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Abstract

The weight of a randomly chosen link in the shortest path tree on the complete graph with
exponential i.i.d. link weights is studied. The corresponding exact probability generating function

and the asymptotic law are derived. As a remarkable coincidence, this asymptotic law is precisely
the same as the distribution of the cost of one “job” in the random assignment problem. We also
show that the asymptotic (scaled) maximum interattachment time to that shortest path tree, which
is a uniform recursive tree, equals the square of the Dedekind Eta function, a central function in
modular forms, elliptic functions and the theory of partitions.

1 Introduction

Here and as motivated in [21, Section 16.1], we assign i.i.d. exponentially distributed weights with

unit mean to links in the complete graph KN+1 with N + 1 nodes. The shortest path between two

nodes is the path for which the sum of the link weights is minimal. The shortest path tree (SPT)

rooted at a random node to the N other nodes is the union of the shortest paths from that node

to all N different nodes in the graph. The precise physical meaning of the link weight is irrelevant

here — it can refer to distance, delay, monetary cost, etc. —, as long as the weights are additive. The

confinement to the complete graph and i.i.d. exponential link weights has resulted in a shortest path

tree that is a uniform recursive tree (URT) as outlined in Section 2. To a good approximation, the

URT is also the shortest path tree in connected Erdös-Rényi random graphs (or dense homogeneous

graphs) with i.i.d. regular1 weights [21, Section 16.1]. Extending the shortest path tree problem to

non-homogeneous networks or non-i.i.d. link weights seems exceedingly difficult, which justifies to

extend the URT-model as far as possible.

Items (e.g. packets, information) in real-world networks are most often transported along shortest

paths. Inferring the whole network topology (see e.g. [23]) via measurements based on transport is

inherently biased, because mainly shortest path links are observed. Here, we show that the distribution

of a uniformly chosen or random link weight in a shortest path tree is significantly different than that of

∗Faculty of Electrical Engineering, Mathematics and Computer Science, P.O Box 5031, 2600 GA Delft, The Nether-

lands; email : P.VanMieghem@ewi.tudelft.nl.
1A regular distribution has a power series around zero.
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a random link in the complete network. In particular, the weight of a random link in the URT and the

maximum of the interattachment times to the URT are studied. We found that both are close to each

other, at least in average and variance. The asymptotic laws of both are derived. The asymptotic

(scaled) maximum interattachment time to the URT equals, apart from an exponential factor, the

square of the Dedekind Eta function. The Dedekind Eta function plays an important role in modular

forms, elliptic functions and in number theory, in particular, in the theory of partitions (see e.g.

[3, 15, 4]). This observation complements Wästlund’s excitement [11] about the frequent appearance

of the Riemann Zeta function (at integer values) in asymptotic results of the URT. In addition to

those shown in Section 2 and [21, Chapter 16], the pdf in (23) and the “Dedekind distribution” in (25)

join the list of limit distributions, other than a Gaussian, that characterize properties of this shortest

path tree.

There is even a more remarkable fact2: my exotically looking asymptotic pdf (23) of the weight of

an arbitrary link in the URT was earlier derived by Aldous [2] in the context of the random assignment

problem. The similarity of the shortest path and the random assignment problem has been explored

by Wästlund in [25].

The paper is outlined as follows. Section 2 introduces the SPT and shows that it is a URT. Since

this paper builds upon and complements properties of the shortest path tree in a complete graph

with i.i.d. exponential link weights, we briefly overview earlier results on both the shortest path (in

Section 2.1) and the shortest path tree (in Section 2.2). A brief discussion on the random assignment

problem is incorporated in Section 2.3. After this short review in Section 2, we derive in Section 3

the probability generating function (pgf) of the weight of a random link. The exact pgf in any finite

URT of size N + 1 is stated in Theorem 1, from which the mean weight of a random link is derived

(in three ways) in Section 3.1 and the corresponding variance in Section 3.2. Section 3.3 focuses on

the asymptotic law of the weight of a random link in infinitely large URTs. Theorem 2 provides the

asymptotic pgf, that can be expressed in terms of the Hurwitz Zeta function (18), that generalizes

the Riemann Zeta function. The corresponding pdf is derived in Corollary 1. Any moment in (22)

of the asymptotic scaled weight of a random link in the URT, that elegantly follows from properties

of the Hurwitz Zeta function, is proportional to the Riemann Zeta function at integer values, again

illustrating the intriguing pervasiveness of the Riemann Zeta function.

Section 4 concentrates on the distribution of the minimum, but mainly of the maximum of the

interattachment times to the URT. As shown in (1), the weight of a random link can be written as a sum

of interattachment times. Theorem 3 gives the asymptotic law of the maximum interattachment time

to the URT, while Section 5 expresses this asymptotic law in terms of the Dedekind function. Section

5.1 relates the coefficients of the Taylor series of the asymptotic maximum interattachment time to

the URT to number theoretic functions, such as the partition function and the divisor function. The

sequel of Section 5 invokes the remarkably powerful modular transforms to compute the asymptotic

random variable’s moments (in Section 5.2) and to derive (in Section 5.3) fast converging series for

the pgf of the maximum interattachment time. The appendix contains analytic proofs.

2Just before the publication of this article, Johan Wästlund has informed me about the curious relation between the

shortest path and the random assignment problem. Fortunately, the editor of RSA has still given me the opportunity to

incorporate Section 2.3 that outlines the connection with the random assignment problem.
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2 The URT as shortest path tree

In [21, 18], we have rephrased the shortest path problem between two random nodes in the complete

graphKN+1 with exponential link weights as a Markov discovery process, that starts the path searching

process at the source. The discovery process is a continuous-time Markov chain with N + 1 states.

Each state n represents the n already discovered nodes (including the source node). If, at some stage

in the Markov discovery process, n nodes are discovered, then the next node is reached with rate

n (N + 1− n), which is the transition rate in the continuous time Markov chain. Since the discovering

of nodes at each stage only increases n, the Markov discovery process is a pure birth process with birth

rate n (N + 1− n). We call τn the interattachment time between the inclusion of the n-th and (n+1)-

th node to the SPT for n = 1, . . . , N . By the memoryless property of the exponential distribution

and the symmetry of the complete graph, a new node is added uniformly to an already discovered

node. Hence, the resulting SPT to all nodes is exactly a uniform recursive tree (URT). A URT of size

N + 1 is a random tree rooted at some source node and where at each stage a new node is attached

uniformly to one of the existing nodes until the total number of nodes is equal to N + 1. As proved

in [18] for large N , the URT is also asymptotically the SPT in the class of (connected) Erdös-Rényi

random graphs with i.i.d. exponential link weights. We believe that, when the number N of nodes

grows large, the URT is the asymptotic SPT in a larger class of graphs.

The interattachment time τn is exponentially distributed with parameter n(N + 1− n) as follows

from the theory of Markov processes and the discovery time to the k-th discovered node from a source

node (root) equals

vk =
kX

n=1

τn (1)

where τ1, τ2, · · · , τk are independent, exponentially distributed random variables with parameter n(N+
1 − n) with 1 ≤ n ≤ k. The discovery time vk also equals the length or total weight from the root

towards the k-th attached (discovered) node.

2.1 Overview of results on the shortest path

The weight WN+1 of a shortest path from a root to a random node in KN+1 with i.i.d. exponential

link weights with mean 1 can be represented as

WN+1 =
NX
k=1

vk1{node k is the end node of the shortest path}

where it is understood that the end node is different from the root. The pgf ϕWN+1
(z) = E

£
e−zWN+1

¤
of the weight WN+1 of the shortest path is derived [21, Chapter 16] from (1) as

ϕWN+1
(z) =

1

N

NX
k=1

kY
n=1

n(N + 1− n)

z + n(N + 1− n)
(2)

The pgf ϕHN+1(z) = E
£
zHN+1

¤
of hopcount HN+1, the number of links in the URT, is a classical

result, also derived in [21, Chapter 16],

ϕHN+1(z) =
1

(N + 1)!

