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Optimization of epilepsy surgery 
through virtual resections 
on individual structural brain 
networks
Ida A. Nissen1, Ana P. Millán1*, Cornelis J. Stam1, Elisabeth C. W. van Straaten1, 
Linda Douw2, Petra J. W. Pouwels3, Sander Idema4, Johannes C. Baayen4, Demetrios Velis1, 
Piet Van Mieghem5 & Arjan Hillebrand1

The success of epilepsy surgery in patients with refractory epilepsy depends upon correct identification 
of the epileptogenic zone (EZ) and an optimal choice of the resection area. In this study we developed 
individualized computational models based upon structural brain networks to explore the impact of 
different virtual resections on the propagation of seizures. The propagation of seizures was modelled 
as an epidemic process [susceptible-infected-recovered (SIR) model] on individual structural networks 
derived from presurgical diffusion tensor imaging in 19 patients. The candidate connections for the 
virtual resection were all connections from the clinically hypothesized EZ, from which the seizures 
were modelled to start, to other brain areas. As a computationally feasible surrogate for the SIR 
model, we also removed the connections that maximally reduced the eigenvector centrality (EC) 
(large values indicate network hubs) of the hypothesized EZ, with a large reduction meaning a large 
effect. The optimal combination of connections to be removed for a maximal effect were found using 
simulated annealing. For comparison, the same number of connections were removed randomly, 
or based on measures that quantify the importance of a node or connection within the network. We 
found that 90% of the effect (defined as reduction of EC of the hypothesized EZ) could already be 
obtained by removing substantially less than 90% of the connections. Thus, a smaller, optimized, 
virtual resection achieved almost the same effect as the actual surgery yet at a considerably smaller 
cost, sparing on average 27.49% (standard deviation: 4.65%) of the connections. Furthermore, the 
maximally effective connections linked the hypothesized EZ to hubs. Finally, the optimized resection 
was equally or more effective than removal based on structural network characteristics both regarding 
reducing the EC of the hypothesized EZ and seizure spreading. The approach of using reduced EC as a 
surrogate for simulating seizure propagation can suggest more restrictive resection strategies, whilst 
obtaining an almost optimal effect on reducing seizure propagation, by taking into account the unique 
topology of individual structural brain networks of patients.

Resective epilepsy surgery is the treatment of choice for refractory epilepsy in carefully selected patients who 
undergo a rigorous presurgical  evaluation1. Often, patients with a good surgical outcome are not only free of 
disabling seizures, but also experience an improvement in their cognitive abilities and quality of  life2. Even though 
most patients achieve an improvement in the seizure burden, epilepsy surgery is not always successful and may 
require repeat  surgery3. Approximately one-third of patients do not become seizure-free after  surgery4. The 
success of surgery depends on successful localization of the epileptogenic zone and the choice of the resection 
area. In the last decade, a rethinking of the concept of the epileptogenic zone has taken place. The epileptogenic 
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zone is defined as a circumscribed area that needs to be removed or disconnected to achieve seizure  freedom5. 
However, current views advocate the existence of an epileptogenic network instead of a locally confined epi-
leptogenic  zone6–10. In a network, local resections can have widespread effects, even at remote locations, that 
cannot be directly predicted from the location of the removed region  itself11,12. Similarly, a local resection of 
pathological tissue might not prevent the epileptogenic network from forming a new seizure onset zone (defined 
as the regions where seizures  start5) over  time13. The brain network varies from one patient to the  next14,15, but 
the network itself and its variability between patients are not taken into account in current surgical procedures. 
To find the area in a network that should be resected requires imaging modalities that cover the entire brain, as 
well as ways to evaluate the effect of a local resection on activity in the entire network at the level of the individual 
patient (precision medicine).

Side-effects and cognitive complaints often occur after surgery, depending on the brain areas involved, but 
these complaints vary between patients and are difficult to  predict4. Some of the side-effects and complaints could 
potentially be avoided with a smaller resection area. Resection areas are often larger than  necessary16, sometimes 
because healthy tissue is removed to access the pathologic tissue (as in mesial temporal resections), but also 
because the risk of not removing all of the pathological tissue, resulting in recurrent seizures, often outweighs 
the benefits of fewer side-effects after  surgery17. A priori tailoring of resection areas would be feasible if different 
resection strategies could be tested beforehand and network effects predicted reliably.

Individualized computer models to aid epilepsy surgery could overcome many of the above mentioned chal-
lenges and thereby improve surgical  outcome18–20. The main advantages are (1) surgery can be individualized by 
modelling activity, and in particular the propagation of seizures, on a patient-specific structural brain network, 
and (2) competing resection strategies can be tested in silico before the actual surgery, thereby demonstrating 
which strategy would be the most effective at the lowest ‘cost’ in terms of removed tissue. The individualization 
of the model can be based on some important interpersonal differences for epilepsy: the location of the seizure 
onset zone (SOZ) and the pathways of propagation of seizure activity. The propagation strongly depends on the 
structural brain network of the  patient21, which maps the anatomical connections between the different brain 
regions. It is conceivable that in many patients resections can be smaller than is currently the case, as the model 
can test which tissue/connection needs to be removed and which can safely remain in place whilst still achieving 
a satisfactory control of seizures. In addition, more effective resections can also be searched for, for example at 
different locations or when there are multiple hypotheses about the EZ location.

Several recent studies have applied computer models to smaller groups of patients with  epilepsy22–32. Most 
model studies identify epileptogenic areas using their model and predict surgery  outcome25,26,29,32–34. For example, 
both Sinha et al.29 and Goodfellow et al.33 found epileptogenic areas in their model, virtually resected them, and 
predicted surgery outcome based on the effect on the model with an accuracy of 81%29 or an area-under-the-
curve (AUC) of 0.8733. Another study calculated the overlap of the epileptogenic nodes identified by the model 
with the actual resection and found larger overlap in patients with a good  outcome24. In a recent study, Sip 
et al.32 modelled the propagation of ictal activity (as recorded via invasive EEG) on patient-specific structural 
networks, and found a link between the excitable regions inferred by the model and the clinically found epilep-
togenic  zone32. In ictal functional networks, the elevated ability to generate  seizures26 as well as the fraction of 
virtually resected rich-club  nodes25 correlated with surgery success. Other studies used computer models to find 
epileptogenic nodes and evaluated their properties. The virtual resection of those epileptogenic nodes reduced 
the epileptogenic  activity31, and had a larger effect compared to a standard clinical resection in temporal lobe 
epilepsy (TLE)  patients23.

Another approach is to test the actual surgery in the model: Steimer et al.30 removed the areas that were 
resected during the actual surgery in their model and found that the developing seizure could be stopped in 
seizure-free (SF) but not in not seizure-free (NSF)  patients30. Olmi and  colleagues27 used the actually resected 
connections as reference and showed that removing fewer connections in their model achieved the same effect 
as the actual  surgery27. Thus, instead of removing the EZ, the seizure propagation pathways were severed to 
ensure seizure freedom. The same group compared the areas of propagation in the model to those in SEEG and 
concluded that the overlap predicted surgery  outcome28. Removing the propagation pathways to limit seizure 
propagation is an effective approach in cases where the epileptogenic zone involves eloquent cortex and therefore 
would be  inoperable22.

These studies have used different models (see Junges et al.18 for detailed description): models based on neural 
 masses22,27,28,31,33, theta models—an approximation of neural masses in  networks24–26, bistable  models23,29,35, and 
a distributional clustering  model30. All these models are complicated with several (often nonlinear) parameters 
that need to be estimated beforehand. This hampers the accurate estimation of the optimal resection strategy, 
as every parameter needs to be adjusted to the optimal range in order to give an accurate and reproducible pre-
diction for each tested resection strategy. Simpler models with few parameters might prove more reproducible, 
especially if the behavior of the model is understood mathematically. A full mathematical understanding of a 
model aids the application and especially the interpretation of the results.

