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A Framework for Computing Topological Network
Robustness
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Abstract— Currently, there does not seem to exist a commonly
agreed definition of the robustness of a network, nor a framework
to modify a network in order to meet some desired level of
robustness. The goal of this article is to present a definition and
a framework to compute topological network robustness.

I. INTRODUCTION

Any network may be regarded as possessing at least two
crucial “features”: a network topology or infrastructure and
a service for which the network is designed or created.
A network topology specifies how items, called nodes, are
interconnected or related to other nodes by links. The net-
work interconnection pattern, the network topology, can be
represented by a graph G, consisting of N nodes and L links.
Each link in G can be further specified by a set of link weights
that reflect attributes such as delay, packet loss, available
capacity, distance, monetary cost, synchronization likelihood,
trust and/or friendship level, etc.

The network service is more abstract and less clearly
defined. In general, a service uses the network infrastructure
to transport items between a group of nodes, possibly subject
to some constraints. A service is specified by a protocol,
consisting of the application (software executed at source and
destination nodes) and of a network communication “engine”.
For example, in the Internet, a communication service such as
email transports a message from a source node to a destination
over the network topology. Other examples of services in
complex networks are road transport, neuron transport in
the brain, financial transactions on a stock market and news
spreading in social networks.

Both the topology and service are usually time-variant and
may have their own specific properties and requirements.
Although a service is often designed independently of the
topology, the end-to-end behavior of a service is influenced
by the topology and a topology is most often designed to
offer a certain service. There are more services possible over
one topology as in the Internet (e.g. file transfer, email,
webservices). Thus, in general, the duo of service and topology
are not necessarily operating in some optimal way. We believe
that a definition of network robustness needs to take both
“planes”, topology and service, into account.

Here, we interpret network robustness as a measure of
the network’s response to perturbations or challenges (such
as failures or external attacks) imposed on the network.
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Establishing a more precise definition that can be computed
is the purpose of this article. A computable measure for
network robustness allows us to (a) compare different networks
and (b) improve a network to achieve a desirable level of
robustness. We ought to mention that the ambition to propose
a framework for network robustness is currently “a bridge too
far”. The network service in particular seriously complicates
a computable framework. For instance, we observe that a
network that is very efficient in propagating information is,
on the other hand, also quite vulnerable to virus or malware
spread (that is “undesirable information”). This illustrates that
opposite properties in services over a same topology may
exist, at any rate, if “virus anti-spread” can be regarded as
a service. The broad range of security services in any network
are perhaps better regarded as “constraints1” to any efficient
transport service of items, rather than as a service on its
own. In what follows, we adopt this point of view because
one hardly builds a network with “security” as the primary
service. Apart from clear evaluation criteria of a network
service and besides often contradictory service requirements,
the robustness of a service may be interpreted differently by
the service provider or network operator and by the customer
or end-user. As a consequence, this paper proposes, prudently
and in a limited way, a framework for topological network
robustness, that is able, in principle, to take the services into
account.

A. State of the art
The huge complexity in communications networks (due

to a multi-layer protocol suite, different aggregation levels,
missing service metrics that adequately capture and define ro-
bustness properties, and a dynamically changing and uncertain
topology) illustrates why, at present, a framework to compute
network robustness is still lacking.

A wealth of procedures to evaluate and improve network
robustness has been proposed over the last 50 years. A
literature overview of the proposed frameworks for resilience
(here called robustness) is presented by Cholda et al. [13].
The first approach to network robustness was in the context
of network reliability [57], [56], [43], [33], primarily aiming
at connectivity measures, both deterministic and probabilistic.
Network nodes and links are weighted with failure (survival)
probabilities and graph theoretic tools together with Boolean
logic techniques are used to compute the connectivity between

1Most functionalities (both software as hardware) to secure network ser-
vices incur additional delay and consume additional network resources, such
that they can be considered as limiting or constraining.
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arbitrary network endpoints (terminal reliability) [57], [56],
[43] and for the network as a whole (network reliability)
[33]. The probability of a graph to remain connected after a
number of network component failures is studied using graph
percolation in [23], [46] and reliability polynomials in [12],
[11]. Recently, attention has been given to the study of power
law network’s reliability [40], [27], [9], since Faloutsos et
al. [21] showed that the degree distribution of the Internet
topology follows a power law. Overall, reliability studies are
a valuable tool to address the risk for network disconnectivity
via stochastic models. However, reliability studies present two
drawbacks. First, reliability studies are shown not to be optimal
due to the irregular stress cycles of network elements [16].
Second, these studies ignore the multi-level service nature of
networks.

Performance concerns, on the other hand, are explicitly
treated in the performability framework, introduced by Meyer
in [35]. The term performability was initially launched to cover
a class of unified performance-reliability measures [35], but
soon evolved to a more general theory and tools assessing
the capability of systems to perform in the presence of faults
[36]. Similar to our framework, performability studies have
been trying to incorporate the impact of lower level system
processes to higher-level application performance. Contrary to
our framework, the emphasis of performability work is not on
the network topology: higher levels of abstractions, modeled
by stochastic Petri nets and Markovian chains, are necessary
to compute performability.

Several international projects such as GRID, AMBER,
HIDENETS, ResiliNets and ReSIST have been launched in
recent years aiming to improve the robustness level of critical
infrastructures. These projects provide important advances in
their respective fields (power grids and computing systems)
by proposing techniques and algorithms to improve system
evolution, assessability, usability or diversity [25]. However,
the majority of these studies focus on specific systems, e.g.
SQL database software, lacking the generality of a multidis-
ciplinary framework. GRID studies power systems vulnera-
bilities spurred by the transformation of the European power
infrastructure, ReSIST leads research activities to ensure that
present and future computing systems would have the desired
resilience and survivability.