NY
k=1

(z + k) =
Γ(N + 1 + z)

Γ(N + 2)Γ(z + 1)
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The joint generating function E[sHN+1e−tWN+1 ] of the hopcount HN+1 and the weight WN+1 of a

shortest path is computed in [8] as

E[sHN+1e−tWN+1 ] =
1

N

NX
k=1

Ã
kY

n=1

n(N + 1− n)

t+ n(N + 1− n)

!
Γ(k + s)

k!Γ(s)
(3)

In the anycast problem, the shortest path from a root to a set of m uniformly chosen nodes is

computed [22]. In the special case m = 1, we have shown that the asymptotic law of the weight of a

shortest path is

lim
N→∞

Pr [NWN − lnN ≤ t] = 1− e−tee
−t
Z ∞

e−t

e−u

u
du (4)

Janson was the first one to compute the asymptotics of NWN − lnN in [10], where he gave a short

proof that NWN − lnN converges in distribution to the convolution of the Gumbel distribution with

the logistic distribution, which is the difference of two independent Gumbel random variables, related

by the reflection formula for the Gamma function

πx

sinπx
= Γ (1 + x)Γ (1− x) ,

since Γ (1 + x) is the pgf of a Gumbel random variable. Hence, Janson showed that

NWN − lnN d→ V1 + V2 − V3, (5)

where V1, V2 and V3 are independent Gumbel distributed random variables.

2.2 The shortest path tree versus the minimal spanning tree

For large N , the asymptotic average weight of the complete shortest path tree is

E [WSPT] = ζ (2) +O

µ
1

N

¶
(6)

and the corresponding result for the variance is

Var [WSPT] =
4ζ (3)

N
+ o

µ
1

N

¶
(7)

while the scaled weight of the SPT tends to a Gaussian. In particular,

√
N (WSPT − ζ (2))

d→ N
¡
0, σ2SPT

¢
where σ2SPT = 4ζ (3) ' 4.80823. These results are established in [20].

Earlier Frieze [6] has computed the average weight of the minimum spanning tree WMST in the

complete graph with exponential with mean 1 link weights for large N as

E [WMST]→ ζ (3)

Janson [9], and later Wästlund [24] and Janson and Wästlund [11], completed Frieze’s result by proving

that the scaled weight of the MST tends to a Gaussian,

√
N (WMST − ζ (3))

d→ N
¡
0, σ2MST

¢
,

4



where σ2MST = 6ζ (4)− 4ζ (3) ' 1.6857.
The shortest path tree rooted at an arbitrary node is an instance of a spanning tree, but whose

weight WSPT is generally larger than that of the minimum spanning tree WMST. The shortest path

tree is often used as a heuristic to approximate the Steiner tree, for example, in multicasting. As

discussed in [21, p. 399], the ratio ζ(2)
ζ(3) ' 1.367 indicates that the use of the SPT never performs, on

average, more that 37% worse than the optimal Steiner tree.

2.3 The random assignment problem

The random assignment problem, as explained in [2], is the stochastic variant of the following task:

choose an assignment of N jobs to N machines with the objective to minimize the total cost of

performing the N jobs, given the N ×N matrix C where the element cij equals the cost of performing

job i on machine j. The assignment problem thus consists of determining the permutation π that

minimizes the sum
PN

j=1 cj,π(j). Probability enters in the most simple setting when the elements cij
are i.i.d. exponentially random variables with mean 1. The corresponding random assignment problem

(RAP) investigates the properties of the random variable RN = minπ
PN

j=1 cj,π(j).

The RAP has a long history of which parts are overviewed in [2] and [25]. Here, we only illustrate

the remarkable similarity with the shortest path tree problem. A basic result and analog of (6) is

E [RN ] =
NX
k=1

1

k2
→ ζ (2) (8)

which was asymptotically proved by Aldous [2], and for finite N , independently, by Linusson and

Wästlund [12] and by Nair, Prabhakar and Sharma [13]. Earlier, Parisi [14] had conjectured (8) based

on simulations and Coppersmith and Sorkin [5] have extended the conjecture to partial assignments.

In [2], Aldous also shows that c (1, π (1)) converges, for large N , to the pdf given in the right-hand

side of (23) below, the (scaled) density of the weight of an arbitrary link in the URT. In addition,

Aldous shows that

lim
N→∞

Pr [c (1, π (1)) is k-th smallest of the entries c11, c12, . . . , c1N ] = 2−k

which is the asymptotic analogon of the probability that the degree of a node in the URT is k (see

e.g. [21, p. 369]).

All these asymptotic equivalences suggest that the underlying tree structure in both problems,

the Poisson-weighted infinite tree (PWIT) in the RAP in [2] and the URT in the shortest path tree

problem, have asymptotically many same properties, although both trees are not precisely equal. The

overwhelming similarity between these two different problems is striking and may be worth exploring

in more depth.

3 Distribution of the weight of a link in the shortest path tree

A URT U consisting of N + 1 nodes and with the root labeled by zero can be represented as

U = (0←− 1) (n2 ←− 2) . . . (nN ←− N) (9)
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where (nj ←− j) means that the j-th discovered node is attached to node nj ∈ [0, j − 1]. Hence, nj
is the predecessor of j and this relation is indicated by ←−. The total number of URTs with N + 1

nodes equals N !. The weight WSPT of a shortest path tree from the root 0 to all N other nodes, which

is a URT U , is with (1) and v0 = 0 and n1 = 0,

WSPT = (v1 − v0) + (v2 − vn2) + . . .+ (vN − vnN )

=
NX
j=1

¡
vj − vnj

¢
=

NX
j=1

jX
n=nj+1

τn

In the URT, the integer nj is uniformly distributed over the interval [0, j − 1]. It is more convenient
to use a discrete uniform random variable on [1, j] which we define as Aj = nj + 1. We rewrite

WSPT =
NX
j=1

jX
n=Aj

τn =
NX
j=1

jX
n=1

1{Aj≤n}τn =
NX
n=1

τn

⎛⎝ NX
j=n

1{Aj≤n}

⎞⎠
The set {Aj}1≤j≤N are independent random variables with Pr [Aj = k] = 1

j for k ∈ [1, j]. In addition,
we define for n ∈ [1, N ] the random variables

Bn =
NX
j=n

1{Aj≤n} (10)

to obtain

WSPT =
NX
n=1

Bnτn (11)

The n random variables B1, B2, . . . , Bn are dependent. The mean of the random variable Bn ≤PN
j=n 1 = N + 1− n follows from (10) as

E [Bn] =
NX
j=n

E
h
1{Aj≤n}

i
=

NX
j=n

Pr [Aj ≤ n] =
NX
j=n

n

j
(12)

Let w∗ denote the weight of a random link nj ←− j in the URT consisting of N + 1 nodes, then

we have

w∗j = vnj − vj =

jX
n=nj+1

τn =

jX
n=Aj

τn =

jX
n=1

1{Aj≤n}τn (13)

We can thus write the weight w∗ of a random link as the random variable,

w∗ =
NX
j=1

w∗j1{nj is end node}

=
NX
j=1

1{nj is end node}

jX
n=1

1{Aj≤n}τn (14)

We now compute the weight of a random link in the shortest path tree (or complete URT) from the

root to all N other nodes in the graph.
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Theorem 1 The weight w∗ of a random link in a URT consisting of N + 1 nodes possesses the pgf

E
h
e−zw

∗
i
=
1

N

NX
j=1

1

j

jX
k=1

jY
n=k

n (N + 1− n)

z + n(N + 1− n)
(15)

Proof: A random link is uniformly chosen out of the N links in the URT, which means that any

node j has equal probability to be the end node of that link. Then, with the definition (13) applied

to a specific URT U specified in (9),

E
h
e−zw

∗
¯̄̄
U
i
=
1

N

NX
j=1

E

⎡⎣exp
⎛⎝−z jX

n=nj+1

τn

⎞⎠⎤⎦
Since any URT is equally probable, unconditioning yields

E
h
e−zw

∗
i
=

1

N !