In a model, the brain activity is typically simulated on the backbone of a  network23–29, 33. Such a network can 
be derived for each patient from  functional24–26,29,33 or  structural22,23,27,28 data. However, as the function (brain 
activity) is simulated using the model, it is more intuitive to use a structural network on which the dynamics take 
place. Some of the previous studies have used whole brain  networks22,23, 27, 28, whereas others have studied partial 
networks derived from intracranial  recordings24–26,29,33. The limitation of partial networks is that network-wide 
effects beyond the assessed brain areas are not taken into account. It is therefore preferable to study structural 
and entire brain networks, as they map the main pathways of all lobes of the brain upon which the functional 
activity unfolds.

A recent study performed virtual resections based on a network framework, such as our surrogate  approach36. 
Their measure to estimate the effect of the virtual surgery was synchronizability, which is a measure of the ability 
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to maintain global  synchronization37. The authors calculated synchronizability on functional networks derived 
from electrocorticography (ECoG) measurements and found that the change in synchronizability after virtually 
removing the resection area predicted surgical outcome, although this result was not significant after multiple 
comparisons corrections. However, synchronizability is defined for structural networks and requires several 
assumptions that are not fulfilled in brain data, such as identical dynamical  units38. Its application to functional 
brain networks leaves the interpretation unclear and without theoretical foundation.

Here we introduce a personalized computer model, based upon individual structural brain networks, to guide 
epilepsy surgery and improve surgical outcome. The dynamic model is derived from the field of epidemics and 
has the advantage that it is mathematically well-understood, simple and only has two free  parameters39,40. The 
model captures one aspect of the epileptic brain that is relevant for surgery, namely the propagation of seizures 
over the network, rather than the underlying biology. We chose an epidemic model to simulate this process, 
because there is a striking similarity in the way an infectious disease spreads in a population and how a seizure 
spreads in a brain network. Furthermore, many definite results have been obtained in the study of spreading of 
infections on  graphs40. This knowledge can be used to guide model choice and interpretation. We applied this 
model to the whole-brain network derived from diffusion tensor imaging (DTI) for each individual patient, 
thereby personalizing the optimal virtual resection. The model was tested retrospectively in a preliminary study 
with 19 patients who had been operated, and of whom the surgical outcome at least 1 year after surgery was 
known.

Methods
Patients. We retrospectively analyzed 19 patients (11 females) with refractory epilepsy (Table 1). All patients 
underwent epilepsy surgery at the Amsterdam University Medical Center, location VUmc, between 2013 and 
2016. We included all patients who for their presurgical evaluation had received a clinical DTI scan and mag-
netoencephalography (MEG) recording since 2010 (the MEG data was not used in this study). We excluded 
patients with previous epilepsy surgery, an infiltrating tumor or absence of a signed informed consent. The 
patient group was heterogeneous with temporal and extratemporal resection locations and different etiology, 
the most common being mesial temporal sclerosis (MTS), malformations of cortical development (MCD), and 
gliosis. Surgical outcome was classified according to the Engel classification at least one year after the operation. 
Patients with Engel class 1 were labelled as SF, and patients with Engel class 2–4 were labelled as NSF. All patients 
gave written informed consent and the study was in accordance with the Declaration of Helsinki and approved 
by the VUmc Medical Ethics Committee.

Table 1.  Patient characteristics of the seizure-free (upper part) and not seizure-free patients (lower part). 
F = female, M = male, R = right, L = left, Front = frontal, Temp = temporal, FCD = focal cortical dysplasia, 
WM = white matter, MTS = mesial temporal sclerosis, mMCD = mild malformation of cortical development, 
SF = seizure-free, NSF = not seizure-free.

Patient no
Age at surgery 
(years) Gender

Age at epilepsy 
onset (years)

Years epilepsy at 
resection Resection area

MRI radiologic 
diagnosis Pathology results Engel score Surgery outcome

1 32 F 4 28 R Front FCD FCD; Gliosis 1A SF

2 20 F 4 17 R Temp
Abnormal WM 
signal R temporal 
pole

mMCD; Gliosis 1A SF

5 25 M 3 22 R Front Neoplasm—
benign tumor FCD 1A SF

6 27 F 6 21 R Front FCD No classified 
diagnosis 1A SF

7 33 F 18 14 R Temp MTS MTS 1B SF

8 49 M 16 33 R Temp MTS MTS 1A SF

9 19 M 11 12 R Temp MTS MTS 1A SF

10 22 F 12 10 R Temp MTS MTS 1A SF

11 25 M 16 8 R Temp MTS Gliosis 1A SF

12 47 F 35 13 L Temp MTS MTS 1A SF

13 54 F 21 33 R Temp MTS MTS 1A SF

14 53 M 47 6 R Temp Unknown Gliosis 1A SF

16 32 F 2 30 R Temp MTS MTS 1A SF

17 24 F 8 17 L Temp MTS Cerebral abscess; 
MTS 1A SF

3 40 M 35 6 R Temp Cavernoma Cavernoma; 
Gliosis 2B NSF

4 26 F 11 15 R Temp Unknown mMCD 2A NSF

15 47 M 26 21 R Front Polymicrogyria Polymicrogyria; 
Heterotopy 4B NSF

18 25 M 18 7 R Temp MTS Negative 4A NSF

19 54 F 23 31 R Temp MTS Gliosis 2D NSF
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Individualized structural networks. DTI and T1 acquisition. The individualized computer model was 
based on the structural brain network of each patient, which was reconstructed from the patient’s DTI scans. 
The magnetic resonance imaging (MRI) scans (T1 and DTI) were acquired on a 3T whole-body MR scanner 
(Discovery MR750, GE Healthcare, Milwaukee, WI, USA) using an eight-channel phased-array head coil. Ana-
tomical 3D T1-weighted images were obtained at 1 mm isotropic resolution with a fast spoiled gradient-recalled 
echo sequence (repetition time: 4.6 ms, echo time: 2.0 ms, inversion time: 650 ms, flip angle: 15°). The DTI were 
obtained with a 2D echo-planar sequence (repetition time: 7200 ms, echo time: 80 ms, 70 slices, 2 mm isotropic 
resolution, 24 diffusion gradient directions (b = 750 s/mm2) and 4 non-diffusion-weighted measurements. Dur-
ing reconstruction, images were interpolated to 1 × 1 mm in-plane resolution.

DTI and T1 processing. The following processing steps of the MR images were performed using the Functional 
MRI of the Brain (FMRIB) software library (FSL), version 5.0.1041. Structural connectivity matrices were derived 
from probabilistic tractography between 92 pre-defined regions-of-interest (ROIs). We used 78 cortical  ROIs42 
from the automated anatomical labeling (AAL)  atlas43 defined in MNI standard space and 14 subcortical ROIs 
from  FIRST44 defined in T1-space. The pre-operative T1 scan was registered to the MNI template of the AAL 
atlas, and the inverse transformation was used to convert the AAL ROIs to T1 subject space. Subsequently, the 
cortical and subcortical ROIs were combined in T1 space. The rim of each ROI (i.e. the border between grey and 
white matter) was used as a seed as well as a target point for probabilistic tracking. For the cortical ROIs, the 
white matter mask was obtained using  SIENAX45, and a rim of two voxels thickness was obtained by first dilating 
the white matter mask and subsequently subtracting an eroded white matter mask. The resulting rim was mul-
tiplied with the AAL atlas in subject space to get rim masks for each cortical ROI. Rim masks of the subcortical 
ROIs were calculated by eroding the subcortical masks by two voxels and subtracting this eroded mask from 
the original subcortical masks. For the DTI images, head motion and eddy currents were corrected using EDDY 
from FMRIB’s Diffusion Toolbox (FDT). The default of three fiber orientations were modelled per voxel using 
 BEDPOSTX46, and probabilistic tracking was done using PROBTRACKX2 in DTI  space46. From each voxel in 
the seed ROIS 5000 tracts were started (with a curvature threshold of 0.2 and step length of 0.5 mm) and were 
terminated if one of the 91 target ROIs was reached. We discarded tracts with interhemispheric crossings outside 
the corpus callosum or the fornix. The number of tracts between ROIs were not corrected for the size of the seed 
or target region, as it is realistic that larger regions have more tracks than smaller regions.

