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Abstract—We define the spreading time in the SIS process
as the average time between the start of the outbreak and the
time that the number of infected nodes first reaches the average
number of infected nodes in the metastable state. We show
that the spreading time can be computed using a uniformised
embedded Markov chain and give numerical results for the
complete graph and the star graph. For the complete graph we
derive, using the same method, an analytical expression for the
spreading time starting from a single infected node. We show
that the spreading time is only significantly larger for a single
initially infected than when a few nodes are infected, and scales
logarithmically as a function of the network size for a fixed
fraction of infected nodes in the metastable state. We also show
that mean-field methods predict that the spreading time in regular
graphs is independent of the degree. For graphs with a high
epidemic threshold, the spreading time is lower than for graphs
with a low epidemic threshold. The spreading time seems to be
related to the average hopcount in the graph. For graphs that
have a relatively low average hopcount, the spreading time scales
logarithmically, but for graphs with a high average hopcount,
such as the rectangular grid and the ring graph, this is not the
case.

I. INTRODUCTION

When faced with the outbreak of an infectious disease, at
least two concerns arise immediately: (i) How many people
are expected to become infected and (ii) How much time,
on average, will elapse before the disease has reached the
highest number of victims, given that it started with only a
small number of infected individuals. In this article, we will
elaborate on the second question, by confining ourselves to the
relatively simple Markovian Susceptible-Infected-Susceptible
(SIS) epidemic model [1], [2], [3], [4]. In the SIS model, a
node can be in one of two states: healthy or infected. Nodes in
the healthy state can move to the infected state, while nodes
in the infected state can move back to the healthy state. The
infection process describes how nodes pass from the healthy
state to the infected state, and the curing process describes the
reverse movement from the infected to the healthy state. In
the classic Markovian SIS model, both the curing and infection
processes are Poisson processes. The Poissonian curing process
has a rate δ and is a nodal process, which is not influenced
by the viral state of the neighbours of the infected node. The
infection process, however, is a per link Poisson process with
a rate β between each healthy and infected node. The total
rate of change from the healthy state to the infected state for a
node i is given by β times the number of infected neighbours.
The ratio between the infection rate β and the curing rate δ is
called the effective infection rate τ = β

δ .

In the Susceptible-Infected-Susceptible (SIS) epidemic
model on a given contact network G with N nodes and L

links, the above first question can be answered by computing
the average number of infected nodes in the metastable state,
either by simulations or by approximations, most often of a
mean-field type [5]. Only for a few graphs, an exact analysis
is possible. As is well-known [15], [16], [17], the SIS model
features a sharp transitional behaviour around the epidemic
threshold at τc: infections with an effective infection rate lower
than the threshold (τ < τc) will die out very quickly and infect
only a very limited portion of the nodes, but viruses with an
effective infection rate above the epidemic threshold (τ > τc)
will stay in the network for a very long time and infect a
sizeable portion of the population. That average fraction of
infected nodes is called the metastable fraction of infected
nodes and is denoted by y∞ (τ) ∈ [0, 1]. A considerable
research effort [7] over the past decades has been devoted to
determining the epidemic threshold τc in networks.

Due to the absorbing state in the SIS model, the real
steady-state of any outbreak in any finite network is the all-
healthy state [5]. The time until the network reaches the all-
healthy state is called the survival time, or alternatively, the
time to absorption or the extinction time. The survival time
for the SIS process on a general graph [8], [9] is difficult to
compute analytically or even numerically for general graphs
that are larger than about 10 nodes. In general, the survival time
distribution has an exponential tail that is dominated by the
second largest eigenvalue of the infinitesimal generator of the
Markov chain. In the case of the complete graph and the star
graph, however, the survival time can be computed numerically
as a result of the much smaller state-space of the Markov
chain [8], [9]. The survival time in graphs is unrealistically
long, compared to the actually observed time that an epidemic
lasts. Therefore, the real interest in epidemiology lies in the
quasi-stationary or metastable state, rather than in the exact
steady-state (which is the absorbing state) of the SIS process.