0X
n1=0

1X
n2=0

. . .
N−1X
nN=0

1

N

NX
j=1

E

⎡⎣exp
⎛⎝−z jX

n=nj+1

τn

⎞⎠⎤⎦
Since all τn are independent, we have

E

⎡⎣exp
⎛⎝−z jX

n=nj+1

τn

⎞⎠⎤⎦ = jY
n=nj+1

E
£
e−zτn

¤
=

jY
n=nj+1

n (N + 1− n)

z + n(N + 1− n)

and

E
h
e−zw

∗
i
=
1

N !

0X
n1=0

1X
n2=0

. . .
N−1X
nN=0

1

N

NX
j=1

jY
n=nj+1

n (N + 1− n)

z + n(N + 1− n)

=
1

N !N

0X
n1=0

1X
n2=0

. . .
N−1X
nN=0

Ã
1Y

n=n1+1

n (N + 1− n)

z + n(N + 1− n)
+

2Y
n=n2+1

n (N + 1− n)

z + n(N + 1− n)

+ . . .+
NY

n=nN+1

n (N + 1− n)

z + n(N + 1− n)

!

The j-th term Vj (z) in the above expression for E
£
e−zw

∗¤
is

Vj (z) =
1

N !N

0X
n1=0

1X
n2=0

. . .
N−1X
nN=0

jY
n=nj+1

n (N + 1− n)

z + n(N + 1− n)

=
1

N !N

j−1X
nj=0

jY
n=nj+1

n (N + 1− n)

z + n(N + 1− n)

0X
n1=0

1X
n2=0

. . .
N−1X
nN=0

no sum over nj

1

=
1

jN

jX
nj=1

jY
n=nj

n (N + 1− n)

z + n(N + 1− n)

Hence, we arrive at (15). ¤
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3.1 The average weight of a random link in the URT

We first compute the average weight of a link in the shortest path tree as the negative of the derivative

of (15) with respect to z and evaluated at z = 0. This results in

E [w∗] =
1

N

NX
j=1

1

j

jX
k=1

jX
n=k

1

n(N + 1− n)

=
1

N

NX
j=1

1

j

jX
n=1

1

n(N + 1− n)

nX
k=1

1

=
1

N

NX
j=1

1

j

jX
n=1

1

(N + 1− n)
(16)

Using the identity
PN

j=1
1
j

PN
k=N+1−j

1
k =

PN
j=1

1
j2
proved in [20], we arrive at

E [w∗] =
1

N

NX
n=1

1

n2

This results can also obtained directly from WSPT =
PN

j=1w
∗
j after taking the expectation since

E [WSPT] =
PN

n=1
1
n2
as first proved in [19], and refined in [20].

A third method starts from (14). Taking the expectation of both sides gives the average weight of

a link in the SPT as

E [w∗] =
NX
j=1

E

"
1{nj is end node}

jX
n=1

1{Aj≤n}τn

#

=
1

N

NX
j=1

jX
n=1

E
h
1{Aj≤n}τn

i
=
1

N

NX
j=1

jX
n=1

E
h
1{Aj≤n}

i
E [τn]

=
1

N

NX
j=1

jX
n=1

n

j

1

n (N + 1− n)
=
1

N

NX
j=1

1

j

jX
n=1

1

(N + 1− n)

which is again (16).

3.2 The variance of the weight of a random link

The second moment is the second derivative of (15) with respect to z, evaluated at z = 0,

E
h
(w∗)2

i
=
1

N

NX
j=1

1

j

jX
k=1

⎛⎝Ã jX
n=k

1

n(N + 1− n)

!2
+

jX
n=k

1

(n(N + 1− n))2

⎞⎠
=
2

N

NX
j=1

1

j

jX
k=1

jX
n=k

1

(n(N + 1− n))2
+
2

N

NX
j=1

1

j

jX
k=1

jX
n=k+1

n−1X
m=k

1

nm(N + 1− n)(N + 1−m)

The first term is

T1 =
2

N

NX
j=1

1

j

jX
k=1

jX
n=k

1

(n(N + 1− n))2
=
2

N

NX
j=1

1

j

jX
n=1

nX
k=1

1

(n(N + 1− n))2

=
2

N

NX
j=1

1

j

jX
n=1

1

n(N + 1− n)2
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Using the identity, proved in [20],

2
NX
j=1

1

j

jX
n=1

1

n (N + 1− n)2
=

1

(N + 1)2

Ã
NX
n=1

1

n

!2
+

3

(N + 1)2

NX
n=1

1

n2
+

2

(N + 1)

⎛⎝2 NX
k=1

1

k3
−

NX
k=1

1

k2

kX
j=1

1

j

⎞⎠
we obtain

T1 =
1

N(N + 1)2

Ã
NX
n=1

1

n

!2
+

3

N(N + 1)2

NX
n=1

1

n2
+

2

N(N + 1)

⎛⎝2 NX
k=1

1

k3
−

NX
k=1

1

k2

kX
j=1

1

j

⎞⎠
The second term is

T2 =
2

N

NX
j=1

1

j

jX
k=1

jX
n=k+1

n−1X
m=k

1

nm(N + 1− n)(N + 1−m)

Reversing the k- and n- sum, followed by a reversal of the k- and m-sum, yields

T2 =
2

N

NX
j=1

1

j

jX
n=2

n−1X
k=1

n−1X
m=k

1

nm(N + 1− n)(N + 1−m)

=
2

N

NX
j=1

1

j

jX
n=2

n−1X
m=1

1

nm(N + 1− n)(N + 1−m)

mX
k=1

1

=
2

N

NX
j=1

1

j

jX
n=2

1

n(N + 1− n)

n−1X
m=1

1

N + 1−m

Using the identity, proved in [20],

2
NX
j=1

1

j

jX
n=1

1

n (N + 1− n)

n−1X
m=1

1

N + 1−m
=

2

N + 1

NX
k=1

1

k2

kX
j=1

1

j
− 3

(N + 1)2

NX
k=1

1

k2
− 1

(N + 1)2

Ã
NX
n=1

1

n

!2

we find

T2 =
2

N(N + 1)

NX
k=1

1

k2

kX
j=1

1

j
− 3

N (N + 1)2

NX
k=1

1

k2
− 1

N (N + 1)2

Ã
NX
n=1

1

n

!2
Hence,

E
h
(w∗)2

i
= T1 + T2 =

4

N(N + 1)

NX
k=1

1

k3

from which the variance Var[w∗] = E
h
(w∗)2

i
− (E [w∗])2 follows as

Var[w∗] =
4

N(N + 1)

NX
k=1

1

k3
− 1

N2

Ã
NX
n=1

1

n2

!2
(17)

In summary, for large N , the average link weight scales as E [w∗] = 1
N

π2

6 '
1.64493

N with standard

deviation σw∗ =
p
Var[w∗] equal to σw∗ =

√
4ζ(3)−ζ2(2)

N + O
¡
N−2¢ and p4ζ (3)− ζ2 (2) ' 1.44997.

Thus, the standard deviation is about the same as the mean itself.
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3.3 Asymptotic distribution of w∗

Theorem 1 gives the exact pgf, from which we here derive the asymptotic distribution. A generalization

of the Riemann Zeta function ζ(s) is the Hurwitz Zeta function, defined for Re(s) > 1 and Re (a) ≥ 0
as

ζ(s, a) =
∞X
k=1

1

(a+ k)s
(18)

which shows that ζ(s, 0) = ζ(s).

Theorem 2 The weight w∗ of a random link in an infinitely large URT possesses, for |x| < 1, the

asymptotic pgf

lim
N→∞

E
h
e−Nxw∗

i
=

1

(x+ 1)2
+ x

∞X
j=1

1

(x+ 1 + j)2 (x+ j)
(19)

that is written in terms of the Hurwitz Zeta function as

lim
N→∞

E
h
e−Nxw∗

i
= 1− xζ(2, x) (20)

Proof: Following a similar procedure as in [22], we write

z + n(N + 1− n) =

⎛⎝sµN + 1

2

¶2
+ z +

N + 1

2
− n

⎞⎠⎛⎝sµN + 1

2

¶2
+ z − (N + 1

2
− n)

⎞⎠
and define y =

q
(N+12 )2 + z. Then,

jY
n=k

n(N + 1− n)

z + n(N + 1− n)
=

j! (N + 1− k)!