Structural network. The sum of all tracts from each ROI to all other ROIs resulted in a weighted DTI con-
nectivity matrix. The tract counts were averaged in both directions to get a symmetrical matrix. The matrix was 
binarized and thresholded to a connection density of 11%, to match the connection density of a literature-based 
structural matrix obtained from 80 healthy  subjects42. Additionally, we obtained an average matrix by averag-
ing all individual full weighted matrices and thresholded it to 11% connection density, and compared the main 
results of using the individual matrices to results using the average matrix. We also compared the main results 
using the binarized and thresholded matrices to results obtained using the weighted matrix without a threshold.

SIR model. To simulate the propagation of seizure activity on individualized structural brain networks we 
used the susceptible-infected-recovered (SIR) model. The SIR model was initially derived to describe the spread-
ing of a pathogen or disease in a population modeled as a contact network. However, it has since been applied to 
a variety of scenarios, from biological to social networks, as it captures the fundamental mechanisms involved 
in spreading processes, whilst being computationally and mathematically simple. Thus, we applied it here to 
model the propagation of ictal activity on a brain network from a set of seed nodes acting as the epileptogenic 
region (see Supplementary Figure S.1A, B). Each brain region (nodes in the network) can be in one of three 
states (S-I-R). Initially, all regions are susceptible (inactive, state S), except for a few active regions in the infected 
state (active state, I) that constitute the hypothesized epileptogenic zone (EZ). The active regions can propagate 
the activity to susceptible regions with probability β, but only if they are structurally connected. Thus, the prob-
ability that a certain region switches from susceptible to active at a given time step depends not only on β, but 
also on its number of active neighbors (neighbors are connected regions). Active regions can turn inactive again 
at each time step with probability γ, thereby becoming refractory such that they cannot be activated again (state 
R). Eventually, after many time steps the dynamics will reach a steady-state and all regions will be inactive (either 
in S or R states).

For a given network, the emerging behavior of the model depends only on the two control parameters β 
(probability of transition S → I) and γ (probability of transition I → R). Moreover, the dynamic behavior of the 
model is well known over a variety of network substrates, with a strong theoretical  basis40,42,47,48. Whilst the SIR 
model is too simplistic to reproduce actual brain activity, it has been shown in the past that the SIS dynamics 
near the critical point is enough to reproduce relevant characteristics of functional brain  networks49. In the case 
of seizure propagation, ictal activity can be regarded as an anomalous (infected) state that propagates over the 
system taking advantage of the existing connectivity. In fact, highly detailed models of ictal activity and seizure 
propagation usually introduce a slow variable to account for the propagation of the epileptic state throughout 
the brain. This is then coupled with one or more fast variables mimicking the activity of each  region27–29,32,50. 
Considering the SIR model, we focus our analysis only on the propagation of ictal-like activity on the network, 
and analyze the effect of different virtual resections on propagation.

The overall progression of the seizure can be measured by the fraction of active nodes at each time step, I(t). 
I(t) follows a characteristic curve (a hyperbolic secant) when the spreading rate λ = β/γ is above the epidemic 
threshold λc of the  network40. Initially, I(t) increases exponentially when the process is dominated by the propaga-
tion of ictal activity. Eventually, I(t) reaches a maximum and decreases as most nodes fall into the inactive state. 
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The height of the maximum  Imax characterizes the severity of the epidemic/seizure and, for a given network, it is 
correlated to the initial propagation  speed51. We therefore characterized the severity of seizure propagation by 
the fraction of infected nodes at an early point of the propagation I(t0), with t0 = 10. I(t0) captures how steep the 
slope of the propagation curve is at the beginning and indicates how fast the activity propagates.

Here, we ran the SIR model 10,000 times for 200 discrete time steps and averaged the number of active nodes 
at each time step over the runs. The parameters were chosen such that the activity propagated to the entire brain 
in most runs, i.e. on average 98% of the nodes were in the R state at the end of the run. We fixed γ = 0.03 and 
increased β in steps of 0.001 until this criterion was met. β varied between 0.027 and 0.038 for the analyzed 
patient cohort. The model was programmed and run in MATLAB (version R2012a and 2018b, The MathWorks 
Inc., Natick MA, USA).

Surrogate for SIR model: Eigenvector centrality (EC) difference. We simulated the propagation 
of seizure activity as an epidemic process using the SIR model, and quantified the effect of a resection using 
the fraction of active nodes at time step 10. However, although this approach has a direct conceptual link with 
clinical practice, it was computationally too expensive in combination with the optimization method used to 
find optimal virtual resection strategies (see the section “Selecting connections: simulated annealing”). We have 
therefore used an alternative, faster approach to quantify the effect of a resection on seizure propagation based 
on a network metric, namely the reduction in centrality (after the virtual resection) of the hypothesized EZ 
nodes. In the following paragraph we explain the theoretical foundation for this choice.

The temporal evolution of I(t) in the SIR model depends both on the model control parameters—namely β 
and γ—and in the structure of the underlying network. For a given β and γ, I(t) is initially given (for very small 
t) by the degree (defined as the number of neighbors) of the seed  nodes40,52, so that a larger degree results in a 
faster propagation. After a few steps, however, the degrees of the neighboring nodes, and of their neighbors and 
so on, also influence the dynamics as they become infected. Thus, not only the degree of the seed but also the 
topology of the network affects I(t). This global structure is reflected in another centrality measure: the Eigenvec-
tor  centrality53 (EC). The EC of each node in the network indicates its participation in the dominant eigenmode 
of the adjacency matrix. In particular, for a diffusion process such as a random walk, the EC of a node indicates 
the probability that said node is occupied at a given  time51. Although spreading and diffusion processes differ, 
they do share many similarities and the EC can be related to the speed of spreading of an epidemic starting at 
node I, as can be shown by the introduction of the pseudoinverse of the  Laplacian54 (see also the SI, Sect. 2, for 
details). Therefore, in this study we used the EC as a surrogate for how ictal activity propagates on the network.

In order to explicitly validate the use of EC as a surrogate metric of seizure propagation on our patient-specific 
networks, we compared, for all patients, the EC of each node with the propagation at time  t0 = 10 (i.e.  It=10) 
when the same node was use as the (single) seed for the SIR model (see Fig. 7). Moreover, we also compared the 
propagation using the whole resection area as the seed, with the EC of the seed, for all patients (Supplementary 
Figure S.2). The strength of the correlations was measured with Pearson’s correlation.

Removing connections. Candidate connections for resection. The hypothesized EZ for each patient was 
based on the location of the resection area. The 3-month post-operative T1-MRI of each patient was linearly co-
registered to a pre-operative T1-MRI using FSL FLIRT (version 5.0.10 with 12 parameter affine transformation). 
The AAL ROIs were overlaid on the co-registered post-operative scan. The ROIs that by visual assessment fell 
entirely or more than 50% within the resection area were labelled as hypothesized EZ nodes. To eliminate spread 
in the SIR model, all connections from infected to susceptible nodes should be  removed55. Our aim was to keep 
the propagation of activity from the hypothesized EZ nodes to nodes outside the hypothesized EZ (hereafter 
called neighboring nodes) minimal from the start. Therefore, we considered all binarized DTI connections from 
hypothesized EZ nodes to neighboring nodes as candidate connections for removal in the virtual resections. 
Note that all these candidate connections had been removed during the actual surgery.

Measure of effect. The choice of which connections to remove from the candidate connections was based on the 
effect of their removal, quantified here as the EC difference of the hypothesized EZ (Fig. 1). The EC difference is 
the difference in average EC of the hypothesized EZ nodes after removal of connections compared to the aver-
age EC before the removal. The EC difference, quantifying the reduction in centrality of the hypothesized EZ, 
was used as a surrogate measure of the reduction in speed with which a seizure propagates. In order to compare 
between different patients, we also used the normalized EC difference, defined as the fraction between the EC 
difference for a given resection and that for a total resection. Once an optimal virtual resection for a given size 
had been found using this surrogate approach (see below), the actual effect of the virtual resection was measured 
as the change in seizure propagation, given by I(t0). Similar as for the EC difference, we also defined the normal-
ized change in seizure propagation, namely as the change in I(t0) after the resection was applied, divided by the 
change in I(t0) following a full resection. Note that, given that the seed remains in the network after the virtual 
resection, and is infected, I(t0) > 0 also for complete seed disconnection.

