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Abstract

Invoking the concept of a signature of a (sub)graph, we investigate how two (sub)graphs topo-

logically can be compared by one number. We argue that one meaningful number cannot be found,

unless the node labels in the graphs are speciÖed and the same for the graphs.

It would be great to Önd the minimum number of bits that represents a graph with N nodes exactly

and uniquely.

1 Signature of a graph

A graph G (N;L) with N nodes and L links is usually speciÖed [1] by an N N adjacency matrix A

with a zero diagonal and whose elements are either zero or one. Any N N matrix A can be stored

(and considered) as an N21 vector vec (A), by concatenation of the rows (or columns) of the matrix
(see [1, p. 254]). Hence, the topology of each (unweighted) graph is described by N (N  1) bits.
However, the vector of those N (N  1) bits is not unique, because each permutation of the N node

labels results in a di§erent adjacency matrix, while the graph is still the same. Since the eigenvalues of

a matrix are invariant to a similarity transform (such as a relabeling of nodes), the spectrum (set of N

eigenvalues of A) is often used to discriminate between graphs. When conÖning to undirected graphs

(for which A is symmetric and the eigenvalues are real), we need now N real numbers (or N bits,

where  is the number of bits of a real number in a computer), in contrast to 1
2N (N  1) bits. Hence,

only if N > 2+ 1, the spectrum is a more economical discriminator than the adjacency vector.

We deÖne the signature of a graph G (N;L) as a r  1 real vector  that represents the graph
uniquely (with overwhelming probability1). Before proceeding, we emphasize that a signature does

not necessarily contain enough information to reproduce the graph G. Rather, the signature maps the

graph space G containing all graphs to a signature space S of lower dimension so that information is
lost to construct a unique inverse map from S ! G. To some extent, the signature can be compared
to a hash function.

Faculty of Electrical Engineering, Mathematics and Computer Science, P.O Box 5031, 2600 GA Delft, The Nether-

lands; email : P.F.A.VanMieghem@tudelft.nl
1 It seems to be a di¢cult (open?) problem to Önd the minimum number of bits that represents a graph with N nodes

exactly and uniquely.
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Signatures may be used to compare properties among di§erent graphs. For example, the ináuence

of topology on the function of a biological network is discussed in [2]. Another question often arises:

ìIs a particular subgraph representative for the graph?î

1.1 Eigenvalue signature

Although cospectral graphs2 exist for which Godsil and McKey have proposed an ingenious construc-

tion [3], Van Dam and Haemers [4] claim that the spectrum of the graph is a unique Öngerprint when

the size N of the graph is su¢ciently large (larger than N = 20). We conÖne the discussion to the

spectrum (eigenvalues only, without corresponding eigenvectors) of the adjacency matrix A. Inspired

by the claim of van Dam and Haemers [4], a Örst proposal of a signature is the eigenvalue signature

 = (N ; N1; : : : ; 1) (1)

where k is the k-th largest eigenvalue of the adjacency matrix A and r = N (but e§ectively N  1
because

PN
j=1 j = 0 so that always one eigenvalue can be eliminated). Instead of the adjacency

matrix, other graph theoretic matrices (such as the Laplacian Q) can be considered. In principle,

any reordering of the N eigenvalues can be regarded as a valid signature. In order to reconstruct the

graph or adjacency matrix A, we also need all eigenvectors xk belonging to eigenvalue k since A =

Xdiag(k)XT , where X is the matrix containing as columns the eigenvectors. Thus, the eigenvalue

signature  does not contain enough information to reconstruct the graph.

We can construct inÖnitely many signatures based on , that all are equally unique. Indeed, for

any monotonous increasing function f , a generalized eigenvalue signature is

f() = (f (N ) ; f (N1) ; : : : ; f (1))

which corresponds to f (A) = Xdiag(f (k))XT , where the matrix X with eigenvectors is the same

for any function f . Each generalized signature f() still contains r = N vector components; thus

dimf() = N .

The eigenvalue signature can be applied to weighted graphs with adjacency matrix W , where wij
is a real (mostly non-negative) number, whereas aij is either 0 or 1. The uniqueness of W for

a weighted adjacency matrix W is expected to hold more generally than for A as argued in [1, p.