(k − 1)! (N − j)!

jY
n=k

1¡
y + N+1

2 − n
¢ jY
n=k

1¡
y − N+1

2 + n
¢

=
j! (N + 1− k)!

(k − 1)! (N − j)!

Γ
¡
y + N+1

2 − j
¢

Γ
¡
y + N+1

2 − k + 1
¢ Γ

¡
y − N+1

2 + k
¢

Γ
¡
y − N+1

2 + j + 1
¢

and, substituted in (15), yields

E
h
e−zw

∗
i
=
1

N

NX
j=1

(j − 1)!Γ
¡
y + N+1

2 − j
¢

(N − j)!Γ
¡
y − N+1

2 + j + 1
¢ jX
k=1

(N + 1− k)!

(k − 1)!
Γ
¡
y − N+1

2 + k
¢

Γ
¡
y + N+1

2 − k + 1
¢

For large N and |z| < N , we have3 that y =
q
(N+12 )2 + z ∼ N+1

2 + z
N such that

E
h
e−zw

∗
i
∼ 1

N

NX
j=1

(j − 1)!Γ
¡
N + z

N − j + 1
¢

(N − j)!Γ
¡
z
N + j + 1

¢ jX
k=1

(N + 1− k)!

(k − 1)!
Γ
¡
z
N + k

¢
Γ
¡
N + z

N − k + 2
¢

We now introduce the scaling z = Nx, where |x| < 1 since |z| < N ,

E
h
e−Nxw∗

i
∼ 1

N

NX
j=1

Γ (j)Γ (N + 1− j + x)

Γ (x+ j + 1)Γ (N + 1− j)

jX
k=1

Γ (x+ k)

Γ (k)

Γ (N + 1− k + 1)

Γ (N + 1− k + x+ 1)
(21)

3The notation f (x) ∼ g (x) for large x means that limx→∞
f(x)
g(x) = 1.
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Let m = N + 1− k in the k-sum such that

E
h
e−Nxw∗

i
∼ 1

N

NX
j=1

Γ (j)

Γ (x+ j + 1)

Γ (N + 1− j + x)

Γ (N + 1− j)

NX
m=N+1−j

Γ (m+ 1)

Γ (m+ x+ 1)

Γ (N + 1−m+ x)

Γ (N + 1−m)

Introducing (46), proved in Lemma 4 in the appendix,

E
h
e−Nxw∗

i
∼ Γ (N + x+ 2)

NΓ (x)

NX
j=1

1

Γ (x+ j + 1)

Γ (N + 1− j + x)

Γ (N + 1− j)

∞X
k=0

1

k!

Γ (j + x+ k + 1)

(x+ k + 1)

Γ (k + x)

Γ (N + 2x+ k + 2)

=
1

NΓ (x)

∞X
k=0

1

k!

Γ (k + x)

(x+ k + 1)

Γ (N + x+ 2)

Γ (N + 2x+ k + 2)

NX
j=1

Γ (x+ j + 1 + k)

Γ (x+ j + 1)

Γ (N + 1− j + x)

Γ (N + 1− j)

Using the alternative series (50) for the j-sum yields

E
h
e−Nxw∗

i
∼ x

N

∞X
k=0

Γ (k + x)Γ (x+ 1 + k)
Γ (N + x+ 2)

Γ (N + 2x+ k + 2)

N−1X
j=0

1

(k − j)!

Γ (N + x+ 1)

Γ2 (x+ 2 + j)Γ (N − j)

=
x

N

N−1X
j=0

Γ (N + x+ 1)

Γ2 (x+ 2 + j)Γ (N − j)

∞X
k=0

Γ (k + x)Γ (x+ 1 + k)

(k − j)!

Γ (N + x+ 2)

Γ (N + 2x+ k + 2)

where the reversal is allowed by absolute convergence and convergence of the k-sum, because the terms

decrease as O
¡
kj−2−N

¢
for large k. The latter is verified by applying the asymptotic expansion [1,

6.1.7] of the Gamma function, Γ(z+a)Γ(z+b) = za−b
¡
1 +O

¡
z−1

¢¢
, for large z = k and fixed a and b. We now

apply this asymptotic expansion to the k-sum for large N ,

E
h
e−Nxw∗

i
∼ xN−x−1

N−1X
j=0

Γ (N + x+ 1)

Γ2 (x+ 2 + j)Γ (N − j)

∞X
k=j

Γ (k + x)Γ (x+ 1 + k)

(k − j)!
N−k ¡1 +O

¡
N−1¢¢

= xN−x−1
N−1X
j=0

Γ (N + x+ 1)

Γ2 (x+ 2 + j)Γ (N − j)

©
Γ (j + x)Γ (x+ 1 + j)N−j +O

¡
N−j−1¢ª

= xN−x−1
N−1X
j=0

Γ (N + x+ 1)Γ (j + x)Γ (x+ 1 + j)

Γ2 (x+ 2 + j)Γ (N − j)
N−j

+O

⎛⎝N−x−2
N−1X
j=0

Γ (N + x+ 1)

Γ2 (x+ 2 + j)Γ (N − j)
N−j

⎞⎠
Again applying the asymptotic expansion of the Gamma function to the j-sum yields

E
h
e−Nxw∗

i
= x

N−1X
j=0

Γ (j + x)Γ (x+ 1 + j)

Γ2 (x+ 2 + j)
+O

¡
N−1¢

= x
N−1X
j=0

1

(x+ 1 + j)2 (x+ j)
+O

¡
N−1¢

from which we obtain the asymptotic pgf (19) of Nw∗. Partial fraction decomposition gives
N−1X
j=0

1

(x+ 1 + j)2 (x+ j)
=

N−1X
j=0

1

(x+ j)
−

N−1X
j=0

1

(x+ 1 + j)
−

N−1X
j=0

1

(x+ 1 + j)2

=
1

x
− 1

x+N
−

NX
j=1

1

(x+ j)2

11



and

E
h
e−Nxw∗

i
= 1− x

NX
j=1

1

(x+ j)2
+O

¡
N−1¢

After taking the limit N → ∞ and using the definition of the Hurwitz Zeta function (18), we find

(20). ¤
The Hurwitz form (20) of the pgf E

£
e−Nxw∗

¤
is particularly well suited to compute all moments.

We verify immediately from (20), by differentiation with respect to x evaluated at x = 0, that

lim
N→∞

E [Nw∗] = ζ (2)

More generally, since the k-th derivative of the Hurwitz Zeta function ζ(s, x) in (18) with respect to

x is
dkζ(s, x)

dxk
= (−1)kΓ(s+ k)

Γ(s)
ζ(s+ k, x)

we obtain from (20), by Leibniz’ differentiation rule,

lim
N→∞

E
h
(Nw∗)k

i
= (−1)k dk

dxk
(1− xζ(2, x))

¯̄̄̄
x=0

= (−1)k−1
kX

j=0

µ
k

j

¶
dj

dxj
(x)

dk−j

dxk−j
(ζ(2, x))

¯̄̄̄
¯̄
x=0

= (−1)k−1 x dk

dxk
(ζ(2, x)) + k

dk−1

dxk−1
(ζ(2, x))

¯̄̄̄
x=0

Thus, any k-th moment of the asymptotic random variable limN→∞Nw∗ is

lim
N→∞

E
h
(Nw∗)k

i
= kk!ζ(k + 1) (22)

Corollary 1 The asymptotic pdf of the weight w∗ of a random link in an infinitely large URT is, for

t ≥ 0,

lim
N→∞

fNw∗ (t) =

¡
t− 1 + e−t

¢
e−t

(1− e−t)2
(23)

Proof: The inverse Laplace transform of (19) is

fNw∗ (t) =
1

2πi

Z c+i∞

c−i∞

extdx

(x+ 1)2
+

∞X
j=1

1

2πi

Z c+i∞

c−i∞

xextdx

(x+ 1 + j)2 (x+ j)

where c > 0. When closing the contour over the negative Re (x)-plane equals, we encounter a simple

pole at x = −j and a double pole at x = −j − 1. By Cauchy residue theorem, we have

