yields

P

(
1

LN

∣∣∣∣∣
j+1∑
i=2

Z (1)

�i/2Z (1)

�i/2� −
j+1∑
i=2

Ẑ (1)

�i/2Ẑ
(2)

�i/2�

∣∣∣∣∣ > N−ε

)
= O(N−β).
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From this result we obtain, as in the first half of step 2,

E

[
exp

{
−
∑j+1

i=2 Ẑ (1)

�i/2Ẑ
(2)

�i/2�
LN

}]
= E

[
exp

{
−
∑j+1

i=2 Z (1)

�i/2Z (2)

�i/2�
LN

}]
+ O(N−β),

where, as before, β is a generic small positive number. Using (4.1) and the result of step 2,
it follows that

P(HN > j) = E

[
exp

{
−
∑j+1

i=2 Z (1)

�i/2Z (2)

�i/2�
LN

}]
+ O(N−β).

To obtain (4.2), we finally replace, again at the cost of an additional term O(N−β), the
random number LN by µN(1 + O(N−a)).

Step 4 Evaluation of the limit points. We start from (4.2) with j = k+σN ≤ (1+2η) logν N ,
where σN = �logν N�, to obtain

P(HN > σN + k) = E

[
exp

{−∑σN +k+1
i=2 Z (1)

�i/2Z (2)

�i/2�
µN

}]
+ O(N−β). (4.19)

We write N = ν logν N = νσN −aN , where we recall that aN = �logν N� − logν N . Then

∑σN +k+1
i=2 Z (1)

�i/2Z (2)

�i/2�
µN

= µνaN +k

∑σN +k+1
i=2 Z (1)

�i/2Z (2)

�i/2�
µ2νσN +k

.

In the above expression, the factor νaN prevents proper convergence. Without the factor
µνaN +k , we obtain from (1.7), with probability 1,

lim
N→∞

∑σN +k+1
i=2 Z (1)

�i/2Z (2)

�i/2�
µ2νσN +k

= W (1)W (2)

ν − 1
. (4.20)

A proof of this result is given at the end of the appendix. Using (2.3), we conclude that, for
each α > 0, there is a β > 0 such that

P

(∣∣∣∣∣
∑σN +k+1

i=2 Z (1)

�i/2Z (2)

�i/2�
µ2νσN +k

− W (1)W (2)

ν − 1

∣∣∣∣∣ > O((log N)−α)

)
= O(N−β).

Hence, for k ≤ 2η logν N and each α > 0,

P(HN > σN + k) = E(exp{−κνaN +kW (1)W (2)}) + O((log N)−α), (4.21)

where κ = µ/(ν − 1). This proves (1.9).
We proceed by proving (1.4), with Ra given in (1.8). For this, we need to condition

on node 1 and node 2 being connected. Node 1 and node 2 are connected if and only if
HN < ∞. Using (4.21), for (1.4), it suffices to prove that

P(HN < ∞) = q2 + o(1), where q = P(W (1) > 0). (4.22)
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We prove (4.22) using upper and lower bounds. We note that, with k = 2η logν N ,

P(HN < ∞) ≥ P(HN ≤ σN + k) = E
(
1 − exp{−κνaN +kW (1)W (2)})+ O((log N)−α).

(4.23)

Therefore,

P(HN < ∞) ≥ q2E
(
1 − exp{−κνaN +kW (1)W (2)}∣∣W (1)W (2) > 0

)+ O((log N)−α).
(4.24)

By dominated convergence, for k = 2η logν N , the conditional expectation converges to 1,
so that indeed P(HN < ∞) ≥ q2 + o(1). For the upper bound, we rewrite, for any m,

P(HN < ∞) = P(HN < ∞, Z (1)

m Z (2)

m = 0) + P(HN < ∞, Z (1)

m Z (2)

m > 0). (4.25)

The second term is bounded from above by

P(HN < ∞, Z (1)

m Z (2)

m > 0) ≤ P(Z (1)

m Z (2)

m > 0) = P(Z (1)

m Z (2)

m > 0) + o(1) = q2
m + o(1),

(4.26)

where we use Proposition 3.3, and we write qm = P(Z (1)
m > 0). When m → ∞, we have that

qm → q, so that we are done when we can show that, for any m fixed, P(HN < ∞, Z (1)
m Z (2)

m =
0) = o(1). We note that if Z (1)

m Z (2)
m = 0 and HN < ∞, then HN ≤ m − 1. Therefore, using

(4.21) with k = m − σN − 1, we conclude that

P(HN < ∞, Z (1)

m Z (2)

m = 0) ≤ P(HN ≤ m − 1)

= E
(
1 − exp{−κνaN +kW (1)W (2)})+ o(1) = o(1). (4.27)

This completes the proof of (4.22). We finally complete the proof of Theorems 1.1 and 1.4
using (4.22), which, together with (4.21), implies that, for k ≤ 2η logν N ,

P(HN ≤ σN + k|HN < ∞) = E
(
1 − exp{−κνaN +kW (1)W (2)}|W (1)W (2) > 0

)+ o(1).
(4.28)

5. ON THE CONNECTED COMPONENTS

In this section, we will investigate the sizes of the connected components and prove
Theorem 1.5.

Proof of Theorem 1.5. In the proof, we will make essential use of the results in [31, 32],
where the statement in Theorem 1.5 is proved for certain degree sequences. Indeed,
denote by

di(N) =
N∑

j=1

I[Dj = i], i = 0, 1, . . . , (5.1)

the degree sequence of our random graph G, where D1, D2, . . . , DN is the i.i.d. sequence with
distribution F introduced in (1.1) and satisfying (1.2). In [31], the bounds on the connected
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components in Theorem 1.5 are proved with only a lower bound on the largest connected
component size, while in [32], the asymptotic size of the largest connected component is
determined. Both papers assume a number of hypotheses on the degree sequence {di(N)}i≥0.
Thus, Theorem 1.5 follows when we can show that the probability that our degree sequences
in (5.1) satisfy the restrictions is at least 1−o(1). In fact, we need to alter the random graph
G in a certain way to meet the conditions of Molloy and Reed, and subsequently need to
prove that the alteration does not affect the results. We now go over their conditions and
definitions.

First, the degree sequence needs to be feasible, meaning that there exists at least one
graph with the degree sequence. This is true, since LN is even and we have that

∞∑
i=1

idi(N) =
∞∑

i=1

i
N∑

j=1

I[Dj = i] =
N∑

j=1

∞∑
i=1

iI[Dj = i] =
N∑

j=1

Dj = LN .

Second, the degree sequence needs to be smooth, meaning that for some sequence λi,
we have

lim
N→∞

di(N)

N
= λi.

In our setting, this follows almost surely from the law of large numbers, with λi = fi =
P(D = i).

Third, and this is the most serious condition, the degree sequence needs to be well-
behaved, meaning that it is smooth, feasible, and that, for every ε ′, there exists N ′ = N ′(ε ′),
such that, for all N > N ′, we have that:

1.

sup
i

∣∣∣∣i(i − 2)
di(N)

N
− i(i − 2)λi

∣∣∣∣ < ε ′. (5.2)

2. There exists i∗ ∣∣∣∣∣
i∗∑

i=1

i(i − 2)
di(N)

N
−

∞∑
i=1

i(i − 2)λi

∣∣∣∣∣ ≤ ε ′. (5.3)

3. There exists an ε > 0 such that di(N) = 0 for all i ≥ �N
1
4 −ε.

We start with the last assumption, which is not satisfied by our graph. Indeed, the last
restriction means that all nodes have degree at most �N

1
4 −ε−1. We will first alter the graph,

and thus the degree sequences, in the following way. Fix ε > 0 small. For nodes j with
Dj ≥ �N

1
4 −ε, we remove Dj − �N

1
4 −ε + 1 edges. We do this by first removing at random

edges between pairs i, j where the degrees of Di and Dj both exceed �N
1
4 −ε − 1, and stop

when the degree of Di or Dj (or both) is (for the first time) smaller than �N
1
4 −ε−1 (removing

at random here means with equal probabilities for all edges between i and j). When there
are no more edges between pairs of nodes with both degrees exceeding �N

1
4 −ε − 1, we

remove edges from the nodes with degrees exceeding �N
1
4 −ε − 1. We do this by deleting

at random the necessary number of edges so that the degree becomes �N
1
4 −ε − 1. Thus,

we end up with a graph G′ such that all degrees are at most �N
1
4 −ε − 1. Moreover, each

node j for which Dj ≥ �N
1
4 −ε has degree equal to �N

1
4 −ε− 1 in the altered graph G′. This

will be the graph to which we apply the results of Molloy and Reed. Let D′
j be the degree
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of the node j in G′, and write d ′
i(N) for the number of nodes with degree equal to i in G′.

