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Abstract
Several topology generator algorithms have been proposed to
match the heavy-tailed behavior of the real Internet AS-level
topology. Although evaluation studies have been presented
for each topology generator, each of these studies assumes a
different framework. Therefore, it is difficult to compare the
differences between the topology generator algorithms. The
objective of this paper is to fill this gap by comparing repres-
entative families of topology generators.
Keywords: Network Topology, Internet, Power Law,
Graphs, Algorithms.

1. INTRODUCTION
The first widely used class of Internet topology generat-

ors was developed by Waxman [23]. The Waxman algorithm
is a variant of the Erdös-Rényi random graph [15] based on
the Euclidean distance. Later research claimed that the real
Internet topology does not obey a random-structure, but in-
stead possesses some kind of hierarchy, for instance a differ-
entiation between transit and stub nodes. As a consequence,
structural generators as Transit-Stub [25], Tiers [26], and GT-
ITM1 appeared. These structural generators were considered
valid until the appearance of a seminal paper by Faloutsos
et al. [22] in 1999. In that paper, the nodal degree of the In-
ternet AS-level topology was shown to closely obey a power
law. The graphs generated by the structural generators do not
exhibit this power law behavior, turning them into deficient
Internet topology models [18]. The work by Faloutsos et al.
[22] fueled the development of a new family of generators,
such as the Barabási-Albert (BA)[2] and Power Law Random
Graph (PLRG)[1]. In this paper we confine our scope to this
last generation of power law algorithms.

All the algorithms have an evocative [21] approach to the
problem in common: the algorithms can reproduce a metric
of interest, but do not capture the underlying causal mech-
anisms. A well-understood network metric (in most cases
the nodal degree distribution) is usually chosen, then an al-
gorithm that matches the metric is developed. This approach

1http://www3.cc.gatech.edu/projects/gtitm/

presents several problems. First, it is hard to choose the single
metric. Second, a method that matches the chosen metric, of-
ten does not fit other metrics of interest.

Power Laws and scale-freeness are two important con-
cepts. A random variable X ≥ 0 is said to possess a power
law if the probability density function (pdf ) obeys

fX(x) = cx−β (x > 0, β > 1) (1)

where c is a normalization constant, and β is the power law
exponent. The corresponding power law density function is
scale-free because it satisfies

fX(ax) = g(a)fX(x) (2)

An increase by a factor a in the scale or units by which one
measures x does not change the overall density fX(x), except
for a multiplicative scaling factor. In the remainder of this
paper, we will be using the notions of scaling and power law
distribution interchangeably.

Earlier work on comparison of Internet topology generat-
ors can be found in [8], [10] and [11]. In each of these papers,
the authors test existing generators against a new generator
they propose themselves using custom sets of metrics. Here,
we use the same framework for evaluating all the generators
to avoid these somewhat subjective results and ensure a fair
comparison.

This paper is organized as follows. In Section 2., we
present the power law algorithms: PLRG, Havel-Hakimi (in
short Havel), Takao, BA, BA rewired (BA-r) and General-
ized Linear Preference (GLP). In Section 3., we introduce
the metrics used to compare the output graphs: degree distri-
bution, average hopcount, clustering coefficient, assortativity
and spectrum of the adjacency matrix. Further in Section 4.,
we present the qualitative analysis of the different algorithms
under study. Finally, we conclude in Section 5. For a more
detailed version of this paper, the reader is referred to [13].

2. TOPOLOGY GENERATORS
We can classify the existent Internet topology generators

into two families: the curve fitting family and the preferential
attachment family.



The curve fitting family generators use an explicit scale-
free degree distribution D = {d1, d2, ..., dN} (the curve).
Given D, the algorithms interconnects the set of N nodes
such that the resultant graph G(N,L) with N nodes and L
links has degree distribution D. Generators of this family are
PLRG, Havel-Hakimi and Takao.