1

2πi

Z c+i∞

c−i∞

xextdx

(x+ 1 + j)2 (x+ j)
= lim

x→−j

xext

(x+ 1 + j)2
+ lim

x→−j−1

d

dx

xext

(x+ j)

= (j + 1) te−(j+1)t − je−jt
¡
1− e−t

¢
Hence,

fNw∗ (t) =
∞X
j=0

(j + 1) te−(j+1)t − je−jt
¡
1− e−t

¢
=
¡
t− 1 + e−t

¢ ∞X
j=1

je−jt

12



After computing the sum, we find (23). ¤
Observe that direct application of the asymptotic expansion of the Gamma function, for large N

and fixed x, into (21) is only valid for fixed j,

jX
k=1

Γ (x+ k)

Γ (k)

Γ (N − k + 2)

Γ (N − k + (x+ 2))
=

jX
k=1

Γ (x+ k)

Γ (k)
N−x ¡1 +O

¡
N−1¢¢

= N−xΓ (x+ j + 1)

(x+ 1)Γ (j)
+O

¡
N−x−1¢

By ignoring this restriction, we would erroneously deduce

E
h
e−Nxw∗

i
∼ N−x−1

x+ 1

NX
j=1

Γ (N + x− j + 1)

Γ (N − j + 1)
+O

⎛⎝N−x−2
NX
j=1

(j − 1)!Γ (N + x− j + 1)

(N − j)!Γ (x+ j + 1)

⎞⎠
∼ N−x−1

(x+ 1)2
Γ (N + x+ 1)

Γ (N)
+O

⎛⎝N−2
NX
j=1

Γ (j)

Γ (j + x+ 1)

⎞⎠
Since

PN
j=1

Γ(j)
Γ(j+x+1) =

1
x2Γ(x)

− Γ(N+1)
xΓ(N+x+1) = O (N−x), it is tempting to conclude that

E
h
e−Nxw∗

i
∼ 1

(x+ 1)2
+O

¡
N−x−2¢

whose leading term is the pgf of the sum of two exponential random variables with mean 1. In this

way, only the first term in the exact asymptotic pgf (19) is found, which shows that this heuristic

derivation is therefore demonstrably incorrect.

4 Distribution of extreme interattachment times

Since the set of link weights in the URT, {(v1 − v0) , (v2 − vn2) , . . . , (vN − vnN )}, are dependent ran-
dom variables, we focus in the sequel on the set of the independent interattachment times to the

URT.

4.1 The minimum interattachment time to the URT

Since the set of {τj}1≤j≤N are independent, exponential random variables with mean 1
j(N+1−j) , the

minimum [21, p. 51] is again exponentially distributed with mean 1
N
j=1 j(N+1−j)

. From [15, pp. 1]

NX
j=1

j (N + 1− j) =
N(N + 1)(N + 2)

3!
=

µ
N + 2

3

¶
we find that the pdf of the minimum interattachment time to the URT is

fmin1≤j≤N τj (x) =
N(N + 1)(N + 2)

3!
exp

µ
−N(N + 1)(N + 2)

3!
x

¶
The pdf of the minimum link weight in the whole complete graph KN+1, where all link weights

are i.i.d. with mean 1, is fminl∈KN+1 wl (x) =
N(N+1)

2 exp
³
−N(N+1)

2 x
´
, where wl is the weight of link l.

Hence, the minimum interattachment time can be significantly smaller than the minimum link weight

in KN+1, and thus in any URT.
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4.2 The maximum interattachment time to the URT

Analogously, the maximum interattachment time to the URT satisfies

Pr

∙
max
1≤j≤N

τj ≤ x

¸
=

NY
j=1

³
1− e−j(N+1−j)x

´
(24)

The remainder of the article is devoted to the maximum interattachment time to the URT τmax =

max1≤j≤N τj . We start with the Theorem 3, from which the relation between τmax and w∗ for large

N will be deduced.

Theorem 3 The asymptotic law of τmax for large N is

lim
N→∞

Pr [Nτmax ≤ ξ] =
∞Y

m=1

(1− e−ξm)2 (25)

We give two proofs. In Appendix B, we present an analytic proof that, beside the correct scaling

x = ξ
N , actually gives a more precise result including an error term. Once the correct scaling law is

known, we can verify Theorem 3 more elegantly. The short proof is given here.

Proof: We rewrite (24) as

Pr [wmax ≤ x] =
aY

j=1

³
1− e−j(N+1−j)x

´ NY
j=a+1

³
1− e−j(N+1−j)x

´
Letting k = N + 1− j in the last product, then 1 ≤ k ≤ N − a

NY
j=1

³
1− e−j(N+1−j)x

´
=

aY
j=1

³
1− e−j(N+1−j)x

´N−aY
k=1

³
1− e−(N+1−k)kx

´
Choosing a = N −a, results in a = N

2 , where the integer nature of a for large N can be ignored. With

the scaling x = ξ
N , we have

Pr

∙
wmax ≤

ξ

N

¸
=

N
2Y

j=1

³
1− e−jξ(1−

j−1
N
)
´2

=
αNβ−1Y
j=1

³
1− e−jξ(1−

j−1
N
)
´2 N

2Y
j=αNβ

³
1− e−jξ(1−

j−1
N
)
´2

(26)

where α > 0 and 0 < β < 1 such that 1− j−1
N = 1− o (N) in the first product. In the second product,

all exponentials vanish when N →∞ such that

lim
N→∞

N
2Y

j=αNβ

³
1− e−jξ(1−

j−1
N
)
´2
= 1

Taking the limit N →∞ in (26) finally leads to (25). ¤
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5 The Dedekind Eta function

The Dedekind Eta function [15] is, for t ∈ C with Im (t) ≥ 0,

η (t) = eπit/12
∞Y

m=1

(1− e2πitm) (27)

and it obeys the modular transformation equations [15, p. 163],

η (t+ b) = eπib/12η (t)

η

µ
at+ b

ct+ d

¶
= f (a, b, c, d)

r
ct+ d

i
η (t)

where a, b, c, d are integers and f (a, b, c, d) is specified in [15, p. 163] in terms the Legendre-Jacobi

symbol of number theory. In particular,

η

µ
−1
t

¶
= η (t)

r
t

i
(28)

Let us denote the asymptotic random variable by Tmax = limN→∞Nτmax. By (27) and (28), (25) can

be expressed as

Pr [Tmax ≤ ξ] =
∞Y

m=1

(1− e−ξm)2 = e
ξ
12 η2

µ
ξi

2π

¶
(29)

=
2π

ξ
e
ξ
12 η2

µ
2π

ξ
i

¶
(30)

Hence, a functional equation for the distribution of Tmax follows as

Pr [Tmax ≤ 2πt] =
e
π
6 (t−

1
t )

t
Pr

∙
Tmax ≤

2π

t

¸
We found the appearance of the Dedekind function in probability theory surprising since it may

hint to a connection with analytic number theory. The sequel is devoted to compute the moments

and pgf of the asymptotic random variable Tmax, by using amazing properties of the Dedekind Eta

function.

5.1 Taylor series of Pr [Tmax ≤ ξ]

The computation of the Taylor series of Pr [Tmax ≤ − log q] =
Q∞

m=1(1− qm)2 where q = e−ξ requires

a brief review of some classical results. Euler discovered the series

∞Y
m=1

(1− qm) =
∞X

n=−∞
(−1)nq 12n(3n+1) |q| < 1 (31)

from which the famous pentagonal number theorem is deduced [4, p. 124][15, p. 173]. Jacobi found

that ∞Y
m=1

(1− qm)3 =
∞X
n=0

(−1)n (2n+ 1) q 12n(n+1) |q| < 1 (32)
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and the generating function of the number of partitions p (m) is,
∞Y

m=1

(1− qm)−1 =
∞X
n=0

p (n) qn |q| < 1 (33)

where p (0) = 1, p (1) = 1, p(2) = 2, p (3) = 3, p (4) = 5, p (5) = 7, p (6) = 11, after which the prime

sequence stops since p (7) = 15, p (8) = 22 and so on. The “singularly happy” collaboration of Hardy

and Ramanujan, as coined by Littlewood [3, Section 5.1] and narrated in [7], has led to a beautiful

and remarkably accurate asymptotic formula for p (m), that was later perfected by Rademacher (see

[3, 15]). At last, we mention Ramanujan’s tau function that features a similar functional equation

as the Riemann Zeta function [7, Chapter X], defined by the generating function
P∞

n=1 τ (n) q
n =

q
Q∞

m=1(1− qm)24.