Then d ′
i(N) = 0 for i ≥ �N

1
4 −ε, as required.

We first compute the number of removed edges, which we denote by RN . Its expectation
is bounded above by

E[RN ] ≤ E

[
N∑

j=1

(Dj + 1 − �N
1
4 −ε)+I[Dj ≥ �N

1
4 −ε]

]
≤ N

∑
l≥�N

1
4 −ε−1

P(D1 > l)

≤ cN
∑

l≥�N
1
4 −ε−1

l−τ+1 = CN1−(τ−2)( 1
4 −ε) < N

3
4 ,

for τ > 3 and ε sufficiently small. We are hence removing only a fraction of the LN available
edges (see Lemma 3.1 that LN is close to µN). Moreover, with probability converging to 1,
we have that RN ≤ 2N

3
4 , since by a computation analogous to the one given above for

E[RN ], we have Var(RN) ≤ CN1−(τ−3)( 1
4 −ε), so that, by the Chebychev inequality,

P(RN > 2N
3
4 ) ≤ P(|RN − E[RN ]| > N

3
4 ) ≤ N− 3

2 Var(RN) ≤ CN− 1
2 −(τ−3)( 1

4 −ε) ≤ CN− 1
2 .

(5.4)

We start by checking (5.2) for the graph G′, with λi = fi in (1.1). For this, we will use
the following bound from [9, Corollary 1.4(i)], which states that if SN is binomial with
parameters N and p, and if x(Np(1 − p))1/2 ≥ 1, then

P
(|SN − Np| ≥ x(Np(1 − p))1/2

) ≤ 1

x
e−x2/2. (5.5)

We first check condition (5.2) for i = �N
1
4 −ε − 1. By construction, we have that, for

i = �N
1
4 −ε − 1,

d ′
i(N) =

∑
j≥i

dj(N). (5.6)

Hence, d ′
i(N) is a binomial random variable with parameters N and p = 1−F(�N

1
4 −ε−2),

where F is the distribution function in (1.1). Thus, by (5.5), with x = C
√

log N , we have
that

P
(|d ′

i(N) − Np| ≥ C((log N)Np(1 − p))1/2
) ≤ 1

C
N−C2/2 = o(1). (5.7)

Thus, we have with probability 1 − o(1) that, for i = �N
1
4 −ε − 1, λi = fi, and p =

1 − F(�N
1
4 −ε − 2),

i(i − 2)

∣∣∣∣d ′
i(N)

N
− λi

∣∣∣∣ ≤ i2

∣∣∣∣d ′
i(N)

N
− p + p − λi

∣∣∣∣ ≤ i2

∣∣∣∣d ′
i(N)

N
− p

∣∣∣∣+ i2|p − λi|

≤ i2 C
√

log N√
N

[1 − F(�N
1
4 −ε − 2)]1/2 + i2fi

+ i2[1 − F(�N
1
4 −ε − 2)]

≤ CN ( 1
2 −2ε) · log N√

N
· N

1
2 (1−τ)( 1

4 −ε) + 2N
1
2 −2ε · c�N

1
4 −ε1−τ < ε ′,

for τ > 3. This proves (5.2) for i = �N
1
4 −ε − 1.
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We next prove (5.2) for i < �N
1
4 −ε − 1. For this, we use the triangle inequality

i(i − 2)

∣∣∣∣d ′
i(N)

N
− λi

∣∣∣∣ ≤ i2

∣∣∣∣d ′
i(N)

N
− di(N)

N

∣∣∣∣+ i2

∣∣∣∣di(N)

N
− λi

∣∣∣∣ , (5.8)

and we bound these two terms separately.
We start with the second term, and use (5.5), which gives that

P
(|di(N) − N fi| ≥ C( fiN log N)1/2

) ≤ N−C2/2. (5.9)

We will take C > 2, so that

P
(∃i < �N

1
4 −ε − 1 : |di(N) − N fi| ≥ C( fiN log N)1/2

) ≤
N∑

i=1

N−C2/2 = N1−C2/2 = o(1).

(5.10)

On the complementary event, we have that

sup

i<�N
1
4 −ε−1

∣∣∣∣i(i − 2)
di(N)

N
− i(i − 2)λi

∣∣∣∣ ≤ C sup

i<�N
1
4 −ε−1

i2

(
fi log N

N

)1/2

= o(1). (5.11)

Thus, we have bounded the second term in (5.8). We next turn to the first term in (5.8).
First, we clearly have that |d ′

i(N) − di(N)| ≤ RN . Thus, since RN ≤ 2N
3
4 ,

i2

∣∣∣∣d ′
i(N)

N
− di(N)

N

∣∣∣∣ ≤ i2 RN

N
≤ 2i2N− 1

4 ≤ 2N− 1
4 +2( 1

8 −ε) ≤ ε ′,

for i ≤ N
1
8 −ε . For i > N

1
8 −ε , we bound d ′

i(N) ≤∑j≥i dj(N), so that, again using (5.6)–(5.7),

i2

∣∣∣∣d ′
i(N)

N
− di(N)

N

∣∣∣∣ ≤ 2i2

N

∑
j≥i

dj(N) = 2i2(1 − F(i − 1))(1 + o(1)) ≤ 2cN ( 1
8 −ε)(3−τ) → 0.

To check (5.3), we first take i∗ fixed so that

∞∑
i=i∗+1

i(i − 2)λi ≤ ε ′

2
. (5.12)

This is possible, since E[D2] < ∞. Thus, we are left to show that

i∗∑
i=1

i(i − 2)

∣∣∣∣di(N)

N
− λi

∣∣∣∣ ≤ ε ′

2
. (5.13)

In order to do so, we use the bound in (5.10) to obtain that

i∗∑
i=1

i(i − 2)

∣∣∣∣di(N)

N
− λi

∣∣∣∣ ≤ C
i∗∑

i=1

i2

(
fi log N

N

)1/2

≤ C(i∗)3

(
log N

N

)1/2

≤ ε ′

2
, (5.14)
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whenever N is sufficiently large. The same result applies to d ′
i(N), since |d ′

i(N) − di(N)| ≤
RN , and RN = o(N), so that

i∗∑
i=1

i(i − 2)

∣∣∣∣di(N)

N
− d ′

i(N)

N

∣∣∣∣ ≤ (i∗)3 RN

N
= o(1).

Therefore, we have proved all conditions for the graph G′, and thus obtain the result in
Theorem 1.5 for G′. To complete the proof, we need to show that the result for G′ implies
the result for G.

This implication is proved in several small steps. First, denote the largest connected
components of G and G′ by LCG and LCG′ . Since G can be obtained from G′ by adding the
removed edges back, we obtain that (since we put back at most RN connected components
of size at most γ log N),

|LCG′ | ≤ |LCG| ≤ |LCG′ | + RN · γ log N . (5.15)

Thus, since |LCG′ | = qN(1 + o(1)) and RN ≤ 2N
3
4 with probability 1 + o(1), we obtain

that

qN(1 + o(1)) ≤ |LCG| ≤ qN(1 + o(1)) + O(N
3
4 log N) = qN(1 + o(1)), (5.16)

so that the largest connected component has size qN(1 + o(1)) with probability 1 + o(1),
as claimed.

To see that all other connected components in G have size at most γ log N , we note that
in G′ the removed edges are all connected to nodes with degree �N

1
4 −ε. We first show that

with overwhelming probability these nodes are already in the largest connected component
in G′. Since in G′ only the largest connected component has at least N δ nodes for any
δ > 0 and since γ log N = o(N δ), it suffices to check that nodes in G′ with degree �N

1
4 −ε

are connected to at least N δ other nodes. Since the probability of picking a node different
from the ones already connected to the node under observation is bounded from below by
1 − N2( 1

4 −ε)−1 (since all degrees in G′ are bounded above by �N
1
4 −ε), the probability that

at most N δ different nodes are chosen is bounded by the probability that a binomial random
variable, with parameters p = 1 − N2( 1

4 −ε)−1 and n = �N
1
4 −ε, is bounded from above by

N δ . By (5.5), this probability is negligible whenever δ < 1
4 − ε. Thus, we may assume

that all nodes with degree �N
1
4 −ε are in the largest connected component in G′. Therefore,

we obtain that the nodes that must be added to G′ to form G are attached to the largest
connected component of G′. Thus, the size of the second largest connected component of G
is bounded from above by the size of the second largest connected component of G′, which
is bounded from above by γ log N .

