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ABSTRACT

The prevalence, which is the average fraction of infected nodes, has been studied to evaluate the robustness of a network
subject to the spread of epidemics. We explore the vulnerability (infection probability) of each node in the metastable state
with a given effective infection rate τ. Specifically, we investigate the ranking of the nodal vulnerability subject to a susceptible-
infected-susceptible epidemic, motivated by the fact that the ranking can be crucial for a network operator to assess which
nodes are more vulnerable. Via both theoretical and numerical approaches, we unveil that the ranking of nodal vulnerability
tends to change more significantly as τ varies when τ is smaller or in Barabási-Albert than Erdős-Rényi random graphs.

Introduction

The continuous outbreaks of epidemic diseases in a population and viruses in computer networks1–4 motivate the study of
epidemic spreading on a network. The Susceptible-Infected-Susceptible (SIS) epidemic process5–12 has been widely studied
as a model of virus spread on a network. In the SIS model, a node is either infected or susceptible at any time t. Each infected
node infects each of its susceptible neighbors with an infection rate β . Each infected node recovers with a recovery rate δ .
Both infection and recovery processes are independent Poisson processes and the ratio τ = β/δ is the effective infection rate.
There is an epidemic threshold τc and above the threshold τ > τc a nonzero fraction of nodes is infected in the metastable
state. The infection probability vk∞(τ) of a node k in the metastable state at a given effective infection rate τ indicates the
vulnerability of node k to the virus, and the prevalence, which equals the average fraction y∞(τ) of infected nodes reflects the
global vulnerability of the network.

Researchers have mainly concentrated on the average fraction y∞ of infected nodes in the metastable state to estimate the
vulnerability of a network against a certain epidemic or virus. Great effort has been devoted to understand how the network
topology influences the vulnerability and the epidemic threshold6, 13–15. When the effective infection rate is just above the
epidemic threshold [16, p. 469]. In this case, it is found [16, p. 469] that, the metastable-state infection probability vector
V∞ = [v1∞v2∞ · · · vN∞]T ), obtained by the N-Intertwined Mean-Field Approximation (NIMFA) of SIS model is proportional
to the principal eigenvector x1 of the adjacency matrix A. In this work, we aim to explore the nodal infection probability
in a systematic way, in different network topologies and when the effective infection rate τ varies. As a starting point, we
investigate the ranking of nodal infection probabilities, which crucially informs a network operator which nodes are more
vulnerable or require protection. Interestingly, we find that the ranking of the nodal infection probability changes as the
effective infection rate τ varies. The observation points out that we cannot find a topological feature of a node i to represent
the vulnerability of node i to an SIS epidemic, because the rankings in vulnerability of nodes in a network may be different
when the effective infection rate τ varies, whereas a topological feature of node i remains the same. Our observation explains
the finding of Hebert-Dufresne et al.17 that different nodal features (such as degree, betweenness, etc.) should be used to select
the nodes to immunize in different scenarios (based on different infection rates, link densities, etc.), i.e. different nodes should
be immunized at different infection rates. In this paper, we explore two questions: (I) which network topology changes the
ranking of nodal infection probabilities more significantly and (II) in which effective infection rate range, does the increment
of the effective infection rate lead to a more significant change in the ranking for a given network topology?

We first assume that, for an arbitrary pair of nodes, the trajectory vk∞(τ) and vm∞(τ) as a function of the effective infection
rate τ cross at most once in any interval (τ0,τ1). We call this assumption the one-crossing assumption and Section “Discussion
about the one-crossing assumption” of the supplementary information shows that the assumption is reasonably good. Then



the rankings of the vulnerabilities vk∞ (τ) and vm∞ (τ) change or equivalently the trajectories vk∞ (τ) and vm∞ (τ) cross if
(vk∞ (τ0)− vm∞ (τ0))(vk∞ (τ1)− vm∞ (τ1)) < 0, when the effective infection rate τ changes from τ0 to τ1. To estimate the
maximal change in the ranking of nodal infection probabilities in a network, we consider the total number of crossings between
the trajectories of the infection probabilities of all the nodes in a network, when the effective infection rate τ changes from
just above the epidemic threshold to a large value, above which the ranking remains the same. The total number of crossings
is a simple and straightforward measure of the changes in the ranking of nodal infection probabilities. (We also briefly discuss
how the correlation of the ranking of nodal infection probabilities changes as the effective infection rate increases in Section
“The Spearman rank correlation ρ as a function of α” of the supplementary information.) A higher total number of crossings
may lead to a more complicated protection policy for a network operator. Given a network, we find a lower bound of the
total number of crossings, which can be computed from the topology properties, in particular, from the degree vector and
the principal eigenvector of the adjacency matrix. The lower bound is roughly proportional to, thus an accurate indicator of,
the total number of crossings for an arbitrary network. Hence, these two topological features (i.e. the degree vector and the
principal eigenvector of the adjacency matrix) could indeed characterize to what extent the ranking of nodal vulnerabilities
would change on a network. Since the lower bound is computationally simple, it can be used to compare the total number of
crossings for different network topologies. This result explains why the total number of crossings tends to be larger in networks
with a smaller average degree if the degree distribution is given or with a larger degree variance if the average degree is given.
Regarding to question (II), we analytically derive the number of crossings when the effective infection rate τ0 increases with a
small value ε , given the infection probability vector V∞(τ0) at the effective infection rate τ0. This theoretical result, validated
by numerical results, explains the reason why the crossings are more likely to occur when the effective infection rate τ is
smaller.

Results
We first introduce in detail how to count or quantify the changes of the nodal ranking of the infection probability. Afterwards,
we investigate the changes in the ranking (I) in different topologies when the effective infection rate τ increases from just
above the epidemic threshold to a large value, above which the ranking remains the same, and (II) when the effective infection
rate varies in different ranges.

The counting of the nodal ranking changes
To explore the changes of the nodal ranking of the infection probability, we investigate in a given network how many crossings,
denoted by χ , between the trajectory vk∞(τ) and vm∞(τ) for all pairs of nodes can occur in the effective infection rate interval
(τ0,τ1), where τ0 > τ(1)c , and where τ(1)c = 1

λ1
(λ1 is the largest eigenvalue of the adjacency matrix) is the NIMFA epidemic

threshold: the epidemic dies out if the effective infection rate τ < τ(1)c . (More details on τ(1)c are introduced in Section
Methods.) In Fig. 1, we illustrate the trajectories vk∞(τ) of 10 nodes, randomly selected from a real-world network called Roget
(N = 994 nodes, average degree E[D] = 7.32 and detailed in Section “Real-world graphs” of the supplementary information).
For example, the vulnerability of the node corresponding to the red dash line in Fig. 1 changes dramatically from the medium
vulnerability when τ = 0.12 to the high vulnerability when τ = 0.24. Network operators should be alert to such a change of
nodal vulnerabilities. The trajectories vk∞(τ) of other groups of nodes in Roget are shown and discussed in the first section of
the supplementary information.