These results on integer powers of
Q∞

m=1(1−qm) provide several ways to compute the Taylor series
of Pr [Tmax ≤ − log q]. Multiplying (32), rewritten as a power series in q, and (33) yields

∞Y
m=1

(1− qm)2 =
∞X

m=0

(−1)k (2k + 1) 1
m=k(k+1)

2

qm
∞X
n=0

p (n) qn

=
∞X

m=0

(
mX
n=0

p (m− n) (−1)k (2k + 1) 1
n=

k(k+1)
2

)
qm

Hence, the Taylor expansion for Pr [Tmax ≤ − log q] is
∞Y

m=1

(1− qm)2 =
∞X

m=0

amq
m (34)

where the Taylor coefficients are all integers,

am =

[ 12(
√
8m+1−1)]X
k=0

(−1)k (2k + 1) p
µ
m− k(k + 1)

2

¶
(35)

and [x] denote the largest integer smaller of equal to x. We list the first 22 coefficients,

a0 = 1 a1 = −2
a2 = −1 a3 = 2

a4 = 1 a5 = 2

a6 = −2 a7 = 0

a8 = −2 a9 = −2
a10 = 1 a11 = 0

a12 = 0 a13 = 2

a14 = 3 a15 = −2
a16 = 2 a17 = 0

a18 = 0 a19 = −2
a20 = −2 a21 = 0

These Taylor coefficients am of Pr [Tmax ≤ − log q] apparently lack a nice number theoretic interpre-
tation and they form a less elegant series4 than the Taylor coefficients of the first and third power of

4Taylor coefficients of ∞
m=1(1− qm)x for any complex x can be computed exactly (in terms of the divisor function

σ (n) = d|n d), which straightforwardly extends the machinery in the next subsection from the present case of interest

x = 2 to any x. Numerical evaluations of the first 100 Taylor coefficients for positive integers x = k shows that none of

the cases k = 2 nor k ∈ [4, 100] exhibits a regular structure, only the cases k = 1 and k = 3. Order estimates of the high

order Taylor coefficients at negative, integer values of k have been found by Meinardus (see e.g. [3, Chapter 6]).
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Q∞
m=1(1− qm).

Finally, we remark that the Taylor series (34) is, in fact, also a convergent asymptotic series for

large ξ, such that

Pr [Tmax ≤ ξ] =
∞Y

m=1

(1− e−mξ)2 =
∞X

m=0

ame
−mξ

= 1− 2e−ξ − e−2ξ + 2e−3ξ +O
³
e−4ξ

´
(36)

5.2 The moments of Tmax

We compute the Mellin transform using (25) and (34),

E
h
T β
max

i
=

Z ∞

0
ξβ

d

dξ

Ã ∞Y
m=1

(1− e−ξm)

!2
dξ

=

Z ∞

0
ξβ

d

dξ

Ã ∞X
m=0

ame
−ξm

!
dξ

=
∞X

m=1

am (−m)
Z ∞

0
ξβe−ξmdξ

Thus5,

E
h
T β
max

i
= −Γ (β + 1)

∞X
m=1

am
mβ

(37)

is a Dirichlet series that converges for β ≥ 0 as seen from (34) because
P∞

m=1 am = −1. Moreover, for
large β, the Dirichlet series (37) reveals that

E
h
T β
max

i
Γ (β + 1)

= 2 + 2−β −
∞X

m=3

am
mβ

= 2
³
1 + 2−β−1

´
+O

³
3−β

´
(38)

A well-known fact of Dirichlet series is the slow convergence, especially for small values of β: For

m ∈ [1000, 2000], we found E [ωmax] = 1.70± 0.01 and in m ∈ [2000, 3000], E [ωmax] = 1.703 + 0.005
and, similarly, Var[ωmax] ≈ 1.042. One of the spectacular properties of the Dedekind transform (28)

— essentially a modular transform that also is characteristic to Jacobi’s theta-functions —, is that they

enable amazingly fast convergence. Indeed, after partial integration,

E
h
T β
max

i
= β

Z ∞

0
ξβ−1

Ã
1−

∞Y
m=1

(1− e−ξm)2
!
dt

we write the integrand in terms of the Dedekind function (29),

E
h
T β
max

i
= β (2π)β

Z ∞

0
uβ−1

³
1− e

πu
6 η2 (iu)

´
du (39)

5A power series ∞
m=0 bm e−x

m
, convergent for x > 0, may be multiplied by xs−1 where s > 0, and integrated

term-by-term, provided only that the resulting series is convergent [16, Sec. 1.79, p. 47].
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We split the integration interval as,Z ∞

0
uβ−1

³
1− e

πu
6 η2 (iu)

´
du =

Z c

0
uβ−1

³
1− e

πu
6 η2 (iu)

´
du+

Z ∞

c
uβ−1

³
1− e

πu
6 η2 (iu)

´
du

=
cβ

β
−
Z c

0
uβ−1e

πu
6 η2 (iu) du+

Z ∞

c
uβ−1

³
1− e

πu
6 η2 (iu)

´
du

and apply the transform (28) to the argument in the first integralZ ∞

0
uβ−1

³
1− e

πu
6 η2 (iu)

´
du =

cβ

β
−
Z c

0
uβ−2e

πu
6 η2

µ
i

u

¶
du+

Z ∞

c
uβ−1

³
1− e

πu
6 η2 (iu)

´
du

=
cβ

β
−
Z ∞

1
c

u−βe
π
6u η2 (iu) du+

Z ∞

c
uβ−1

³
1− e

πu
6 η2 (iu)

´
du

The procedure followed here actually mimics Riemann’s famous second derivation of the functional

equation of the Riemann Zeta function [17, Chapter 2] using Jacobi’s (third) theta-function.

Partial integration of the last integral results inZ ∞

c
uβ−1

³
1− e

πu
6 η2 (iu)

´
du = −c

β

β

³
1− e

πc
6 η2 (ic)

´
+
1

β

Z ∞

c
uβ

d

du

³
e
πu
6 η2 (iu)

´
du

Hence,Z ∞

0
uβ−1

³
1− e

πu
6 η2 (iu)

´
du =

cβ

β
e
πc
6 η2 (ic)−

Z ∞

1
c

u−βe
π
6u η2 (iu) du+

1

β

Z ∞

c
uβ

d

du

³
e
πu
6 η2 (iu)

´
du

Introducing (34) yieldsZ ∞

0
uβ−1

³
1− e

πu
6 η2 (iu)

´
du =

cβ

β

∞X
m=0

ame
−2πmc −

∞X
m=0

am

Z ∞

1
c

u−βe
π
6u e−(

π
6
+2πm)udu

− 2π
β

∞X
m=1

mam

Z ∞

c
uβe−2πumdu

We proceed further for the moments, where β = k > 0 are positive integers, because then the last

integral is Z ∞

c
uke−2πumdu =

1

(2πm)k+1

Z ∞

2πmc
xke−xdx =

Γ (k + 1, 2πmc)

(2πm)k+1

=
k!e−2πmc

(2πm)k+1

kX
j=0

(2πmc)j

j!

where we have used the expansion of the incomplete Gamma function [1, 6.5]. Thus,

E
h
T k
max

i
= (2πc)k

⎧⎨⎩1− k!
∞X

m=1

ame
−2πmc

(2πmc)k

k−1X
j=0

(2πmc)j

j!