Therefore, in addition to the survival time of the virus
outbreak, the second question above asks for the time until an
outbreak reaches the metastable state. The average time to first
reach a number of infected nodes equal to the average number
of infected nodes in the metastable state is called the spreading
time. The spreading time of a virus in a particular graph is an
important metric, since it limits the time in which the virus
can still be contained with relative ease. In the extreme case
of only a single infected individual, quarantining is easy and
highly effective. Once the virus reaches the metastable state
(τ > τc), it will be more difficult to eradicate the infection.
Hence, the spreading time is generally the longest time for
an authority (government, agency, etc.) to react and to start
immunization actions (such as vaccination and quarantining).
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Fig. 1. Markov graph of the modified SIS process on a complete graph. The
state numbers coincide with the number of infected nodes. The transition rates
are indicated next to the arrows.

In this paper, we numerically compute the spreading time
of the Markovian SIS process on the complete graph and the
star graph, and investigate the scaling behaviour both in terms
of the graph size N and effective infection rate τ . For the
complete graph, we derive an analytical expression for the
spreading time starting from a single node. For other graph
types, we use simulations to derive the spreading time.

II. SPREADING TIME VIA THE HITTING TIME

In general, the spreading time in a particular graph can be
found using the Markov description of the SIS process. Let
ȳ be the average number of infected nodes in the metastable
state, rounded to the nearest integer, i.e. ȳ = ⌊Ny∞(τ)⌉. The
spreading time can be defined as the average hitting time of
the set of states for which the total number of infected nodes
equals ȳ, starting from any state. Unfortunately, this method
is infeasible for a general graph due to the exploding state
space. For the complete graph and the star graph, however, as
a result of the symmetry in the infectious state of the network,
the state space scales linearly in the number of nodes, which
enables us to use the hitting time to determine the spreading
time.

We use an embedded Markov chain to transform the
continuous-time SIS Markov process into a discrete-time one.
The embedded Markov chain of a continuous-time process
contains the transition probabilities at the time of a transition,
but no longer contains the precise timing of the events [5]. The
transition matrix of the uniformised embedded Markov chain
in units of ϕ of a continuous-time Markov chain is given by
S(ϕ) = I + Q

ϕ , where I is the identity matrix, and Q is the
infinitesimal generator of the continuous-time Markov chain
[5], which has elements qij containing the transition rate from
state i to state j, for i ̸= j and −qi =

∑N
j=1,j ̸=i qij for qii.

Transitions in the uniformised Markov chain all occur with the
same rate ϕ ≥ maxi qi. Note that the embedded Markov chain
contains self loops to uniformise the transition rate from state
to state.

Before proceeding, we modify the SIS Markov chain so
that it has a well defined steady-state. As explained in [10],
[11], the metastable state for finite graphs can be defined
in two ways: either we add a nodal self-infection [10] or
we remove the absorbing state [11]. The latter modified SIS
model, denoted by MSIS, obeys the same evolution rules as the
SIS model, except that when there is only one infected node
in the network, this node is forbidden to heal. In both cases,
the Markov chain is irreducible and features a unique steady-
state, that corresponds (by definition) to the metastable state
in the original SIS Markov process. In this paper, we modify
the SIS process by removing the absorbing state, ensuring that
the virus/infection will always stay in the network and can
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Fig. 2. Spreading time in the complete graph as a function of the fraction
of initially infected nodes for four values of the normalised equilibrium point:
0.15 (a), 0.25 (b), 0.5 (c), and 0.75 (d).

never die out. Thus, as the infection is prevented to die out,
our modification will return an upper bound to the exact SIS
spreading time in a graph.

The average hitting time of the set of states A starting from
any state in the Markov chain can be found as the minimal
non-negative solution of the following system [19], [5]:{

wi = 0 for i ∈ A
wi = 1 +

∑
sij(ϕ)wj for i /∈ A , (1)

where wi is the average hitting time of the set A starting from
state i, and sij(ϕ) is the transition probability from state i to
j in the uniformised embedded Markov chain. System (1) can
be written as Kw = b, where K = I − S̃(ϕ), and S̃(ϕ) is the
transition matrix of the uniformised embedded Markov chain
with each row i ∈ A replaced with the standard basis vector
ei multiplied by some scalar. Because of the structure of b,
the scalar can take any value, but for numerical reasons its
convenient to take ϕ. In short, the S̃(ϕ) matrix differs from
the S(ϕ) matrix in that every row corresponding to a state
in A has a non-zero element in the diagonal position, and
zeros in all other positions. The vector b is defined as b =
u−