For a graph with N nodes, the maximum possible number of crossings is N(N−1)
2 under the one-crossing assumption. To

count the number of crossings in the interval (τ0,τ1), we define an N ×N matrix F with elements fi j:

fi j(V∞(τ0),V∞(τ1)) = (vi∞(τ0)− v j∞(τ0))(vi∞(τ1)− v j∞(τ1))

Since fii = 0, the matrix F has a zero diagonal just as the adjacency matrix A. A negative matrix element fi j < 0 means that
there is a crossing between the trajectory vi∞(τ) and v j∞(τ) in the interval (τ0,τ1). The number of crossings in the interval
(τ0,τ1) of the effective infection rate then equals

χ(τ0,τ1) =
N

∑
i=1

i−1

∑
j=1

1 fi j(V∞(τ0),V∞(τ1))<0 (1)

where 1{x} is the indicator function: 1{x} = 1 if the event or condition {x} is true, else 1{x} = 0. Specifically, if all nodal
degrees are the same in a random graph, the nodal ranking in any interval of τ does not change, since the infection probability
of every node6 equals the average fraction of infected nodes for any effective infection rate τ . In this work, we focus on the
NIMFA nodal infection probability in the meta-stable state which is obtained by solving (11), hence the initial conditions
(such as how many nodes are initially infected) are not necessary.
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τ
Figure 1. The meta-stable infection probability vk∞ as a function of the effective infection rate τ for 10 random nodes in a
real-world network called Roget (details in Section ”Real-world graph“ of the supplementary information). The meta-stable
infection probability vk∞ is obtained by solving (11).

We can compute the SIS metastable viral infection probability vk∞ of any node k both by the N-Intertwined Mean-Field
Approximation (NIMFA)6, 18 and by simulations8 of the SIS continuous-time Markov process. We then further compare the
number of crossings χ as a function of the increment in the effective infection rate τ over different ranges, obtained by NIMFA
and the continuous-time simulations of the SIS model. As shown in Section “The comparison between NIFMA and the
continuous-time simulation” of the supplementary information, the number of crossings obtained from NIMFA is relatively
close to that from the simulations, so we compute the number χ of crossings mainly by NIMFA due to its computational
efficiency. However, NIMFA may not be accurate when the effective infection rate is close to the epidemic threshold8. Hence,
the number of crossings obtained by NIMFA and simulations may be different from each other when the effective infection rate
is close to the epidemic threshold as shown in Section “The comparison between NIFMA and the continuous-time simulation”
of the supplementary information.

The total number of crossings in different topologies
We explore the total number of crossings in different graph topologies χ(τ(1)c + ε,τu) when the effective infection rate τ
changes from just above the epidemic threshold, i.e. τ(1)c + ε , to a large value τu, above which the ranking of the nodal
infection probability hardly changes. In Section “Methods – The derivation of the lower bound χl” , we prove that there exists
a value of τ , above which the ranking of the nodal infection probabilities does not change. We derive a lower bound of the
total number of crossings and show that the lower bound is actually an accurate indicator of the total number of crossings in
different types of graphs.

As shown in Methods, we derive a lower bound χl of the total number of crossings in a given graph:

χl =
N

∑
i=1

i−1

∑
j=1

1 fi j(x1,d)<0 ≤ χ(τ(1)c + ε,τu) (2)

where x1 is the principal eigenvector of the adjacency matrix A, belonging to the largest eigenvalue λ1 and d is the degree
vector of the given graph.

With the one-crossing assumption, we can compute χ(τ(1)c + ε,τu) from the infection probability vector V∞(τ(1)c + ε) and
V∞(τu). However, we have to select a proper value of τu which is large enough and practical. We set the value of τu as the
minimum infection rate such that the average fraction of infected nodes y∞(τu) ≥ 0.9, since we find for most Erdős-Rényi
(ER), Barabási-Albert (BA) random graphs and the aforementioned real-world network, that the rankings of the nodal degree
and the infection probability are almost the same when the average fraction of infected nodes y∞ ≥ 0.9. We discuss how we
select the value of τu in Section “The value of τu” of the supplementary information. The scatter plot of the lower bound
χl vs χ(τ(1)c + ε,τu) is shown in Fig. 2 for different graphs including ER random graphs, BA random graphs and six graphs
constructed from real-world datasets (as described in Section “Real-world graphs” of the supplementary information), and the
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dash line in Fig. 2 is log χl = log χ(τ(1)c + ε,τu)+ log0.88, equivalent to

χl = 0.88χ(τ(1)c + ε,τu) (3)

We employ the average degree E[D] = 8, 10, 12, 14, 16, 18, 20, 40, 60, 80 for ER random graphs and E[D] = 4, 6, 8, 10, 12,
14, 16, 18, 20 for BA random graphs. Both ER and BA random graphs have the same size N = 1000. We confine ourselves
to the connected graphs in this work. Hence, we employ the link density p = E[D]

N−1 of ER random graphs, which is larger
than the critical link density pc =

lnN
N ≈ 0.007 (equivalently the average degree E[D] > 7), to ensure the connectivity. Fig. 2

and Equation (3) show that the lower bound χl is indeed always smaller than and approximately proportional to χ(τ(1)c +
ε,τu). Hence, the lower bound χl is a computationally simple indication of the total number of changes in the ranking of
the metastable state infection probability in a graph. Moreover, we find that for graphs generated by the same random graph
model (ER or BA model), a graph with a small average degree tends to have a large number of crossings; given the average
degree, a graph with a large degree variance tends to have more crossings. We can understand this observation as follows. The
principal eigenvector component of any node i obeys the eigenvalue equation (x1)i = ∑N

j=1 ai j(x1) j. The principal eigenvector
is positively correlated with the degree vector19. Such correlation weakens if the principal eigenvector has a large variance,
leading to a large χl . When the degree variance is large, the variance of the principal eigenvector tends to be large as well,
contributing to a large χl . As more links are added to a network, the network becomes more homogeneous and the variance
of the principal eigenvector decreases, resulting in a smaller χl , or equivalently less crossings.

χ

χ(τ (1)+ε, τ  )

χl = 0.88χ(τc(1) + ε, τu)

Figure 2. The lower bound χl versus the total number of crossings χ(τ(1)c + ε,τu) in ER random graphs (with the size
N = 1000), BA random graphs (with the size N = 1000) and real-world networks (details in Section ”Real-world graphs“ of
the supplementary information).

The number of crossings in different intervals of τ
As shown in (1), we can compute the number χ(τ0,τ1) of crossings in the given interval (τ0,τ1) based on the knowledge of the
infection probability vectors V∞(τ0) and V∞(τ1) only. Here, we show that we can theoretically derive the number of crossings
in a small interval (τ0,τ0 +∆τ) with the only knowledge of V∞(τ0). Afterwards, we will validate this theory by numerical
results, and illustrate in which ranges of the effective infection rate the number of crossings tends to be larger.

The crossings close to a given τ
For sufficiently small ε = ∆τ > 0, the Taylor expansion of the steady-state NIMFA infection probability vk∞ for any node k is

vk∞ (τ + ε) =
∞

∑
m=0

εm

m!
∂ mvk∞ (τ)

∂τm = vk∞ (τ)+ ε ∂vk∞ (τ)
∂τ +

ε2

2
∂ 2vk∞ (τ)

∂τ2 +O
(
ε3) (4)

explicit up to order 2. In Section “Derivatives of vi∞ with respect to τ” of the supplementary information, we show the
procedure to determine the m-th order derivative vi∞ (τ) with respect to the effective infection rate τ for any node k.
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If vk∞ (τ)− vm∞ (τ) > 0 and ∂vk∞(τ)
∂τ − ∂vm∞(τ)

∂τ > 0, then vk∞ (τ + ε)− vm∞ (τ + ε) > 0 for sufficiently small ε > 0 and the
ranking at τ + ε and at τ is unchanged. On the other hand, if vk∞ (τ + ε)− vm∞ (τ + ε) = 0, which implies, for sufficiently
small ε > 0 (so that we can ignore the higher order terms in εm for m > 1 in (4)), that

vk∞ (τ)− vm∞ (τ)≈−ε
(

∂vk∞ (τ)
∂τ − ∂vm∞ (τ)

∂τ

)

In other words, given vk∞ (τ) of all nodes at τ , then there can be a zero or crossing at τ + εkm, where