A recurrent difficulty in the study of network robustness is
the lack of standardized terminology. A stream of apparently
new metrics – akin to old wine in new bottles – such as the
expandability or degree distribution entropy [53], [19], [38],
is being generated in scientific publications. The creation of
new words, while innovative, adds complexity to the already
confusing robustness terminology. To solve the terminology
chaos, already in 1980 a joint committee on “Fundamental
Concepts and Terminology", formed by the TC on Fault-
Tolerant Computing of the IEEE CS and the IFIP WG 10.4,
has defined precisely the various robustness concepts of com-
munication systems. Several papers were presented providing
definitions and a taxonomy of robustness metrics [2], including
reliability, availability, safety, integrity and maintainability. All
these concepts were brought under the umbrella term of de-
pendability, while subsequent work also addressed the relation

of dependability [32] and performability [37] to resilience.
However, in spite of the many efforts and apart from some
cases like QoS measures in ATM, many service metrics remain
hard to compute.

II. PROPOSAL OF A FRAMEWORK FOR TOPOLOGICAL
NETWORK ROBUSTNESS

This section proposes a topology or graph centric framework
for network robustness. As for any good framework, we adhere
to the following design specifications. First, the framework
should be as simple as possible, while covering all networks.
Hence, it should be understandable and interpretable. Second,
it should be feasible to compute for any network (of finite
size).

The second requirement is the reason why we limit the
scope of the framework to topological metrics, which can
be computed uniquely for a given graph. On the contrary,
the computation of service metrics, such as dependability and
survivability, turns out to be much harder. Nevertheless, our
formulation allows service aspects to be incorporated (see
Section III).

A. The R-value
Fig. 1 illustrates a general question in the field of complex

networks: “Given a network at a certain time, is that network
appropriate or good for our purposes?” For example, an
Internet service provider may ask whether his current network
is “good”, a neurologist may want to know whether the
functional network of the brain of a patient is “normal”. Of
course, the above question is ill-posed and not clearly stated
because appropriate or good need to be defined.
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Fig. 1. The organigram or flow chart of the high level goal to achieve
network robustness.

We assume that the network graph G, defined by a set N
of N nodes that is interconnected by a set L of L links, the
link weight structure and the service (i.e. a software code,
protocol or algorithm that specifies the service, see e.g. [47])
are known. A given network at a certain time, defined by
a service and a topology as in Fig. 1, is translated into a
mathematical object, on which computations can be performed
such as the computation of a “goodness” value or robustness
value, called the R-value. In general terms, the R-value is
a performance measure that is relevant for the service and
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normalized to the interval [0, 1]. Thus, R = 0 corresponds to
absence of network “goodness” and R = 1 reflects perfect
“goodness”. An example of a performance measure is a graph
metric such as the average hopcount, the average betweenness,
etc. We refer to [4], [17] for a quite extensive discussion and
comprehensive list of graph metrics and to [48] for additional
properties. One of the main purposes of a network robustness
framework is to propose a methodology to define and compute
an R-value that characterizes a level of robustness and to
interpret R-values such that classes of desired values can be
determined. Section III proposes a definition of the R-value
and Section V discusses consequences of the proposed R-
value.

Next, as shown in Fig. 1, the current R-value is compared
with the minimal desired one, Rthresh. The computation of the
R-value can be part of periodic or event-triggered network
maintenance/management operations. Either the R-value is
sufficient in which case we refrain from taking any corrective
action, or the R-value is too low, in which case a modification
to improve the graph is required. The determination of Rthresh
is related to robustness classes, introduced in Section VI-
A. A second goal of a network robustness framework is
to propose efficient – possibly optimal – strategies how a
graph can be modified to increase its R-value subject to some
cost criterion. This point of view crucially assumes that we
have the possibility to alter the topology of the network.
Some networks, such as ad-hoc networks or adaptive and
growing (e.g. social interaction, biological living) networks,
have a flexible topology that varies over time. When the
network topology cannot be changed, the robustness can be
improved by installing proper functionality at network nodes
as discussed in [44] by implementing, for example, a D2R2+
DR methodology. Using the terminology of [44], Section VI
discusses this second “remediation” step.

B. A challenge: an event that changes the network
Suppose that we know how to compute R-values of a

network. A snapshot of the network at time t0 gives rise to an
R-value R (t0). As long as no events, that change the network,
occur during the time-interval [t0, t1], the R-value does not
change and R (t1) = R (t0). In this document, we abstract
from the precise time at which events occur and only focus
on the sequence of changes in the R-values caused by these
events. This abstraction allows us to employ a discrete time
setting (such as in stochastic processing [48, Section 7.1]).
If events that change the topology of the network2 occur at
t1, t2, . . ., we denote the corresponding set of R-values by
R [1] = R (t1), R [2] = R (t2) , . . . and, in general, the k-th
event causes an R-value equal to R [k] = R (tk). Thus, square
brackets with integer arguments refer to the discrete-time
setting, where round brackets with real arguments correspond
to a continuous-time setting. If no brackets are used, we
assume that the network is viewed at a single instance in time.

2Service changes (for example due to traffic variations) need an entire
continuous-time setting, that is, in general, more complex because knowledge
about the temporal behavior needs to be properly included. The discrete
embedding of a continuous process here eliminates the time-dependence (such
as the interarrival times of events) of the process.

If network topologies need to be compared, we use subscripts
as in RG [k] to distinguish between graphs. Finally, if several
(m > 1) R-values on a graph are computed, the list at discrete
time k is denoted by RG;1 [k] , . . . , RG;m [k].