⎫⎬⎭− k (2π)k
∞X

m=0

am

Z ∞

1
c

u−ke
π
6u e−(

π
6
+2πm)udu

Unfortunately, the remaining integral cannot be evaluated in closed form6, but, it is bounded byZ ∞

1
c

u−βe
π
6u e−(

π
6
+2πm)udu < e

πc
6 cβe−(

π
6
+2πm) 1c < e

π
6 (c−

1
c )cβ

6There are results in terms of Bessel functions, but they are far less attractive than the integral itself. By partial

integration, a recursion similarly to that of the incomplete Gamma function can be derived from which an asymptotic

series is obtained.
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Hence, by choosing c small enough for β > 0, the integral can be made sufficiently small to neglect.

However, choosing c very small, enlarges the factor e−2πmc

(2πmc)k
and the need to evaluate more terms in

m-sum to achieve a prescribed level of accuracy. A minimization of terms in the m-sum is achieved

by making both integrals about equally large, thus, for c = 1. This choice — Riemann’s original choice

— expresses the average of all (integer powers) of Tmax in terms of a fast converging series

E
h
T k
max

i
= (2π)k

⎧⎨⎩1− k!
∞X

m=1

ame
−2πm

(2πm)k

k−1X
j=0

(2πm)j

j!

⎫⎬⎭− k (2π)k
∞X

m=0

am

Z ∞

1
u−ke

π
6u e−(

π
6
+2πm)udu

Compared with the Dirichlet series, only 5 terms in the m-sum provide an accuracy of 10 digits. Thus,
we find, with 15 digits accuracy, E [Tmax] = 1.702955978947701 and Var[Tmax] = 1.040903835036823.
We list a table of the first 10 moments,

E [Tmax] = 1.702955979 E
£
T 2max

¤
= 3.940962901

E
£
T 3max

¤
= 12.19707256 E

£
T 4max

¤
= 48.78787933

E
£
T 5max

¤
= 242.6083708 E

£
T 6max

¤
= 1449.044606

E
£
T 7max

¤
= 10114.37171 E

£
T 8max

¤
= 80784.44155

E
£
T 9max

¤
= 726430.2004 E

£
T 10max

¤
= 7261016.766

In summary, in addition to the relation E [τmin] =
p
Var [τmin] ' 6

N3 for large N , the following

first order estimates
E [τmax] ' 1.703

N Var [τmax] ' 1.041
N

E [w∗] ' 1.645
N Var [w∗] ' 1.45

N

illustrate the curious point that, for large N , the mean of a random weight in the URT and of the

maximum of the interattachment times to the URT are close to each other!

5.3 Asymptotic pgf of Tmax

The probability generating function of the random variable Tmax = limN→∞Nτmax is

ϕTmax (z) = E
£
e−zTmax

¤
=

Z ∞

0
e−zξ

d

dξ

Ã ∞Y
m=1

(1− e−ξm)

!2
dξ (40)

which converges for Re (z) > −1 as follows from (36). Introducing the power series (34)

ϕTmax (z) =

Z ∞

0
e−zξ

d

dξ

Ã ∞X
m=0

ame
−ξm

!
dξ

and reversing the sum and integral, yields

ϕTmax (z) = −
∞X

m=1

mam
m+ z

= 1 + z
∞X

m=1

am
m+ z

(41)

The series (41) is a partial fraction expansion that converges everywhere, except at the poles z = −m
with m ∈ N. Indeed, we have that¯̄̄̄

¯
∞X

m=1

am
m+ z

¯̄̄̄
¯ ≤

∞X
m=1

|am|
|m+ z| ≤

∞X
m=1

|am|
m− |z| =

[|z|]X
m=1

|am|
m− |z| +

∞X
m=1+|z|

|am|
m
³
1− |z|

m

´
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and

∞X
m=1+|z|

|am|
m
³
1− |z|

m

´ = ∞X
m=1+|z|

|am|
m

∞X
k=0

|z|k

mk
=

∞X
m=1+|z|

|am|
m

µ
1 +

|z|
m
+O

¡
m−2

¢¶

=
∞X

m=1+|z|

|am|
m

+ |z|O

⎛⎝ ∞X
m=1+|z|

|am|
m2

⎞⎠
Since the Dirichlet series

P∞
m=1

am
mβ converges for β ≥ 0, it converges absolutely for β ≥ 1 [16, p. 292].

This proves convergence of (41) for any complex z, except at the poles z = −m. Due to the pole at
z = −1, the Taylor series of ϕTmax (z) =

P∞
k=0

(−1)kE[Tkmax]
k! zk around z = 0 has a radius of convergence

equal to 1, a fact that also follows from (38).

The slow converge of the partial fraction expansion (41) again suggests us to invoke the Dedekind

transform (28) to obtain fast converging series. After partial integration of (40),

ϕTmax (z) = z

Z ∞

0
e−zξ

Ã ∞Y
m=1

(1− e−ξm)

!2
dξ (42)

we introduce (29) into (42)

ϕTmax (z) = z

Z ∞

0
e−zξe

ξ
12 η2

µ
ξi

2π

¶
dξ

Applying the Dedekind transform (30) combined with (34) gives

η2
µ
2π

ξ
i

¶
= e−

(2π)2

12ξ

∞X
m=0

ame
− (2π)2

ξ
m

such that

ϕTmax (z) = 2πz
∞X

m=0

am

Z ∞

0

dξ

ξ
e−(z−

1
12)ξe−

(2π)2

ξ (m+ 1
12)

For Re(a) > 0 and Re (b) > 0 and any s ∈ C, the integral is written in terms of the modified Bessel
function [26, Section 6.22] Z ∞

0
xs−1e−ax−b/xdx = 2

µ
b

a

¶s/2

Ks

³
2
√
ab
´

(43)

and we obtain, only for Re (z) > 1
12 ,

ϕTmax (z) = 4πz
∞X

m=0

amK0

Ã
4π

sµ
z − 1

12

¶µ
m+

1

12

¶!
(44)

This series (44) converges amazingly faster than (41): for z = 1
2 , only 9 terms in the m-sum achieve a

10 digits accuracy, whereas (41) provides only 2 digits with 3000 terms; for z = 1, four terms in (44)

provide 10 digits accuracy, while (41) remains at 2 digits with 3000 terms.

Following a similar approach, we present a related series for ϕTmax (z). We use Euler’s pentagonal

number series (31),
∞Y

m=1

(1− e−ξm)2 = e
ξ
24 η

µ
ξi

2π

¶ ∞X
n=−∞

(−1)ne− 1
2
n(3n+1)ξ
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The Dedekind transform gives

η

µ
ξi

2π

¶
=

r
2π

ξ
η

µ
2π

ξ
i

¶
Since η

³
ξ
2π i
´
= e−

ξ
24
P∞

n=−∞(−1)ne−
1
2
n(3n+1)ξ, it follows that

η

µ
2π

ξ
i

¶
= e−

(2π)2

24ξ

∞X
k=−∞

(−1)ke−
1
2
k(3k+1)

(2π)2

ξ

such that

ϕTmax (z) = z
√
2π

∞X
k=−∞

(−1)k
∞X

n=−∞
(−1)n

Z ∞

0
ξ
1
2
−1e−ξ(z−

1
24
+1
2
n(3n+1))e

−1
ξ

(2π)2

24
+ 1
2
k(3k+1)(2π)2

dξ

Invoking the integral (43) for the modified Bessel function, we have

I =

Z ∞

0
ξ
1
2
−1e−ξ(z−

1
24
+ 1
2
n(3n+1))e

− 1
ξ

(2π)2

24
+ 1
2
k(3k+1)(2π)2

= 2
√
2π

Ã
1
24 +

k(3k+1)
2

z − 1
24 +

n(3n+1)
2

! 1
4

K 1
2

Ã
4π

sµ
z − 1

24
+

n (3n+ 1)

2

¶µ
1

24
+

k (3k + 1)

2

¶!

An exact expression for Kn+1
2
(z) exists [1, 10.2.17], in particular, K1/2 (z) =

p
π
2ze

−z, which, when

applied, leads to

ϕTmax (z) = 4πz
∞X

k=−∞
(−1)k

∞X
n=−∞

(−1)n e
−4π (z− 1

24
+ 1
2
n(3n+1))( 124+

1
2
k(3k+1))p

24z − 1 + 12n (3n+ 1)
(45)

We still see that the term n = 0 limits the validity to Re (z) > 1
24 . Only a few terms in the k- and

n-series already provide a good accuracy.
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A Sums of Gamma functions

Lemma 4 For any integer N and Re (x) > 0, we have that

NX
m=N+1−j

Γ (m+ 1)

Γ (m+ x+ 1)

Γ (N + 1−m+ x)

Γ (N + 1−m)
=
Γ (N + x+ 2)

Γ (x)Γ (j)

∞X
k=0

1

k!