εkm =−vk∞ (τ)− vm∞ (τ)
∂vk∞(τ)

∂τ − ∂vm∞(τ)
∂τ

(5)

if εkm is small compared to τ . This approach is actually known as the Newton-Raphson method and corresponds with the first
term in the Lagrange series for the inverse function (see20 in Page 304). A second order approximation, by ignoring terms of
order O

(
ε3) in (4), equating vk∞ (τ + ε)− vm∞ (τ + ε) = 0 and solving for ε , yields

εkm =
−
(

∂vk∞(τ)
∂τ − ∂vm∞(τ)

∂τ

)
±
√(

∂vk∞(τ)
∂τ − ∂vm∞(τ)

∂τ

)2
−2
(

∂ 2vk∞(τ)
∂τ2 − ∂ 2vm∞(τ)

∂τ2

)
(vk∞ (τ)− vm∞ (τ))

(
∂ 2vk∞(τ)

∂τ2 − ∂ 2vm∞(τ)
∂τ2

) (6)

which is expected to be more accurate, in spite of the higher computational complexity since now also the set of second order
derivatives needs to be solved. We rewrite (6) as

εkm =−

⎛

⎝
∂vk∞(τ)

∂τ − ∂vm∞(τ)
∂τ

∂ 2vk∞(τ)
∂τ2 − ∂ 2vm∞(τ)

∂τ2

⎞

⎠

⎧
⎪⎨

⎪⎩
1±

√√√√√1−2

⎛

⎝
∂ 2vk∞(τ)

∂τ2 − ∂ 2vm∞(τ)
∂τ2

∂vk∞(τ)
∂τ − ∂vm∞(τ)

∂τ

⎞

⎠
(

vk∞ (τ)− vm∞ (τ)
∂vk∞(τ)

∂τ − ∂vm∞(τ)
∂τ

)⎫⎪⎬

⎪⎭

Using the generalized binomial expansion (1+ x)α = ∑∞
k=0
(α

k
)
zk, valid for any |z|< 1, up to first order yields

εkm ≃−

⎛

⎝
∂vk∞(τ)

∂τ − ∂vm∞(τ)
∂τ

∂ 2vk∞(τ)
∂τ2 − ∂ 2vm∞(τ)

∂τ2

⎞

⎠

⎧
⎨

⎩1±

⎡

⎣1−

⎛

⎝
∂ 2vk∞(τ)

∂τ2 − ∂ 2vm∞(τ)
∂τ2

∂vk∞(τ)
∂τ − ∂vm∞(τ)

∂τ

⎞

⎠
(

vk∞ (τ)− vm∞ (τ)
∂vk∞(τ)

∂τ − ∂vm∞(τ)
∂τ

)⎤

⎦

⎫
⎬

⎭

After only retaining the root with the minus sign, we arrive again at (5), illustrating that (5) is accurate when (5) is as small as
possible (so that higher order evaluations are not needed). The discriminant must be positive in order to obtain feasible εkm. A
positive discriminant is a condition for the existence of crossing in the interval (τ,τ + ε). Hence, given an effective infection
rate τ0 and the corresponding infection probability vector V∞(τ0), there is a crossing close to τ0 between the trajectory vk∞(τ)
and the trajectory vm∞(τ) at τ + εkm if εkm computed by (5) is positive and small enough.

Numerical results
In the following, we propose to normalize the effective infection rate by the NIMFA epidemic threshold: α = τ

τ(1)c
≥ 1, so

that we can compare the number χ of crossings in different intervals of α in the same range (1,αmax) for different network
topologies, i.e. different average degrees and different degree distributions. We explore the crossings of the infection proba-
bility trajectories when the effective infection rate varies over the range (1,αmax). We divide the range (1,αmax) into intervals
(α j−1,α j) where j = 1,2, ...,n is the index and αn = αmax.

We aim to explore in which interval of the normalized effective infection rate α the crossings are more likely to appear.
Hence, instead of directly exploring the number of crossings between the trajectory of every node in the whole interval
(1,αmax) of the effective infection rate α , we investigate the number χ(α j−1,α j) of crossings in (1) in each small interval
(α j−1,α j). We denote α0 = 1 (since the effective infection rate below the epidemic threshold corresponds to the all-healthy
state), αn = αmax and α j = α0 + j∆α , where ∆α = (αmax −1)/n is the length of each interval. We will study how the number
of crossings changes at different regions of the effective infection rate τ or scaled α . The infection probability vk∞(α) at any
given value of the normalized effective infection rate α is computed by solving the NIMFA equation (11). On one hand, we
can further compute the number χ(α j−1,α j) of crossings between all node pairs within any interval (α j−1,α j) by employing
our theoretical result (5). On the other hand, we can also numerically compute the number χ(α j−1,α j) by (1). We first
compare the theoretical (5) and numerical (1) when the normalized effective infection rate α is not close to 1, i.e. when the
effective infection rate τ is not close to the epidemic threshold τc; specifically, we start from α0 = 2 and α j = α0+ j∆α , where
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∆α = 1. The main figures in Fig. 3 demonstrate that, for both ER and BA graphs, our theoretical result (5) agrees well with
the numerical result (1) except for BA graphs in the interval (2,3). The lower accuracy of our theoretical result for small α
can be explained as follows. Compared to τ j−1 = α j−1τ(1)c , a small value of (α j −α j−1)τ(1)c is required for the accuracy of the
theoretical results (5), since ε in (5) is required to be small with respect to the given effective infection rate τ . Hence, when
α j is smaller, a smaller value of (α j −α j−1)τ(1)c is needed for (5) to be accurate.

χ
(α

j-
1
,α

j)

α j

χ
( α

j-
1
, α

j)

αj

α j

αj

χ
(α

j-
1
,α

j)

χ
(α

j-
1
,α

j)

(a) (b)

Figure 3. The number χ(α j−1,α j) of crossings as a function of the normalized effective infection rate α j. For ER graphs,
we employ the link density p = 2pc, thus the average degree E[D]=14, the size N = 1000 and the NIMFA epidemic threshold
τ(1)c ≈ 0.0673. For BA graphs, we employ the number of newly added links in each step m = 2, thus the average degree
E[D] = 4, the size N = 1000, and the NIMFA epidemic threshold τ(1)c ≈ 0.0902. The meta-stable infection probability vk∞ is
obtained by solving (11) and the number χ(α j−1,α j) of crossings is obtained by (1). The results are averaged over 10
realizations.

We further plot the number χ(α j−1,α j) of crossings in the interval (α j−1,α j) as a function of α j, when the normalized
effective infection rate α is close to 1 and the length of the interval is reduced to ∆α = 0.1. When the length of the interval,
i.e. ∆α , is smaller, the theoretical (5) results are more consistent with the numerical (1) results for BA random graphs in the
range of α ∈ (2,3) in the inset than in the main figure of Fig. 3(b). For both ER and BA graphs, the two methods agree with
each other well when the intervals of α are small, even when the normalized effective infection rate α is close to 1 as shown
in the insets of Fig. 3.

Physical explanation
Figure 3 shows that more crossings appear when the effective infection rate is smaller. In this section, we give a physical
explanation of that observation.