∑
i∈A ei where u is the all-one vector. The minimal non-

negative solution of the system for wi will give the average
hitting time of the absorbing state when starting in state i in the
number of transitions, whereas multiplying K by the transition
rate ϕ will give the average hitting time. Therefore, we solve
the system

ϕKw = b, (2)

where ϕK simplifies to ϕK = ϕ(I− I+ Q̃
ϕ ) = −Q̃. Again, Q̃

differs from Q in that every row i corresponding to a state in A
has been replaced by the standard basis vector ei. In the case
of the complete graph and the star graph, Q̃ is a sparse matrix
and matrix equation (2) can efficiently be solved numerically.
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Fig. 3. Spreading time to the equilibrium point starting from a single infected
node in the complete graph as a function of the network size N for various
values of y∞.

III. SPREADING TIME IN KN

In this section, we investigate the spreading time in the
complete graph KN with N nodes. The metastable state is
specified via the equilibrium point in KN , which is defined as
the number I of infected nodes for which β(N − I)I = δI
holds (from here onwards I will always mean the number of
infected nodes). The equilibrium point does not necessarily lie
at an integer value for I , which is why we also use y∞ to
signify the (normalised) equilibrium point. At the equilibrium
point in KN , and generally in the metastable state for any
graph, the total infection and curing rate are in balance. The
time to the equilibrium point can be found as the hitting time
of the state where βI(N − I) = δI holds, starting from
any state. In the case of a real virus outbreak, the spreading
time is indicative of how quickly measures to counter the
infection need to be taken. Figure 1 shows the Markov graph
of the modified SIS process on the complete graph. Since the
state numbers coincide with the number of infected nodes,
the spreading time or time to equilibrium is found by solving
system (2) for A = {ȳ}. The infinitesimal generator Q can be
derived by inspection from Fig. 1 and is given in the appendix.
From Q, we create Q̃ by replacing row ȳ by eȳ .

Figure 2 shows the spreading time as a function of the
fraction of initially infected nodes in the complete graph for
various network sizes N , for various values of the normalised
equilibrium point. The normalised equilibrium point was cho-
sen at 15%, 25%, 50% and 75% of infected nodes for all
sizes. The spreading time drops sharply from a single initially
infected node infected to a few initially infected nodes. The
sharp drop is caused by the fact that, when initially a single
node is infected, the probability that the virus dies out is the
highest. However, in the MSIS model, dying out is forbidden,
so that the time to reach the metastable state or equilibrium
point is long. As soon as a few more nodes are infected,
the infection is very likely to reach the equilibrium point.
Usually, infectious diseases start at a few individuals/nodes
and Fig. 2 illustrates that it is crucial to detect an outbreak
in a very early state, because only at a very early state (with
few infected) the spreading time is significantly larger than for
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Fig. 4. Slope of the fit of the spread time in Fig. 3 as a function of the
equilibrium point y∞.

other states. When initially far more nodes are infected than
in the metastable state, the time to the equilibrium point is
almost constant.

Figure 3 shows the spreading time starting from a single
infected node as a function of the network size N for various
positions of the normalised equilibrium point y∞. The spread-
ing time scales logarithmically with the network size for KN .
The logarithmic scaling in the number of nodes is especially
interesting, because the scaling of the infection rate to keep
the equilibrium point, for example, at 50% infected is linear,
as follows from τ(N − I)I = I . Which can be written as
(τN − 1)I − τI2 = 0, and solving for I gives I = 0 and
I = N − 1

τ . Despite the fact that the effective infection rate
τ decays with the reciprocal of the network size, the time
to reach the equilibrium increases only logarithmically. This
means that, in a larger network, a weaker virus can infect
the same fraction of nodes in roughly the same time, again
emphasizing the importance to spot an outbreak early.

Figure 3 shows that the spread time in the complete graph
scales as α log(N) + b, Fig. 4 shows the fits of α in Fig. 3
as a function of the equilibrium point y∞. With an increasing
equilibrium point, α reduces quickly, indicating that a stronger
virus does not only infect more individuals, but also infects
them quicker than a weaker virus.