The preferential attachment family combines the ideas
of network growth and preferential attachment. The gener-
ator starts with a small, fully connected graph and divides its
growth into time-steps. At every time-step, one node is ad-
ded to the network. Then, m links are added between the new
node and randomly chosen nodes, where the probability to
attach to a node is proportional to the degree of the latter.
Generators of this family we consider are BA, BA-r and GLP.

Finally, we also consider the hybrid generator inet3 that
uses both curve fitting and preferential attachment.

2.1. Degree Distribution Generation
The performance of the PLRG, Havel-Hakimi and Takao

algorithms highly depends on the provided input degree se-
quence D = {d1, d2, ..., dN}. Each nodal degree dj is a ran-
dom variable with power law distribution (1). All the degrees
are assumed to be independent, thus ignoring the basic law
[16] of the degree

P
dj = 2L that eventually correlates all

nodal degrees. Since the process followed to generate degree
sequences is identical for PLRG, Havel and Takao, their prob-
ability density functions present the same behavior (while
other parameters may differ).

2.2. PLRG
The PLRG algorithm [1] first assigns stubs to the N nodes

in the graph obeying the calculated degree sequence D. Then
the algorithm randomly connects nodes by matching the free
stubs. In case that

PN
i=1 dn is an odd number, one stub re-

mains unassigned and is deleted.
The produced graph may not be connected and may contain

self-loops and duplicate links. In our simulations, we delete
self-loops, merge duplicate links, and extract the giant com-
ponent. The connected components theory [17] states that for
values of β between 2 < β < β0 (β0 = 3.478 as derived in
[1]) the random graph has a.s. a giant component and the size
of the second largest component is O(logN). For 1 < β < 2
the second largest component is a.s. of size O(1).

2.3. Havel-Hakimi
The behavior of the Havel-Hakimi algorithm is determ-

inistic: given a degree sequence D = {d1, d2, ..., dN}, the
resultant graph G is always the same. The original Havel al-
gorithm was designed to check whether a degree sequence

is graphical2 using the Havel-Hakimi theorem [9]. The al-
gorithm is based on the following theorem.

Theorem 2..1 (Havel-Hakimi theorem) Let D =
{d1, d2, ..., dN} be a sequence of non-negative integers
with d1 ≥ d2 ≥ ... ≥ dN . Let D0 be a sequence
{d01, d02, ..., d0N} obtained from D by setting d01 = 0,
d0i = di−1 (i = 2, .., d1+1), and d0j = dj(j = d1+2, ..., n).
Then D is graphical if D0 is graphical.

In words, D is graphical if the following sequence is
graphical: replace d1 by 0 and subtract 1 from the next d1
degrees:{d2, d3, ..., dd1+1}. This algorithm ensures that the
high degree nodes will be connected with the high degree
nodes.

2.4. Takao
The Takao algorithm was introduced by Takao Asano in

[19]. Similar to PLRG and Havel, the Takao algorithm re-
quires an explicit degree sequence as input. The Takao al-
gorithm is deterministic, such that for degree sequence D the
algorithm will always produce the same graph.

The main feature of the Takao and Havel algorithms is their
speed, which is in the order of O(

PN
i=1 di/2) provided D is

graphical. The Takao algorithm first checks whether the given
degree sequence is graphical by applying Theorem 2..2. Sim-
ilar to Havel, the connectivity information is obtained from
recursive application of Theorem2..2, but the connectivity
algorithms are completely different. The Takao theorem is
defined as follows:

Theorem 2..2 (Takao theorem) Given a degree sequence
D = {d1, d2, ...dN} of positive integers where n > d1 ≥
d2 ≥ ... ≥ dn > 0. Let h = dn, x = min{j|dj = dh}, y =
max{j|j ≤ n−1, dj = dh}. Describe C = {c1, c2, ...dN−1}
as a sequence of positive integers where c1 ≥ c2 ≥ ... ≥
cn−1, and

ci =

½
di − 1, if 1 ≤ i ≤ x− 1 or y − h+ x ≤ i ≤ y
di, if x ≤ i ≤ y or y + 1 ≤ i ≤ n− 1

Then D is graphical if C is graphical.