At an effective infection rate τ or a normalized effective infection rate α , Equation (14) shows that the comparison of the
infection probabilities vk∞(α) and vm∞(α) is actually equivalent to the comparison of the sum of the infection probabilities of
their neighbors, i.e. ∑N

j=1 ak jv j∞(α) and ∑N
j=1 am jv j∞(α). Without loss of generality, we assume that the degree dk of node k

is larger than the degree dm of node m, i.e. dk > dm. As discussed in Methods, the infection probability vk∞(α) > vm∞(α) if
the effective infection rate is large enough. If there exists a value of α1 at which ∑N

j=1 ak jv j∞(α1) < ∑N
j=1 am jv j∞(α1) while

dk > dm, there must be a crossing between vk∞(α) and vm∞(α) in the interval (α1,∞). If the infection probabilities v j∞(α)
(where j = 1,2, ...,N) of all nodes vary in a larger range with respect to the average infection probability 1

N ∑N
j=1 v j∞, i.e. the

average fraction y∞ of infected nodes, then there may be a higher probability that ∑N
j=1 ak jv j∞(α)< ∑N

j=1 am jv j∞(α) and thus
more crossings could be expected when the effective infection rate τ exceeds α1. This hypothesis further motivates us to study
the normalized standard deviation of the nodal infection probability:

σ∗(α) =

√
∑N

i=1(vi∞(α)− y∞(α))2/N

y∞(α)
(7)

(where we define σ∗(α = 1) = limα↓1 σ∗(α)) and explore whether a larger difference |σ∗(α j−1)−σ∗(α j)| of σ∗ would imply
more crossings in the interval (α j−1,α j).

The number χ(α j−1,α j) of crossings as a function of the difference σ∗(α j−1)−σ∗(α j) is shown in Fig. 4(a) for ER
random graphs and in Fig. 4(b) for BA random graphs. For both ER and BA random graphs, the number χ(α j−1,α j) of
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χ
(α

j-
1
,α

j)

σ∗(αj-1)−σ
∗
(α j)

-

χ
(α

j-
1
,α

j)

σ∗(αj-1)−σ
∗
(α j)

(a) (b)

Figure 4. The number χ(α j−1,α j) of crossings as a function of the difference σ∗(α j−1)−σ∗(α j) of the normalized
standard deviation of the metastable infection probability. For ER graphs, we employ the link density p = 2pc, thus the
average degree E[D] = 14, and the size N = 1000 (the NIMFA epidemic threshold τ(1)c ≈ 0.0673). For BA graphs, we
employ the minimum degree m = 2, thus the average degree E[D] = 4, and the size N = 1000 (the NIMFA epidemic
threshold τ(1)c ≈ 0.0902). The meta-stable infection probability vk∞ is obtained by solving (11), the number χ(α j−1,α j) of
crossings is obtained by (1) and the value of σ∗(α) is obtained by (7). The results are averaged over 10 realizations.

crossings are positively correlated with the difference σ∗(α j−1)−σ∗(α j) in the interval (α j−1,α j). We observe the same in
ER and BA random graphs with various average degrees though not shown here. The numerical results support that more
crossings tend to appear in an interval where the variable σ∗ changes more.

We then further explore how the value of the variable σ∗(α) changes with the normalized effective infection rate α . We
plot the variable σ∗ as a function of the normalized effective infection rate α in Fig. 5(a) for ER random graphs and in Fig. 5(b)
for BA random graphs with N = 1000 and various average degrees, and find that for both types of random graphs the curves
can be fitted by a power law function, i.e. σ∗ is proportional to α−γ , especially when the average degree is not small. More
figures and the curve fittings are shown in the last section of the supplementary information for both ER and BA random
graphs.

Fig. 5 illustrates that the power law exponent γ of the fitting curves is close to 1 as the average degree E[D] increases for
ER random graphs, and that is always approximately 1 for BA random graphs even though the average degree E[D] is small.
Furthermore, the relationship between the variable σ∗ and the normalized effective infection rate α follows a power law when
the effective infection rate is much larger, as shown in Section “σ∗ as a function of τ” of the supplementary information.

When α is large, we can theoretically prove the power-law relationship between the variable σ∗ and the normalized
effective infection rate α . By (12) and assuming a large enough effective infection rate, we obtain vi∞ (τ) = 1− 1

τdi
+O(τ−2)

for node i and consequently y∞(τ) = 1− 1
τ E[ 1

D ]+O(τ−2), so that (7) becomes

σ∗ =

√
Var[ 1

D ]

τ −E[ 1
D ]

+O(τ−2) (8)

In a finite graph, Var[ 1
D ] and E[ 1

D ] are finite, hence σ∗ is proportional to τ−1. The NIMFA epidemic threshold τ(1)c is a constant
for a given graph, and with α−1 = τ−1τ(1)c , we obtain that σ∗ is proportional to α−1. Although the power-law relationship
between σ∗ and α can be clearly observed in Fig. 5, the effective infection rate τ corresponding to the variable α in this figure
may be smaller than 1 and the theoretical proof is only valid when the effective infection rate τ ≫ 1. Our result (8) is based
on connected graphs, because the terms E[ 1

D ] and Var[ 1
D ] are undefined in unconnected graphs with isolated nodes.

The power-law decay of the variable σ∗ with the effective infection rate τ explains why there are more crossings when the
effective infection rate is smaller.

Validation on a real-world network
Finally, we validate our previous findings on the real-world network – Roget, detailed in Section “Real-world graphs” of the
supplementary information. As shown in Fig. 6(a), the number χ(α j−1,α j) of crossings at normalized effective infection rate
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Figure 5. The normalized standard deviation σ∗ of infection probabilities of all nodes as a function of α in (a) ER and
(b)BA random graphs. The dash line is a power-law curve with the exponent γ =−1. The sizes of all random graphs are
1000 and the average degree E[D] is shown in the figures. The meta-stable infection probability vk∞(α) is obtained by
solving (11) and the value of σ∗(α) is obtained by (7). The NIMFA epidemic threshold τ(1)c ≈ 0.1097, 0.0993, 0.0902,
0.0476, 0.0244, 0.0164 and 0.0124 for ER random graphs with the average degree E[D] = 8, 9, 10, 20, 40, 60 and 80
respectively, and τ(1)c ≈ 0.0902, 0.0698, 0.0479, 0.0416, 0.0368, 0.0329, 0.0300 and 0.0274 for BA random graphs with the
average degree E[D] = 4, 6, 10, 12, 15, 16, 18 and 20 respectively. The results are averaged over 10 realizations.

α interval obtained by theoretical and numerical methods are consistent with each other. The number of crossings decreases
fast as α increases, similar to ER and BA models. The main figure of Fig. 6(b) shows that the number χ(α j−1,α j) of crossings
increases with the difference σ∗(α j−1)−σ∗(α j) in the interval (α j−1,α j). In the inset of Fig. 6(b), we observe the power-law
relationship between the variable σ∗ and the normalized effective infection rate α . All these findings are well in line with
previous results on ER and BA random graphs.
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Figure 6. (a) The number χ(α j−1,α j) of crossings as a function of the normalized effective infection rate α j. (b) Main
figure: the number χ(α j−1,α j) of crossings as a function of the difference σ∗(α j−1)−σ∗(α j) of the normalized standard
deviation of the metastable infection probability; Inset: the normalized standard deviation σ∗ of infection probabilities of all
nodes as a function of α . The real-world network – Roget, detailed in Section “Real-world graphs” of the supplementary
information, is employed. The meta-stable infection probability vk∞ is obtained by solving (11), the number χ(α j−1,α j) of
crossings is obtained by (1) and the value of σ∗(α) is obtained by (7). The NIMFA epidemic threshold τ(1)c ≈ 0.0831.
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Discussion
In the SIS model, the infection probability trajectory vk∞(τ) of node k and the infection probability trajectory vm∞(τ) of node
m may cross if (vk∞(τ0)−vm∞(τ0)(vk∞(τ1)−vm∞(τ1)< 0, when the effective infection rate τ varies from τ0 to τ1. The number
χ(τ0,τ1) of crossings of all node pairs within an interval (τ0,τ1) of the effective infection rate measures the change in the
ranking of the nodal vulnerabilities when the effective infection rate changes from τ0 to τ1. We explore in what types of
network topologies and in what ranges of the effective infection rates the crossings are more likely to appear. Theoretically,
we find a lower bound χl in (2) of the total number of crossings in a graph. The lower bound χl only depends on topological
features, i.e. the degree vector and principal eigenvector of the adjacency matrix. That lower bound χl is also shown to reflect
the total number of crossings for a given graph. Moreover, we analytically predict the crossings close to an effective infection
rate τ0, given the infection probabilities of all nodes at the effective infection rate τ0. This theory can be used to estimate
the changes of the ranking of the nodal vulnerabilities if the effective infection rate τ slightly increases from its current value
τ0. We find that more crossings tend to appear when the effective infection rate is smaller. Our findings may help network
operators to estimate how significant the ranking of nodal vulnerabilities may change for a given change of the effective
infection rate on a given network.