A challenge is an event at time t that changes the network
and the impact of the challenge is defined as ∆R (t) =
R (t+ ε) − R (t− ε), where the real number ε > 0 is
arbitrarily small. In discrete time, the impact of the first
challenge is ∆R [1] = R [1] − R [0], and the impact of the
k-th challenge is ∆R [k] = R [k] − R [k − 1]. Hence, the
analogy with stochastic processes is immediate: the impacts
are increments, whereas the sequence of events generates a
sample path.

C. An elementary change
Generally, a challenge can be a complex change in a net-

work. Here, we assume that any challenge can be decomposed
as a sequence of elementary changes that do not coincide
in time. An elementary change is any change that alters a
graph related matrix, such as the adjacency or Laplacian matrix
[49]. Thus, an elementary change is defined as one of the six
modifications: (1) adding a node to G; (2) removing a node
from G; (3) adding a link to G; (4) removing a link from G;
(5) rewiring3 a link in G and (6) in weighted graphs, changing
the link (or/and node) weight. Although a renumbering of the
nodes is a change, it does not affect the eigenvalues4 of the
graph, and, hence, most topological metrics of the graph G
are unchanged. Hence, a relabeling of nodes is not considered
as an infrastructural change, just as a renaming.

D. Network robustness
The robustness of a network is assessed as the degree of

the network’s capability to withstand perturbations during a
given time interval. A perturbation is a series of n elementary
changes to which the sequence {R [k]}0≤k≤n can be associ-
ated. This definition thus implies that a perturbation can be a
complex challenge consisting of a well-defined number n of
elementary changes. In general, however, n can be a random
variable and is not necessarily an a-priori known integer.

For example, suppose that the R-value is the percentage
of nodes in the largest connected component in the graph G
and that a perturbation P consists of uniformly (at random)
deleting n links in G. Fig. 2 shows three realizations of this
perturbation P versus discrete time k: a random one and the
two most extreme possible. We denote by min (RG [k]) =
Rmin [k] and max (RG [k]) = Rmax [k] the minimum and
maximum, respectively, of the R-value of the graph G at
the k-th elementary change. If the sequence of R-values due
to elementary changes, R [1] , R [2] , . . . , R [n], is independent,
the sequence of the extreme maximum (minimum) one can
be a realization (such as in a flipping coin experiment where
the sequence with n times heads is a possible, though very
unlikely, realization). In general, however, it is possible that

3Replacing one of the two end points of the link to another node.
4If H is a permutation matrix reflecting the renumbering of nodes in the

graph G and A is the adjacency matrix of the graph G, then the new adjacency
matrix A = H−1AH has the same eigenvalues as A (see [48, p. 438]).



4

n

R[k]

k
0 n

R[k]

k
0

Fig. 2. A sketch of three realizations of a perturbation of a network consisting
of n elementary changes: the middle curve is a random realization, while
the upper and lower curves reflect the maximum and minimum of (possibly
several) extreme realizations as explained in the text.

extreme realizations are only maximal in some sub-interval
of [0, n], and not over the entire interval, because of earlier
dependencies. Thus, some extreme realization is maximal in,
say [0,m] with m < n, and another extreme realization is
maximal in [m,n]. For example, the order in which links are
removed in a graph, generally, is important such that the whole
prior history counts. This means that the extreme value over
the entire interval may not be a realization of the perturbation
process, but an upperbound, thus the maximum of extreme
realizations. In the sequel, we call the region between the
maximum sequence, Rmax [1] , Rmax [2] , . . . , Rmax [n], and
the minimum sequence, Rmin [1] , Rmin [2] , . . . , Rmin [n], the
envelope of the perturbation.

The area of the envelope can be regarded as the variation
of the R-impact of a certain perturbation on a graph. More
intuitively, that area quantifies the uncertainty or the amount
of risk due to a perturbation. The envelopes may be refined re-
sulting in better risk assessments. When a particular challenge
class is not encountered or not possible, the resulting envelope
may become narrower and differently shaped as illustrated in
Fig. 3.

The example in Fig. 2 illustrates that nearly all perturbations
necessitate a stochastic setting. For, relabeling the nodes in
a graph does not change the graph, but the sequence of the
nodes (or links) that are perturbed does matter: the sequence
R [1] , R [2] , . . . , R [n] is generally a set of dependent random
variables, because the present state of the network at discrete-
time k does depend on the history of the previous elementary
changes. The observation that the description of a network
perturbation, measured via a metric R, is a stochastic process
that is most likely not Markovian implies that analytic com-
putations are, in most cases, intractable and that simulations,
approximations or measurements are needed.

From the point of view of robustness, the two extreme
realizations or the envelope (or area of the envelope) are
most significant. Indeed, if remediation strategies are possible
for the extremes, any realization of the perturbation can

k

R [k]

0

Fig. 3. An illustration of “envelope refining”.

be counteracted and the threat of the perturbation for the
network is averted. Concentrating on the extremes reduces the
stochastic perturbation process to a much simpler deterministic
process, provided we succeed in computing the extremes.
Unfortunately, in most cases, the computation or determination
of the extreme realizations (i.e. the best or worst perturbation)
is not possible. In general, these are likely NP-complete
problems.

We remark that the elasticity, proposed in [45], is actually
a realization of a metric or R-value due to certain network
perturbations.

E. Comparing network robustness in two different graphs
Suppose that the same perturbation is exercised on two,

initially connected graphs G1 and G2 and that the impact
of the perturbation is measured via the metric R. The initial
R-value for each graph is RG1 [0] and RG2 [0], respectively
and, RG1 [k] and RG2 [k] are random variables at discrete
time k. Depending on the nature of the perturbation, different
comparison criteria are possible as shown below.