APPENDIX

A.1. Proof of Proposition 3.4

In this part of the appendix, we prove Proposition 3.4, which we restate here for convenience
as Proposition A.1.1. At the end of this section, we restate and prove Proposition 3.5.
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Proposition A.1.1. There exist α2, β2 > 0 such that

P

( ∞∑
n=0

(n + 1)|g(N)

n − gn| ≥ N−α2

)
≤ N−β2 . (A.1.1)

In the proof, we need the following lemma.

Lemma A.1.2. Fix τ > 1. For each nonnegative integer s, there exists a constant C > 0,
such that

n∑
j=m

( j + 1)sfj+1 ≤ Cm−(τ−1−s) + Ch(n). (A.1.2)

where

h(n) =




0, s < τ − 1,

log(n + 1), s = τ − 1,

(n + 1)s−τ+1, s > τ − 1.

We defer the proof of Lemma A.1.2 to the end of this section.

Proof of Proposition A.1.1. Fix a, b, α > 0. Define

F =
{∣∣∣∣ LN

µN
− 1

∣∣∣∣ ≤ N−α

}
∩
{

1

N

N∑
i=1

(Di + 1)2I[Di ≥ Na] ≤ N−b

}

∩
{

1

N

Na∑
n=0

(n + 1)2

∣∣∣∣∣
N∑

i=1

(
I[Di = n + 1] − fn+1

)∣∣∣∣∣ ≤ N−b

}
. (A.1.3)

The constants a, b and α will be chosen appropriately in the proof. The strategy of the proof
is as follows. We will prove that

P(Fc) ≤ N−β2 , (A.1.4)

for some β2 > 0, and that on F

∞∑
n=0

(n + 1)|g(N)

n − gn| ≤ N−α2 , (A.1.5)

for some α2 > 0. This proves Proposition A.1.1. We start by showing (A.1.5).
We bound

∞∑
n=0

(n + 1)|g(N)

n − gn| ≤
∞∑

n=0

(n + 1)

∣∣∣∣g(N)

n − Nµ

LN

gn

∣∣∣∣+ (ν + 1)

∣∣∣∣Nµ

LN

− 1

∣∣∣∣ . (A.1.6)

The second term is bounded by (ν + 1)N−α by the first event in F. The first term in (A.1.6)
can be bounded, for N sufficiently large, as, again using the first event in F,

∞∑
n=0

(n + 1)

∣∣∣∣g(N)

n − Nµ

LN

gn

∣∣∣∣ = 1

LN

∞∑
n=0

(n + 1)2

∣∣∣∣∣
N∑

i=1

(
I[Di = n + 1] − fn+1

)∣∣∣∣∣
≤ 2

µN

∞∑
n=0

(n + 1)2

∣∣∣∣∣
N∑

i=1

(
I[Di = n + 1] − fn+1

)∣∣∣∣∣ . (A.1.7)
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We next split the sum over n into n > Na and n ≤ Na for some appropriately chosen
a ∈ (0, 1]. On F, the contribution from n ≤ Na is at most 1

µ
N−b, whereas we can bound the

contribution from n > Na by

2

µN

∞∑
n=Na

(n + 1)2
N∑

i=1

(I[Di = n + 1] + fn+1)

= 2

µN

N∑
i=1

(Di + 1)2I[Di ≥ Na] + 2

µ

∞∑
n=Na

(n + 1)2fn+1.

For τ > 3, the second term is bounded by CN−a(τ−3) by Lemma A.1.2. The first term
is bounded by µ

2 N−b by the second event in F. Thus, we obtain (A.1.5) with α2 =
min{b, a(τ − 3)}.

We now prove (A.1.4). For this, we use that F is an intersection of three events which
we will write as F1, F2 and F3, so that

P(Fc) ≤ P(Fc
1) + P(Fc

2) + P(Fc
3). (A.1.8)

The first probability is bounded by P(Fc
1) ≤ c · N2α−1, by Lemma 3.1. For P(Fc

2), we use
the Markov inequality, to obtain that

P(Fc
2) ≤ NbE

[
(D1 + 1)2I[D1 ≥ Na]] ≤ Nb−a(τ−3), (A.1.9)

by Lemma A.1.2. For P(Fc
3), we use in turn the Markov inequality, Cauchy-Schwarz in

the form
∑Na

n=0 bn ≤ (
∑Na

n=0 12
∑Na

n=0 b2
n)

1
2 , and the Jensen inequality applied to x �→ √

x
(a concave function), to obtain

P(Fc
3) ≤ Nb−1E

[
Na∑
n=0

(n + 1)2

∣∣∣∣∣
N∑

i=1

(
I[Di = n + 1] − fn+1

)∣∣∣∣∣
]

≤ Nb−1(Na + 1)
1
2 E


 Na∑

n=0

(n + 1)4

(
N∑

i=1

(
I[Di = n + 1] − fn+1

))2



1/2

≤ 2Nb+a/2−1
Na∑
n=0

(n + 1)4E

(
N∑

i=1

(
I[Di = n + 1] − fn+1

)2

)1/2

≤ 2Nb+a/2−1
( Na∑

n=0

(n + 1)4N fn+1

)1/2 ≤ 2Nb+a/2−1/2Na max{0,5−τ }/2, (A.1.10)

where, in the last inequalities, we have used Lemma A.1.2 and

E


( N∑

i=1

[I[Di = n + 1] − fn+1]
)2

= Var

(
N∑

i=1

I[Di = n + 1]
)

= N fn+1(1−fn+1) ≤ N fn+1.

Thus, we obtain the statement in Proposition A.1.1 with

β2 = min

{
1

2
− b − a max{1, 6 − τ }

2
, a(τ − 3) − b, (2α − 1)

}
.

By picking first b small, and then a small, we see that α2, β2 > 0.
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Remark A.1.3. When (1.2) holds for some τ > 2 (rather than τ > 3), then the above
proof can be repeated to show the weaker result that

P

( ∞∑
n=0

|g(N)

n − gn| ≥ N−α2

)
≤ N−β2 . (A.1.11)

Indeed, in the definition of the event F in (A.1.3), we can replace (Di + 1)2 by (Di + 1) in
the second event, and (n + 1)2 by (n + 1) in the third event. Then, by adapting the above
argument, the event F implies that

∑∞
n=0 |g(N)

n − gn| ≤ N−α2 . The proof that P(Fc) ≤ N−β2

can be adapted accordingly.

Proof of Lemma A.1.2. Define a density f (x) = ∑∞
j=0 fjI[j ≤ x < j + 1], and the

corresponding distribution function F̃(x) = ∫ x
0 f (u) du. Then, for integer-valued j > 0,

F̃( j) = f0 + · · · + fj−1 = F( j − 1), F( j − 1) ≤ F̃(x) ≤ F( j), x ∈ ( j, j + 1).

Moreover,

n∑
j=m

( j + 1)sfj+1 ≤
∫ n+2

m+1
xsf (x) dx = −

∫ n+2

m+1
xs d(1 − F̃(x)).

Using partial integration and the upper bound

1 − F̃(x) ≤ 1 − F( j − 1) ≤ c( j − 1)1−τ ,

for x ∈ ( j, j + 1), we conclude that

n∑
j=m

( j + 1)sfj+1 ≤ (m + 1)s(1 − F̃(m + 1)) − (n + 2)s(1 − F̃(n + 2))

+
∫ n+2

m+1
(1 − F̃(x)) dxs

≤ c

[
m1+s−τ +

∫ n+1

m
ys−τ dy

]
.

This yields the upper bound.

We finally prove Proposition 3.5, which we restate as Proposition A.1.4.