Selecting connections: simulated annealing. Generally, a large number of virtual resections are possible, mean-
ing that many different combinations of connections can be removed. Testing each of these combinations con-
stitutes an intractable combinatorial problem and we have therefore used simulated  annealing56 as optimization 
method to find the optimal combination, i.e. the one resulting in the largest effect (the largest EC difference as a 
surrogate measure of largest reduction in the speed of seizure propagation). We used a MATLAB implementa-
tion of simulated annealing (J. Vandekerckhove, general simulated annealing algorithm, version 1.0.0.0., MAT-
LAB Central File Exchange) to optimize for a large EC difference. As we aimed to maximize the EC difference, 
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the algorithm minimized the negative value of the EC difference (object function = − EC difference). Simulated 
annealing optimized the combination of a fixed number of candidate connections (i.e. for a fixed resection 
size), after it was given an initial guess containing a random selection among all candidate connections. The 
algorithm considered neighboring states that were generated from the previous state, in our case by changing 
one of the currently selected connections. We used the default parameters of the implemented algorithm (initial 
temperature: 1, stopping temperature:  10–8, annealing schedule: f(T) = 0.8 T, maximum number of consecutive 
rejections: 1000, maximum number of tries within one temperature: 300, maximum number of successes within 
one temperature: 20).

Simulated annealing was repeated for different resection sizes, hence an optimal EC difference was obtained 
for each resection size. The largest global EC difference is achieved when removing all candidate connections, 
which equals the EC of the hypothesized EZ in the un-altered network. This trivial solution with an effect of 100% 
was used as the reference point. However, the relation between the resection size and optimal EC difference was 
non-linear: the first removed connections contributed more to the effect than the last removed connections. In 
fact, for larger resection sizes the EC difference grew sub-linearly, until increasing the size led to only a small 
subsequent increase in the EC difference. This means that we can accept for instance a 10% decrease in effect, 
while sparing substantially more than 10% of the connections. Here, we chose a resection with a slightly smaller 
effect (10%), but where several connections could be spared (Fig. 2). We defined the optimal resection (with a 
given number of connections, referred to here as the optimal size) as the one that achieved 90% of the effect of a 
full resection. The actual threshold is thus arbitrary, chosen here to take advantage of the non-linear dependence 
of the EC difference on the resection size and to maintain most (90%) of the effect of the full resection. Small 
changes in this threshold also would lead to small quantitative changes in the results, but would not affect the 
main findings. To summarize, the goal was to reduce seizure propagation by removing connections and at the 
same time sparing the brain as much as possible.

Comparison to other selection methods that are based on network measures or random selec-
tion. So far, the effect that removal of a connection (i, j)—where i is a node in the hypothesized EZ and j a 
neighboring node that does not belong to the EZ—had on the EC of the hypothesized EZ (in combination with 
the removal of other connections) determined whether that connection was included in the optimal resection. 
Other criteria could be used to determine the importance of a connection in the structural network based on 
different centrality measures:

1. Betweenness centrality of the edge (i, j) (edge BC), defined as the number of shortest paths in the network 
that go through the edge (i, j)57,58,

2. Eigenvector centrality (EC) of the neighboring node  j53,
3. Degree (defined as the number of neighbors) of the node  j37, and
4. Betweenness centrality (BC)59, of the neighboring node j.

The brain connectivity toolbox in MATLAB (version 2017-15-01)60 was used for calculating edge BC, EC and 
BC. We determined the effect of a resection with the optimal size (the same size as found by the simulated anneal-
ing algorithm), but choosing the connections based on these network measures. For comparison, the effects of 
resections with the same number of randomly selected connections among the candidate connections were also 
computed (average and standard deviation for 100 random selections). For the comparison, we used both the 
actual effect of a resection, as given by I(t0), and the surrogate metric given by EC difference of the resection.

Figure 1.  Illustration of the EC difference of the SOZ. The EC of each node is based on the full network (nodes 
inside and outside the SOZ). First, the EC is averaged over the nodes in the SOZ. After removing connections, 
the EC per node is re-calculated based on the resected network. Subsequently, the EC is averaged over the SOZ 
nodes again. The difference in EC of the SOZ nodes is the EC before removal minus the EC after removal. Parts 
of the figure were visualized with the BrainNet Viewer toolbox (Xia et al. 2013) (http:// www. nitrc. org/ proje cts/ 
bnv/).

http://www.nitrc.org/projects/bnv/
http://www.nitrc.org/projects/bnv/
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Statistics. The network characteristics of the connections from the hypothesized EZ that were spared were 
compared to those that were removed using an unpaired Student’s t test. We compared the (i) edge BC, and the 
(ii) EC, (iii) degree, and (iv) BC of the node outside the hypothesized EZ to which a removed/spared edge was 
connected. The p-values were corrected for multiple comparisons using the false-discovery rate (FDR)61.

We also compared the efficacy of the resections found by different resection strategies, as given by both the 
EC difference and the propagation I(t0), using a paired Student’s t test (significance level: 0.05). Finally, we used 
an unpaired Student’s t test to compare the initial propagation I(t0) (before any resections), the EC of the seed 
(equal to the EC difference of a full resection) and the propagation I(t0) after the optimal resection of the seizure-
free patients to those for the patients who were not seizure-free. The two surgical outcome groups were also 
compared for size (unpaired Student’s t test) and location (Chi-square test) of the hypothesized EZ, as indicated 
by the number of removed nodes and the indices (in the AAL atlas) of these nodes, respectively.

Figure 2.  Workflow of selecting the connections to remove for each patient. The patient’s DTI connectivity 
matrix of white matter tract density between 92 ROIs is thresholded and binarized to a connectivity density 
of 11%. This connectivity matrix is the basis for the structural network. Subsequently, the connections from 
SOZ nodes to nodes outside the SOZ are identified—they were all severed in the surgery. Those connections 
are candidates for the virtual resection in our model. For each number of removed connections, the optimal 
choice of connections is found using simulated annealing. Simulated annealing optimizes for those connections 
that upon removal result in the largest EC difference of the SOZ. After the maximal achievable EC difference 
has been found for each number of removed connections, the number of connections yielding 90% of the 
EC difference compared to the maximum (when removing all connections) is found and removed. Because 
removing the first few connections has a larger effect than removing further connections, a relatively large 
number of connections can be spared yet still achieving an almost maximal effect. The rationale behind the 
method is illustrated with the propagation of activity (red brain regions indicate active regions at the same time 
after seizure onset): removing the connections that decrease the EC of the SOZ results in a decrease in speed 
with which activity propagates. Parts of the figure were visualized with the BrainNet Viewer toolbox (Xia et al. 
2013) (http:// www. nitrc. org/ proje cts/ bnv/).

http://www.nitrc.org/projects/bnv/
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Results
The structural brain networks of 19 patients with temporal (n = 15) and extratemporal (n = 4 frontal) epilepsy 
were analyzed. After surgery, 14 patients were classified as Engel class 1 and were labelled as SF, whereas 5 patients 
were classified as Engel class 2–4 and labelled as NSF. First, the analysis was applied to all patients individually, 
followed by a comparison of the two surgical outcome groups.