When the lowest extreme min (RG1
[k]) is always (thus, for

any 0 ≤ k ≤ n) larger than the highest extrememax (RG2 [k]),
then the graph G1 is more robust than G2 with respect to the
perturbation P . In these, obviously rare cases, the envelopes
of both graphs do not overlap as shown in Fig. 4.

The first and simplest criterion is: “If RG1 [n] > RG2 [n]
(or more precisely5 E [RG1 [n]] > E [RG2 [n]]), then the graph
G1 is said to be more robust than G2 with respect to the
perturbation P and the metric R”. If the perturbation is an
elementary change (n = 1), this criterion is applicable and
useful. Examples of elementary changes on different metrics
R are presented in [51].

5Recall that a perturbation causes the sequence {R [k]}0≤k≤n to be a
stochastic process. The expectation is over all possible realizations of the
perturbation P in the graph G. The stochastic nature thus seriously compli-
cates a rigorous treatment of robustness as defined here, while focusing on
the extreme realizations considerably eases the comparison. If the expectation
is not shown, we may interpret the criterion as a comparison of the extreme
realizations.
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Fig. 4. The envelopes RG1 and RG2 do not overlap.

If the perturbation is not an elementary change (n > 1),
the above simple criterion is not always desirable because
the realizations {RG1 [k]}0≤k≤n and {RG2 [k]}0≤k≤n can
intersect more than once such that RG1 [n] < RG2 [n], while
RG1 [j] > RG2 [j] for some 0 < j < n. Thus, the realizations
of the perturbation process in both graphs can interlace such
that the test “RG1 [n] < RG2 [n]?” is not adequate. In those
cases, it may be more instructive to consider the summation
(or integrated) process. Let us denote the partial sum r [k] =Pk

j=0R [j], that is generally a random variable. A second
criterion is: “If E [rG1 [n]] > E [rG2 [n]], the graph G1 is
said to be more robust than the graph G2 with respect to the
perturbation P and the metric R”.

The hitting time t is the first time at which the R-value
reaches some threshold value ρ, R (t) = ρ. The threshold
value ρ is some agreed level. Let kj denote the hitting time
in graph Gj for which RGj [kj ] = ρ. A third criterion is: “If
k1 > k2, the graph G1 is said to be more robust than the
graph G2 with respect to the perturbation P and the metric
R”. In the above example, where the R-value is the percentage
of nodes in the largest connected component, the requirement
that at least half (ρ = 0.5) the network must be connected,
illustrates this third criterion as the largest (discrete) time at
which this requirement is not fulfilled anymore. The longer
in time a graph can withstand a perturbation, the more robust
that graph is.

Of course, more specific comparison criteria can be de-
fined, but we believe that the three important ones are those
explained above: (a) envelope overlap, (b) partial envelope
overlap and (c) hitting time. Finally, in spite of the focus on
the network topology, we note that the discussed criteria can
also be used to compare network services.

III. COMPUTATION AND DEFINITION OF THE R-VALUE

Here, we confine ourselves to topological metrics. In most
cases, more than one topology metric characterizes the net-
work or affects the service. Eventually, however, one number,
on which a decision is made, is needed as sketched in Fig. 1.
It is important to realize that we can take, in the intermediate
process, any useful information into account, but in the end,
we need to decide whether the network is robust or not. The
general and rigorous way to map a vector with m components

into a real, positive number is provided by the norm of a vector
(see e.g. [48, p. 445]).

A. A weighted linear model
We propose to compute the R-value of the network robust-

ness by a weighted, linear norm

R =
mX
k=1

sktk (1)

where s and t are the m× 1 weight and the topology vector,
respectively. The components of the topology vector t are m
graph metrics6 that characterize the topology/graph. For exam-
ple, t1 may represent the average hopcount, t2 the minimum
degree, t3 the maximum degree, t4 the algebraic connectivity
a (G) (second smallest eigenvalue of the Laplacian of graph),
and so on. The components of the weight vector s reflect
the importance of the corresponding topological metrics for
the service. For example, a real-time communication requires
certain end-to-end delay bounds. The amount to which met-
rics influence the end-to-end delay, such as e.g. the average
hopcount, the betweenness, the effective graph resistance [49],
is reflected by the value of the corresponding component of
s.

The higher the R-value in (1), the larger the robustness.
This implies that a metric tk (or a function of tk, such as
the inverse) also should reflect that higher values of tk lead
to higher robustness. In addition, we normalize R to the
interval [0, 1]. Thus, R = 0 corresponds to absence of network
robustness and R = 1 reflects complete robustness. If k.kq
denotes a q-norm [48, p. 445], defined as kxkqq =

Pm
k=1 x

q
k,

then the unnormalized R-valued, denoted by eR, is¯̄̄ eR¯̄̄ ≤ kskq . ktkq
from which normalization follows as

0 ≤ R =

¯̄
sT t
¯̄

kskq . ktkq
≤ 1

For example, for the Euclidean norm kxk22 = xTx =
Pm

k=1 x
2
k

of the vector x, we have that sT t = ksk2 ktk2 cos (θ), where
θ is the angle between both vectors. Since the components of
the topology vector t reflect a different topological metric, the
units are different as well as the range of the possible values.

It can be difficult7 to determine the numerical values of
the components sk based on a service. A simple example,
that circumvents the complications induced by the service,
considers the weight vector s as a zero-one vector: if sk = 0,
then the topology metric tk is not relevant for the service,
while the opposite holds if sk = 1. By this confinement,
the R-value computation is greatly simplified and (1) can be
computed for any graph, provided that the association of the

6The number of nodes N and the number of links L are parameters of a
graph, not metrics.