Proposition A.1.4. There exist ε, β, η > 0 such that for all j ≤ (1 + 2η) logν N, as
N → ∞,

P

(
1

N

∣∣∣∣∣
j∑

i=1

Z (1)

�i/2Z (2)

�i/2� −
j∑

i=1

Ẑ (1)

�i/2Ẑ
(2)

�i/2�

∣∣∣∣∣ > N−ε

)
= O(N−β). (A.1.12)

Proof. Let

FN =
{ ∞∑

n=0

n|g(N)

n − gn| < N−α2

}
, (A.1.13)
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then, according to Proposition A.1.1, we have P(Fc
N) ≤ N−β2 . We claim that, for all i ≥ 1,

EN |Z (1)

i − Ẑ (1)

i | ≤ max{ν − αN , νN − αN}
i∑

m=1

EN [Ẑ (1)

m ](max{ν, νN})i−m, (A.1.14)

where

αN =
∞∑

n=0

n min{gn, g(N)

n }. (A.1.15)

We first prove (A.1.14). For Z (1)

i �= Ẑ (1)

i , the coupling is not successful in at least one of
the generations m, 1 ≤ m ≤ i. Let m be the first generation for which the coupling is
unsuccessful. There are at most Ẑ (1)

m nodes for which the coupling can fail. If the coupling
fails for a node, the expected difference between the offspring of that node is bounded above
by [compare the paragraph around (3.5)],

∞∑
n=1

nP(X (N) = n, Y = ∞) −
∞∑

n=1

nP(X = n, Y (N) = ∞)

=
∞∑

n=1

n
(
g(N)

n − min{gn, g(N)

n })−
∞∑

n=1

n
(
gn − min{gn, g(N)

n })
= (νN − αN) − (ν − αN) ≤ max{ν − αN , νN − αN}.

From generation m+1 on, we again have two BPs with laws g and g(N), so that the expected
offspring is bounded by (max{ν, νN})i−m. This demonstrates the claim (A.1.14).

Furthermore, since EN [Ẑ (1)
m ] = D1ν

m−1
N , we end up with

EN |Z (1)

i − Ẑ (1)

i | ≤ max{ν − αN , νN − αN}iD1(max{ν, νN})i−1. (A.1.16)

By (A.1.13), on FN we have that

max{ν − αN , νN − αN} ≤
∑

n

n|gn − g(N)

n | < N−α2 ,

max{ν, νN}
ν

= 1 + ν−1 max{0,
∑

n

n(gn − g(N)

n )} = 1 + O(N−α2).

We bound the left-hand side of (A.1.12) by

P

(∣∣∣∣∣
∑j

i=1 Z (1)

�i/2Z (2)

�i/2�
N

−
∑j

i=1 Ẑ (1)

�i/2Ẑ
(2)

�i/2�
N

∣∣∣∣∣ > N−ε

)

≤ P

(∣∣∣∣∣
∑j

i=1 Z (2)

�i/2�(Z (1)

�i/2 − Ẑ (1)

�i/2)√
N

√
N

∣∣∣∣∣ > 1

2
N−ε

)

+ P

(∣∣∣∣∣
∑j

i=1 Ẑ (1)

�i/2(Z (2)

�i/2� − Ẑ (2)

�i/2�)√
N

√
N

∣∣∣∣∣ > 1

2
N−ε

)
. (A.1.17)
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Both terms on the right-hand side of (A.1.17) can be treated similarly, and we will only do
the first one. We have uniformly, in i ≤ ( 1

2 + η) logν N ,

N−1/2 max
{
E[Z (2)

i ], E[Ẑ (1)

i ]
}

= max{Nη, Nη · (1 + O(N−α2)
)( 1

2 +η) logν N}, (A.1.18)

on FN . For j ≤ (1 + 2η) logν N , using the abbreviation

TN = 1

N

∣∣∣∣∣
j∑

i=1

Z (2)

�i/2�(Z (1)

�i/2 − Ẑ (1)

�i/2)

∣∣∣∣∣ ,
we have

P

(
TN > N−ε

)
≤ P(Fc

N) + P(TN > N−ε, FN) ≤ N−β2 + E
[
PN

(
TN IFN > N−ε

)]
≤ N−β2 + E

[
N εEN

[
TN IFN

]]
.

From (A.1.16), the uniform bound in (A.1.18), and the estimates on FN , we obtain

E
[
N εEN

[
TN IFN

]] ≤ E

[
N ε−1EN

[
j∑

i=1

∣∣∣Z (2)

�i/2�(Z (1)

�i/2 − Ẑ (1)

�i/2)
∣∣∣ · IFN

]]

≤ E

[
Nη+ε− 1

2

j∑
i=1

EN

∣∣∣Z (1)

�i/2 − Ẑ (1)

�i/2)
∣∣∣ · IFN

]

≤ 2Nη+ε− 1
2 E

[�j/2∑
i=1

EN

∣∣∣Z (1)

i − Ẑ (1)

i )

∣∣∣ · IFN

]

≤ 2Nη+ε− 1
2 E

[
D1

�j/2∑
i=1

N−α2 i(1 + O(N−α2))i−1

]

≤ µN ε+η−α2

�( 1
2 +η) logν N∑

i=1

i(1 + O(N−α2))i−1

≤ 2µN ε+η−α2 · (logν N)2 · N ( 1
2 +η) logν (1+O(N−α2 )),

using that, for x = 1+O(N−α2) > 1, we have
∑n

i=1 ixi−1 ≤ n2xn. This proves the proposition

since (logν N)2 · N ( 1
2 +η) logν (1+O(N−α2 )) can be bounded by any small power of N , and ε and

η can both be taken arbitrarily small, whereas α2 > 0.

A.2. Proof of Proposition 3.2

In this second part of the appendix, we restate our main result on the coupling between the
SPG and the BP with offspring distribution {g(N)

n } once more and give a full proof.

Proposition A.2.1. There exist η, β > 0, α > 1
2 + η and a constant C, such that, for all

j ≤ ( 1
2 + η) logν N,

P

(
(1 − N−αν j)Ẑ (1)

j ≤ Z (1)

j ≤ (1 + N−αν j)Ẑ (1)

j

)
≥ 1 − CjN−β . (A.2.1)
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This proof is divided into several lemmas. It is rather involved, and we may think of
Proposition A.2.1 as one of the key estimates of the paper. We start with an explanation of
the different steps in this proof.

The proof of Proposition A.2.1 proceeds by induction with respect to j. Note that for all
j ≤ ( 1

2 + η) logν N , we have N−αν j ≤ N ( 1
2 +η)−α → 0, as N → ∞ and when α > η. When

at level j − 1, the event in the statement of the proposition holds, we have

|Ẑ (1)

j−1 − Z (1)

j−1| ≤ ν j−1

Nα
Ẑ (1)

j−1,

so that we control the difference between the number of stubs Z (1)

j−1 and the number of

children Ẑ (1)

j−1. The absolute value of this difference is bounded by Ẑ (1)

j−1 times a fraction that

converges to 0. For generation j we have to control the difference Ẑ (1)

j − Z (1)

j . Differences in
generation j arise from differences in generation j − 1 and from drawing stubs with label 2
or label 3. If a label 2 stub is chosen, then the SPG will contain a loop or cycle and hence
no free stubs in level j are created, whereas in the BP a non-negative number of offspring
is attached. If a label 3 stub is chosen, then the corresponding node with described number
of children is attached in the BP, whereas for the SPG we have to resample until we draw
a stub labeled 1 or 2. Hence, if Z (1)

j ≥ Ẑ (1)

j , so that the number of free stubs attached to
nodes at distance j − 1 of the SPG exceeds the number of children in generation j of the BP,
then this overshoot can only be caused by drawing label 3 stubs. The number of stubs with
label 3 is bounded by the total number drawn in the SPG, i.e., by

j−1∑
i=1

Z (1)

i ≤
j−1∑
i=1

(1 + N−αν i)Ẑ (1)

i ≤ 2
j−1∑
i=1

Ẑ (1)

i .

For Z (1)

j ≤ Ẑ (1)

j , the number of stubs with level 2 or 3 both matter and their total amount is
bounded by

j∑
i=1

Z (1)

i =
j−1∑
i=1

Z (1)

i + Z (1)

j ≤
j−1∑
i=1

(1 + N−αν i)Ẑ (1)

i + Ẑ (1)

j ≤ 2
j∑

i=1

Ẑ (1)

i .