Γ (j + x+ k + 1)

(x+ k + 1)

Γ (k + x)

Γ (N + 2x+ k + 2)

(46)

Proof: We introduce the Beta function integral [1, 6.2.1],

B (w, z) =
Γ (z)Γ (w)

Γ (z +w)
=

Z 1

0
tz−1 (1− t)w−1 dt

22



which is valid for Re (z) > 0 and Re (w) > 0, in

T =
NX

m=N+1−j

Γ (m+ 1)

Γ (m+ x+ 1)

Γ (N + 1−m+ x)

Γ (N + 1−m)

such that, for Re (x) > 0,

T =
1

Γ (x)

Z 1

0
dt (1− t)x−1

NX
m=N+1−j

Γ (N + 1−m+ x)

Γ (N + 1−m)
tm

=
1

Γ (x)

Z 1

0
dt (1− t)x−1

jX
k=1

Γ (k + x)

Γ (k)
tN+1−k

=
1

Γ (x)

Z 1

0
dt (1− t)x−1 tN

j−1X
k=0

Γ (k + 1 + x)

k!

µ
1

t

¶k

Introducing Euler’s integral for the Gamma function into the k-sum yields

j−1X
k=0

Γ (k + 1 + x)

k!

µ
1

t

¶k

=

j−1X
k=0

1

k!

µ
1

t

¶k Z ∞

0
uk+xe−udu =

Z ∞

0
uxe−u

j−1X
k=0

1

k!

³u
t

´k
du

We now employ
j−1X
k=0

¡
u
t

¢k
k!

=
e
u
t Γ
¡
j, ut

¢
(j − 1)! =

e
u
t

(j − 1)!

Z ∞

u
t

yj−1e−ydy

where the incomplete Gamma function is defined [1, 6.5.3] as Γ (a, x) =
R∞
x ya−1e−ydy such that

j−1X
k=0

Γ (k + 1 + x)

k!

µ
1

t

¶k

=
1

Γ (j)

Z ∞

0
du uxe−ue

u
t

Z ∞

u
t

yj−1e−ydy

=
tx+1

Γ (j)

Z ∞

0
dw wxe−wtew

Z ∞

w
yj−1e−ydy

Partial integration yields

j−1X
k=0

Γ (k + 1 + x)

k!

µ
1

t

¶k

=
tx+1

Γ (j)

Z ∞

0
dw wj−1e−w

Z w

0
uxeu(1−t)du

We compute the u-integral asZ w

0
uxeu(1−t)du =

∞X
k=0

(1− t)k

k!

Z w

0
ux+kdu =

∞X
k=0

(1− t)k

k!

wx+k+1

(x+ k + 1)

Hence,

j−1X
k=0

Γ (k + 1 + x)

k!

µ
1

t

¶k

=
tx+1

Γ (j)

∞X
k=0

(1− t)k

k!

1

(x+ k + 1)

Z ∞

0
dw wj+x+k+1−1e−w

=
tx+1

Γ (j)

∞X
k=0

(1− t)k

k!

Γ (j + x+ k + 1)

(x+ k + 1)
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Substituting this series, results in

T =
1

Γ (x)Γ (j)

∞X
k=0

1

k!

Γ (j + x+ k + 1)

(x+ k + 1)

Z 1

0
dt (1− t)x+k−1 tN+x+1

=
1

Γ (x)Γ (j)

∞X
k=0

1

k!

Γ (j + x+ k + 1)

(x+ k + 1)

Γ (N + x+ 2)Γ (k + x)

Γ (N + 2x+ k + 2)

which establishes (46). ¤
Although proven under the restriction that Re (x) > 0, Lemma 4 seems also valid for negative real

x, but clearly not for x = 0.

Lemma 5 The sum

Hp (y) =
1

Γ (y + p)

NX
j=p+1

Γ (y + j + k − p)

Γ (y + j)

Γ (N + y + p− j)

Γ (N + 1− j)
(47)

obeys the recursion

Hp (y) =
Γ (y + 1 + k)

Γ2 (y + p+ 1)

Γ (N + y)

Γ (N − p)
+ (k − p)Hp+1 (y) (48)

and equals

Hp (y) =

N−p−1X
j=0

(k − p)!

(k − p− j)!

Γ (y + 1 + k)

Γ2 (y + p+ 1 + j)

Γ (N + y)

Γ (N − p− j)
(49)

Proof: Using the binomial recursion
¡a−j
b−j
¢
=
¡a−j+1

b−j
¢
−
¡ a−j
b−j−1

¢
yields

Hp (y) =
NX

j=p+1

Γ (y + j + k − p)

Γ (y + j)

µ
N + y + p− 1− j + 1

N − j

¶
−

N−1X
j=p+1

Γ (y + j + k − p)

Γ (y + j)

µ
N + y + p− 1− j

N − j − 1

¶

=
NX

j=p+1

Γ (y + j + k − p)

Γ (y + j)

µ
N + y + p− 1− j + 1

N − j

¶
−

NX
j=p+2

Γ (y + j + k − p− 1)
Γ (y + j − 1)

µ
N + y + p− j

N − j

¶

=
Γ (y + 1 + k)

Γ (y + p+ 1)

µ
N + y − 1
N − p− 1

¶
+

NX
j=p+2

½
Γ (y + j + k − p)

Γ (y + j)
− Γ (y + j + k − p− 1)

Γ (y + j − 1)

¾µ
N + y + p− j

N − j

¶
With

Γ (y + j + k − p)

Γ (y + j)
− Γ (y + j + k − p− 1)

Γ (y + j − 1) = (k − p)
Γ (y + j + k − p− 1)

Γ (y + j)

we obtain

Hp (y) =
Γ (y + 1 + k)

Γ2 (y + p+ 1)

Γ (N + y)

Γ (N − p)
+(k − p)

NX
j=(p+1)+1

Γ (y + j + k − (p+ 1))
Γ (y + j)

µ
N + y + (p+ 1)− 1− j

N − j

¶

which equals the recursion (48). Iterating the recursion (48) q-times yields

Hp (y) =

q−1X
j=0

(k − p)!

(k − p− j)!

Γ (y + 1 + k)

Γ2 (y + p+ 1 + j)

Γ (N + y)

Γ (N − p− j)
+

(k − p)!

(k − p− q)!
Hp+q (y)

Since HN (y) = 0, we arrive with q = N − p at (49). ¤
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From the definition (47)

G =
NX
j=1

Γ (x+ j + 1 + k)

Γ (x+ j + 1)

Γ (N + 1− j + x)

Γ (N + 1− j)
= Γ (x+ 1)H0 (x+ 1)

we obtain with (49)

G = Γ (x+ 1)Γ (x+ 2 + k)Γ (N + x+ 1)
N−1X
j=0

k!

(k − j)!

1

Γ2 (x+ 2 + j)Γ (N − j)
(50)

B Proof of Theorem 3

We start by considering the logarithm of (24),

− log Pr [τmax ≤ x] = −
NX
j=1

log
³
1− e−j(N+1−j)x

´
=
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Lemma 6 formally shows, provided the q-sum converges, that
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We now embark on the limiting process for large N . For large z and Re (z) > 0, the asymptotic

expansion of the Kummer function [1, 13.1.4] is Γ(a)
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Substituting this series into (51) yields
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Now,
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In order to have a finite limit as N → ∞, we need to scale x as x (N + 1) = ξ and this proves (25).
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Lemma 6 Provided the q-sum converges, there holds that
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where Bk are the Bernoulli numbers and where the Kummer function [1, 13.1.2] is
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Proof: We rewrite the j-sum as
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which simplifies, since B2q+1 = 0 for q > 0, to
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and, the first m-sum is
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