This work inspires interesting further questions. For example, how much is the change in the value of the nodal infection
probabilities when the trajectories of the nodal infection probability crossing? Can we use the changes in the ranking of nodal
infection probabilities to more effectively select the nodes to immunize?

Methods
Network construction
The Erdős-Rényi (ER) random graph21 is one of the most widely-used and well-studied models. In an ER random graph
Gp(N) with N nodes, each pair of nodes is connected with probability p independent from every other pair. The distribution
of the degree of a random node is binomial: Pr[D = k] =

(N−1
k
)

pk(1− p)N−1−k and the average degree E[D] = (N − 1)p.
For large N and constant E[D], the degree distribution tends16 to a Poisson distribution: Pr[D = k] = exp(−E[D])(E[D])k/k!.
Moreover, if the link density p > pc =

lnN
N for large N, the graph Gp(N) is almost surely connected. We employ ER graphs

with p = 2pc (the average degree is approximately E[D] = 14) and N = 1000 as an example in some discussions, but consider
the ER graphs with various average degrees when needed.

Besides the ER random graph, the scale-free model is often used to capture the scale-free degree distribution of the real-
world networks such as the Internet22 and World Wide Web23. In this work, we consider the Barabási-Albert (BA) model24,
which begins with an initial connected network of m0 nodes. At each step, a new node is connected to m ≤ m0 existing nodes.
The probability that an existing node is chosen to be connected is proportional to the degree of the existing node. The degree
distribution of BA random graphs16 is Pr[D = k] = ck−3 for sufficiently large N, where c = (∑N−1

k=m k−3)−1. The minimum
degree of BA graphs is m, and we set m0 = m+1 to generate a BA graph with N = 1000 nodes. Hence, the number of links
is L = m0(m0−1)

2 +(N −m0)m = (N − m0
2 )m and the average degree is E[D] = 2L

N = 2N−m0
N m, thus approximately equals to 2m.

We employ the BA random graphs with m = 2 (the average degree E[D] = 4) as an example in discussions and consider more
average degrees when needed.

The N-Intertwined Mean-Field Approximation of the SIS model
The N-Intertwined Mean-Field Approximation (NIMFA) is one of the most accurate approximation of the SIS model that
takes into account the influence of the network topology6. The single governing equation for a node i in the NIMFA is

dvi(t)
dt

=−δvi(t)+β (1− vi(t))
N

∑
j=1

ai jv j(t) (9)

where vi(t) is the infection probability of node i at time t, and the adjacency matrix element ai j = 1 or 0 denotes if there is a
link or not between node i and node j. With V (t) = [v1(t) v2(t) · · · vN(t)]T , the matrix evolution equation of NIFMA is

dV (t)
dt

= (βdiag(1− vi(t))A−δ I)V (t) (10)

where A is the N×N adjacency matrix of the network, I is the N×N identity matrix and diag(vi(t)) is the diagonal matrix with
elements v1(t),v2(t), ....,vN(t). In the steady state, defined by dV (t)

dt = 0, or equivalently limt→∞ vi(t) = vi∞ and limt→∞ V (t) =
V∞, we have

(τdiag(1− vi∞)A− I)V∞ = 0 (11)
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Given the network and the effective infection rate τ , we can numerically compute the infection probability vi∞ as a function
of the effective infection rate τ for each node i by solving (11). The trivial, i.e. all-zero, solution indicates the absorbing state
where all nodes are susceptible. The non-zero solution of V∞ in (11), if exists, points to the existence of a metastable state
with a non-zero fraction of infected nodes. Or else, the metastable state can be figured as 0 or not existing. In this paper, we
are interested in actually the metastable state.

Furthermore, the NIMFA epidemic threshold τ(1)c = 1
λ1

, where λ1 is the largest eigenvalue of the adjacency matrix A, is a

lower bound of the exact epidemic threshold τc, i.e. τ(1)c < τc. The epidemic dies out if the effective infection rate τ < τ(1)c .
Since the NIMFA is the main approach in this work, we also employ the NIMFA epidemic threshold τ(1)c . The Laurent series
of the steady-state infection probability is given by16, 25

vi∞ (τ) = 1+
∞

∑
m=1

ηm (i)τ−m (12)

possesses the coefficients η1 (i) =− 1
di

and

η2 (i) =
1
d2

i

(
1−

N

∑
j=1

ai j

d j

)
(13)

and for m ≥ 2, the coefficients obey the recursion

ηm+1 (i) =− 1
di

ηm (i)

(
1−

N

∑
j=1

ai j

d j

)
− 1

di

m

∑
k=2

ηm+1−k (i)
N

∑
j=1

ai jηk ( j)

The derivation of the lower bound χl

As shown in [16, p. 469] when the effective infection rate τ = τ(1)c + ε is just above the NIMFA epidemic threshold τ(1)c = 1
λ1

,
the vector V∞ with the NIMFA metastable-state infection probabilities is proportional to the principal eigenvector x1 of the
adjacency matrix A. In particular, vk∞ = ε (x1)k, where ε > 0 and (x1)k is the k-th component corresponding to node k of the
principal eigenvector x1 of the adjacency matrix A, belonging to the largest eigenvalue λ1. The Perron-Frobenius Theorem20

states that all vector components of x1 are non-negative, and even positive if the graph G is connected. Hence, when the
effective infection rate is just above the epidemic threshold, the ranking of the infection probability vi∞(τ(1)c + ε) is the same
as the ranking of the component of the principal eigenvector (x1)i, i.e. fkm(V∞(τ(1)c + ε),x1) = 0 for any k and m.

On the other hand, the NIMFA steady-state infection probability for node k is given by18, [16, p. 464] and expressed as

vk∞(τ) = 1− 1
1+ τ ∑N

j=1 ak jv j∞(τ)
(14)

from which we obtain

vk∞(τ)− vm∞(τ) = τ (1− vk∞(τ))(1− vm∞(τ))
N

∑
j=1

(
ak j −am j

)
v j∞(τ)

The sign of vk∞(τ)− vm∞(τ) thus equals to the sign of ∑N
j=1
(
ak j −am j

)
v j∞(τ). Common neighbors of node m and k do

not play a role in the sign change of vk∞(τ)− vm∞(τ). (The common neighbors of node m and k are the set of nodes{
j ∈ N : am j = ak j

}
.) Moreover, if the number of non-common neighbors is 1 (or 0), then there is no change in the sign

of vk∞(τ)− vm∞(τ) while the effective infection rate τ varies. Since the minimum infection probability vmin(τ) > 0 for
τ > τ(1)c as shown in [16, Lemma 17.4.2 on p. 464], the following bounds apply

dkvmin(τ)−dmvmax(τ)≤
N

∑
j=1

(
ak j −am j

)
v j∞(τ)≤ dkvmax(τ)−dmvmin(τ)

where vmax(τ) and vmin(τ) are the maximum and minimum infection probability respectively and dk is the degree of node
k, so that the condition vk∞(τ)− vm∞(τ) > 0 at τ is surely satisfied if dk − dm

vmax(τ)
vmin(τ)

> 0. Using vmax(τ) ≤ 1− 1
1+τdmax

and
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vmin(τ)≥ 1− 1
τdmin

in [16, p. 464-465], we arrive at the conservative bound for the condition vk∞(τ)− vm∞(τ)> 0 at τ ,

dk > dm
τ2

(
τ − 1

dmin

)(
τ + 1

dmax

)

Hence, for large τ , the comparison between vk∞(τ) and vm∞(τ) reduces to a comparison in the nodal degree: if dk > dm,
then vk∞(τ)> vm∞(τ). This conclusion implies that there exists an effective infection rate τu, above which the ranking of the
metastable-state infection probability is the same as the ranking of the nodal degree, i.e. fkm(V∞(τ),d) = 0 for any k and m
(where d is the degree vector), if τ ≥ τu.