In both cases the probability of drawing a label 2 or 3 stub is bounded by

2
∑j

i=1 Ẑ (1)

i

LN

≤ 2N
1
2 +δ

LN

, (A.2.2)

on the event where
∑j

i=1 Ẑ (1)

i ≤ N
1
2 +δ . Using that LN is of order E[LN ] = µN (see Lemma

3.1), this probability is sufficiently small to allow us to use Chebychev’s inequality.
The main lemmas in this section are Lemma A.2.7 and Lemma A.2.9. Together, they

prove the induction step described above. Lemmas A.2.2 up to A.2.6 are preparations, the
most important one being Lemma A.2.6. This lemma shows that if the total progeny up
to and including generation j of {Ẑ (1)

i } is larger than N
1
2 −δ , for some δ > 0, then with

overwhelming probability also each of the sizes of the last two generations, i.e., Ẑ (1)

j−1 and

Ẑ (1)

j , exceed N
1
2 −2δ .

As before, we will abbreviate the conditional probability and expectation given
D1, . . . , DN by PN and EN .
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Lemma A.2.2. For 0 < η < 1
2 and all j ≥ 1,

PN

(
Z (1)

j �= Ẑ (1)

j ,
j∑

i=1

Ẑ (1)

i ≤ N
1
2 −η

)
≤ N−2η

LN
N

, a.s. (A.2.3)

Lemma A.2.2 together with Lemma 3.1 prove Proposition A.2.1 for all j such that the total
size of the BP is at most N

1
2 −η.

Proof. We denote by l the first stub which is grown differently in the SPG and in the BP.
Assume that this lth stub is in the jth generation or earlier.

Before the growth of the lth stub, the BP and the SPG are identical. Thus, we must have
that l ≤ ∑j

i=1 Ẑ (1)

i . Hence, as we reach to the lth stub, the number of stubs having either

label 2 or 3 is bounded above by
∑j

i=1 Ẑ (1)

i ≤ N
1
2 −η. A difference in the SPG and the BP

can only arise when we draw a stub for the BP having label 2 or 3. Thus, the probability
that the lth stub is the first to create a difference between the SPG and the BP is bounded
above by N

1
2 −η/LN . Therefore,

PN

(
Z (1)

j �= Ẑ (1)

j ,
j∑

i=1

Ẑ (1)

i ≤ N
1
2 −η

)
≤

N
1
2 −η∑

l=1

N
1
2 −η

LN

= N−2η

LN
N

.

Recall that νN = ∑∞
n=0 ng(N)

n is the expected offspring of the BP {Ẑ (1)}j under PN . Note
from Proposition A.1.1 that νN is close to ν with probability close to 1. In the statement of
the next lemma, we write

D(N)

N = max
1≤i≤N

Di. (A.2.4)

Lemma A.2.3. For every γ > 0,

P
(
D(N)

N ≥ Nγ
) ≤ cN1−(τ−1)γ . (A.2.5)

Proof. We use Boole’s inequality to obtain from (1.2) that

P
(
D(N)

N ≥ Nγ
) ≤

N∑
i=1

P(Di ≥ Nγ ) ≤ cN1−(τ−1)γ . (A.2.6)

Lemma A.2.4. For η, δ ∈ (− 1
2 , 1

2 ), and all j ≤ ( 1
2 + η) logν N, there exists β2 > 0 such

that

P

(
j∑

i=1

Ẑ (1)

i ≥ N
1
2 +δ

)
≤ CNη−δ + N−β2 . (A.2.7)

Proof. By Proposition 3.4, we can include the indicator that |νN −ν| ≤ N−α2 ; this explains
the additional error term N−β2 . By the Markov inequality, we obtain, for j ≤ ( 1

2 +η) logν N ,

P

(
j∑

i=1

Ẑ (1)

i ≥ N
1
2 +δ , |νN − ν| ≤ N−α2

)
≤ N− 1

2 −δE

(
j∑

i=1

Ẑ (1)

i I[|νN − ν| ≤ N−α2 ]
)

.
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The expectation on the right-hand side can be computed by conditioning:

E
[
Ẑ (1)

i I[|νN − ν| ≤ N−α2 ]] = E[EN

[
Ẑ (1)

i I[|νN − ν| ≤ N−α2 ]]
= E[I[|νN − ν| ≤ N−α2 ] · D1ν

i−1
N ] ≤ (ν + N−α2)i−1E[D1].

Hence,

P

(
j∑

i=1

Ẑ (1)

i ≥ N
1
2 +δ

)
≤ N−β2 + µN− 1

2 −δ

j∑
i=1

(ν + N−α2)i−1

≤ N−β2 + µN− 1
2 −δ (ν + N−α2) j − 1

(ν + N−α2) − 1
≤ N−β2 + CNη−δ .

In the lemma below, we write d for a random variable with discrete distribution {g(N)
n }

given in (3.1), and VarN(d) for the variance of d under PN . Furthermore, we let, for any
0 < a < 1

2 ,

AN = AN(a, γ , α2) =
{∣∣∣∣ LN

µN
− 1

∣∣∣∣ ≤ N−a

}
∩ {D(N)

N ≤ Nγ } ∩ {|νN − ν| ≤ N−α2},

then, according to Proposition 3.4, Lemmas 3.1, and A.2.3, we have

P(Ac
N) = O(N−ε), (A.2.8)

where ε = b ∧ ((τ − 1)γ − 1) ∧ β2 > 0 whenever γ > 1/(τ − 1). On AN , we have

1

µ(1 + N−a)
≤ N

LN

≤ 1

µ(1 − N−a)
. (A.2.9)

This will be used in the following lemma.

Lemma A.2.5. For every γ > 0,

E
(
VarN(d)I[AN ]) ≤ CN (4−τ)+γ , (A.2.10)

where x+ = max(0, x).

Proof. Since the variance of a random variable is bounded by its second moment,

VarN(d) ≤
∞∑

n=0

n2g(N)

n =
∞∑

n=0

N∑
j=1

n2(n + 1)

LN

I[Dj = n + 1] ≤ 1

LN

N∑
j=1

D3
j ,

and so, for τ ∈ (3, 4],

E
(
VarN(d)I[AN ]) ≤

N∑
j=1

E

[
1

LN

D3
j I[AN ]

]
≤ N

µN
E
[
D3I[D ≤ Nγ ]] ≤ C

�Nγ ∑
i=1

i3fi ≤ Nγ (4−τ),

by Lemma A.1.2. For τ > 4, the third moment of D is finite, and the result is also true even
without the indicator I[D(N)

N ≤ Nγ ].
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Lemma A.2.6. For all ( 1
2 − 2η) logν N ≤ j ≤ ( 1

2 + 2η) logν N, there exists δ, β > 0 such
that

P

(
j∑

i=1

Ẑ (1)

i ≥ N
1
2 −δ , Ẑ (1)

j−1 ≤ N
1
2 −2δ

)
≤ CN−β , (A.2.11)

P

(
j∑

i=1

Ẑ (1)

i ≥ N
1
2 −δ , Ẑ (1)

j ≤ N
1
2 −2δ

)
≤ CN−β . (A.2.12)

Remark. The statements of the lemma are almost identical, the difference being that the
index j − 1 of Ẑ (1)

j−1 is replaced by the index j in the second statement. We will be satisfied
with a proof for the first statement only, the proof with index j is a straightforward extension.

Proof. Since
∑j

i=1 Ẑ (1)

i ≥ N
1
2 −δ , there must be an i ≤ j ≤ ( 1

2 + 2η) logν N such that for N
large enough

Ẑ (1)

i ≥ N
1
2 −δ/j ≥ N

1
2 −δ

( 1
2 + 2η) logν N

≥ N
1
2 − 3

2 δ .

We write I for the first i ≤ j such that Ẑ (1)

i ≥ N
1
2 − 3

2 δ . It suffices to bound

j∑
i=1

P

(
j∑

k=1

Ẑ (1)

k ≥ N
1
2 −δ , I = i, Ẑ (1)

j−1 ≤ N
1
2 −2δ

)
. (A.2.13)

The contribution from I = j − 1 is 0. When I = j, then Ẑ (1)

j ≥ N
1
2 − 3

2 δ , but Ẑ (1)

j−1 ≤ N
1
2 −2δ so

that from the Markov inequality

P

(
j∑

k=1

Ẑ (1)

k ≥ N
1
2 −δ , I = j, Ẑ (1)

j−1 ≤ N
1
2 −2δ

)

≤ E

[
I[Ẑ (1)

j−1 ≤ N
1
2 −2δ]PN

(
Ẑ (1)

j ≥ N
1
2 − 3

2 δ
∣∣Ẑ (1)

j−1

)]
≤ N− 1

2 + 3
2 δE

[
I[Ẑ (1)

j−1 ≤ N
1
2 −2δ]EN

[
Ẑ (1)

j

∣∣Ẑ (1)

j−1

]]
= N− 1

2 + 3
2 δE

[
I[Ẑ (1)

j−1 ≤ N
1
2 −2δ]νN Ẑ (1)

j−1

]
≤ CN− 1

2 + 3
2 δN

1
2 −2δ = CN−δ/2. (A.2.14)

Thus, we are left to deal with the cases where I < j −1. Then, there exists an i < j −1 such
that Ẑ (1)

i ≥ N
1
2 − 3

2 δ , but Ẑ (1)

j−1 ≤ N
1
2 −2δ . Thus, there must be a first s ≥ i such that Ẑ (1)

s+1 ≤ Ẑ (1)
s .