Figure 5 shows the spreading time in the complete graph
starting from a single infected node as a function of the
equilibrium point for various network sizes. We observe from
Fig. 5 that for small values of the equilibrium point, the
time to reach that equilibrium point starting from 1 node
infected increases. This is caused by the smaller values of the
effective infection rate τ needed to reach the equilibrium point.
Interestingly, the time to reach the equilibrium point peaks due
to the probability that the virus dies out when it starts with
only a single infected node and a low effective infection rate
τ . Because the absorbing state is removed, the process spends
more time in the state with only one node infected for low
effective infection rates, which increases the time to reach the
equilibrium point. With an increasing number of infected nodes
at the equilibrium point, the effective infection rate τ increases



until the infection rate is so large that dying out becomes
unlikely. This illustrates that an increasing effective infection
rate τ does not only increase the number of infected nodes in
the metastable state, but also increases the probability that the
metastable state will be reached from a single infection, and
thus reduces the time to reach the metastable state.

A. Analytic Expression for the Spreading Time in KN

By modifying the Markov chain in Fig. 1, and solving
matrix equation (2) for the modified chain, we derive an exact
expression for the spreading time in KN starting from a single
infected node to z infected nodes. In this section we slightly
abuse the definition of spreading time and use it to denote
the average time until a virus reaches a state with z nodes
infected, starting from a single infected node in the modified
SIS process. The difference here is that z does not have to be
equal to the average number of infected nodes in the metastable
state. The chain is modified by making the state with z infected
nodes absorbing. The modified Markov chain is shown in Fig.
6, the modified infinitesimal generator −Q̃ can be found by
inspection and is also given in the appendix. Matrix equation
(2) can be solved by reducing the augmented matrix [−Q̃|b] to
row echelon form. To reach row echelon form, we iteratively
perform the following row operation for k ≥ 2.

rk+1 → rk+1 +
(z − k)(N − z + k)τ

dk
rk

where rk indicates row k and dk is given recursively by

dk


(z − 1) + (z − 1)(N − z + 1)τ for k = 2

(z − k + 1)[1 + (N − z + k − 1)τ

− (z−k+2)(N−z+k−1)τ
dk−1

] for 2 < k < z

(N − 1)τ − 2(N−1)τ
dk−1

for k = z

The elements in column vector b can be found recursively as

bk = 1 +
(z − k + 1)(N − z + k − 1)τ

dk−1
bk−1
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Fig. 5. The time to first reach the equilibrium point in a complete graph
starting from a single infected node as a function of the equilibrium point for
various graph sizes N .
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Fig. 6. Modified Markov graph of the modified SIS process on a complete
graph. The number of infected nodes is indicated in blue next to the state.
Note that the number of infected nodes decreases from left to right.

The spreading time TS(z) is given by bz/dz . Iterating the
recursive relation for bk from k = z backwards leads to

bz =
z−1∑
j=1

(j − 1)!(N − 1)!τ (j−1)
∏i=z−j

i=2 di

(N − j)!
∏i=z−1

i=1 di
,

and dividing by dz gives

TS(z) =

y−1∑
j=1

(j − 1)!(N − 1)!τ (j−1)
∏i=z−j

i=2 di

(N − j)!
∏i=z

i=1 di
(3)

Writing pj =
∏j

i=2 di and using pj = djpj−1, we can write

pj = (z − j + 1)pj−1 + (z − j + 1)(N − z + j − 1)τpj−1

−(z − j + 2)(z − j + 1)(N − z + j − 1)τpj−2

for 2 < j < z. Iterating the recursive relation for pj from j
backwards leads to

pj =
(z − 1)!

(z − j)!(N − z)!

j−1∑
i=0

(N − z + i)!τ i

and using the correct expression for dz ,

pz =
(z − 1)!(N − 1)!τz−1

(N − z)!

Filling in the expressions for pj and pz into (3) leads to our
final result

TS(z) =
z−1∑
j=1

z−j−1∑
i=0

(N − z + i)!τ i+j−z

j(N − j)!

B. Mean-Field Spreading Time in Regular Graphs

We briefly move from the exact world of Markov chains
to the approximate world of mean-field theory, and show that
mean-field predicts a spreading time in r-regular graphs that
is independent of the degree r. In the N-intertwined Mean-
Field Approximation (NIMFA) [15], [14] the probability vi
that node i is infected is given by the following first-order
nonlinear ordinary differential equation

dv

dt
= rβv(t)(1− v(t))− δv(t), (4)

which also appeared in [1], [3], and has the solution (also
derived in [18], [6]):

v(t) =
1

( 1
v0

− 1
1− 1

rτ

) exp(−(rτ − 1) tδ ) +
1

1− 1
rτ

(5)
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Fig. 7. Markov graph of the modified SIS process on a star graph. In the
top row (odd states) the centre node is infected, whereas on the bottom row
(even states) the centre is healthy. The number of infected nodes in each state
is indicated in blue next to the state.