7An example of the growth dependence of a metabolite on its network
topology is given in [58]. Counter examples of services are virus spread
(Section IV) and synchronization in networks (the Kuramoto model, see e.g.
[41]) that explicitly can be written in terms of the topology.
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topology metric tk with the service can be made. The R-
value is thus service dependent, even if the topology is the
same8. For K different services S1, S2, . . . , SK on a same
topology, we may have multiple R-values rather than just
one value. If RSj denotes the R-value of service Sj , then
the overall combined service robustness can again be a linear
combination,

R = w1RS1 + w2RS2 + . . .+ wKRSK

where the set of {wj}1≤j≤K , properly normalized, reflects
how important a certain service is with respect to the others.

B. A constrained model
Beside the topology vector t and the service vector s, we

define the additional vector tmin and tmax, where the j-th
component (tmin)j and (tmax)j specifies the minimum and
respectively maximum acceptable value of the j-th topological
metrics tj . In most cases, we are able to determine those
extreme acceptable levels of a topological metric.

The weighted linear model is then extended to

Rc = 1{∩mk=1tk∈[tmin;k,tmax;k]}
mX
k=1

sktk (2)

where the indicator is over the intersection of all conditions
and where the subscript c reflects these “confinements” or
“constraints”. If one of the topological metrics tk does not
lie within the required interval [tmin;k, tmax;k], the value of
Rc is zero. If all m considered topological metrics satisfy the
minimum and maximum levels, then Rc = R, defined in (1).
The Rc definition avoids that high values of some topological
metrics may compensate unacceptably low values of other
topological metrics, still leading to an R-value that passes the
overall requirement Rthresh. In addition, if a topological metric
tk does not lie in the required interval, we can immediately
take measures to increase/decrease tk, and hence Rc, by
modifying the topology.

The indicator in (2) makes the definition of Rc non-linear,
which complicates analytic computations (e.g. computing the
average E [Rc] due to correlations among topological metrics
as discussed below).

IV. EXAMPLE: ROBUSTNESS WITH RESPECT TO VIRUS
SPREAD

The Susceptible-Infected-Susceptible (SIS) infection model,
that arose in mathematical biology, is often used to model
the spread of viruses [29], [24], [42], epidemic algorithms
for information dissemination in unreliable distributed systems
like P2P and ad-hoc networks [10], [20], and the propagation
of faults and failures in networks like BGP [15]. The SIS
model assumes that a node in the network is in one of
two states: infected and therefore infectious, or healthy and

8Let us recall the example of services with contrasting requirements. A real-
time service generally requires a low end-to-end delay, which translates in a
small diameter of the graph and a large clustering coefficient. An anti-virus
service may want to have a large diameter and a small clustering coefficient.
In the first service, transport of packets should propagate as fast as possible,
while the anti-virus spread service has just the opposite goals.

therefore susceptible to infection. The SIS model usually
assumes instantaneous state transitions. Thus, as soon as a
node becomes infected, it becomes infectious and likewise,
as soon as a node is cured it is susceptible to re-infection.
There are models [18], [29], [54] that include more details like
incubation periods, variable infection rates, a curing process
that takes a certain amount of time and so on.

If β and δ denote the infection rate along each link and
the curing rate for each node respectively, then the effective
spreading rate of the virus can be defined as τ = β

δ . In
epidemiological theory, many authors (see e.g. [18], [3], [29]
and [42]) refer to an epidemic threshold τc: for effective
spreading rates τ < τc the virus contamination in the network
dies out - the mean epidemic lifetime is of order O (logN),
while for effective spreading rates above τc the virus is
prevalent, i.e. a fraction of nodes remains infected with mean
epidemic lifetime [24] of the order O

¡
eN

α¢
. In the case of

persistence, we will refer to the prevailing state as a metastable
state or steady-state. The epidemic threshold formula τc =
1

λ1(A)
, where λ1(A) denotes the largest eigenvalue or spectral

radius of the adjacency matrix A of the graph, is rigorously
demonstrated in the N -intertwined model [52], in which a
mean field application is the only approximation of the exact
2N -state Markov SIS model. Moreover, the N -intertwined
model expresses the governing equations of the spreading
process (the service) explicitly in terms of the topology (via
the adjacency matrix A). It is an example where the service
is a well-defined function of the topology.

It is common practice [28] to choose the epidemic threshold
τc as a measure for robustness, thus R = τc: the larger the
epidemic threshold, the more robust a network is against the
spread of a virus. This practice corresponds to the notion of
hitting time as a measure for robustness, suggested in Section
II-E. Because the epidemic threshold is inversely proportional
to the largest eigenvalue of the adjacency matrix, it seems
easy to compare the robustness of two networks. However, by
considering three different graphs on 10 nodes: the complete
bipartite graph K2,8, the Petersen graph P and the ring graph
C10, we will show that the comparison of the robustness
with respect to virus spread in different networks is not so
straightforward. The Petersen graph is a regular graph where
every node has 3 neighbors, while the ring graph is a regular
graph where every node has degree two. Using the results in
[39], the epidemic thresholds and the fraction y∞ of infected
nodes in the steady-state can be determined for the three
graphs.

The values are visualized in Figure 5, which shows that
y∞(C10) is always smaller than y∞(K2,8) and y∞(P ). There-
fore, the ring C10 is more robust with respect to virus spread
than K2,8 and P . The comparison between the bipartite graph
K2,8 and the Petersen graph P is less straightforward. If
we only look at the epidemic threshold, the Petersen graph
outperforms K2,8. However, for τ sufficiently large, K2,8

performs better because then the fraction of infected nodes
is lower than for the Petersen graph.