For each patient, the virtual resection was optimized by simulated annealing, for each resection size. An 
example of the analysis for one of the patients is shown in Fig. 3. The optimal EC difference increased non-linearly 
as more connections were removed (Fig. 3A); this was the case for all patients. Seizure propagation (given by 
I(t0)) decreased with the resection size, in an approximately linear manner (Fig. 3B). The non-linearity in EC 
difference meant that the first removed connections had a greater contribution to the total effect than the last 
removed connections. Trivially, the largest EC difference was achieved when all connections were removed, i.e. 
corresponding to the resection that was performed during the actual surgery. Accepting a 10% smaller EC dif-
ference compared to the maximal EC difference spared 13 of the 38 connections (34.21%, which is substantially 
more than 10%) in this example. This meant that 90% of the effect was obtained by removing only 25 (65.79%) 
of the candidate connections. The spared and removed connections are displayed in Fig. 3C. To conclude, the 
virtual resection was one-third smaller in this patient than the actual surgery, whilst achieving almost the same 
(90%) effect in terms of reducing the EC of the seed.

Analysis of optimal virtual resections: EC. The optimization results for all patients are shown in 
Fig. 4A. Our optimization approach of sparing connections whilst achieving a 90% effect (average: 90%, stand-
ard deviation: 0.8%) was compared to other resection strategies based on network characteristics, or random 
resections. On average, 27.49% (standard deviation: 4.65%) of the connections were spared when allowing for 
a 10% reduction in effect. The optimization strategy performed better (obtaining a larger reduction in EC) than 
a random resection of the same size in all patients which, on average, led to a 36% (standard deviation: 6%) 
decrease in effect. The difference (90% effect-random = 0.170) was significant (t(18) = 13.80, p = 5e–11). How-
ever, the effect varied between patients: in some patients optimizing the resection strategy yielded much better 
results than in others.

The removal of connections on the basis of their, or their connected neighboring nodes’, network characteris-
tics was also more effective on average than a random resection [mean decrease in effect (and standard deviation): 
edge BC: 0.15 ± 0.30, EC: 0.14 ± 0.05, degree: 0.13 ± 0.13, BC: 0.13 ± 0.04], and the difference was significant: edge 
BC-Random = 0.112, t(18) = 8.02, p = 2e–7; EC-Random = 0.125, t(18) = 10.65, p = 3e–9; degree-Random = 0.125, 
t(18) = 9.64, p = 1.6e–8; BC-Random = 0.128, t(18) = 10.60, p = 4e–9. Moreover, the removal based on the network 
metrics performed better than the random removal for most individual patients (edge BC: 18/19 patients; EC: 
17/19 patients; degree: 17/19 patients; BC: 18/19 patients).

In all patients, our approach performed better than or equally to optimization based on the network char-
acteristics of the connections or their connected neighboring nodes. On average, the optimization approach 

Figure 3.  Example of selecting the connections to remove for patient 15. (A) The selection was found separately 
for each number of connections using simulated annealing and the EC difference. After the removal of some 
connections from the SOZ to the rest of the brain, the EC difference of the SOZ increased. Removing all 
connections as in the surgery resulted in the highest EC difference. However, a 10% smaller decrease in EC 
was achieved by removing only 25 of the 38 connections, thereby sparing 13 connections (red star). (B) We 
calculated the actual effect of each resection on the seizure propagation model by measuring I(t0) after the 
resection took place. I(t0) decreases in a roughly linear manner with the number of removed connections. 
The red star indicates the resection corresponding to a 90% decrease in EC difference. Errorbars indicate the 
standard deviation among 10 iterations of the SIR model averaged over 1000 realizations. (C) The connections 
from the SOZ to the brain regions outside the SOZ are displayed, including the 13 spared connections (green). 
Parts of the figure were visualized with the BrainNet Viewer toolbox (Xia et al. 2013) (http:// www. nitrc. org/ proje 
cts/ bnv/).

http://www.nitrc.org/projects/bnv/
http://www.nitrc.org/projects/bnv/
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performed significantly better than all network metrics (optimal-edge BC = 0.058, t(18) = 9.16, p = 3e–8; optimal-
EC = 0.045, t(18) = 4.11, p = 7e–4; optimal-degree = 0.045, t(18) = 4.00, p = 8e–4; optimal-BC = 0.042, t(18) = 4.56, 
p = 2e–4). However, there were differences among the network measures in the effect that could be achieved. 
In one patient (patient 11), all of the network measures performed equally to our optimization approach. In all 
other patients, the largest effects among the network measures were achieved when the resection strategy was 
based on the EC of neighboring nodes to which outgoing edges of the hypothesized EZ connected (note: not to 
be confused with the EC difference of the hypothesized EZ), followed by BC, degree and edge BCs. The resec-
tion strategies based on network measures achieved the same effect as our optimized strategy in 8 patients. This 
shows that some connections, or the neighboring nodes to which they are connected, are more important than 
others in achieving a large effect. The most important connections are those that connect the hypothesized EZ 
to a neighboring node with high EC. There were no significant differences in the average performance of the 
edge BC, EC, degree and BC based resections.

Analysis of optimal virtual resections: I(t0). We repeated the comparison with random resections and 
resections based on network metrics for the actual effect of the resection (measured as the decrease in I(t0)). The 
results for all patients and resection strategies are shown in Fig. 4B. On average, the optimal resection achieved 
a 77% ± 4% decrease in propagation, random resections achieved a 64% ± 5% decrease, whereas the network 
metric based resections achieved a 73% ± 5%, 76% ± 4%, 76% ± 4% and 76% ± 5% decrease, respectively for the 
edge BC, EC, degree and node BC.

Figure 4.  Comparison of various resection strategies for all patients as measured by the normalized EC 
difference and the normalized difference in I(t0), respectively in panels (A) and (B). (A) The normalized EC 
difference for a resection is defined as the ratio between the EC difference for the optimal resection and the EC 
difference for a full resection. Removing all connections resulted in the largest EC difference (100%, black stars). 
A 10% decrease in the EC difference was accepted (red stars), using simulated annealing to optimize which 
connections to remove, and thereby sparing connections. This method performed better than the average of 
100 random resections (green cross with standard deviation), using the same number of removed connections 
chosen randomly from the candidate connections. For comparison, the same number of removed connections 
were also chosen using network measures: edge BC (blue triangles), EC (blue diamonds), degree (blue circles), 
and BC (blue squares). The three latter measures were based on the property of the connected node outside the 
SOZ. (B) The normalized I(t0) difference for a resection is defined as the difference between I(t0) before and 
after the resection, normalized by this difference for a full resection. Similarly to the EC difference, removing all 
connections (black stars) resulted in 100% decrease of I(t0). The optimal resection given by the surrogate model 
(red stars) performed marginally better than the resections based on network metrics (blue markers) for some 
patients. Random resections (green markers) performed the worst. All values correspond to the same resections 
used in panel A. The error bars were calculated as in Fig. 3. The not seizure-free patients are marked in red in 
both panels.
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As in the previous analysis, we found that the optimal resection performed better than a random resec-
tion for all patients, and significantly better on average (optimal-random = 0.127, t(18) = 13.25, p = 1.0e–10). 
It also performed better on average than the network metrics based resections, although the difference was 
only significant for the edge BC and nodal BC metrics (optimal-edge BC = 0.039, t(18) = 5.12, p = 7e–5; opti-
mal-EC = 0.006, t(18) = 1.36, p = 0.19; optimal-degree = 0.005, t(18) = 1.23, p = 0.2; optimal-nodal BC = 0.012, 
t(18) = 2.53, p = 0.021). Moreover, resections based on edge BC performed on average significantly worse than 
resections based on other network metrics (EC-edge BC = 0.033, t(18) = 4.20, p = 5e–4; degree-edge BC = 0.033, 
t(18) = 4.38, p = 4e–4; nodal BC-edge BC = 0.026, t(18) = 3.45, p = 3e–3). Overall, resections based on the nodal 
degree or the EC had a larger effect on propagation than resections based on BC, as expected from theory: the 
node’s degree and EC strongly influence SIR dynamics (Barrat et al., 2009; Pastor-Satorras et al., 2015) (although 
the differences among the performance of the resections based on the EC, degree and BC of the neighboring 
node were not significant).

The resections based on the network metrics also performed better than random resections for all patients, 
and significantly better on average (edge BC-Random = 0.088, t(18) = 8.98, p = 5e–8; EC-Random = 0.121, 
t(18) = 11.87, p = 6e–10; degree-Random = 0.121, t(18) = 12.85, p = 1.7e–10; BC-Random = 0.114, t(18) = 11.39, 
p = 1.2e–9).

