
The Number of Link-Disjoint Paths in a Graph

Piet Van Mieghem∗ Eguzki Astiz Lezaun

Delft University of Technology

January 2006

Abstract

The computation of the number of link-disjoint paths in an optical network is addressed. We

present an exact algorithm MAXFLOW. Due to the excessive worst-case computational complexity

of MAXFLOW, analytic bounds are derived which are based on prime number theory. We regard

these results as a first step to estimate the capacity of optical networks expressed in the number of

link-disjoint paths.

1 Introduction

The presented work is motivated by the initially thought simple question: “How many optical con-

nections with a certain hopcount can be established in a given network?” A simplified version of the

question leads us to consider a network in which each link consists of one optical fibre. The number of

light paths between a given set of source-destination pairs that can be set-up with a certain hopcount

— number of links traversed — is the major subject of this article. Roughly speaking, we may consider

the problem as related to the computation of the capacity of a network, in the sense that each link

can only be used by one connection or light path.

Link-disjoint paths between two nodes are paths that do not have any link in common. Link-

disjointness is represented by the symbol “k”. Thus, if P1 and P2 are two arbitrary paths,

P1 and P2 are disjoint ⇔ P1kP2

We first present an exact algorithm, MAXFLOW, that computes all possible link-disjoint paths

in a given set Q of paths. The difficult nature of the problem is shown to lead to an infeasibly high

computational complexity, even for relatively small graphs with a few tenths of nodes. A second

part of the article gives analytic bounds to the number of link-disjoint paths  with fixed hopcount

between two nodes. Our main result is Theorem 1 in which prime number theory pops up. To some

extent, the problem we deal with, is a generalization of the well-known max flow-min cut problem,

that has tight upperbounds as shown by Goemans and Williamson [2].

∗email: P.VanMieghem@ewi.tudelft.nl

1

2 The MAXFLOW algorithm

2.1 Functionality

The MAXFLOW algorithm finds all  link-disjoint paths between any pair ( ) of nodes in a graph

. The basic identity in MAXFLOW is a path, a sequence of consecutive links in a graph. As input,

MAXFLOW assumes a given set of  paths Q,

Q = {Q1Q2 Q}

An arbitrary number  of paths can be given. We define the set, T = {T1 T2 T3     T}, whose
elements T are mutually link-disjoint paths belonging to the set Q,

T = {T : T ∈ Q and TkT}∀6=∈[1]

The cardinality — the number of elements — of the set T is denoted as |T | = . Obviously, the set

T is not unique. We define D as the set of all sets with the same properties as T . Thus, D is the

set of all link-disjoint paths of Q. With this preparation, we are ready to formulate the MAXFLOW
algorithm. Given Q, MAXFLOW computes the set of paths P, with the following properties:

1. P ∈ D

2. ∀T ∈ D : |T | ≤ |P| =

If the given set of paths Q contains all the paths between one certain source-destination pair ( ),
MAXFLOW will then compute the maximum number of link-disjoint paths between one pair ( )

of nodes. Depth-first search (see e.g. [1]) computes all possible paths between two nodes in a graph. If

we appropriately select the set Q of paths between more source-destination pairs, MAXFLOW returns

the maximum set of link-disjoint paths between more source-destination pairs. Furthermore, we can

impose that all paths of Q have the same number of links or hopcount. Then, MAXFLOW computes

the maximum set of link-disjoint, equi-hopcount paths.

2.2 Backtracking Technique

The MAXFLOW algorithm is based on the backtracking technique [1]. Backtracking finds a solution

by trying one of several choices. If the choice proves incorrect, the computation backtracks or restarts

at the point of choice and tries another choice. It is often convenient to maintain choice points and

alternate choices using recursion. In our particular case, MAXFLOW uses backtracking by applying

the depth-first search on the tree of choices (see subsection 2.3). Since our tree of choices is likely

to be wide but not deep, the depth-first search technique is more convenient than breadth-first search

technique [1].