This observation suggests to consider an integrated measure
that takes the complete range of τ values into account. Since
the area under the y∞ versus τ curve diverges, instead of
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Fig. 5. Fraction of infected nodes for K2,8 , Petersen graph and C10

considering the effective spreading rate τ , the reciprocal of τ
is considered, that is the effective curing rate s = τ−1 = δ

β .
The viral conductance V CG of a network G, the robustness
measure with respect to virus spread that takes into account
all values of τ (and hence s), is defined in [30] as

V CG =

Z ∞
0

y∞(s)ds

where y∞(s) denotes the fraction of infected nodes in steady-
state. The viral conductance V CG is thus an instance of the
second criterion in Section II-E.

In order to reflect both a large threshold (virus-free region)
and resistance against infections (when the virus prevails), we
may propose, according to (1), R = s1

λ1(A)
+ s2

V C . When a
large virus-free region is preferred, s1 > s2 and vice versa.
When also connectivity is desired, we may add the algebraic
connectivitity a (G) and arrive at R = s1

λ1(A)
+ s2

V C + s3a.
Other examples can be found in e.g. [1], [14], where the

relative size of the largest component is taken as a measure
of robustness in the case of removal of a certain percentage
of nodes.

V. DISCUSSION OF THE PROPOSED R-MODEL

The basic design principle of the R-model is that it is as
simple as possible while still being general. The simplicity
follows from its linearity, while its generality from its dimen-
sionality m of the weight s and the topology t vector. Any
proposed definition is always debatable, and in the sequel of
this section, we discuss some issues related with the R-model.

A. Linearity of the R-definition (1)

Apart from simplicity, the linear definition (1) has an
important advantage over a non-linear definition,

R = f (t, s) = f (t1, t2, . . . , tm; s)

where f is a multi-dimensional function of the vector com-
ponents {tk}1≤k≤m of t and, possibly, of s. Indeed, in view
of the stochastic nature of the perturbations, the average of

(1), being the best first order moment estimator of the random
variable, equals

E [R] =
mX
k=1

skE [tk]

because the weights sk emphasize the importance of the
topological metric tk and are independent of the challenges
or changes in the topology. Thus, we observe that the average
E [R] is again a linear function of the averages of the compo-
nents E [tk] for 1 ≤ k ≤ m, because the expectation operator
E [.] is linear. On the other hand, E [R] = E [f (t, s)] – which
is a multi-dimensional integral – is generally difficult to com-
pute [48], but, more importantly, it will involve dependencies
between the components tk. As explained in Section V-C, the
dependencies or correlations between topological metrics of a
same graph constitute a major difficulty.

In addition, the non-linear function f needs to possess useful
properties, such as, for example, convexity. The number of
possibilities to propose an acceptable non-linear function f
are far larger than a linear one, which will jeopardize the
consensus process to agree upon the definition of R.

Finally, in view of the inaccuracies in the topology and the
link weight structure of the graph – let alone the complexity
to valorize a service – non-linear functions generally amplify
such errors much harder than a linear function.

These arguments support the choice of the definition (1).

B. Uniqueness of the topology vector
We first explain the vector interpretation geometrically.

Consider the space spanned by the m metrics vectors
e1, e2, . . . , em, where ej represents the axis of the j-th metric.
Each metric vector has unit norm, kejkq = 1, and the
projection of t onto ej , t.ej = tj , equals the value of the j-th
component of t. For each graph G, we can compute the topol-
ogy vector, denoted by tG to explicitly refer to the graph G,
and each point or vector tG with coordinates (t1, t2, . . . , tm)
represents a graph. If we use the Euclidean norm (q = 2),
then any vector tG lies within the m-dimensional unit-norm
ellipsoid9 with axes equal to the vectors e1, e2, . . . , em. The
indicator in the definition (2) of Rc limits the m-dimensional
t-space to the interior of two hyper-polygons: the “outer”-
polygon and “inner”-polygon have corner points defined by
the vector tmax and tmin, respectively.

The point tG within the m-dimensional unit-norm ellipsoid
is not necessarily representing a graph in a unique way. If
m is small, for example, more graphs may possess the same
topology vector. In addition, a small m may “color” the
physical meaning of robustness. For example, if we choose
for t1 the minimum degree and for t2 the vertex connectivity,
the network robustness basically measures the connectivity
of a graph, independently of other topological features that
may impact the service such as, for example, the hopcount or
diameter. These arguments already underline the necessity to
choose m sufficiently large.

9Only when all m metrics vectors are orthogonal, each graph point
(t1, t2, . . . , tm) lies within a m-dimensional unit sphere.
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On the other hand, we associate the service performance
to a set m of possibly independent topological metrics. The
dimension m depends, thus, on the service and can be small.
When packets are transported along a communication network,
for example, the robustness reflecting the efficiency of net-
work resource usage can be characterized by basically a few
topological metrics: a statistical measure (e.g. the average, the
average plus the square root of the variance, the maximum,
etc.) of the hopcount or/and of the betweenness.

From a computational efficiency point of view, the number
m of different graph metrics should not be too large. Hence,
we expect that there is a certain, adequate number for the
dimensionality of the metrics space. The sensitivity of R on
the dimension m is a topic of research.

C. Orthogonality of the m metrics vectors
The unit metrics vectors ei and ej are not necessarily

orthogonal. For example, the minimum degree dmin and the
algebraic connectivity μN−1 are correlated because 0 ≤
μN−1 ≤ dmin (see e.g. [49]), hence, the angle between the
corresponding metrics vectors is less than 90o degrees. The
higher the correlation between metrics i and j, the more the
vectors ei and ej are aligned. This implies that less information
is reflected by dependent metrics. Just as in linear algebra,
the ideal coordinate system consists of orthogonal vectors10.
Hence, the m metrics should be chosen to be as independent
or as orthogonal as possible. In general, since all metrics are
computed from the adjacency matrix of G, we may expect
that most metrics are dependent. In addition, the degree of
dependence between metrics i and j is graph dependent. In
other words, two metrics i and j may be independent for graph
G1, but they can be dependent in graph G2. The dependence
between metrics in a graph seems a hard, inherent challenge
of the robustness problem.