The above discussion suggests that the number χ(τ(1)c + ε,τu) of crossings in the interval (τ(1)c + ε,τu) is the total number
of crossings which a graph can possess. With the one-crossing assumption, we have

χ(τ(1)c + ε,τu) =
N

∑
i=1

i−1

∑
j=1

1
fi j(V∞(τ

(1)
c +ε),V∞(τu))<0

≥
N

∑
i=1

i−1

∑
j=1

1 fi j(x1,d)<0 (15)

Since only the crossings between two nodes with different degrees are considered in ∑N
i=1 ∑i−1

j=1 1 fi j(x1,d)<0, we obtain a lower

bound of the total number χ(τ(1)c + ε,τu) of crossings. In order to simplify the notation, we denote the lower bound of the
total number of crossings by χl = ∑N

i=1 ∑i−1
j=1 1 fi j(x1,d)<0.
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The crossing behavior of the trajectories vk1

In this section, we use a real-world network as an example to illustrate the crossing behavior by
plotting the infection probability v

k1 as a function of the e↵ective infection rate ⌧ for a small number
e.g. 10 nodes. The real-world network is called Roget (detailed in Section Real-world graphs), with
994 nodes and the average degree E[D] = 7.32. If we plot all values of the infection probability
v
k1 as a function of the e↵ective infection rate ⌧ for a network with hundreds of nodes, it would
be di�cult to tell which two curves actually cross. Hence, we sample 10 nodes, but according to
di↵erent strategies to illustrate the crossing behavior. In Fig. S1(a), S1(b), S1(c) and S1(d), 10
nodes are randomly selected from all nodes; in Fig. S1(e), S1(f) and S1(g), 10 nodes are random
selected from the nodes with degree d = 4, 5 and 6 respectively; Thus, the 10 nodes selected have the
same degree in each of these three figures; in Fig. S1(h), the top 10 nodes with largest degrees are
selected. We find that the crossing of a pair of nodes is indeed significant with respect to the value
of their infection probabilities, when the nodes have quite di↵erent degrees, as shown in Fig. S1(a),
S1(b) and S1(c) where the nodes are selected randomly. The crossing is less significant when the
nodes have similar degrees as shown in Fig. S1(e), S1(f), S1(g) and S1(h). Since most real-world
networks have a heavy tail degree distribution, significant crossing/change in infection probability
for pairs of nodes is expected when the infection probability varies.

Discussion about the one-crossing assumption

We assume that the two trajectories v
k1(↵) and v

m1(↵) crosses at most once as the e↵ective
infection rate ↵ changes. Although our theoretical result about the lower bound of the total number
of crossings does not depend on this assumption, our method to compute the number of crossings
does depend on such an assumption. Hence, we discuss whether the assumption is reasonably good.

Our simulation results so far show that more than one crossing seldom happen. For example, in a
real-world network – Roget, only three pairs of nodes have two crossings in their infection probability
trajectories in the infection-rate intervals we observed.

When we count numerically the number of crossings between two infection probability curves
when ↵ is changed from 1 to any large value ↵

max

, we divide the interval (1,↵
max

) into a number
of m bins. If m = 1, we could find maximally one crossing by comparing the infection probability of
the two nodes at ↵ = 1 and at ↵ = ↵

max

respectively. As the number of bins increases, we may have
the possibility to discover the multiple crossings if they exist. Hence, we explore further whether we
observe few node pairs whose infection probability curves cross twice is due to the the fact that the
bin size we chose is not small enough. Would it be possible that actually two crossings exist within
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Figure S1: v
k1 as a function of ⌧ for a real-world network.

2



the same bin which would not be observable if we don’t split the bin into smaller ones. Hence, we
gradually increase the number of bins to explore whether we could find more crossings. As shown in
Fig. S2, we employ ER and BA random graphs with the average degree E[D] = 14 as the examples
to show how the number of crossings change when the interval is divided into small ones. We plot
the number �(1,↵) of crossings as a function of the normalized e↵ective infection rate ↵. We do
not observe evident increase of the number of crossings (taking all node pairs into account) as the
number of bins increases.

Finally, the bin size should not be too small either. As the bin size becomes small, the change of
infection probability for each node when the infection rate is changed from ↵ to ↵+✏ is small. In this
case, the precision of the numerical solution to compute the infection probability of each node using
NIMFA may not be able to distinguish the ranking change of two nodes if their infection probabilities
are close. The seemingly two crossings of a node pair may be due to the limited precision of our
numerical solution when the bin size is too small.
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Figure S2: The number �(1,↵) of crossings as a function of the normalized e↵ective infection rate
↵ for (a) ER random graphs and (b) BA random graphs with the same average degree E[D] = 14.
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Derivatives of vi1 with respect to ⌧

Only for vectors, we use the notation in which a function of a vector is equal to that function applied
to the vector components; thus f (R) = (f (r1) , f (r2) , . . . , f (r

N

)). Obviously, this convention does
not apply to matrices, where the matrix f (A) is di↵erent than the matrix with elements f (a

ij

).

Theorem 1 Let V1 be the N ⇥ 1 vector with k-th component v
k1, which obeys the NIMFA steady-

state equation. Then, all higher order derivative vectors

@

m
V1

@⌧

m obey the linear equation

Q
 

1

⌧ (1� v
i1)2

!
@mV1
@⌧m

= R
m

(1)

where Q (q
i

) = diag(q
i

) � A is the generalized Laplacian and where the right-hand side vector R
m

depends on the previously computed vectors

⇣
V1, @V1

@⌧

, . . . , @

m�1
V1

@⌧

m�1

⌘
. In addition, the generalized

Laplacian matrix Q
⇣

1
⌧(1�vi1)2

⌘
and its inverse are positive definite matrices.