2.3 Search Tree

The Search Tree is also commonly known as the Tree of Choices. In general, the Search Tree may

represent all the possible results if it is properly designed. The backtracking algorithm will search in

the Search Tree. The Search Tree is designed by MAXFLOW itself together with the search method,

2

i.e. depth-first search. The remainder of this section will describe the particular Search Tree of the

MAXFLOW problem.

Every vertex of the MAXFLOW Search Tree contains one particular set of link-disjoint paths that

the algorithm computes during the execution process. Vertices are located at levels depending on the

recursion degree and edges only exist between adjacent level vertices (property of a tree). The starting

vertex is the root vertex, R, which contains the initial set Q of paths. For every path Q contained

in the vertex R we compute the set of paths that are disjoint to Q. This new set of paths, namely

T
is placed in a vertex on the next level in the search tree. The edge, labelled as Q, that connects

vertices Q and T
is associated to the path Q. All the paths contained in the set T

are disjoint to

Q, but they might not be mutually link-disjoint. For example, let T be a set of T1, T2 and T3 paths
and let T2 and T3 share one link and both be link-disjoint to T1. The resulting vertex, link-disjoint to
T1, is {T2 T3} where T2 and T3 are link-disjoint to T1, but they are not disjoint to each other. Further,
T

only contains elements of Q with an index higher than ,

T
= {Q : Q ∈ Q and QkQ}1≤≤

and, obviously,

T = {∅}
Hence, Q1 does not appear in the set T3 , even though Q1kQ3 but, for this particular case, Q3 ∈ T1 .
Using this tree building process, MAXFLOW “walks” over all the edges looking for the longest branch

in terms of edges. The paths associated to consecutive edges of the Search Tree are disjoint by

definition. Thus, the longest branch forms the largest set of mutually link disjoint paths.

Figure 1 shows an example of a Search Tree. From a certain level , the vertices T1 and T5 on
level +1 are computed. Vertex T1 contains all the paths of the ancestor that are disjoint to 1 and,
likewise, the vertex T5 contains all paths link-disjoint to the path 5. Even though paths 1 and 5

are link-disjoint because 5 is contained in vertex T1 on level  + 1, the path 1 is not included in

vertex T5 .

P1 P2 P3 P4 P5 P6 P7 P8

P3 P5 P7 P6 P8

level i

level i + 1

P1 P5

Figure 1: Construction of level + 1 the choice tree.

An edge in the Search Tree that connects two levels implies that there exists at least one pair of

paths that are disjoint to each other. There are two extreme cases. First, the Search Tree is just a

single branch with |Q| levels when all the paths from the Q set are mutually disjoint. Second, if all

the paths share at least one certain link, which means that there is not a single pair of paths that are

disjoint, the Search Tree turns out to be a single root vertex.

3

Branch prunning is used in backtracking to improve the efficiency. Obviously, prunning a branch

saves time because there is no longer need to check/search the branch. A bounding function estimates

if a search over a certain branch can improve the already obtained solution. If the estimate is not

positive, the algorithm prunes that branch avoiding useless walks over the child branches.

The boundary function in MAXFLOW checks two numbers: the cardinality  of the resulting set

to be returned and the number  of the remaining number of paths to be checked in the current vertex.

If the current vertex has  paths and if the path Q for 1 ≤  ≤  is currently being checked, then

 = − . Indeed, if  ≥ , then the remaining  paths are insufficient to compute a set that contains

more that  disjoint paths; the maximum achievable is . The bounding function is recursively applied

at every vertex of the Search Tree.

2.4 Source Code

The meta-code of MAXFLOW is given below:

Algorithm:  (Q)
Input: the set of paths Q = {Q1Q2 Q}
Output: the set of paths P = {P1P2 P}1≤≤ belonging to Q, whose elements are mutually
link-disjoint paths. There does not exist another set containing more elements than P.
01 FUNCTION MAXFLOW(Q): Set of paths) RETURN P:Set of Paths
02 Q : Set of Paths;

03 Q : Set of Paths;

04

05 P ← ∅;
06 WHILE({|P|  |Q|} ∧ {Q not empty }) DO
07

08 Q_: Path;
09

10 Q_ ← Q[0];      Q
11 Q ← Q\{Q_};   Q_     Q
12

13 Q ← GetDisjointPaths(QQ_);
14 if (Q is empty)

15 if (P is empty)