Consequently, Ẑ (1)
s ≥ Ẑ (1)

i ≥ N
1
2 − 3

2 δ . We will bound, uniformly in s,

P(Ẑ (1)

s+1 ≤ Ẑ (1)

s , Ẑ (1)

s ≥ N
1
2 − 3

2 δ
) ≤ N−β , (A.2.15)

for some β > 0. This proves (A.2.11), since the total number of possible i and s with
i ≤ s ≤ j is bounded by (logν N)2.
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We use Lemma A.2.3 to see that we may include the indicator on AN for any γ >

1/(τ − 1). We will use the Chebychev inequality and Lemma A.2.5 to obtain that

P(Ẑ (1)

s+1 ≤ Ẑ (1)

s , Ẑ (1)

s ≥ N
1
2 − 3

2 δ , AN

)
= E

[
I[Ẑ (1)

s ≥ N
1
2 − 3

2 δ , AN ]PN

(
Ẑ (1)

s+1 ≤ Ẑ (1)

s

∣∣Ẑ (1)

s

)]
≤ E

[
I[Ẑ (1)

s ≥ N
1
2 − 3

2 δ , AN ]PN

(∣∣Ẑ (1)

s+1 − νN Ẑ (1)

s

∣∣ ≥ (νN − 1)Ẑ (1)

s

∣∣Ẑ (1)

s

)]
≤ E

[
I[Ẑ (1)

s ≥ N
1
2 − 3

2 δ , AN ](νN − 1)−2 VarN(d1)

Ẑ (1)
s

]

≤ CN (4−τ)+γ− 1
2 + 3

2 δ ≤ N−β , (A.2.16)

with C = 2(ν − 1)−2, and since (4 − τ)+γ < 1/2 and δ > 0 can be taken arbitrarily small.

We are now ready to give the proof of Proposition A.2.1.

Proof of Proposition A.2.1. We first set the stage for the proof by induction in j. Fix
η < δ < 2η, and α > 1

2 + η, and define

Ej = {∀i ≤ j : (1 − N−αν i)Ẑ (1)

i ≤ Z (1)

i ≤ (1 + N−αν i)Ẑ (1)

i

}
. (A.2.17)

We will prove by induction that, for all j ≤ ( 1
2 + η) logν N ,

P
(
Ec

j

) ≤ CjN−β , (A.2.18)

which implies Proposition A.2.1 by taking the complementary event. First, by Lemma A.2.2
and A.2.4 and since η < δ, we see that it is sufficient to prove, for j ≤ ( 1

2 + η) logν N ,

P

(
Ec

j , N
1
2 −δ ≤

j∑
i=1

Ẑ (1)

i ≤ N
1
2 +δ

)
≤ CjN−β .

For j < ( 1
2 − 2η) logν N , we bound

P

(
Ec

j , N
1
2 −δ ≤

j∑
i=1

Ẑ (1)

i ≤ N
1
2 +δ

)
≤ P

(
j∑

i=1

Ẑ (1)

i ≥ N
1
2 −δ

)
≤ N−β + CN−2η+δ ,

by the Markov inequality and using Proposition 3.4 in a similar way as in Lemma A.2.4.
Hence, the statement in (A.2.18) follows for j < ( 1

2 − 2η) logν N . This initializes the
induction in j.

To advance the induction, we bound

P

(
Ec

j , N
1
2 −δ ≤

j∑
i=1

Ẑ (1)

i ≤ N
1
2 +δ

)

≤ P(Ec
j−1) + P

(
Ec

j ∩ Ej−1, N
1
2 −δ ≤

j∑
i=1

Ẑ (1)

i ≤ N
1
2 +δ

)

≤ C( j − 1)N−β + P

(
Ec

j ∩ Ej−1, N
1
2 −δ ≤

j∑
i=1

Ẑ (1)

i ≤ N
1
2 +δ

)
,
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where the last inequality follows by the induction hypothesis. Thus, it suffices to prove
that

P
(
Ec

j ∩ E ′
j−1

) ≤ CN−β , (A.2.19)

where

E ′
j−1 = Ej−1 ∩

{
N

1
2 −δ ≤

j∑
i=1

Ẑ (1)

i ≤ N
1
2 +δ

}
.

Note that

Ec
j ∩ E ′

j−1 =
({

Z (1)

j < (1 − N−αν j)Ẑ (1)

j

} ∩ E ′
j−1

)⋃({
Z (1)

j > (1 + N−αν j)Ẑ (1)

j

} ∩ E ′
j−1

)
.

(A.2.20)

We write the disjoint events on the right-hand side of (A.2.20) as Ec
j,< and Ec

j,> and bound
the probability of these events separately. We will start with Ec

j,<. This result is stated in the
following lemma:

Lemma A.2.7. There exists β > 0 such that, for all ( 1
2 −2η) logν N < j ≤ ( 1

2 +η) logν N,

P(Ec
j,<) ≤ CN−β . (A.2.21)

Proof. We note that on Ec
j,< we have that

j∑
i=1

Z (1)

i ≤
j∑

i=1

(1 + ν iN−α)Ẑ (1)

i ≤ (1 + N
1
2 +ηN−α)

j∑
i=1

Ẑ (1)

i ≤ 2N
1
2 +δ ,

because α > 1
2 + η. Thus, for every stub which is grown simultaneously for the BP and the

SPG, there is a probability bounded from above by 2N
1
2 +δ/LN that a difference is created

between the BP and the SPG (such a difference is called a miscoupling). Denote by U
the number of stubs where such a difference occurs. Then, U is bounded from above by
a binomial random variable with n = N

1
2 +δ and p = 2N

1
2 +δ/LN . Thus, by the Markov

inequality, we have

PN(U ≥ Na) ≤ 2N−a+1+2δ

LN

.

Using (A.2.9), we obtain, for 2δ < a,

P(U ≥ Na) ≤ CN−a+2δ + N−b ≤ N−β . (A.2.22)

Observe that differences between Z (1)

j and Ẑ (1)

j can only arise through (i) different numbers
of stubs in the ( j − 1)st generation, and (ii) differences created in the jth generation which
we previously called miscouplings. In the first case, the difference in the number of stubs is
bounded from below by an independent draw from g(N). A miscoupling occurs if we draw
a stub with label 2 or 3. Hence,

Z (1)

j − Ẑ (1)

j ≥ −

(
Ẑ(1)

j−1−Z(1)
j−1

)+∑
i=1

di −
U∑

i=1

d̃i, (A.2.23)
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where {di}i≥1 are independent draws from g(N) and {d̃i}i≥1 are draws from g(N), conditionally
on drawing a stub labeled 2 or 3. On E ′

j−1, we have that

(
Ẑ (1)

j−1 − Z (1)

j−1

)+ ≤ N−αν j−1Ẑ (1)

j−1, (A.2.24)

so that on Ec
j,<, introducing the notation αN , j = N−αν j−1Ẑ (1)

j−1,

αN , j∑
i=1

di +
U∑

i=1

d̃i ≥

(
Ẑ(1)

j−1−Z(1)
j−1

)+∑
i=1

di +
U∑

i=1

d̃i > N−αν jẐ (1)

j . (A.2.25)

Combining this with (A.2.22) and using the definition of αN , j, we see that, in order to
prove (A.2.21), it suffices to show that

P

({αN , j∑
i=1

di +
�Na∑
i=1

d̃i > N−αν jẐ (1)

j

}
∩ E ′

j−1

)
≤ CN−β . (A.2.26)

We will first show that on E ′
j−1 the term

∑�Na
i=1 d̃i is small compared to N−αν jẐ (1)

j , if we

choose a sufficiently small. On E ′
j−1, we have

∑j
i=1 Z (1)

i ≥ N
1
2 −δ , and so, with probability

larger than 1 − CN−β , according to Lemma A.2.6, we have that also Z (1)

j ≥ N
1
2 −2δ . Hence,

using that for all i, d̃i ≤ max1≤i≤N Di = D(N)

N , and the inequality of Lemma A.2.3, we get

P

({�Na∑
i=1

d̃i >
1

2
N−αν jẐ (1)

j

}
∩ E ′

j−1

)
≤ CN−β + P

(�Na∑
i=1

d̃i >
1

2
N−αν jN

1
2 −2δ

)

≤ CN−β + P

(�Na∑
i=1

d̃i >
1

2
N

1
2 −2η−αN

1
2 −2δ

)

≤ CN−β + P

(
NaD(N)

N >
1

2
N1−2η−α−2δ

)

≤ CN−β + cN1−(τ−1)γ ,

where γ = 1 − 2η − α − 2δ − a < 1
2 , but can be taken arbitrary close to 1

2 . Since τ > 3,
we then have that cN1−(τ−1)γ < N−β .