A simple example illustrates the problem. Suppose that
in graph G1, the three chosen metrics e1, e2 and e3 are
independent such that

RG1 = s1e1 + s2e2 + s3e3

In graph G2, metric e3 is dependent on e1 and e2. Thus, we
may write e3 = ae1 + be2 which results in

RG2 = (s1 + a) e1 + (s2 + b) e2

This shows that m is effectively 2, instead of 3, and that the
weight vector s is modified by the topology.

The determination of the dependence between any pair of
metrics vectors ei and ej , equivalent to determining the angles
between the metric vectors that form the coordinate system of
the metric space, stands on the research agenda. Perhaps, a
metrics based approach is better replaced by considering graph
theoretic matrices that uniquely define the graph, such as the
adjacency A, incidence B and Laplacian Q matrix [48, Ap-
pendix B]. Another suggestion to circumvent correlations is to

10Any set of linearly independent vectors can be orthogonalized via the
Gramm-Schmidt orthogonalization process. In practice, methods based on
the eigenstructure of a matrix with the metric vectors e1, e2, . . . , em as
row or column vectors are more appropriate (such as e.g. the singular value
decomposition).

focus on the eigenvalues of these graph related matrices. Since
these matrices are symmetric for undirected and unweighted
graphs, the eigenvalues and corresponding eigenvectors are
real. Moreover, the eigenvectors are orthogonal, specifying
independent inherent “properties” of the graph. We refer to
[49] for a deeper discussion on the meaning of eigenvectors
as characterizers of a graph.

A related idea is the graph embedding into a geometric
space as proposed in [31]. Since the complete graph as the
highest robustness, the distance in the geometric graph space
from an arbitrary graph to the complete graph can be regarded
as R-value. The difficulty, however, lies in finding such a space
in which a distance function exists.

D. Scaling of graphs
Another issue is how networks with different number of

nodes N and links L can be compared. In other words, what
is a good normalization of a graph matrix11. In many complex
networks, properties for small size N are different than in the
asymptotic regime (large N ). Perhaps a generally valid scaling
or normalization is impossible! The difficulty of comparing
two networks with different sizes N or number of links L lies
in the fact that the scaling of topological metrics with respect
to N or L is network-dependent.

Indeed, consider an Erdös-Rényi (ER) graph Gp (N) with
N nodes and where p is the probability to have a link
(independent of the existence of other links) between two
nodes. If N is small, then Gp (N) is a random graph, whereas
for large N , Gp (N) tends to a deterministic, regular graph
(see [48, p. 488]). This example shows that when a graph of a
certain class grows in size, its properties may change. Another
similar example appears in the class of power law graphs, that
seem quite good models matching the degree distribution in
complex networks (such as the Internet). Power law graphs can
be constructed by a stochastic growth rule such as preferential
attachment. Only when the power law graph is sufficiently
large (in practice N > 500), a power law for the degree is
observed. For smaller graphs (about N < 300), the degree
does not follow a clear power law [34] and most often an
exponential fit is statistically equally significant as a power
law fit.

Consider two ER random graphs of N = 100 nodes and
N = 1000 nodes respectively, but with the same link density
p > logN

N . Assume that the average hopcount R = E[H]
is the robustness measure. Many believe that the two graphs
are equally robust because they are generated by the same
mechanism, where any two nodes are connected independently
with a give probability p. The average hopcount of these two
networks is approximately [48, p. 346] the same E[H] ' 2−p.
Moreover, network robustness is usually evaluated by com-
paring the network with others, normally the corresponding
ER random graphs, of the same size N . Such a scaling is
used, in particular in brain functional networks, to examine
whether a network possesses the small-world property [55].
In this case, R = 1 holds for both example networks and

11Normalized matrices have been defined, such as the normalized Laplacian
∆−1Q, where ∆ = diag(dj) and dj is the degree of node j.
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the two networks are still equally robust. However, such a
normalization cannot guarantee R ≤ 1 for any graph. On the
other hand, if we simply normalize the metric R = E[H]/N
by its maximum value N , the smaller network is more robust.
This example illustrates the importance of scaling in evaluating
the robustness of networks with different sizes.

In summary, the way properties (measured via graph met-
rics) change with N (or L) is generally different for each class
of graphs. This means that scaling laws (as function of N or
L) are graph dependent, which complicates proper comparison
between graphs of different sizes N and number of links L.

Comparison of properties in graphs with different number
of nodes and links needs to be investigated.

E. The comparison of R-values
In this section we will give an example illustrating that the

interpretation of the comparison of the R-values of two graphs
is not trivial. We consider a non-normalized R-value that
only depends on one topological metric, namely, the algebraic
connectivity. The algebraic connectivity a (G), defined by
Fiedler [22] as the second smallest Laplacian eigenvalue,
has received significant attention as an adequate measure
of network connectivity and, consequently, as a robustness
metric with respect to the removal of nodes and links. It is
generally believed (see e.g. [49]) that, “the larger the algebraic
connectivity, the more robust the network is with respect to
removal of nodes and/or links”.

We will give a counter-example to this common belief.
Fig. 6 depicts two graphs G1 and G2, each with N = 7 nodes,
L = 10 links and diameter 4, but with different algebraic
connectivity a (G1) = 0.6338 and a (G2) = 0.5858. Although
a (G1) > a (G2), it is easier to disconnect G1 than G2,
because one link removal disconnects G1, while two links
need to be deleted in G2.