16 P ← {Q_};
17 else

18 if (Q  Q)
19 Q ← ∅;
20 Q ← MAXFLOW(Q);  

21 if (|Q | ≥ |P|)
22 P ← Q

S {Q_};
The MAXFLOW algorithm “walks” over all the edges of the Search Tree. This Search Tree can

be built from the input information Q using the method described in Section 2.3. At every vertex of

4

the tree the algorithm is executed. The paths contained at the vertex can be accessed through the set

Q (line 01) and the result is stored in P. The main idea is that for every path on the active vertex,
we compute the set of disjoint paths (line 13) after removing the path (line 11). If the returned set,

Q , is empty (line 14), MAXFLOW ends the recursion since there are no link-disjoint paths. On

the other hand, if the set is not empty, we jump to a new vertex at the next level containing Q

using the recursion (line 20). Lines 18 and 19 ensure that in case Q equals Q, then after the
recursion call, the algorithm finishes at the current vertex of the tree. For, in that case, Q is going to

be processed as Q at the next recursion level.

The selected search method in this algorithm, Depth-first search, first jumps to the next level

exploring as far as possible along each branch before backtracking (continuing with the next path of

Q). When the recursion returns, we compare the returned set of disjoint paths, Q , with the

maximum obtained at this vertex (line 21). When the returned set of paths contains at least the same

number of paths as P, the algorithm replaces its partially computed maximum set, P, with the union
of Q and Q (line 22).

The bounding function is implemented at the lines 6 and 18-19. If every path were checked, the

WHILE statement would be replaced by FOR EACH. Every iteration we remove an element from Q.
If |P| becomes larger than |Q|, there is no need to continue searching since P is a subset of Q.

3 An example

The MAXFLOW operation is illustrated by Figure 2. From the topology shown Figure 2 (a), we

compute all the paths with the initial node  and destination node . That set of paths Q is shown

in the table of Figure 2 (c). In Figure 2(b) the Search Tree is drawn. Edges show a label of the path

they are associated with. We explain the algorithm just before Q turns to P4. At that moment,
the state of the partial solution, P, is {P3P4P5} and Q contains {P4P5}. The bounding function
test fails and the MAXFLOW does not walk over the edge P4. The vertex hanging on P4 is not
drawn as solid, but as a dashed box. Despite the fact that P3 is link-disjoint to P4 , it is not included
because P4 is already included in the vertex coming from P3. Thus, the longest branch is composed
by {P3P4P5} which is returned by the algorithm as the maximum number of link-disjoint paths in

the topology of Figure 2 (a).

3.1 Complexity

The complexity will be computed depending on the number  = |Q| of the input set of paths Q. The
computation of the original input set Q also requires computational effort, which we omit here.

At line number 13, the MAXFLOW algorithm executes the GetDisjointPaths function that selects

the paths of Q that are link-disjoint relative to the path Q. If  is the maximum number of links

of a path in Q, the GetDisjointPaths function has a complexity

() = ( ·2)

Checking that two paths are disjoint requires (2) elementary operations, namely compairing if

a link of one path occurs in the other path. For the special cases, the line tree and the root only,

5

P1 P2 P3 P4 P5

P5 P4 P5

P1 P3

P5

P2

P5

P4

P5

P4

A B

C E

F G

S D

S-A-B-DP5

S-C-E-DP4

S-F-G-DP3

S-C-E-G-DP2

S-F-G-E-DP1

Paths between S and D

S-A-B-DP5

S-C-E-DP4

S-F-G-DP3

S-C-E-G-DP2

S-F-G-E-DP1

Paths between S and D

(a)

(b)

(c)

Figure 2: An example of a topology (a) in which in table (c) all paths between source  and destination

 are given. Those paths are the input of MAXFLOW. The (pruned) search tree is shown in (b)

discussed in subsection 2.3 the overall complexity is straightforward. For the line tree (case A), where

all the paths are mutually disjoint,

() = (− 1 ) +(− 1 )