Characteristics of removed connections. These results lead to the question: do the network measures 
differ between the spared and removed connections? To this end, we compared the network characteristics of 
the spared versus the removed connections (Fig. 5). All network measures were significantly different between 
the two groups of connections: edge BC (t(546) = − 6.20, 95% CI = (− 14.68, − 7.62), p = 1.09e-9), EC of the 
neighboring node (t(546) = − 18.24, 95% CI= (− 0.09, − 0.07), p = 8.94e-58), degree of the neighboring node 
(t(546) = − 18.15, 95% CI= (− 6.57, − 5.29), p = 1.12e-57), and BC of the neighboring node (t(546) = − 11.63, 95% 
CI= (− 0.03, − 0.02), p = 5.66e-28 ). Hence, central connections and connections from the hypothesized EZ to 
hubs were removed significantly more often than they were spared. This makes sense intuitively: removing hub 
nodes or central connections limits the propagation of activity across the network. Thus, the network measures 
indicated that connections to neighboring hubs, or central connections, should be removed.

Figure 5.  Do the network characteristics of the spared and removed connections differ? A 10% decrease in 
EC difference spared several connections (compared to a full resection). The network characteristics of the 
connections that were spared were compared to those that were removed. The network characteristics were 
edge BC of the connection (A), as well as EC (B), degree (C), and BC (D) of the node outside the SOZ that 
was connected to a SOZ node with the connection in question. Connections to hub nodes were removed 
significantly more often than they were spared. The p-values were corrected for multiple comparisons using 
FDR.
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Surgery outcome. We compared the surgical outcome groups to differentiate between the success of the 
optimized resection plans. The previous analysis (Fig. 4) did not indicate any obvious differences between SF 
and NSF with regards to the performance of different resection strategies. In Fig. 6 we compared the two groups 
with respect to seizure propagation (as measured by I(t0), panels a and c) and EC of the hypothesized EZ (panel 
b). Initially (before any resections), there was no difference in propagation between the groups (Fig. 6a), but we 
found a marginal, non-significant difference (p = 0.07) in the EC of the hypothesized EZ (which is equal to the 
EC difference, Fig. 6b), with the NSF group having a larger EC difference than the SF group. Consequently, the 
absolute decrease in EC difference for a total resection and for the optimal resection was also (not significantly) 
larger for the NSF group compared to the SF group (data not shown), since these metrics equal respectively 
100% and 90% of the EC of the seed itself. We did not find a significant difference between the two groups in 
propagation I(t0) for the optimal resection either (Fig. 6c). The two groups did not differ in the size (t(17) = 0.26, 
95% CI = (−  2.09, 2.69), p = 0.78 or location (temporal versus extratemporal: χ2(1) = 0.0045, p = 0.95) of the 
hypothesized EZ.

Effect of the network backbone. Using the averaged structural matrix, the number of candidate connec-
tions was 26.89 ± 6.81, compared to 28.84 ± 7.79 using the individual matrices (see Supplementary Information 
Sect. 3, Supplementary Figure S.3 and Supplementary Table S.1). There were no significant differences between 
using the average or individual matrices in the fraction of connections that had to be removed to achieve a 90% 
effect (paired t-test: t(18) = − 2.09, p = 0.51) or in the achieved EC difference at 90% (paired t-test: t(18) = − 1.38, 
p = 0.19).

Using the weighted structural matrix without thresholding, the number of candidate connections increased 
from an average of 28.84 ± 7.79 in the thresholded and binarized network to an average of 312.68 ± 109.59 in the 
weighted network without threshold, as all connections were included (see Supplementary Information Section 4, 
Supplementary Figure S.4 and Supplementary Table S.2). The EC difference at 90% did not differ significantly 
between the two analyses (paired t-test: t(18) = 1.38, p = 0.18). However, a significantly smaller fraction of con-
nections had to be removed for the weighted network (0.04 ± 0.01) compared to the binary network (0.72 ± 0.05) 
(paired t-test: t(18) = 60.55, p = 2.94e-22). This result is not surprising, given that in a weighted network the 
strongest candidate connections have an unproportionally high influence on the EC and, consequentially, the 
removal of the few strongest ones suffices to decrease the EC to 90% of the full effect. To alleviate this unpropor-
tional contribution to the EC, we took the logarithm of the weights and repeated the analysis. For the weighted 
log networks (see Supplementary Information Section 4, Supplementary Figure S.5 and Supplementary Table S.3), 
there was no significant difference in the fraction of removed connections (0.74 ± 0.07) compared to the binary 
networks (0.72 ± 0.05) (paired t-test: t(18) = − 1.08, p = 0.30). Additionally, the weighted resection was mostly 
included in the binary resection (average: 83%).

Validation of surrogate model. For the validation of the EC of the hypothesized EZ as a surrogate for 
seizure propagation, we compared, for all patients, the EC of each node with the initial speed of propagation 
 (It=10) in the SIR model (Fig. 7), which revealed a strong correlation with an average of 0.95 ± 0.02. Moreover, we 
also compared in the Supplementary Information (Supplementary Figure S.2) the propagation  It=10 when using 
the whole resection area as the seed with the EC of this seed, rescaled by the seed size, for all patients. We found 
a strong correlation of 0.78 despite the fact that each data-point corresponded to a different patient-network set. 

Figure 6.  Seizure-free (SF) compared to not seizure-free (NSF) patients. (A) The seizure propagation as 
measured by I(t0) before the virtual resection was not different between the SF (n = 14) and NSF (n = 5) patient 
groups. (B) The EC of the seed (which is equal to EC difference for a full resection) was marginally larger for 
the NSF group than for the SF group, although the difference was not significant (t(17) = 1.95, p = 0.07). (C) 
The seizure propagation after the optimal resection that led to a 90% EC difference, measured by I(t0) after the 
resection, did not differ between the groups. The groups did not differ in the size or location of the SOZ.
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It is therefore valid to use the EC difference of the hypothesized EZ as a proxy for the speed of seizure propaga-
tion in the SIR model.

Taken together, the effect of our approach varied among patients and certain connections contributed more 
than others. Removal of connections to hub nodes or central connections resulted in a larger effect, as this prob-
ably limits the propagation of activity. NSF patients showed a larger decrease in EC than SF patients after con-
nection removal (although the difference was not significant), which was due to a large EC of the hypothesized 
EZ before the resection.

Discussion
Summary. We presented a computational model based on structural brain networks of individual patients 
and evaluated the effect of virtual resections on seizure propagation in a preliminary study. Together with the SIR 
model, we developed a surrogate, namely the EC difference, which correlated strongly with the SIR model results 
and was computationally feasible. Additionally, we solved the computational problem of not being able to test all 
possible combinations of connections by using simulated annealing, which selected the optimal combination of 
connections. We found that, when allowing for a 10% decrease in effect compared to removing all connections 
as in the actual surgery, substantially more than 10% of the connections could be spared. This means that we 
were able to make smaller resections with almost the same effect as the actual surgery in our patient cohort. This 
approach performed better than a randomly selected removal of the same number of connections, and better or 
equal to removal based on network measures. For the network measures, the best performance was achieved by a 
selection based on the EC of the neighboring node outside the hypothesized EZ to which a removed connection 
was connected. Importantly, the effect of our approach varied per patient. Some connections contributed more 
to the effect than others: the connections to neighboring hub nodes were preferably removed. NSF patients had 
a tendency to a larger EC of the hypothesized EZ before the virtual resection (although the difference was not 
significant, p = 0.07), which could not be explained by differences in size or location of the hypothesized EZ. This 
may suggest that patients with a stronger pathological hub in the SOZ may need a more extensive resection or 
disconnection to become seizure-free.