In words, at each step we are removing from D the node
with the lowest degree h, and subtracting dh units from the
set of highest degrees.

2A degree sequence D is called graphical if it is possible to draw at least
one graph with degree sequenceD.



2.5. Barabási-Albert
The two main concepts behind the BA algorithm are the

linear preferential attachment and Yule’s process. The com-
bination of a growth process with preferential attachment has
been proven theoretically [4] and empirically [2] to lead to
scale invariant distributions. The algorithm starts with cre-
ating a small, fully connected core of m0 nodes. Then, the
BA algorithm incrementally constructs a topology by con-
tinuously adding nodes. Each new node is connected to m
randomly chosen nodes. The probability that the new node
will be connected to a node i is given by

Pr[X = i] =
diP
∀j dj

(3)

The rewiring variant BA-r [3] separates the growing process
into three main events: addition of one node, addition of m
links, and rewiring of m links taken from the complete set of
links in the network. Each time-step, one of these operations
is chosen randomly with probabilities p, q and 1 − p − q,
respectively.

2.6. GLP
GLP is a variant of the BA model. Chen et al. pointed out

in [20] that in the real Internet, new ASs have a stronger pref-
erence to connect to high degree ASs than predicted by the
linear preferential model. To achieve a stronger preference
for high degree nodes, the probability that a new node will be
connected to the node i is adapted [8] to non-linear preferen-
tial attachment

Pr[X = i] =
di − θP
∀j(dj − θ)

(4)

The implementation of BA, BA-r and GLP algorithms have
been retrieved from the BRITE project3.

2.7. Inet3
Inet3 [10] is based on empirical data extracted from the

Oregon Route-Views project4. Thus, the algorithm is based
on the BGP Autonomous System (AS) topology.

Inet3 follows the next sequential steps to generate the fi-
nal topology: first compute the number of months t that
would take the 1997’s Internet to reach N nodes (exponential
growth of the number of nodes is assumed). Second, compute
the new frequency (and rank) distributions using the calcu-
lated t. The degree distribution is calculated through the pdf
fX(x) = eat+bx−S where a and b are known constants (ex-
tracted from Oregon Route-Views). For the 2% higher degree
nodes, apply instead the ccdf formula FX(x) = ect+dx−R.

3http://www.cs.bu.edu/brite/
4http://www.routeviews.org

Third, assign degree 1 to m% of the nodes. Fourth, form a
spanning tree with nodes of degree higher than 1, creating G.
Fifth, attach nodes with degree 1 to G using linear preferen-
tial attachment (3). Finally match the remaining nodes with
G using linear preferential attachment.

Inet3 depends on the empirical constants a, b, c, d, S, R
and m. The values for the constants have been extracted from
November 1997’s Internet snapshot5.

3. TOPOLOGICAL CHARACTERISTICS
In this Section, we introduce the metrics used to analyze

and compare the different topology generators.

3.1. Degree Distribution
Applying logarithms to both sides of (1) we obtain the

equation of a line with slope β.

log(y) = log c− β log x (5)

The simplest way to empirically obtain β is by performing
a linear regression of fX(x) when plotted on a log-log scale,
but the frequency distribution plot is known to underestim-
ate β [21]. Even worse, plotted pdfs have tendency to falsely
suggest that a scaling behavior exists. Figures 1a-1d in [21]
demonstrate how an exponential pdf can be interpreted mis-
takenly as scale-free. The use of the ccdf solves the classific-
ation problem, as it clearly discriminates between exponen-
tial and power law distributions. In conclusion, ccdf plots are
more reliable than the frequency degree plots. From here on,
we only use ccdf plots.

3.2. Hopcount
The hopcount or path length between two nodes is a char-

acterizing property of a graph. It is defined as the minimal
number of distinct links that forms a path connecting two
given nodes. The mean hopcount is the mean of the shortest
path lengths connecting each node n ∈ N to all other nodes
in G.