Recall that MAXFLOW algorithm walks over a single branch because at any level the partial solution

is not lower than the remaining set of paths. Therefore, no other branches start at any node. The

solution of the recurrence equation is

() = 

µ
(− 1)

2
2

¶
= (22) (1)

In the root only case (case B), all the paths have a certain link in common. Hence, it is not possible

to find a pair of paths that are disjoint. If there are no disjoint paths, the tree does not have levels

and is just composed by a root vertex. However, the MAXFLOW algorithm checks all possible pairs¡

2

¢
of paths. If each check requires (1 ), then the solution is

() = 

µ
(− 1)

2
2

¶
= (22) (2)

Surprisingly, the required computation complexity is the same for both extreme cases. The rest of the

tree topologies lay in between of these two extreme trees. Unfortunately, the complexity does not fall

in between. It is difficult to figure out what the worst case for this algorithm is. Due to the bounding

function, if the partial solutions gives us a set of  paths at a certain level, then, when the remaining

set of paths to be checked is lower or equal to , all the remaining branches are pruned. This implies,

that it is impossible to build a tree with an arbitrary number of edges and vertices. However, we are

able to compute an upper bound for the last case, when the tree has the maximum number of edges

and vertices. This upper bound represents the situation of the extreme case A when the bounding

function does not work.

6

P1 P2 P3 P4 P5

P5P2 P4 P5P3 P4 P5P3 P4 P5

P1 P2 P3
P4

P5P4 P5P3 P4 P5 P5P4 P5 P5

P5P4 P5 P5 P5

P5

Figure 3: An example of a full search tree

An example of such tree is shown in Figure 3. In that example, the root vertex has only five paths.

For a general case of  paths, we can compute the complexity using the following recurrence function,

 () = (− 1) +  (− 1) +(− 2 ) +  (− 2) +   +(1) +  (1)

=

−1X
=1

( () +())

The difference  ()−  (− 1 ) obeys

 ()−  (− 1 ) = (− 1) +  (− 1 )

which leads to the recursion

 ()− 2 (− 1 ) = (− 1 )

whose solution is

 () = 2 −2(+ 1)

Although the complexity of MAXFLOW is in most case of 
¡
22

¢
, the problem of computing

all link-disjoint paths between a set of node pairs effectively requires as input Q a hugh set, where

 =  (( − 1)!). For, the total number of paths between a source-destination pairs in any graph is
bounded by [ ( − 2)!] (see e.g. [4, p. 322]) where [] denotes the integral part of . This means that
an exact algorithm as MAXFLOW is impractical for   10 because MAXFLOW = 

³
(( − 1)!)2

´
.

7

4 Theory

The unattractive complexity MAXFLOW has motivated an analytic study. Obviously, the number of

link-disjoint paths with   1 hops between two (different) nodes, , is bounded by

0 ≤ ≤  − 2 (3)

Indeed, the upperbound follows from the maximum degree of a node minus the direct (1 hop) link.

The lower bound indicates that, although the graph is connected, for some values of the hopcount ,

there does not exist such a path as is readily observed from a star or ring topology. In the sequel, we

investigate the number of link-disjoint paths in the complete graph  . Since any graph is a subgraph

of the complete graph, the number of link-disjoint paths in any other graph will be upperbounded by

that in  . We assume that links are undirected.

The case  = 2, is particularly simple and follows directly from the fact that all two hop paths

between two nodes in  are link disjoint. Hence,

2 =  − 2 (4)

The case  = 3 also equals  − 2 (for   4),

3 =  − 2 (5)

A 3-hop path between 1 and  is characterized by (1 → )( → )( → ). The set of 3-hop paths

(1→ )(→ +1)(+1→ ) for 2 ≤  ≤  − 2 consists of  − 3 link disjoint paths. This set can be
complemented with the path (1→  − 1)( − 1→ 2)(2→ ) to a total of  − 2 link-disjoint 3-hop
paths.

4.1 Link-disjoint paths with  − 1 hops
The number −1 of link-disjoint paths with  =  − 1 hops between two nodes is determined.

Theorem 1 The number of link-disjoint paths with  = −1 hops between two nodes is lower bounded
by1

−1 ≥ ( − 1)
2

(6)

where () is Euler’s totient function [3, Section 5.5],

() = 
Y
|

µ
1− 1



¶

and  denotes here a prime.