Hence it suffices to prove the statement in (A.2.26) without the term
∑�Na

i=1 d̃i, that is, it
suffices to prove

P

(αN , j∑
i=1

di >
1

2
N−αν jẐ (1)

j , E ′
j−1

)
≤ CN−β . (A.2.27)

Since we can write Ẑ (1)

j = ∑Ẑ(1)
j−1

i=1 di, and, again using Lemma A.2.6, we have that E ′
j−1

implies Ẑ (1)

j−1 ≥ N
1
2 −2δ , with probability larger than 1 − CN−β , it is sufficient to prove that

P


(1 − N−αν j)

αN , j∑
i=1

di >
1

2
N−αν j

Ẑ(1)
j−1∑

i=αN , j+1

di, Z (1)

j−1 ≥ N
1
2 −2δ


 ≤ N−β . (A.2.28)
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Now EN [d] = νN and, given Ẑ (1)

j−1, the variance of
∑Ẑ(1)

j−1
i=1 (di − νN) equals Ẑ (1)

j−1VarN(d).
Therefore, by the Chebychev inequality,

PN


 (1 − N−αν j)

αN , j∑
i=1

di >
1

2
N−αν j

Ẑ(1)
j−1∑

i=αN , j+1

di

∣∣∣∣∣∣∣ Ẑ
(1)

j−1




≤ PN


 (1 − N−αν j)

αN , j∑
i=1

(di − νN) − N−αν j

Ẑ(1)
j−1∑

i=αN , j+1

(di − νN) >
1

2
νNαN , j(ν − 1)

∣∣∣∣∣∣∣ Ẑ
(1)

j−1




≤ 4Ẑ (1)

j−1VarN(d1)

(νNαN , j(ν − 1))2
= 4VarN(d1)

Ẑ (1)

j−1N−2αν2j(1 − ν−1)2ν2
N

.

We use Lemma A.2.5. Hence, by intersecting with the event AN and its complement, and
using (A.2.8), we obtain, for j ≥ ( 1

2 − 2η) logν N ,

P


(1 − N−αν j)

αN , j∑
i=1

di > N−αν j

Ẑ(1)
j−1∑

i=αN , j+1

di, Z (1)

j−1 ≥ N
1
2 −2δ




≤ c1N−ε + c2

E

[
VarN(d1)I[AN ]

]
N

1
2 −2δN−2αν2j

≤ c1N−ε + c2N2α+2δ− 1
2 −1+4ηN (4−τ)+γ ≤ c1N−ε + c2N−β ≤ CN−β ,

by fixing α > 1
2 + η so that the exponent is negative (using that γ < 1

2 and (4 − τ)+ ≤ 1),
and writing β = 3

2 − 2α − 2δ − 4η − (4 − τ)+γ > 0. This proves (A.2.28) and completes
the proof of Lemma A.2.7.

Before turning to the proof of the bound on P(Ec
j,>) in Lemma A.2.9 below, we start

with a preparatory lemma and some definitions. Suppose we have L objects divided into N
groups of sizes d1, . . . , dN , so that L =∑N

i=1 di. Suppose we draw an object at random, and
we define a random variable by dI − 1 when the object is taken from the Ith group. This
gives a distribution g(�d), i.e.,

g(�d)
n = 1

L

N∑
i=1

diI[di = n + 1]. (A.2.29)

Clearly, g(N) = g( �D), where �D = (D1, . . . , DN).
We next label M of the L objects, and suppose that the distribution g(�d)(M) is obtained in a

similar way from drawing conditionally on drawing an unlabeled object. More precisely, we
remove the labelled objects from all objects thus creating new d ′

1, . . . , d ′
N ,
∑

d ′
i = L − M,

and we let g(�d)(M) = g(�d′). Even though this is not indicated, the law g(�d)(M) depends on
what objects have been labelled.

Lemma A.2.8 below shows that the law g(�d)(M) can be bounded above and below by
two specific ways of labeling the M objects. Before we can state the lemma, we need to
describe those specific labellings.
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For a vector �d, we let d(1), . . . , d(N) be the ordered vector, so that d(1) = mini=1,...,N di

and d(N) = maxi=1,...,N di. Then the laws f (�d)(M) and h(�d)(M), respectively, are defined by
successively decreasing d(N) and d(1) respectively, by 1. Thus,

f (�d)

n (1) = 1

L − 1

N−1∑
i=1

d(i)I[d(i) = n + 1] + (d(N) − 1)I[d(N) − 1 = n + 1]
L − 1

, (A.2.30)

h(�d)

n (1) = 1

L − 1

N∑
i=2

d(i)I[d(i) = n + 1] + (d(1) − 1)I[d(1) − 1 = n + 1]
L − 1

. (A.2.31)

For f (�d)(M) and h(�d)(M), respectively, we repeat the above change M times. Here we note
that when d(1) = 1, and for h(�d)(1) we decrease it by 1, that we only keep the di ≥ 1. Thus,
in this case, the number of groups of objects is decreased by 1.

Finally, we write that f � g when the distribution f is stochastically dominated by g,
i.e., when

∑n
i=0 fi ≥ ∑n

i=0 gi for all n ≥ 0. Similarly, we write that X � Y when for the
probability mass functions fX , fY we have that fX � fY .

We next prove stochastic bounds on the distribution g(�d)(M) that are uniform in the choice
of the M labeled objects.

Lemma A.2.8. For all choices of M labeled objects

f (�d)(M) � g(�d)(M) � h(�d)(M). (A.2.32)

Thus, the expectation and variance of the random variable X(M) with probability mass
function g(�d)(M) are bounded by

E[X(M)] ≤ E[X(M)], Var[X(M)] ≤ E[X(M)2], (A.2.33)

where X(M) has probability mass function h(�d)(M).
Moreover, when X1, . . . , Xl are draws from g(�d)(M1), . . . , g(�d)(Ml), where the only

dependence between the Xi resides in the labeled objects, then

l∑
i=1

Xi �
l∑

i=1

Xi �
l∑

i=1

Xi, (A.2.34)

where {Xi}l
i=1 and {Xi}l

i=1, respectively, are i.i.d. copies of X and X with laws f (�d)(M) and
h(�d)(M) for M = maxl

i=1 Mi, respectively.

In the proof of Proposition A.2.1, we will only use the upper bounds in Lemma A.2.8.

Proof. In order to prove (A.2.32), we will use induction in M. We note that f (�d)(0) =
g(�d)(0) = h(�d)(0) = g(�d), and this initializes the induction. To advance the induction, we
note that we need to investigate the effect of labelling one extra object. For f (�d)(M), we need
to maximize the cumulative distribution function, whereas for h(�d)(M), we need to minimize
it. Clearly, (A.2.30)–(A.2.31) are optimal. This advances the induction. The statement in
(A.2.33) follows from (A.2.32).

To prove (A.2.34), we see that for every j, conditionally on the “past” (X1, . . . , Xj−1), the
random variable Xj is stochastically bounded by Xj and Xj, respectively. This completes the
proof of Lemma A.2.8.
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Lemma A.2.9. There exists β > 0 such that, for all j ≤ ( 1
2 + η) logν N,

P(Ec
j,>) ≤ CN−β . (A.2.35)

Proof. The proof of Lemma A.2.9 follows the proof of Lemma A.2.7, and we focus on
the differences only.