249-250], because the number of cospectral weighted graphs is relatively smaller than the number of

cospectral unweighted graphs.

1.2 Characteristic polynomial signature

A second proposal for a signature is the polynomial signature, in which each component is a function

evaluation of the characteristic polynomial [1, p. 211-212]

cA (x) =
NY

j=1

(j  x) = det (A xI) (2)

2Cospectral graphs are non-isomorphic graphs with the same adjacency eigenvalues. Isomorphic graphs describe

actually the same graph, only with a di§erent node labeling (nodal permutation).
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so that

p = (cA (x1) ; cA (x2) ; : : : ; cA (xr)) (3)

Each argument xj with 1  j  r can, in principle, be chosen arbitrarily, as well as the value of r. How-
ever, in order to show that p is also a unique Öngerprint for G, we must choose r  N +1 and require
that all arguments xj are di§erent. These requirements are based on Lagrangeís interpolation theo-

rem [1, p. 274-275]. Indeed, the Lagrange interpolation polynomial that passes through the r points

f(xj ; cA (xj))g1jr is unique and of degree r 1 and to reconstruct all eigenvalues N ; N1; : : : ; 1,
which are the zeros of the characteristic polynomial cA (x), the degree of the Lagrange polynomial

should be at least equal to r = N + 1. When r > N + 1, then the Lagrange polynomial that passes

through the r points f(xj ; cA (xj))g1jr is

pr1 (x) =

rX

j=1

cA (xj)
Fr (x)

(x xj)F 0r (xj)

where Fr (x) =
rQ
j=1

(x xj). The degree of the Lagrange polynomial pr1 (x) seems to be equal to

r  1 > N . However, the di§erence polynomial

qr1 (x) = pr1 (x) cA (x)

is at most of degree r  1 and possesses r zeros at x = xj for 1  j  r, which is impossible because
any polynomial of degree r 1 has precisely r 1 complex zeros. Thus, qr1 (x) must be zero and the
Lagrange polynomial equals pr1 (x) = cA (x) with degree r = N + 1.

Using more sampling points than N + 1 to determine a polynomial cA (x) of degree N cannot

lead to a Lagrange polynomial of a higher degree than N . Also, using more information than nec-

essary does not degrade the Lagrange polynomial in the sense that pr1 (x) is still precisely equal

to cA (x). This property of Lagrangian sampling is particularly useful when we possess a set of r

points f(xj ; f (xj))g1jr of which it is unknown whether f (x) is a polynomial. Indeed, if f (x) is a
polynomial of degree N , then after generating more than r > N+1 function evaluations, the Lagrange

polynomial does not change anymore and we may conclude that f (x) is a polynomial of degree N .

Otherwise, the degree of the Lagrange polynomial will continue to increase as r  1.
In summary, we have shown that the polynomial signature p in (3) can be precisely reduced to the

eigenvalue signature  in (1), provided that its length r  N +1 and that the set of di§erent abscissa
points fxjg1jr is known. Since the abscissa points can be chosen freely, again we can construct
inÖnitely many polynomial signatures p, all equivalent, in the sense that they can reproduce the set

of eigenvalues. The fact that the length r of the polynomial signature p is tunable and not Öxed at

N as in the eigenvalue signature  will be exploited in the remainder.

2 Comparing graphs

The aim is to construct a method to compare two graphs G1 (N1; L1) and G2 (N2; L2) with possibly

a di§erent number of nodes, N1 6= N2. In addition, we assume that the node labeling in G1 is

independent of that in G2, otherwise the situation simpliÖes to computing the di§erence between two
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matrices or two vectors with speciÖed order in the row/columns or components. In that case, the lack

of dimensions in G2 due to a di§erent N1 > N2, is mirrored by zero values in G2 for those node labels

of G1 that are not contained in G2. In other words, G2 is augmented by an empty graph with N1N2
nodes so that both graphs possess N1 nodes. This treatment is analogous to that in geometry and

coordinate systems.