Proof: The maximum possible number of links is
(−1)

2
−1 which equals the total number of links

in the complete graph minus the direct link between the two nodes. Hence, −1 can never be larger
than

h

2
− 1

−1
i
=
£
−1
2

¤
. If  is a prime, then () = 

³
1− 1



´
=  − 1. The equality sign in (6) is

1 If the links are directed, in which case there are ( − 1) links in the complete graph,  = ( − 1).

8

reached in a complete graph with = +1 nodes where  is prime, because then
(−1)

2
=
£

2
− 1¤

and the highest number of link-disjoint paths is max(−1) =
h

2
− 1

−1
i
=
£

2
− 1¤ since  is even.

Figure 4 illustrates that a link-disjoint path, indexed by  ∈ [1  − 2], between node 1 and  is

characterized by the node list

1→ ; = {1 + ()mod( − 1)}0≤≤−1 (7)

where the path ends in node 1 ≡  . The number  of these paths 1→ ; then equals the number

of modulo  − 1 classes that is complete, which equals ( − 1). Since every path can be traversed
in the opposite direction, half of the number ( − 1) is link disjoined. This also follows from (7)

because

→1;(−1−) = {1 + ( − 1− ) ( − 1− )mod( − 1)}0≤≤−1
= {1 + ()mod( − 1)}0≤≤−1 = 1→ ;

Hence, for different link-disjoint paths, we may restrict  to the interval
£
1
£
−1
2

¤¤
.

Apart from the “trivial” 1→ ;1 path that always exists for any  , the other (  1) individual

paths 1→ ; that consists of −1 hops are those for which  is not a divisor of −1. Hence, if −1
is prime, all   −1, in total −2, satisfy this condition. Indeed, in that case is (−1) = −2.
But, the first half set of −1-hop paths indexed by 1 ≤  ≤ −2

2
consumes already all available links.

Thus, we can draw in two different complete graphs  , precisely two different sets of  − 1-hops
paths provided  − 1 is prime.

If | − 1, the hopcount of 1→ ; is precisely
−1

. Indeed, the hopcount  of the path 1→ ;

is the smallest solution  =  of the equation ()mod( − 1) ≡ 0, which, if | − 1, is equivalent to
mod(−1


) ≡ 0 and satified for  = −1


. If the greatest common divisor of  and  − 1 is , then

the hopcount of 1→ ; is
−1

.

The Theorem is proved if inequality is demonstrated. A single example suffices. In case  = 7,

we have that
(−1)

2
= 1 namely the “trivial” 1→7;1 path, where  = 1 − 3 − 5 − 2 − 6 − 4 − 7 is

another  − 1 hop path and link disjoint to 1→7;1. This observation illustrates the inequality sign in
(6). ¤

The procedure in the proof first removes all direct links ( = 1), then all second hop links ( = 2)

if they possibly construct an  − 1 hop path and so on. We call this the “equal spacing” method.
the By any relabeling (i.e. permutation) of the nodes, this regular hop structure can be broken, but

the total number of link-disjoint paths does not change by relabeling. On the other hand, procedure

cannot always guarantee to find the maximum set of link disjoint paths. For example, in case  = 8,

we find beside the “trivial” 1→ ;1 path,

1→8;2 = 1− 3− 5− 7− 2− 4− 6− 8
1→8;3 = 1− 4− 7− 3− 6− 2− 5− 8

whereas another possible set is

 = 1− 3− 5− 2− 7− 4− 6− 8
 = 1− 4− 2− 6− 3− 7− 5− 8

9

Clearly, relabeling the node 2 by node 7 and, vice versa, node 2 by node 7 which we denote by 2←→ 7

and relabeling 3 ←→ 6 transforms both sets into the same. However, in that case, also the trivial

path is relabeled and the resulting set of three link-disjoint paths is thus different. In case  = 9, our

procedure does not lead to a maximum set. For, beside the “trivial” 1→ ;1 path, we only find