Generally, a topology is assumed to be either completely
regular or completely random. But many biological, tech-
nological and social networks lie somewhere between these
two extremes. Systems can be highly clustered, like regular
lattices, yet have small average hopcount [24], like random
graphs. These are called small-world networks, by analogy
with the small-world phenomenon [24]. The average hop-
count distribution is an important tool to distinguish between
small world and large diameter graphs, like lattices [16].

5Currently, the latest version of Inet generator is Inet-3.0.



3.3. Assortativity
The assortativity coefficientR(G)was introduced by New-

man in [14] as

R(G) =

P
(i,j)∈L didj −

¡P
i∈N

1
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2
i
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/LP

i∈N
1
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3
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i∈N

1
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i

¢2
/L

(6)

Assortative mixing (R > 0) is defined as “a preference for
high-degree nodes to attach to other high-degree nodes” and
disassortative mixing (R < 0) as the converse, where “high-
degree nodes attach to low-degree ones”. Assortative and dis-
assortative mixing patterns indicate a generic tendency to
connect to similar or dissimilar peers, respectively.

If we plot the average degree of the neighbors of a given
node i versus the node degree di we obtain a graphical repres-
entation of the assortativity coefficient. The slope of the linear
fit is directly related to R(G) (see Section 4.4. for examples).

3.4. Clustering Coefficient
The clustering coefficient cG(i) characterizes the density

of connections in the environment of a node i. A node’s clus-
tering coefficient is commonly defined as the ratio of the num-
ber y of links connecting the di neighbors of i, over the max-
imum possible 1

2di(di − 1).

cG(i) =
2y

di(di − 1)
provided that di ≥ 2 (7)

The clustering coefficient cG(i) expresses local robustness in
the graph and thus has practical implications: the higher the
local clustering, the more interconnected are its neighbors.
The clustering coefficient for the whole graph CG is defined
as the average of the clustering coefficient for all the nodes
with degree higher than 1.

3.5. Spectrum of the Adjacency Matrix
The adjacency matrix A of a graph G with N nodes is an

N × N matrix with elements aij = 1 only if (i, j) is a link
of G, otherwise aij = 0. We assume bidirectional links, if
there is a link from i to j (aij = 1) then there is a link from
j to i (aji = 1) for any j 6= i. Moreover, we exclude self-
loops (ajj = 0) or multiple links between two nodes i and j.
The spectrum of G is the set of eigenvalues of its adjacency
matrix A.

The spectrum of the adjacency matrix is an important
global characteristic of a topology. It yields tight bounds for a
wide range of graph characteristics, such as distance-related
parameters, expansion properties, and values related to sep-
arator problems estimating graph resilience under node/link
removal. Faloutsos et al. [22] showed that the larger eigenval-
ues of the Internet AS-level correspondent adjacency matrix

10
-4

10
-3

10
-2

10
-1

10
0

Pr
[ 

D
 ≥

 d
 ]

1
2 3 4 5 6 7 8

10
2 3 4 5 6 7 8

100
2 3 4 5 6 7 8

1000

d

BA
BA-r
GLP
inet3
Havel
PLRG
Takao 

Figure 1. The ccdf curves for the 7 algorithms. Apart from
BA-rewire, each curve closely follows a straight line, which
expresses the Power Law property.

follow an empirical power law, such that

fλ(x) ' x−δ (8)

Separately, Dorogovstev et al. [6] showed that the tail para-
meter β of the power law degree distribution, and the tail
parameter δ for the highest eigenvalues are directly related
through

fλ(x) ' x1−2β (9)

Eq. (8) and (9) together provide a relation between the tail
exponent of the degree distribution, and that of the spectrum.

4. COMPARING GENERATORS BY SIMU-
LATION

4.1. Methodology
All generated networks consist of N = 3050 nodes. The

main reason for this number is that inet3 requires at least
3037 nodes, which is the number of nodes in 1997 Internet
AS topology. To generate the degree sequencesD, we choose
β = 2.18 as tail exponent. This value of β is in agreement
with results for the Internet AS-level topology [8] and [12].
The tail exponent β appears to be constant over time [10].