Let V denote the number of stubs out of the Ẑ (1)

j−1 stubs that are attached to stubs with
label 3 in the BP. Since, for each stub in the ( j −1)st generation, on E ′

j−1, we have that there

are at most 2
∑j−1

i=1 Z (1)

i ≤ 2N
1
2 +δ stubs with label 3, we have that V is bounded from above

by a binomial random variable with n = N
1
2 +δ and p = 2N

1
2 +δ/LN . Thus, by the Markov

inequality, we have that, for any a > 2δ,

P(V ≥ Na) ≤ CN−β , with β = a − 2δ > 0, (A.2.36)

where we can take a arbitrarily small by choosing δ > 0 small.
We thus assume that V ≤ Na. We next proceed by investigating P(Ec

j,>). Now, on
Ec

j,> ∩ Ej−1, we have that

Z (1)

j > (1 + N−αν j)Ẑ (1)

j . (A.2.37)

Thus, Z (1)

j is larger than Ẑ (1)

j . We note that Z (1)

j can only become larger than Ẑ (1)

j from (a)
a redraw and the redraw exceeds the original draw from g(N) and (b) stubs in Z (1)

j−1 that

are not in Ẑ (1)

j−1 which give rise to new stubs. On Ej−1, we thus have that (recalling that

αN , j = N−αν j−1Ẑ (1)

j−1)

Z (1)

j − Ẑ (1)

j ≤
αN , j∑
i=1

d ′
i +

V∑
i=1

d ′′
i , (A.2.38)

where d ′
i , d ′′

i are drawn from the appropriate conditional distributions given that we pick a
stub with label unequal to 3.

We note that each of the d ′
i , d ′′

i is obtained by drawing from stubs conditionally on labels
not being 3. Since the total number of stubs labeled 3 is throughout the growth process
bounded above by 2

∑j−1
i=1 Z (1)

i ≤ 2N
1
2 +δ , on V ≤ Na, we obtain that by Lemma A.2.8,

{d ′
i}αN , j

i=1 and {d ′′
i }V

i=1 are bounded above by αN , j + �Na independent copies of Xi(2N
1
2 +δ),

where for any M, Xi(M) has probability distribution h( �D)(M).
We note that by (A.2.33) and Proposition 3.4, the expectation of Xi(2N

1
2 +δ) is bounded

above by ν + N−α2 for some α2 > 0, and the variance of Xi(2N
1
2 +δ) obeys the same bound

as VarN(d) in Lemma A.2.5. Thus, we can copy the remaining part of the proof from the
proof of Lemma A.2.7.

A.3. Proof of Proposition 3.3

In this section, we prove Proposition 3.3. In fact, we will prove a slightly different result, as
formulated in the next proposition. This proposition summarizes the coupling results, and
will be instrumental both in this paper, as well as in [25], in which we investigate the case
where τ ∈ (2, 3).
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Proposition A.3.1. Fix τ > 2, and assume that (1.2) holds. For any m such that, for any
η > 0 small enough,

P

(
m∑

j=1

Ẑ (i)
j ≥ Nη

)
= o(1), (A.3.1)

there exist independent branching processes Z (1), Z (2), such that

lim
N→∞

P(Z (i)
m = Z (i)

m ) = 1. (A.3.2)

Remark. For fixed m, by the Markov inequality, (A.3.1) indeed holds. Therefore,
Proposition 3.3 follows from (A.3.2). We are left to prove Proposition A.3.1.

Proof. By (A.3.1), it suffices to show that P(Z (i)
m = Z (i)

m ,
∑m

j=1 Ẑ (i)
j < Nη) = 1 + o(1). For

this, we use Lemma A.2.2 to conclude that, for η < 1/2,

P

(
Z (i)

m = Z (i)
m ,

m∑
j=1

Ẑ (i)
j < Nη

)
= P

(
Ẑ (i)

m = Z (i)
m ,

m∑
j=1

Ẑ (i)
j < Nη

)
+ o(1). (A.3.3)

By the coupling between Ẑ (i)
m and Z (i)

m , a miscoupling occurs with probability equal to
pN defined in (3.6). Therefore, by Remark A.1.3, the probability of a miscoupling for the
offspring of a given individual is bounded from above by N−α2 with probability 1+O(N−β2).
On the event that

∑m
j=1 Ẑ (i)

j < Nη, the number of individuals that need to be coupled is
bounded from above by Nη. We thus obtain that for any η < α2,

P

(
Ẑ (i)

m �= Z (i)
m ,

m∑
j=1

Ẑ (i)
j < Nη, pN ≤ N−α2

)
≤ NηN−α2 = o(1), (A.3.4)

which completes the proof.

A.4. Limits of the Form limn→∞
∑n

j=1 ajν
−n

Suppose that ν > 1 and that a1, a2, . . . is a sequence of real numbers with the property that
limn→∞ anν

−n = a. We claim that

lim
n→∞

n∑
j=1

aj

νn
= νa

ν − 1
. (A.4.1)

Indeed, we can write

n∑
j=1

aj

νn
= an

νn

(
1 + an−1

an
+ · · · + aj−1

an
+ · · · + a1

an

)
.

For fixed j as n → ∞,
an

νn

(
aj−1

an
+ · · · + a1

an

)
→ 0,
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since ν > 1. On the other hand, for k ≥ j,

1 − ε

νn−k
≤ ak

an
= 1

νn−k

ak/ν
k

an/νn
≤ 1 + ε

νn−k
.

Hence, for j sufficiently large,

−ε +
n∑

k=j

1 − ε

νn−k
≤
(

1 + an−1

an
+ · · · + aj−1

an
+ · · · + a1

an

)
≤ ε +

n∑
k=j

1 + ε

νn−k
.

Since, for n → ∞ (and ν > 1),

n∑
k=j

1

νn−k
=

n−j∑
k=0

1

νk
= 1 − ( 1

ν

)n−j+1

1 − 1
ν

→ ν

ν − 1
,

we obtain (A.4.1). Suppose now that we have two sequences a1, a2, . . . and b1, b2, . . . with
the property that limn→∞ anν

−n = a and limn→∞ bnν
−n = b. We claim that

lim
n→∞

n∑
j=1

ajbj

ν2n
= ν2ab

ν2 − 1
. (A.4.2)

Indeed the sequence anν
−n · bnν

−n converges to ab and so we obtain (A.4.2) from (A.4.1).
For the proof of (4.20) we have to distinguish between the cases where the upper bound of

the summation in (4.20) is either even or odd. We start with the odd case σN +k+1 = 2n+1:

2n+1∑
i=2

a�i/2b�i/2�
ν2n

=
(

a1b1 + a2b2 + · · · + anbn

ν2n

)
+
(

a2b1 + a3b2 + · · · + an+1bn

ν2n

)
.

According to (A.4.2), the first series on the right hand side converges to ν2ab
ν2−1

. Because we
miss one additional factor ν in the denominator of the second series on the right-hand side,
we conclude from again (A.4.2) that this second series converges to ν · ν2ab

ν2−1
. Hence

lim
n→∞

2n+1∑
i=2

a�i/2b�i/2�
ν2n

= ν2ab

ν2 − 1
+ ν

ν2ab

ν2 − 1
= ν2ab

ν − 1
. (A.4.3)

Applying this to our almost surely converging sequence with

aj = Z (1)

j , bj = Z (2)

j , a = µW (1)

ν
, b = µW (2)

ν
, and σN + k = 2n,

we obtain

lim
N→∞

∑σN +k+1
i=2 Z (1)

�i/2Z (2)

�i/2�
µ2νσN +k

= lim
N→∞

∑2n+1
i=2 a�i/2b�i/2�

µ2ν2n
= 1

µ2

ν2ab

ν − 1
= W (1)W (2)

ν − 1
.

For σN + k + 1 = 2n, the even case:

2n∑
i=2

a�i/2b�i/2�
ν2n−1

=
(

a1b1 + a2b2 + · · · + anbn

ν2n−1

)
+
(

a2b1 + a3b2 + · · · + anbn−1

ν2n−1

)
.

According to (A.4.2), the first series on the right hand side converges to ν ν2ab
ν2−1

, and the

second to ν2ab
ν2−1

. The even and odd case together yields the limit (4.20) of step 4.
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