G1 G2G1G1 G2G2

Fig. 6. Two graphs G1 and G2, each with N = 7 nodes, L = 10 links and
diameter 4, but with different algebraic connectivity.

The fact that it is easier to disconnect G1 than G2 by
link removal is also reflected by the reliability polynomials
P (G1) and P (G2). Denoting the availability of each link
by p and assuming that the availabilities of two separate
links are independent, then we obtain, with p = 1 − q, that
P (G1) = 1 − O(q) and P (G2) = 1 − O(q2) as q → 0. For
0 < q << 1, it holds that P (G1) < P (G2), hence, it is easier
to disconnect G1 than G2, although a (G1) > a (G2).

VI. REMEDIATION

Once we can agree upon a definition like (1) or (2), for
each graph, an R-value can be determined. If the graph
(without altering the service) is changed, a new R-value can
be computed. As illustrated in Fig. 1, that current R-value
is compared with the minimal desired one, Rthresh in (1), or

the constraints vectors tmax and tmin in (2). If R < Rthresh
in (1) or 1{∩mk=1tk∈[tmin;k,tmax;k]} = 0 in (2), modification of
the network is required subject to some criterion. In what
follows, we will discuss briefly (a) robustness classes; (b) how
to change/modify a graph; and (c) the criterion.

A. Robustness classes
We embark on defining c robustness classes. A robustness

class specifies, for a certain service, a subinterval of [0, 1]
since R ∈ [0, 1]. For example, class C1 contains all graphs
whose R-values lie between [0, r1), class C2 contains all
graphs in [r1, r2), and so on. The idea of robustness classes
is related to QoS classes: for a given service, a few number
of classes seems more manageable than a continuous range
of R. Strictly speaking, robustness classes are not necessary
in a coherent and consistent framework. But, they make
interpretations easier by mapping the R-values to a few ranges
to which, for example, colors like red, orange, green can
be assigned with their usual meaning. For, suppose a graph
possesses a value R = 0.3, what does this value mean? The
definition of robustness classes simplifies the interpretation and
determination of the threshold value Rthresh.

At present, we believe that mainly by extensive simulations,
a good proposal of the number and the value range of
robustness classes can be presented.

The definition (2) of Rc contains the constraint vectors tmin
and tmax, whose values can be specified per robustness class.

The concept of robustness classes also emerges in Business
Continuity Management (BCM). BCM is the creation and
validation of a practiced logistical plan for how an organization
will recover and restore partially or completely interrupted
critical (urgent) functions within a predetermined time after
a disaster or extended disruption, see [7], [8]. Within BCM
the impact of threats are classified as either high, medium or
low.

B. Modifying a graph
An unweighted graph can be modified by a series of

elementary changes as defined in Section II-C: by adding
and removing nodes and by adding, deleting, and replacing
or rewiring of links. The remedial modification is often the
reverse of what a challenging perturbation does.

In weighted graphs, all link weights (e.g. delay, capacity,..)
can be modified, in addition to the above discussed structural
changes. This again shows that weighted graphs contain a
much richer set of modification possibilities. However, the
drawback is that the modification of the weighted graph is of
considerably higher complexity than that of the unweighted
graph. In addition, we encounter again the basic problem of
correlations between the link weights of different links in the
graph and among different link weights themselves.

How to modify a given graph to enhance its robustness
level from R1 to R2 is, in general, difficult to determine.
However, the problem is well-defined and the complication lies
in the computational feasibility (even tractability), not in the
concept, nor in the specification. The problem is thus more of
an optimization nature: given a graph, each elementary change
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has an effect on R and a specific set of elementary changes
– a perturbation – may lead to a minimum desired robustness
level Rthresh.

We ought to mention that, if the change from R to R+∆R
is possible, an algorithm that can exhaustively compute all
possible elementary changes, eventually can find/construct
the modified graph. However, the number of operations to
compute may be unacceptably high as illustrated in [51].
Hence, we expect that good modification strategies need to
be found. For example, adding a new node/link to high or low
degree node may have a higher effect on R, than to add that
new node/link to an arbitrary node in G. Another example is
the determination of very robust graphs with extreme spectral
gap (or algebraic connectivity): by only deleting a few links in
the complete graph in different ways, a large variation of the
spectral gap is found: the link removal strategy that maximizes
the spectral gap is one that maximizes the minimum degree.

C. Criteria

In Section VI-B, we have argued that, in most cases, an
exhaustive algorithm can be found. However, apart from the
computational complexity of the algorithm, also the solution
may not be unique. This means that other aspects may finally
determine the eventual details to modify the robustness level
from R1 to R2. A common criterion is that the graph is
modified subject to a minimization of the incurred financial
cost, because infrastructural changes are generally expensive.

However, in particular cases and services, other or additional
optimization criteria as well as constraints are possible. An
example of constraints are limitations imposed to the number
of additions (or removals) of nodes or links or of rewirings.
Another constraint may restrict only certain subsets of nodes
and links in the graph to be changed.

VII. CONCLUSIONS

In summary, the explicit definition of robustness is tightly
coupled to what the goal of the network is, or for what service
the network is designed. Since a service is clearly dependent
on the topology, the topological robustness of any service can
be expressed as in (1), provided the relevant topological met-
rics t1, t2, . . . , tm are known and provided we agree about the
corresponding service weights s1, s2, . . . , sm. This framework
thus allows us, for a particular service, to compare different
networks against various topological perturbations.

In subsections of Section V, we have presented in italics
research problems that need an answer because they remain
gaps of a coherent robustness framework. Notwithstanding
these unsolved problems, we might consider this article as
already successful if the linear R-model in (1) and/or (2) were
to reach consensus and gain general acceptance.
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