4.2. Degree Distribution
Figure 1 plots the degree distribution ccdf for all the topo-

logy generators, on log-log scale. Figure 7 in the Appendix
contains separate diagrams for the degree distribution ccdf of
each algorithm. The linear slopes in the ccdf plot indicate that
the obtained distributions indeed follow a power law.

For each data set, we calculate the linear regression to get
β. Additionally, we calculate the Pearson’s r linear correla-
tion coefficient and the coefficient of variation (Cv = σ2/μ)



ccdf β r CV

PLRG 2.47 0.99 35.3
Havel 2.05 0.97 21.9
Takao 2.27 0.99 38.1
inet3 2.21 0.99 31.3
BA 2.96 0.99 31.0
BA-r 2.40 0.87 13.8
GLP 2.34 0.99 25.5

Table 1. Linear fit of β for the ccdf data set, Pearson’s r and
coefficient of variation CV . The correlation coefficients lie
above 0.97 in all the cases, except BA-r.

of the degree distribution. The first parameter estimates the
goodness of the linear fits, where the second quantifies the
grade of variability. The numerical results are summarized in
Table 1.

Figure 1 illustrates how the algorithms correctly match a
power law distribution. However, the tail exponents deviate
considerably from the exponent of the real Internet AS topo-
logy, β ≈ 2.18 [6]. The maximum degree differs for each
generator. This can better be observed in Figure 7. While for
BA the maximum degree is around 200, GLP has a higher
maximum degree of 600. The reason for this is the non-linear
preferential attachment of GLP as opposed to the linear pref-
erential attachment of BA and BA-r. On the other hand, BA
has more low-degree nodes.

BA-r6 follows a power law distribution up to di ≈ 100.
However, the degree distribution becomes exponential for
higher degrees, which explains the small coefficient of vari-
ation. The exponential tail can be ascribed to the rewiring pro-
cess. By randomly rewiring links, high degree nodes are more
likely to loose a link, such that high degree nodes are losing
degrees. The PLRG algorithm generates topologies with isol-
ated nodes, duplicate links and self-loops. After these irreg-
ularities have been solved (deleting isolated nodes, merging
duplicate links and deleting self-loops) the remaining topo-
logy has an obvious deficiency in the degree distribution, as
several low degree nodes are removed from the graph. Con-
sequently, the tail exponent β is affected.

4.3. Hopcount
Figure 2 shows the histogram of the hopcount distribution

for all the proposed generators. The average hopcount gener-
ally lies under 5 hops, thus the networks tend to exhibit the
small world property.

In [17] and [5] it is shown that, for large N , the average

6The family of Barabási-Albert generators does not have nodes with de-
gree 1, since during the generation process each new node starts with initial
degree m = m0 = 2.
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Figure 2. Hopcount histogram for all the considered al-
gorithms. Takao represents a notable exception, as it inter-
connects long chains of nodes, making unappropriate use of
the input degree sequence.

hopcount of power law graphs is approximated by,

E[HN ] = 2
log logN

|log(β − 2)| (1 + o(1)) (10)

yielding for N = 3050 and β = 2.18 that E[HN ] ≈ 2.42.
Table 2 presents the numerical results of the simulations

and compares them with (10). The results present remarkable
differences even for algorithms belonging to the same family.
For instance, BA with a mean value of 4.5 lies far from BA-r
with a mean of 2.4. This difference is due to the random re-
wiring process. Watts and Strogatz demonstrated in [24] that
randomly rewiring creates shortcuts in a network, hence de-
creasing the average hopcount. GLPs non-linear preferential
attachment also decreases the average hopcount as compared
to BA, because it creates densely connected cores through
which all nodes can be reached within a few hops. The dif-
ferences in the hopcount between the generators (of the same
family) shows that minor modifications in the algorithm have
a strong effect on the network properties.