Proof: Following the approach in [1], the i-th component of the governing steady-state equation
[1, (17.45) on p.466]

1

⌧
diag

✓
1

1� v
i1

◆
V1 = AV1 (2)

written as a generalized Laplacian Q (q
i

) = diag(q
i

)�A,

Q
✓

1

⌧ (1� v
i1)

◆
V1 = 0

is

v
i1

1� v
i1

= ⌧

NX

j=1

a
ij

v
j1

With vi1
1�vi1

= 1
1�vi1

� 1 and
P

N

j=1 akjvj1 = vk1
⌧(1�vk1) , di↵erentiation with respect to ⌧ yields

1

(1� v
k1)2

@v
k1 (⌧)

@⌧
� ⌧

NX

j=1

a
kj

@v
j1 (⌧)

@⌧
=

NX

j=1

a
kj

v
j1 =

v
k1

⌧ (1� v
k1)

(3)

In matrix form, with the definition [1, p. 472] of the generalized Laplacian Q (q
i

) = diag(q
i

) � A,
the vector with the derivatives obeys

Q
 

1

⌧ (1� v
i1)2

!
@V1
@⌧

=
1

⌧2
diag

✓
1

1� v
i1

◆
V1 =

1

⌧2
V1

1� V1
(4)

In [2], we have shown that Q
⇣

1
⌧(1�vi1)2

⌘
is positive definite (as well as its inverse),

@V1
@⌧

=
1

⌧2
Q�1

 
1

⌧ (1� v
i1)2

!
diag

✓
1

1� v
i1

◆
V1

from which

@v
k1 (⌧)

@⌧
=

1

⌧2

NX

j=1

 
Q�1

 
1

⌧ (1� v
i1)2

!!

kj

v
j1

1� v
j1

� 0
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Hence, given the knowledge of the vector V1 at the e↵ective infection rate ⌧ , the solution of a linear
set returns the components of the vector @V1

@⌧

.
After a second di↵erentiation with respect to ⌧ of (3) and some manipulations, we have

1

⌧ (1� v
k1)2

@2v
k1 (⌧)

@⌧2
�

NX

j=1

a
kj

@2v
j1 (⌧)

@⌧2
=

2

⌧

NX

j=1

a
kj

@v
j1 (⌧)

@⌧
� 2

⌧ (1� v
k1)3

✓
@v

k1 (⌧)

@⌧

◆2

In matrix form, we obtain

Q
 

1

⌧ (1� v
i1)2

!
@2V1
@⌧2

=
2

⌧
A
@V1
@⌧

� 2

⌧
diag

 
1

(1� v
k1)3

!✓
@V

k1 (⌧)

@⌧

◆2

We can avoid the matrix computation A@V1
@⌧

, because (4) supplies us with

A
@V1
@⌧

= diag

 
1

⌧ (1� v
i1)2

!
@V1
@⌧

� 1

⌧2
diag

✓
1

1� v
i1

◆
V1

=
@V1
@⌧

⌧ (1� V1)2
� 1

⌧2
V1

1� V1

while the NIMFA matrix equation (2) shows that

A
@V1
@⌧

=
d

d⌧

1

⌧

V1
1� V1

=
d

d⌧

1

⌧

✓
1

1� V1
� u

◆

where u = (1, 1, . . . , 1) is the all-one vector. Hence,

Q
 

1

⌧ (1� v
i1)2

!
@2V1
@⌧2

= R2 (5)

with

R2 =
2

⌧2
diag

 
1

(1� v
i1)2

!
@V1
@⌧

� 2

⌧
diag

 
1

(1� v
k1)3

!✓
@V1 (⌧)

@⌧

◆2

� 2

⌧3
diag

✓
1

1� v
i1

◆
V1

or

R2 =
2

⌧

8
><

>:
d

d⌧

1

⌧

✓
1

1� V1
� u

◆
�

⇣
@V1(⌧)

@⌧

⌘2

(1� V1)3

9
>=

>;

which is a same matrix equation as in (4), but a di↵erent right-hand side vector, which can only be
determined, after solving (4).

A next di↵erentiation with respect to ⌧ of

1

(1� v
k1)2

@2v
k1 (⌧)

@⌧2
� ⌧

NX

j=1

a
kj

@2v
j1 (⌧)

@⌧2
= 2

NX

j=1

a
kj

@v
j1 (⌧)

@⌧
� 2

(1� v
k1)3

✓
@v

k1 (⌧)

@⌧

◆2

shows that the left-hand side L and the right-hand side R derivatives are

L =
1

(1� v
k1)2

@3v
k1 (⌧)

@⌧3
+

2

(1� v
k1)3

@2v
k1 (⌧)

@⌧2
@v

j1 (⌧)

@⌧
�

NX

j=1

a
kj

@2v
j1 (⌧)

@⌧2
� ⌧

NX

j=1

a
kj

@3v
j1 (⌧)

@⌧3

R = 2
NX

j=1

a
kj

@2v
j1 (⌧)

@⌧2
� 3!

(1� v
k1)4

✓
@v

k1 (⌧)

@⌧

◆3

� 4

(1� v
k1)3

@2v
k1 (⌧)

@⌧2
@v

k1 (⌧)

@⌧
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Again rewritten as

1

⌧ (1� v
k1)2

@3v
k1 (⌧)

@⌧3
�

NX

j=1

a
kj

@3v
j1 (⌧)

@⌧3
=

3

⌧

NX

j=1

a
kj

@2v
j1 (⌧)

@⌧2
� 3!

⌧ (1� v
k1)4

✓
@v

k1 (⌧)

@⌧

◆3

� 6

⌧ (1� v
k1)3

@2v
k1 (⌧)

@⌧2
@v

k1 (⌧)

@⌧

leads to the matrix form

Q
 

1

⌧ (1� v
i1)2

!
@3V1
@⌧3

=
3

⌧
A
@2V1
@⌧2

� 6

⌧
diag

 
1

(1� v
k1)4

!✓
@V

k1 (⌧)

@⌧

◆3

� 6

⌧
diag

 
1

(1� v
k1)3

!
@2V

k1 (⌧)

@⌧2
@V

k1 (⌧)

@⌧

Introducing A@

2
V1

@⌧

2 from (5) as

A
@2V1
@⌧2

= diag

 
1

⌧ (1� v
i1)2

!
@2V1
@⌧2

� 2

⌧2
diag

 
1

(1� v
i1)2

!
@V1
@⌧

+

2

⌧
diag

 
1

(1� v
k1)3

!✓
@V

k1 (⌧)

@⌧

◆2

+
2

⌧3
diag

✓
1

1� v
i1

◆
V1

yields

Q
 

1

⌧ (1� v
i1)2

!
@2V1
@⌧2

= R3

where

R3 =
6

⌧4
V1

1� V1
� 6

⌧3

@V1
@⌧

(1� V1)2
+

3

⌧2

@

2
V1

@⌧

2

(1� V1)2
+

6

⌧2

⇣
@V1(⌧)

@⌧

⌘2

(1� V1)3

� 6

⌧

⇣
@V1(⌧)

@⌧

⌘3

(1� V1)4
� 6

⌧

@

2
Vk1(⌧)
@⌧

2
@Vk1(⌧)

@⌧

(1� V1)3

The computation illustrates the general structure (1) and demonstrates the Theorem. ⇤

From a numerical point of view, the non-linear NIMFA steady-state matrix equation (2) only
needs be solved once for a particular value of ⌧ so that the vector V1 (⌧) is known, as well as the

generalized Laplacian Q
⇣

1
⌧(1�vi1)2

⌘
. The Taylor expansion

V1 (⌧ +�⌧) =
1X

m=0

(�⌧)m

m!

@mV1 (⌧)

@⌧m
(6)

specifies the NIMFA infection probability vector V1 (⌧ +�⌧) at another e↵ective infection rate
⌧+�⌧ , provided that the Taylor series converges at ⌧+�⌧ . As mentioned earlier in [3], unfortunately,
the convergence radius of the series in (6) is di�cult to determine in general. The left-hand side

positive definite matrix Q
⇣

1
⌧(1�vi1)2

⌘
in (1) is the same for all orders m � 1 and can be inverted if

a high precision and many terms in the Taylor series (6) are required.
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The value of ⌧u

We define �
D

(⌧) =
P

N

i=1

P
i�1
j=1 1fij(V (⌧),D)<0, then the larger �

D

is the higher the di↵erence between
the rankings of the infection probability at ⌧ and the nodal degree is. As shown in S3, we plot �

D

(⌧)
as a function of the average fraction y1 of infected nodes for ER and BA random graphs with the
average degree E[D] = 14 as an example. We find that for both graphs �

D

⇡ 0 when the average
fraction y1 of infected nodes is above 0.9, which suggests that we can employ the value of ⌧

u

so
that y1(⌧

u

) = 0.9. We have also done such tests on all the other networks in this paper and obtain
the same conclusion. Hence, we employ the value ⌧

u

, leading to y1(⌧
u

) = 0.9, for all networks in
this paper.