According to NIMFA, the fraction of infected nodes in the
metastable state for an r-regular graph is given by

y∞ = 1− 1

rτ
,

Alternatively, the effective spreading rate τ that is needed to
achieve y∞ nodes infected in the metastable state is given by

τ =
1

r(1− y∞)

Substituting τ in (5) and starting from a single infected node
(v0 = 1

N ) leads to:

v(t) =
1

(N − 1
y∞

) exp(− y∞
1−y∞

t
δ ) +

1
y∞

which suggests that the time to reach the metastable state is
independent of r. The NIMFA spreading time is found by
defining a distance between v(t) and y∞ and finding the time
for which the distance is small. Starting from

v(t) =
1

f(t) + 1
y∞

with f(t) = (N − 1
y∞

) exp(− y∞
1−y∞

t
δ ), we define the distance

to metastable state as y∞ − 1
f(t)+ 1

y∞
, and the spreading time

as the time for which the distance to the metastable state is
smaller than ε. From y∞ − 1

f(t)+ 1
y∞

≤ ε, we find that

t ≥ (1− y∞)δ

y∞
(ln(N − 1

y∞
) + ln(y2∞ − y∞ε)− ln(ε))

Although the NIMFA spreading time is not always accurate,
and in some cases not even predicts the right scaling of the
spreading time, as shown in Sec. V, at least for the complete
graph KN , it correctly shows a logarithmic scaling in N .

IV. SPREADING TIME IN K1,N−1

In this section, we investigate the spreading time in the
star graph K1,N−1 with N nodes. The Markov graph of the
modified SIS process on a star graph, as adapted from [11] is
shown in Fig. 7. The Markov chain consists of 2N − 1 states,
to make a distinction between the situation where the centre
node is infected (all odd states), and the situation where the
centre node is healthy. The number of infected nodes in each
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Fig. 8. Spreading time in the star graph for the case that the centre is infected
as a function of the fraction of infected nodes for three different values of
ȳ/N : 0.25 (a), 0.5 (b), and 0.75 (c).

state is indicated in blue next to the state in Fig. 7. For each
possible number of infected nodes (with the exception of N
infected nodes), the network can be in one of two states. As a
result, the spreading time can be computed by solving system
(2) with A = {2ȳ − 1, 2ȳ}, for ȳ < N , or A = {2N − 1} for
ȳ = N .

Figure 8 shows the spreading time in the star graph for
various network sizes and values of ȳ, under the condition
that the centre node is infected. The spreading time in the star
graph is smaller than for the complete graph. This is caused by
the higher effective spreading rate τ that is needed to reach the
same ȳ in the star graph compared to the complete graph. In
a graph with a high epidemic threshold, a virus will generally
infect fewer nodes compared to a network with a low epidemic
threshold. However, if a virus infects the same fraction of
nodes in both networks (of course, this is not possible for
the same effective spreading rate τ ), it infects those nodes
quicker in the network with the higher epidemic threshold.
Paradoxically, the better we protect our networks, the quicker a
virus will reach the metastable state. Of course, for a virus with
a fixed effective spreading rate τ , protecting the network by,
for example, link removals will have an effect on the number of
infected nodes in the metastable state. However, in the context
of computer viruses or other engineered infectious processes,
better network protection will have to lead to stronger viruses
to achieve the same goal (infecting nodes). A similar drive
might be present in biological evolutionary processes.

The spreading time in Fig. 8 is under the condition that the
centre node is infected. An infection starting in the centre node
has a better chance of spreading through the network than an
infection starting in one of the leaf nodes. Yet, the spreading
time for a virus starting in a leaf node does not differ too
much from that of a virus starting in the centre, as shown
in Fig. 9. Figure 9 shows the spreading time as a function
of the number of initially infected nodes for three different
network sizes, both under the assumption that the centre node
is infected (round markers) and under the assumption that the
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Fig. 9. Spreading time in the star graph as a function of the number of
infected nodes for three different network sizes, both for the case that the
centre is infected (round markers) and for the case that the centre is healthy
(triangular markers).

centre node is healthy (triangular markers). In terms of the
modified Markov process in Fig. 7: the round markers indicate
the spreading time starting in an odd state, the triangular
markers indicate the spreading time starting from an even state.
For all three network sizes, the difference between starting
in an odd state (centre infected) or an even state is roughly
the same and diminishes quickly. If more than 20 nodes are
initially infected, the spreading time under the assumption that
the centre is infected is approximately the same as under the
assumption that it is healthy.