Havel and BA-rewire show a very narrow distribution that
centers around only two hops. Havel’s algorithm systematic-
ally interconnects high-degree nodes with high-degree nodes,
creating a highly interconnected core, through which almost
all nodes can be reached within 3 hops.

Takao interconnects long chains of nodes with low degree,
which is an artifact of the algorithm. The direct consequence
is a dramatic increase of the average and maximum hopcount.

4.4. Assortativity
Figure 3 plots the average degree of the neighbors of a node

with degree d for all the algorithms. Figure 7 in the Appendix
contains separate diagrams of Figure 3 for each algorithm.
Table 2 presents the numerical results. As observed in Table 2,



theory μ σ2 max R(G)
PLRG 5.51 3.8 0.83 9 -0.13
Havel 1.39 2.4 0.54 4 -0.38
Takao 3.18 7.3 5.19 243 -0.23
inet3 2.66 3.6 0.72 7 -0.18
BA 102 4.5 0.77 7 -0.01
BA-r 4.54 2.9 0.36 5 -0.01
GLP 3.86 3.6 0.72 7 -0.11

Table 2. The four left rows show the theoretical mean,
empirical mean, variance, and maximum value of the hop-
count for the studied generators. Takao’s maximum hopcount
clearly exceeds the others. The theoretical value for BA is not
correctly approximated, as Eq. (7) is only valid in the range
2 < β < 3. The last column shows the average assortativity
coefficient R(G) of the considered algorithms.

the assortativity of inet3, PLRG, Havel, and Takao is clearly
negative, which corresponds to disassortative behavior. This
effect is represented as a negative slope in Figure 3, meaning
that low degree nodes tend to connect to high degree nodes,
and conversely, high degree nodes tend to interconnect with
lower degree nodes.

The assortativity coefficient for the Internet AS level graph
is found [14] as R(Internet) ≈ −0.189, a significant dis-
assortative behavior. In comparison to the Internet, the de-
terministic generators considered are strongly disassortat-
ive, while the preferential attachment family topologies are
weakly disassortative. As an extension of BA, GLP improves
the assortativity.

In accordance with other studies [8], the degree of the
neighbors for BA and BA-r is close to constant, which means
that there is no correlation between the degree of a node and
that of its neighbors. As an extension of BA, GLP improves
the assortativity. Because in GLP, the tendency of the nodes
to attach to higher degree nodes is stronger (non-linear pref-
erential attachment), a few highly connected nodes will arise
which are then connected to many low degree nodes.

Intuitively we might infer that the assortativity of Havel
is positive, as the algorithm uses the lemma "High de-
gree connects to high degree". But the empirical results
(R(G)HAVEL = −0.38) contradict this interpretation. The
essential reason for this apparent conflict is that R(G) is nor-
malized against a set of graphs containing self-loops and isol-
ated nodes. So Havel could be thought of as disassortative
when compared with all graphs [21].

Empirical data shows that 20% of the PLRG nodes do not
belong to the Giant Component, and thus they are removed.
As these erased nodes represent a significant fraction of nodes
with low degree, subtracting them from the graph implies that
the higher degree nodes are losing low degree connectivity.
This produces an increase on the average degree of neighbors
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Figure 3. Average degree of the neighbors (y-axis) given a
degree d (x-axis).

for the high degree nodes.

4.5. Clustering Coefficient
Figure 4 shows the clustering coefficient for the evalu-

ated generators, plotting a vertical compound of all the his-
tograms. The real Internet AS-level graph clustering coeffi-
cient is CInternet ≈ 0.46 [8]. Figure 4 shows that none of the
proposed generators closely matches the Internet’s clustering
coefficient. Table 3 shows a detailed summary of the obtained
results.

BA, BA-r, GLP and inet3 present low variance in compar-
ison to the rest of the algorithms, where Havel and Takao
posses higher variance and irregular distributions (right side
of Figure 4).