This choice of 0.9, though not necessarily optimal, is supported by the following aspects. Prac-
tically, we would like to choose y1(⌧

u

) as large as possible so that real-world prevalence levels are
covered. Since real-world prevalence seldom reaches 0.9, y1(⌧

u

) = 0.9 is large enough. Also, we

would like to choose y1(⌧
u

) as large as possible so that �(⌧ (1)
c

+ ✏, ⌧
u

) well counts the total number
of crossings. Moreover, y1(⌧

u

) should not be too large because the infection probability of the nodes
are very close to each other when the prevalence is high, and the precision of numerical solution to
compute the infection probability per node is not su�cient to distinguish nor to rank the nodes ac-
cording to their infection probabilities. Furthermore, we observed that the crossing seldom happens
when y1(⌧) > 0.9 in all the networks generated by the two network models as well as in real-world
networks. This is due to the fact that the number of crossings decreases as ⌧ increases, as observed
and discussed in the paper.

To compute the value of ⌧
u

which leads to a high prevalence (0.9), we can employ the Laurent
series of the steady-state infection probability [3, 1]:

v
i1 (⌧) = 1 +

1X

m=1

⌘
m

(i) ⌧�m (7)

where the coe�cient ⌘1 (i) = � 1
di

and

⌘2 (i) =
1

d2
i

0

@1�
NX

j=1

a
ij

d
j

1

A (8)

and for m � 2, the coe�cients obey the recursion

⌘
m+1 (i) = � 1

d
i

⌘
m

(i)

0

@1�
NX

j=1

a
ij

d
j

1

A� 1

d
i

mX

k=2

⌘
m+1�k

(i)
NX

j=1

a
ij

⌘
k

(j)

Considering a large value of ⌧
u

v
i1 = 1� 1

⌧
u

d
i

+O(⌧�2)

and

y1 = 1� 1

⌧
u

E[
1

D
] +O(⌧�2)

then, ignoring the second order condition O(⌧�2),

⌧
u

⇡ 1� y1

E[ 1
D

]
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χ

Figure S3: The plot of �
D

as a function of the average fraction of infected nodes. The results are
averaged over 10 realizations

.

Real-world graphs

We use 6 connected and undirected graphs from real-world datasets. Some graphs are originally
directed and may not be connected. We use the largest component of the unconnected graphs and
change the directed graphs to undirected. The description of the 6 graphs are as follows:

1. GRQC: Arxiv GR-QC (General Relativity and Quantum Cosmology) collaboration network is
from the e-print arXiv and covers scientific collaborations between authors papers submitted
to General Relativity and Quantum Cosmology category. If an author i coauthored a paper
with author j, there is link between i and j. The data covers papers in the period from January
1993 to April 2003.

2. NetSci: A coauthorship network of scientists working on network theory and experiment. The
network was compiled from the bibliographies of two review articles on networks.

3. ODLIS: The network is based on the ODLIS: Online Dictionary of Library and Information
Science (December 2000). The nodes are the terms in ODLIS and there is link between two
terms if one is used to describe another one.

4. Roget: The network contains cross-references in Roget’s Thesaurus, 1879. Each node of the
graph corresponds to one of the categories in the 1879 edition of Peter Mark Roget’s Thesaurus
of English Words and Phrases. There is a link between two categories if one is the reference
of the other. (See http://vlado.fmf.uni-lj.si/pub/networks/data/dic/roget/Roget.htm)

5. Power: The network represents the topology of the Western States Power Grid of the United
States.

6. Yeast: The protein-protein interaction network in budding yeast. There is link between protein
i and protein j if they have the interaction.

In Table S3, we list the size N , the average degree E[D], the degree variance V ar[D] and the
normalized degree variance V ar⇤[D] of the 6 graphs.
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Table S3: The real-world graph used in this paper.

GRQC NetSci ODLIS Roget Power Yeast

N 4158 379 2898 994 4941 2224

E[D] 6.46 4.82 11.30 7.32 2.67 5.94

V ar[D] 74.42 15.46 679.61 23.66 3.21 63.70

The comparison between NIFMA and the continuous-time

simulation

We compare the number of crossings obtained by NIMFA and the simulations of the exact SIS model.

We show two examples of the comparison in Fig. S4. Because the NIMFA epidemic threshold ⌧
(1)
c

is

actually the lower bound of the real epidemic threshold, i.e. ⌧ (1)
c

< ⌧
c

, and to determine the value of
↵
c

= ⌧c

⌧

(1)
c

> 1 for di↵erent topology is di�cult, we start the comparison from ↵ = 2 (attempting to

exclude the crossings near the epidemic threshold). Fig. S4 shows that the results of the simulation
and NIMFA agree with each other quite well for both networks when ↵ is not large. When ↵ is
large, i.e. the infection probability of each node is high and close to each other, there might be
some crossings caused by the limited precision of the numerical NIMFA solution or the simulations.
Because the precision of the numerical solution is higher than that of the simulation of the exact SIS
model, the number � of crossings obtained from the simulation tends to be larger than that from
NIMFA if the e↵ective infection rate ↵ is large.

2500

2000

1500

1000

500

χ (
α
j-1
,α

j)

8765432
αj

 ER, N=1000, E[D]=8
 Simulations
 NIMFA

(a)

40x103

30

20

10

χ (
α
j-1
,α

j)

8765432
αj

 BA, N=1000, E[D]=4
 Simulations
 NIMFA

(b)

Figure S4: The comparison of the number � of crossings between NIMFA and the simulation of the
exact SIS model for (a) an ER random graph with N = 1000 and E[D] = 8; (b) a BA random graph
with N = 1000 and E[D] = 4. The linear sampling is employed with the step �↵ = 0.5.
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The normalized standard deviation �⇤
of the steady-state in-

fection probability

ER random graphs with N = 1000
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Figure S5: �⇤ as a function of ↵ for ER random graphs and the corresponding fitting curve.
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BA random graphs with N = 1000
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Figure S6: �⇤ as a function of ↵ for BA random graphs and the corresponding fitting curve.
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�⇤
as a function of ⌧

Here we show the relationship between �⇤ and ⌧ when ⌧ � 1.
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Figure S7: �⇤ as a function of ⌧ for (a) ER random graphs with the size N = 1000 and (b) BA
random graphs with the size N = 1000.
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The Spearman rank correlation ⇢ as a function of ↵

In Fig. S8, we choose two graphs, an ER random graph with E[D] = 8 and a BA random graph with

E[D] = 4, as the example. We plot Spearman Rank Correlation between V1(⌧ (1)
c

+✏) and V1(↵⌧ (1)
c

).
We find that the rank correlation decreases fast when the e↵ective infection rate is small. Moreover,
there tend to be a few nodes drastically changing ranks in BA random graphs but not in ER graphs.
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Figure S8: The Spearman rank correlation between V1(⌧ (1)
c

+ ✏) and V1(↵⌧ (1)
c

) as a function of ↵
for (a) ER random graphs with the size N = 1000 and the average degree E[D] = 8 and (b) BA
random graphs with the size N = 1000 and the average degree E[D] = 4.
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