V. SPREADING TIME IN OTHER GRAPHS

The spreading time in a general graph cannot be determined
using the Markov transition probability matrix as for the
complete graph KN or the star, due to the 2N state space in
general [5]. In the case of a general graph, we simulate the time
until the process first reaches the number of infected nodes in
the metastable state. We first determine the metastable state as
a function of the effective infection rate for each graph and
select the effective infection rate τ that corresponds to 50%
infected in the metastable state. The data points for each graph
type and size are averages over 100, 000 runs.

Figure 10 shows the spreading time as a function of the
network size N for 5 different graph types, described and
studied in [5] and [12]: the connected Erdős-Rényi random
graph Gp (N) with a link density or link probability p at the
connection threshold pc = lnN

N , the preferential attachment
graph (PA) with m links per new node (m is chosen so that
the link density is equal to that in the ER graph), the star
graph, the square lattice and the complete graph. Curiously, the
connected Erdős-Rényi random graph Gp (N) behaves almost
identical to the complete graph KN = G1 (N): the spreading
time seems hardly to depend on the link density p = 2L

N(N−1) .
Probably, the difference in link density is compensated for by
the higher effective spreading rate τ that is needed to reach
the same ȳ. The presence of hub nodes in the preferential
attachment graph, however, leads to a smaller spreading time,
especially for larger graphs. The extreme case in terms of hub
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Fig. 10. Simulated spreading time starting from a single initially infected
node as a function of the network size for five different graph types. The
fraction of infected nodes in the metastable state is 50%.

nodes is the star graph. Indeed, in the star graph, the time to
reach the metastable state is shortest. These four graph types
all show a logarithmic scaling of the spreading time with the
number of nodes, but the slope at the log-lin scale is smaller
for graphs with more hub nodes.

The square grid does not show the logarithmic scaling in
N that is observed in the other graph types. Indeed, Fig.
11 shows the spreading time for just the rectangular grid
and a fit, suggesting that the spreading time scales as

√
N

with the size N . This is most likely caused by the large
average hopcount in this graph type. The average hopcount
in the lattice [5, p.630] equals E [Hlattice] ≃ 2

3

√
N , for

large N , whereas E
[
HGpc (N)

]
∼ lnN

ln lnN (see [5, p. 428])
increases somewhat slower than logarithmically in N . Also
for sparse scale-free graphs of which the Barabasi-Albert
preferential attachment graph is an instance [5, p. 428], the
average hopcount is E [HPA] ∼ lnN

ln(dav−1) , where dav = 2L
N
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Fig. 11. Simulated spreading time starting from a single initially infected
node in the rectangular grid. The fit shows that the spreading time scales as
O(
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Fig. 12. Simulated spreading time starting from a single initially infected
node in the ring graph.

is the average degree. Hence, for the lattice, the connected
Erdős-Rényi random graph Gpc

(N) and scale-free graphs, the
scaling of the spreading time and the average hopcount agree.
However, the relation between spreading time and hopcount
ceases for the star and complete graph: the average hopcount
in KN is E [HKN

] = 1 and in the star K1,N−1 with N nodes
is E

[
HK1,N−1

]
= 2 − 2

N , thus both bounded by a constant,
whereas logarithmic increases is observed in Fig. 10. In any
graph, the average time [13],[5, p. 460] to hit the absorbing
state in SIS epidemics for τ < τc scales logarithmically in N ,
illustrating that, on average, the epidemic process cannot tend
faster to the metastable state than O (logN), irrespective of
the topology. The influence of the network topology on the
SIS dynamic process is measured via the average hopcount
which is a good representative measure for the diffusive spread
of the epidemic. Above the epidemic threshold (τ > τc), the
epidemic diffuses over the network. The spreading time thus
reflects the combined logarithmic scaling (as a lower bound for
the average epidemic extinction time and, hence, of the entire
SIS dynamic process) and the average diffusion time, which
is related to the average hopcount of the graph. In conclusion,
only when the average hopcount exceeds a logarithmic scaling,
the spreading exhibits the hopcount scaling, else logarithmic
scaling is observed. As a final example of a spreading time
that scales with the hopcount, Fig. 12 shows the linear scaling
in N of the spread time on a ring graph.