Smaller resection area. We found that with a slightly smaller effect than the actual surgery many connec-
tions could be spared. Our reference was the removal of all connections that were cut during the actual surgery, 
namely the connections from the hypothesized EZ to the rest of the brain. A roughly similar reference was 
taken by Olmi and colleagues, who in their model also removed connections selected from those cut during the 
actual  surgery27 and started modelled seizures in the hypothesized EZ. Instead of measuring the effect of remov-
ing connections (as in our approach), Olmi et al.27 aimed for the same effect that the actual surgery had in the 
model, namely no seizure propagation. They found that it was possible to achieve the same effect as the actual 
surgery with removing far fewer connections. Moreover, they also found that the model-based virtual resec-
tions outperformed those based on random resections or on the network metrics alone, as in our study. Olmi 
and colleagues also found that some network characteristics of the seed regions predicted better than others the 
number of removed connections in the optimal resection. In particular, they found the node efficiency, cluster-
ing coefficient and betweenness centrality to be stronger predictors of the number of removed connections 
than node strength, degree or closeness centrality. This relates to our finding that the network characteristics of 
the removed and spared connections are different, and similarly we also found a larger difference for the node 
betweenness centrality than for the degree. Thus, although not enough to define the optimal resection, network 

Figure 7.  Correlation of the nodal EC with the SIR model for all patients. The EC was calculated for each of 
the 92 nodes in the structural network. For the SIR model, each node was activated separately at the start (only 
one seed) and the number of active nodes at time 10  (It=10) was averaged over 10,000 runs. The correlation was 
measured independently for each patient (thin coloured lines); on average the Pearson’s correlation coefficient 
was 0.95 ± 0.02. When considering all data points together, the correlation decreased to 0.88 but was still strong.
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metrics can guide the first assessment of a proposed virtual resection. The two analyses are fundamentally differ-
ent, however, since the former refers to the characteristics of the seed nodes, and the later to those of the removed 
connections, for a given seed and resection. Finally, as these authors suggest in their concluding remarks, their 
approach is more likely to be palliative than curative in terms of achieving true and lasting seizure freedom, 
whereas we provide actual follow-up in our patient population (SF and NSF groups).

Our study is in line with previous studies suggesting that individualized tailoring of resections can be per-
formed using personalized computer  models22–24,29,32,33. A tailored, often smaller resection area implies that less 
brain tissue is removed, and/or that surgery is performed using appropriate and patient-specific disconnection 
 strategies62. Moreover, selecting individual connections, instead of removing whole brain areas, would allow for 
even smaller and less invasive resections. Patients with complex extratemporal resections and patients with an 
overlap of the planned resection with eloquent cortex stand to gain the most. Smaller resections may result in 
fewer side-effects and cognitive complaints after  surgery17, thereby improving the quality of life of the patient. 
The current study is only a proof-of-principle of the use of spreading models and tailored resections to aid epi-
lepsy surgery, and whereas current surgical techniques are based on removal of whole areas, advances in surgical 
methods like the gamma  knife62 or real-time visualizations of anatomical connections during  surgery63 allow 
for more selective surgery.

Network measures. We found that all network measures identified the optimal selection of connections to 
be removed moderately well, even though they did not achieve the same effect as our model. Specifically, select-
ing connections for removal based on the hub measures (EC, BD or degree) of the neighboring node performed 
better than edge BC. Previous studies also found that resections based directly on network metrics performed 
relatively  well24,27,29. Based on these results, it might not be necessary to use the dynamical model for selecting 
the nodes or connections for removal, but only for evaluating the effect of the removal. This approach has been 
used in some studies that selected the nodes to be removed based on network measures—such as the out-degree 
or a modularity analysis—directly22,31. These results show that network topology is an important indicator of the 
dynamics that are generated by the models. Could network measures even replace the use of computationally 
expensive models? Models add dynamics to the network, and therefore mimic the modelled event (propaga-
tion of seizures) closer than static network measures do. On the other hand, these dynamics can seemingly be 
approximated by network measures, which are much faster to calculate and do not need parameter estimation, 
especially at the earliest stages of the  propagation40, 64. For example, the EC represents the probability that a 
random walker is at a randomly chosen node at any given time. In our study, hub measures were chosen because 
of their putative relation to spreading processes, which might explain why they were effective in some patients. 
However, the network measures related to the connections or neighboring nodes did not always perform as well 
as our model and could not replace the model in our setup. Nonetheless, if the network measures can perform 
as well as the models in all patients, they are preferable due to the straightforward and fast calculation. However, 
more refined work on this topic is needed to show which network measure or combination of network measures 
are best suited.

Removed connections link the hypothesized EZ to hubs. Previous studies have indicated that the 
EZ might act as a hub, from which seizure activity propagates to the rest of the  brain9,65. Yang et al.31 took this 
idea as the basis for their computer model by using a hub measure (out-degree) as an indicator of the  EZ31. 
Another model study showed that the epileptogenic nodes in the model are  hubs23. Our study, however, suggests 
that, possibly more important than removing the hub in the EZ, the hub connecting the EZ to the rest of the 
brain should be  removed66. This result is not surprising, as the propagation pathways depend on the underly-
ing network  structure67 and hubs facilitate early  propagation68. If the hubs are no longer connected to the EZ, 
propagation of seizure activity to the rest of the brain is hampered. Currently, it is unclear whether the EZ itself 
constitutes a hub or is connected to a  hub65,69,70. In comparison to a hub-less EZ, many more connections need 
to be severed to stop seizure propagation in the case that the EZ is a hub  itself27. This suggests that localizing the 
(pathological) hub might be more effective and result in a smaller resection area than localizing the SOZ. Two 
other model studies give further evidence that hubs should be removed during  surgery24,25. Whether the hubs 
are inside or outside the EZ, these results suggest that hubs should be the target for surgery, rather than the SOZ. 
Generally, alternative resection strategies that do not encompass the SOZ might be  successful71, and would be 
useful in cases where the SOZ is located in eloquent  cortex10.

Methodological considerations. The main analysis results using the individual structural matrices did 
not differ significantly from the results obtained using an averaged structural matrix. This might be because of 
only small variation in the DTI’s of the patients (the thresholding and binarization even further decrease varia-
tion), and because of the small patient number (each patient’s individual matrix constitutes 1/19 of the average 
matrix). These results mean that for this study we could potentially have used the average matrix, but we chose 
to stay with the individual matrices, as we hope to extend this study to more patients and future refinement of 
the analysis might expose advantages of using the individual matrices. Our goal was a model tailored to the 
individual patient and hence we stick with individual data where it is available, even though the results in this 
analysis did not differ from results with the average matrix.

The main analysis results using the binarized and thresholded structural matrices did not differ significantly 
from the results obtained using a structural matrix with the logarithm of the weights. This similar fraction of 
removed connections supports our choice for a threshold, even though finding the optimal threshold is a rec-
ognized issue in brain network  science72.
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In clinical practice, the ultimate goal is seizure freedom, though a significant reduction in seizures results 
in a considerable increase in quality of life of the patient. For our surrogate measure (EC difference), we chose 
to achieve maximally 90% of the effect of a full resection, as achieving 100% is trivial in our approach—the EC 
of an entirely disconnected SOZ would always be zero. The choice to find a balance between a large effect and 
a minimal resection means that seizure reduction is achieved rather than seizure freedom. The choice of the 
threshold value (90%) took advantage of the non-linear dependence of the EC difference on the size of the virtual 
resection, such that for larger resections it grew sub-linearly and increasing the number of resected edges only 
led to a small subsequent increase of the EC difference. The actual value of the threshold is arbitrary and other 
values could have been used as long as they fall within this regime. Here, 90% was selected as an standard value 
that fell within the saturating regime and only led to a small (10% or less) decrease in efficacy of the resection. 
Small variations in the threshold could weakly affect our quantitative results, but our main findings—namely 
the existence of smaller resections with only a small decrease in efficacy—do not depend on this actual value, 
and would thus hold. This model is a first step towards a more refined model that would have to be tested in a 
clinical population.