1→9;3 = 1− 4− 7− 2− 5− 8− 3− 6− 9

whereas another set

 = 1− 4− 2− 7− 5− 8− 3− 6− 9
 = 1− 3− 5− 2− 6− 8− 4− 7− 9

clearly contains 1 additional link-disjoint path. The relabeling 2←→ 7 transforms  into 1→9;3 and
 to

 = 1− 3− 5− 7− 6− 8− 4− 2− 9
and the “trivial” 1→ ;1 path to

 = 1− 7− 3− 4− 5− 6− 2− 8− 9

We observe that  initial consists of second hop links ( = 2) up to roughly the half the path length —

first four hops — and then a non-constant value of  is followed:  = 7 2 4 6 7. This observation shows

that the “equal spacing” method is not exhaustive. In particular, only if  = +1 with  prime, the

“equal spacing” method is exhaustive. In all other cases, where  −1 is composite, non-equal spacing
seems necessary.

As a corollary of Theorem 1, the average number of link-disjoint paths in () with  − 1 hops
between two nodes is larger than or equal to  [−1] ≥ (−1)

2
−1.

4.2 Link-disjoint paths with  − 2 hops
The question arises whether the previous method can be extended to other hopcount cases as well.

Clearly, by omitting one node, the previous construction directly leads to at least
(−2)

2
link-disjoint

 − 2 hop paths, while, at most there are
h
(−1)
2(−2) − 1

−2
i
such paths. Hence, if  − 2 =  is

prime, there holds that −3
2
≤ −2 ≤

h
(−1)
2(−2) − 1

−2
i
and

h
(−1)
2(−2) − 1

−2
i
=
h
(+2)(+1)

2
− 1



i
=h

+3
2

i
= +1

2
. But, since the difference of 2 is not sufficient for an additional  − 2 hops path (for

  4), we conclude that −2 = −3
2
if  − 2 is prime.

The other cases are more complex because the set of modulo  −2 classes is not complete and the
omitted node may be used to complete them. In addition to the

(−2)
2

link-disjoint  −2 hop paths,
for each  ∈ £1 £−1

2

¤¤
that satisfied the conditions | − 1 and −1


+ 2 =  − 2, a new  − 2 link

disjoined path is found. Indeed, with the previous modulo-construction, a path has hopcount equal

to  = −1

if | − 1. By including the omitted node, the path increases by 2 links. The number of

those additional solutions is small, namely, that  for which −1
−4 = 1+

3
−4 is an integer, which only

occurs if  = 7. In that case  = −1
−4 = 2.

In conclusion, −2 =
(−2)

2
for all   7. If  = 7, −2 =

(−2)
2

+ 1. Most likely, the

addition process that complements the equal spacing method does not exhaust all possibilities.

10

1

2

3

4

5

N=11

6

7

8

9

10

Figure 4: The nodes of the complete graph 11 are drawn on a circle. For  = 1 and  = 3, 1→11;1
and 1→11;3 are the only two “equal spaced” 10-hop paths because

(10)
2

= 2.

The cases 4 ≤  ≤  − 3 are challenging. Any path with  =  hops between  and  is specified

by P→ = (1 → 2)(2 → 3) · · · ( → +1) with the property that the sum of the differences of

the nodal identification numbers  =
P

=1(+1 − ) = +1 − 1 =  − which is independent of

the hopcount. Without loss of generality because we can also relabel the nodal ID numbers, we can

choose  = 1 and  =  . Next, by adding the direct link between  and , a loop is created for

which  = 0. The paths in the modulo method (7) feature the additional property that +1− = 

or, via equal spacing, the total link space is scanned. If  =  − 1, the modulo method exhausts all
possibilities because all nodes must be visited by each  − 1-hop path. But, in the other cases, the
equal spacing might not be successful.

References

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. An Introduction to Algorithms. MIT Press, Boston, 1991.

[2] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability

problems using semidefinite programming. Journal of the Association for Computing Machinery, 42(6):1115—1145,

November 1995.

[3] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, London, 4th

edition, 1968.

11

[4] P. Van Mieghem. Performance Analysis of Communications Networks and Systems. Cambridge University Press,

Cambridge, U.K., 2006.

12