The clustering coefficient of Barabási-Albert is very low
(μBA = 0.012), which implies that BA is organized as a
tree or a star. The rewiring process in BA-r interconnects ran-
dom nodes, which affects the tree structure and thus increases
the clustering coefficient. The rewiring probability 1− p− q
has a direct effect on the clustering coefficient, as pointed
out earlier in [24]. GLPs non-linear preferential attachment
increases the tendency of new nodes to attach to higher de-
gree nodes. Hence when a new node is added to the net-
work, it is more likely, in comparison to BA, that the nodes to
which it attaches have a high degree. Since, these two nodes
have a high degree, the probability that they are connected
is also high, such that a triangle is created between the three
nodes, which increases the clustering coefficient. The cluster-
ing coefficient, as defined in Section 3.4., is also equal to the
ratio between the number of triangles that contain node i and
the number of triangles that could possibly exist if all neigh-
bors of i were interconnected. A higher number of triangles
results in a higher overall clustering coefficient. Hence, the
clustering coefficient of GLP is expected to be higher than
BA. The clustering coefficient for inet3 (μinet3 = 0.1255)
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ing coefficients. From left to right: BA, BA-r, GLP, inet3,
PLRG, Havel and Takao. While some algorithms present
widely spread histograms (Havel and Takao), others present
zero variance (BA and inet3).

appears constant with no variance.
Both Havel and Takao generate graphs with high CG. The

recursive nature of these algorithms systematically intercon-
nects the neighbors of a node. Yet, the average hopcount of
Havel and Takao strongly differs. The difference arises be-
cause the Takao algorithm interconnects long tails of nodes
with low degree. These tails dramatically increase the aver-
age hopcount, but still preserve a central clustered core.

As the average hopcount for Takao is very large, this al-
gorithm does not exhibit the small world property. This effect
indicates that a power law degree sequence is not a warranty
to obtain a small world graph [21].

The BA algorithm presents a very small clustering coef-
ficient, implying that the network also does not exhibit the
small world property [24]. PLRG, BA-r, GLP and Havel do
have the small world property, as they combine a low average
hopcount with high clustering coefficients when compared
[16] to the random graph CGp(N) ≈ 10−3.

4.6. Spectrum
As pointed by Faloutsos et al. [22], an eigen exponent δ

exists, such that the spectral density decays as a power law
(8) for large eigenvalues. However, the linear regression is
non trivial, as it depends strongly on what we consider a large
eigenvalue. This problem is illustrated in Figure 6.

There is a rich literature on the eigenvalues of graphs and
their relation with topological properties. The eigenvalues of
random graphs tend to the semicircle law [6] [16], whereas
for scale-free networks the spectrum resembles a bell shape
representing a tree-like graph [7]. Moreover, the shape of the
spectrum at lower eigenvalues is directly related to the ran-
domness used by the algorithms to generate the topologies:
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Figure 5. Top: The BA spectrum. The bell shape of the
lower eigenvalues reveals a stochastic topology generator.
Bottom: The Havel spectrum. The spectrum of the determ-
inistic algorithms presents very sharp shapes; approximately
87% of the spectral density is concentrated in 3 eigenvalues.

stochastic topology generating algorithms create graphs that
present bulk-shape forms for small eigenvalues [7]. This be-
havior can be observed for BA (top of Figure 5), BA-rewire,
GLP and PLRG. On the other hand, the deterministic al-
gorithms Havel (bottom of Figure 5) and Takao concentrate
their densities in the zero-eigenvalue λ0. The Inet3 spectrum
is qualitatively between the deterministic and random beha-
vior.

Real Internet AS-level graphs present power law features
in their spectrum, as indicated by Eq. (8). The generators un-
der study correctly emulate this scaling behavior: the spec-
trum decays as a power law for large eigenvalues. Figure 6
illustrates an example of this fitting process with GLP.

Table 3 shows the relation between the tail exponent of the
spectrum δ and that of the degree distribution β. The differ-
ence is expressed as |∆| = δ − 2β + 1.

Although BA-r, inet3 and Havel follow the scaling of Eq.
(8), they do not behave like the Internet (|∆|Internet ≈ 0),
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Figure 6. Righthand side of the spectrum of GLP on log-
log scale. The line indicates the linear fit. The range of the
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definition on what are considered ’large’ eigenvalues. Here
we only consider eigenvalues greater than 10.