VI. CONCLUSION

The temporal properties of the SIS model have received
less attention in the literature than properties such as the
epidemic threshold and the average fraction of infected nodes
in the metastable state. This paper is devoted to the spreading
time of an SIS epidemic. We define the spreading time as the
average time to first reach the number of infected nodes in the
metastable state, measured from the beginning of the outbreak.

The spreading time can be computed using the uniformised
embedded Markov chain of the modified SIS process. In the
general case, however, the state space of the Markov chain
describing the SIS process on a graph scales as O(2N ).
Only for graphs that allow for a smaller state space, such as
the complete graph and the star graph can we compute the

spreading time directly. Moreover, for the complete graph, we
derive an analytic expression for the spreading time starting
from a single node. Mean-field approximations on regular
graphs predict a spreading time that is independent of the
degree, which can be far from the true value for low degrees.

Our results show that in the complete graph, and to a lesser
extent in the star graph, the spreading time as a function of the
fraction of infected nodes drops sharply from a single node
infected and then stabilises. This shows that any preventive
action to an outbreak is better taken quickly after the initial
infection.

The spreading time for a fixed fraction of infected nodes
scales logarithmically as a function of the network size in the
complete graph. In growing networks or populations this is
worrying, as it means that an increasingly weaker virus can
infect the same fraction of nodes in roughly the same time.

The spreading time in the star graph as compared to the
complete graph is much shorter for the same fraction of
infected nodes in the metastable state. As the star graph has a
much higher epidemic threshold, the effective spreading rate
has to be higher in the star graph to reach the same number
of infected nodes in the metastable state than in the complete
graph. This leads to the shorter spreading time.

For other graphs than KN and K1,N−1, we have used
simulations to determine the spreading time. For the Erdős-
Rényi random graph and the scale-free graph the spreading
time scales logarithmically, just as for the complete graph and
star graph. The logarithmic scaling of the spreading time might
be connected to the fact that the average hopcount is relatively
low compared to the network size in these graphs. In the case
of the rectangular grid (where the average hopcount scales
with O(

√
N)), no logarithmic scaling of the spreading time is

observed, but a scaling as O(
√
N). Similarly, in the ring graph,

the spreading time scales with O(N), just as the hopcount.

Knowing that many real-world epidemic processes are not
described well by Markovian SIS, the spreading time in non-
Markovian SIS is of great interest in future research. The inter-
arrival time distribution of the infection and curing processes
have a great influence on the survival time and the average
fraction of infected nodes in the metastable state, and will
most likely influence the spreading time as well.
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APPENDIX
MATRICES

The Q matrix for the modified SIS process on the complete
graph corresponding to Fig. 1 is given by eq. 6. The Q̃ matrix
for the modified Markov chain of the modified SIS process in
the complete graph KN corresponding to Fig. 6 is given by
eq. 7. In general, the Q matrix is the infinitesimal generator
of the continuous-time Markov process and has elements qij
containing the transition rate from state i to state j, for i ̸= j



−Q =



(N − 1)τ −(N − 1)τ 0 0 0 0 0
−2 2 + 2(N − 2)τ −2(N − 2)τ 0 0 0 0
0 −3 3 + 3(N − 3)τ −3(N − 3)τ 0 0 0

0 0 0
. . . . . . . . . 0

0 0 0 0 −(N − 1) N − 1 + (N − 1)τ −(N − 1)τ
0 0 0 0 0 −N N

 (6)

−Q̃ =



1 0 0 0 0 0 0
−(y − 1)(N − y + 1)τ (y − 1) + (y − 1)(N − y + 1)τ −(y − 1) 0 0 0 0

0 −(y − 2)(N − y + 2)τ (y − 2) + (y − 2)(N − y + 2)τ −(y − 2) 0 0 0

0 0 0
. . . . . . . . . 0

0 0 0 0 −2(N − 2)τ 2 + 2(N − 2)τ −2
0 0 0 0 0 −(N − 1)τ (N − 1)τ

 (7)

and −qi =
∑N

j=1,j ̸=i qij for qii. The step from Q to Q̃ involves
replacing all the rows corresponding to states in A with their
standard basis vector.
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