Strengths. The main advantage of our model study is its simplicity. There are only few parameters that need 
to be estimated for the SIR model, and none for the proposed surrogate approach that minimized the EC of the 
hypothesized EZ. The model might show to give reproducible results in future studies, which is an important 
requirement for a computer model to be implemented in epilepsy  surgery18. So far, we have achieved virtual 
resections that were more effective than random resections with a very simple model and even without consider-
ing resections in different locations away from the hypothesized EZ.

Our model used structural instead of functional networks. In this way the structural pathways (‘roads’) 
are captured on which seizures propagate. However, these roads may be ‘open’ or ‘closed’ for the activity 
 propagation25. We assumed that the model simulates functional activity that may or may not propagate, so that 
this process imitates the open or closed roads. According to this line of reasoning, simulating functional activity 
on a network of functional connections would be  irrational73. We have therefore captured a more realistic setting: 
functional activity propagating on a structural  backbone21.

Another advantage of using structural data for the individual networks is that the DTI scans are acquired non-
invasively, unlike some studies that used functional networks based on invasive EEG  recordings24–26,33. Similarly, 
no seizure activity or sleep deprivation is required, whereas some previous studies relied on seizure activity for 
their  model24–26,30,33. However, recordings of interictal functional or structural activity are more patient-friendly, 
have fewer side-effects and are easier to acquire. Accordingly, methods that perform similarly using interictal 
data compared to ictal  data31 are preferable to those that perform best using ictal  data26.

The model was individualized for each patient, which is a hallmark of precision medicine. The varying results 
for different patients underline the need for using personalized modeling of seizure propagation. Other studies 
reported considerable variability among patients and  epochs26 or recommended the use of individual structural 
 networks28. One study compared the use of an average structural network with individual networks and found 
that virtual resections were more effective in stopping seizure propagation in their model with the individual 
 networks27. It is therefore important to use individual networks when optimizing virtual resections.

Limitations
The presented model is simple with very few parameters, but it does not capture the underlying biological basis. 
Instead, it captures one behavior that we want to study: the propagation of seizure activity. The seizure starts 
locally (few nodes in the model are active), propagates to connected areas (the number of active nodes increases), 
and eventually subsides (no more active nodes) (see Supplementary Figure S.1). A model should capture the 
behavior to be studied, but does not need to replicate the underlying biology truthfully or even approximate 
 it74,75. In fact, a close match on details might even lead to false  conclusions33,76. Thus, a model can capture the 
behavior in question without being true to the underlying biological basis.

Despite the simplicity of the model, there were still some parameters that needed to be set ad-hoc. In par-
ticular, to measure seizure spreading we set  t0 = 10 in the SIR model. This value was selected to set the SIR model 
to the early phase, dominated by the propagation process, allowing us to model how much and how fast the 
seizure spreads, which can already be seen in the first steps of propagation. Moreover, for a given network, the 
maximum of I(t), indicating the severity of the epidemic (or seizure) is determined by the initial  spreading51. 
Thus, we selected a small number of steps where the epidemic is dominated by spreading processes but enough 
time has passed so that a significant fraction of the network has been infected (since the SIR model was set well 
into the supercritical regime for each patient). However, the actual time considered here  (t0 = 10) is arbitrary and, 
importantly, other values could be selected without affecting the qualitative results of the analysis.

Validation of the model is difficult, as we were not able to compare the suggested smaller resection to any 
actual treatment, because all connections were severed in the actual surgery. Some of the similar model studies 
described above circumvented this problem by comparing the propagation pathways of the simulated activity 
in the model to the propagation pathways of seizure activity in SEEG  recordings27,28. Hutchings and  colleagues23 
validated their model by comparing the model findings in left TLE patients to those in healthy controls: patients 
transited from a non-epileptogenic state to an epileptogenic state more often than controls, and the most frequent 
starting point for seizures in patients was the left  hemisphere23. Another possibility is to not use the information 
about the resection area or clinical SOZ for the model simulations, but for validation of the results. For example, 
Sinha et al. identified epileptogenic nodes in the model that overlapped with the clinically identified SOZ  nodes29. 
The virtual resection of those epileptogenic nodes reduced the overall seizure likelihood in the model. Other 
model studies used surgical outcome for  validation25, 26,30,33. We aimed to validate our model by using surgical 
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outcome, such that the model results would differ between NSF and SF patients. We found that the NSF group 
had a (non-significant) larger EC of the seed, which consequently (and trivially) led to a marginally larger EC 
difference of the optimal resection, but the difference was not significant. The other studies that used validation 
found a large effect for SF patients and small effect for NSF  patients30,33 or a positive correlation between effect 
and surgical  outcome25,26. However, using surgical outcome is a start for validation, as the goal is to improve the 
surgical outcome. This underlines the need for a ground truth, which is inherently lacking in clinical  research77.

Outlooks
Such computer models as the one we presented here are the first step on a promising path: to create an individu-
alized computer model that informs epilepsy surgery and thereby improves the outcome. The next milestone on 
this path is the prospective testing of such a model, where the model predictions made before the actual surgery 
are compared to the actual surgery and its outcome. Before such a step is taken, however, the model needs to be 
validated in a retrospective study and show a high accuracy that can be reproduced in an independent dataset. 
The validation is a challenge as the ground truth is inherently missing in clinical research. One possibility to 
approximate the ground truth of removing the areas or connections suggested by the model could be to tempo-
rarily inhibit the areas using brain stimulation, such as intermittent transcranial magnetic stimulation (iTMS) or 
transcranial direct/alternating current stimulation (tDCS/tACS). This validation would be limited to the inhibi-
tion of certain locations and area sizes, but it could reflect the effect of some of the virtual resection strategies, 
although the effects of excitation/inhibition in a network are not straightforward to  predict78.

Alternative approaches to find the optimal connections for removal can be found in the extensive theoretical 
literature about the SIR model. For example, the link with the highest product of the two adjoining node’s EC can 
be removed as it increases the network’s epidemic threshold, below which activity does not  propagate79. Other-
wise, a centrality measure that is more closely related to information flow can be employed: the pseudoinverse 
of the Laplacian reflects how well a node spreads  information54.

Future models could be extended to indicate the percentage of improvement for different resection strategies, 
instead of giving a binary suggestion (recommended or not recommended). In this way, the risk and benefits of 
certain resection strategies could be balanced against each other. Furthermore, no-go areas can be incorporated 
that are blocked for removal. These blocked connections or areas could represent eloquent cortex, but also the 
practical implementation of certain strategies. For example, connections or areas might be grouped together and 
marked for resection as they are spatially close, or it might be impractical to resect one area and disconnect a 
remote connection at the same time. Additionally, here we only considered connections from the hypothesized 
EZ as candidates for resection. Including all network connections may result in more effective resections. Finally, 
nodes could be removed in the model instead of connections.

Conclusion
Tailored computational models that take into account the patient-specific connectivity might be the next step to 
improve the outcome of epilepsy surgery. Before they can be applied in clinical practice, such models need to be 
extensively validated via retrospective and prospective studies. In this study, we used a spreading model together 
with a surrogate measure to define a simple computational model to perform virtual resections on individual 
structural brain networks. The goal was to reduce seizure propagation in the model and thereby inform epilepsy 
surgery about the optimal strategy. Using the surrogate measure, a smaller resection achieved almost the same 
effect as the actual surgery, at a considerably smaller cost. The connections that were predominantly removed 
were those connecting the EZ to hub nodes, whereas connections that were less important for seizure propagation 
could be spared. A more limited resection could mean fewer side-effects and cognitive complaints after surgery, 
thereby improving the quality of life of the patient.

Computer models can aid epilepsy surgery by tailoring the resection area, testing competing resection strat-
egies, and finding alternative resections when eloquent cortex overlaps with the seizure onset zone. Beyond 
epilepsy surgery, computer models can inform other types of neurosurgery (e.g. brain tumor surgery), help 
unravel the mechanism of epilepsy or other diseases (e.g. spread of tau pathology) and shed light on the general 
workings of the brain (e.g. how structure and function interrelate).

Data availability
The raw patient data cannot be shared as the patients did not consent to data sharing. Metadata and code are 
available upon reasonable request to the corresponding author under the condition of an existing collaboration 
agreement.
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