μ σ2 β δ |∆|
PLRG 0.139 0.070 2.47 3.95 0.01
Havel 0.698 0.190 2.05 1.88 1.22
Takao 0.687 0.150 2.27 3.55 0.01
inet3 0.126 0 2.20 2.39 1.01
BA 0.012 0.002 2.95 4.78 0.12
BA-r 0.123 0.005 2.40 1.69 2.11
GLP 0.127 0.018 2.34 3.54 0.14

Table 3. The first two columns show the mean and standard
deviation for the clustering coefficient. The last three columns
show a comparison between the tail exponents of the spec-
trum (δ) and that of the degree distribution (β). Dorogovstev
et al. [6] found that the empirical relation δ = 2β − 1 holds
for the real Internet AS graph.

because the measured difference does not match Eq. (9).

5. CONCLUSIONS
The metrics analyzed here are a grasp of the full range of

characteristics that can be computed, but they seem sufficient
to differentiate between all the algorithms. On the other hand,
one single metric is still not enough to classify an algorithm.
Table 4 summarizes the simulation results.

The curve fitting family can be split in two groups. The first
group contains Havel and Takao. This group shows poor res-
ults: a highly variable clustering and large hopcounts. This
eliminates them as Internet AS topology generators. From
this results, we can conclude that the degree distribution does
not provide enough insight into the Internet AS topology. The
second group, PLRG, behaves close to the Internet AS in all
the proposed metrics.

Degr. Hopc. Ass. Clus. Spect.
Internet 2.18 2.42 -0.19 0.46 0
PLRG 2.47 3.8 -0.13 0.14 0.01
Havel 2.05 2.4 -0.38 0.70 1.22
Takao 2.27 7.3 -0.23 0.69 0.01
BA 2.96 4.5 -0.01 0.01 0.12
BA-r 2.40 2.9 -0.01 0.12 2.11
GLP 2.34 3.6 -0.11 0.13 0.14
inet3 2.21 3.6 -0.18 0.13 1.01

Table 4. Summary of the simulation results. The columns
compare the algorithms degree distribution tail exponent, av-
erage hopcount, assortativity coefficient, clustering coeffi-
cient and the spectrum deviation ∆ versus the real Internet
AS topology.

The preferential attachment family misses the disassortat-
ive behavior of the Internet AS topology. GLP equals and im-
proves BA in all the results, especially inserting disassortativ-
ity through the non-linear preferential attachment.

Inet3 starts as a good algorithm showing good results in
degree distribution, hopcount and assortativity. But the static
clustering coefficient and the spectrum results classify this al-
gorithm as non appropriate.

We may summarize as follows:

• PLRG does not deviate considerably from the (estim-
ated) real Internet AS results in any of its results, but the
number of nodes in the output graph is not static.

• Havel design purpose is to check if a degree sequence is
graphical. Thus Havel topologies are far from reality.

• Takao was designed to interconnect any graphical de-
gree sequence in a short time. In the connectivity process
unrealistic long chains of nodes are created.

• BA, the lack of input parameters makes it useless to gen-
erate real-Internet topologies. It still remains as an inter-
esting toy model.

• BA-r, the simulations provide a defect in the tail of the
degree distribution as it decays exponentially. This in-
validates the model.

• GLP improves Barabási-Albert in many parameters.
However, the algorithm needs many inputs, thus it de-
pends highly on real Internet AS-level measurements.

• inet3, trying to mimic the power law degree distribution
(using constant parameters), provides undesirable side
effects such as the static clustering coefficient.

As GLP matches almost all the Internet AS parameters
equally or better than PLRG and inet3, we conclude that GLP
is the most suitable Internet AS topology generator.
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Figure 7. The separate CCDF diagrams for the seven algorithms together with the diagrams showing the correlation between
the average degree of a node’s neighbors and its own degree.