Since the eigenvalue signature  of a graph G (N;L) has N vector components, the eigenvalue

signature vectors  (G1) and  (G2) have possibly di§erent dimensions. Linear algebra and geom-

etry have established powerful concepts such as vector norms or projections to compare two vectors

in a same dimensional space. Hence, in order to use these elegant vector comparison tools, the

signature vectors of G1 and G2 should have the same length. The idea to compare two graphs

G (N1; L1) and G (N2; L2) consists of constructing a polynomial signature p with r = max (N1; N2)

components. The discussion above has shown that the Lagrange polynomial constructed from the set

f(xj ; cA1 (xj))g1jr returns the exact characteristic polynomial corresponding to G1 (and similarly
f(yj ; cA2 (yj))g1jr for G2). The method is readily generalized to m graphs.

When comparing the signatures p (G1) and p (G2) of two graphs G1 and G2, respectively, we de-

Öne a norm [1, Sec. 8.4] (because signatures are vectors) that measures their di§erence kp (G1) p (G2)k.
Apart from the uniqueness of a signature, another desirable property of a signature is that, if the

graphs G1 and G2 do not di§er ìmuchî, then kp (G1) p (G2)k should be ìsmallî (and vice versa).
In other words, when G1 and G2 are ìcloseî in the graph space G, a useful signature map should
produce signatures  (G1) and  (G2) that are also ìcloseî in the signature space S.

We have shown in Section 1 that each unique signature  can be mapped into another unique

signature f(), which implies that the norm can be made arbitrarily large. Hence, we propose to

conÖne to signatures with unit norm, for example, by choosing the Euclidean norm Tp p = kpk
2
2 = 1.

Geometrically, this scaling means that each signature is a unit vector lying on the r-dimensional sphere

and that the square of the norm of the di§erence

kp (G1) p (G2)k22 =

Tp (G1) 

T
p (G2)


(p (G1) p (G2))

= 2

1 Tp (G1)p (G2)


 4

where the projection  = Tp (G1)p (G2) of the two vectors equals the cosine of the angle between the

vector p (G1) and p (G2). If  = 1, we may interpret the two graphs G1 and G2 as being the same,

if  = 0, they can be regarded as orthogonal (or hardly possessing common features), while if  = 1,
the two graphs are opposite.

2.1 E§ect of the set of abscissa

It remains to investigate the e§ect of the set of abscissa fxjg1jr for G1 and fyjg1jr for G2 on the
projection . Invoking the deÖnition (3) of a polynomial signature yields

 = Tp (G1)p (G2) =

Pr
j=1 cA1 (xj) cA2 (yj)qPr

j=1 c
2
A1
(xj)

Pr
j=1 c

2
A2
(yj)

(4)

The denominator shows that we cannot choose all the zeros of either cA1 (x) or cA2 (x) as possible

abscissa set. The sensitivity of the projection  to the sets of abscissa fxjg1jr and fyjg1jr is
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represented by the vector  with components @
@xl

and @
@yl

for 1  l  r. Ideally, we would like to

have @
@xl

= @
@yl
= 0, implying that the choice of fxjg1jr and fyjg1jr does not ináuence , or that

we consider the maximum possible projection max as our distinguishing metric for the ìsimilarityî

between two graphs. Since @ log @xl
= 1


@
@xl
, the solution of @ log @xl

= 0 is the same as that of @
@xl

= 0 (and

similarly for @
@yl
) for any l and  6= 0 where,

@ log 

@xl
=

@

@xl

8
<

:log
rX

j=1

cA1 (xj) cA2 (yj)
1

2
log

rX

j=1

c2A1 (xj)
1

2
log

rX

j=1

c2A2 (yj)

9
=

;

=
c0A1 (xl) cA2 (yl)Pr
j=1 cA1 (xj) cA2 (yj)


cA1 (xl) c

0
A1
(xl)Pr

j=1 c
2
A1
(xj)

Denoting the optimal solution of @ log @xl
= 0 by , we obtain, for each 1  l  r, that either c0A1 (x


l ) = 0

and/or
cA2 (y


l )Pr

j=1 cA1


xj


cA2


yj

 =
cA1 (x


l )Pr

j=1 c
2
A1


xj

 (5)

Let us now assume that r = N1. Since c0A1 (x) is a polynomial in x of degree N1  1, at most N1  1
di§erent zeros of c0A1 (x), that interlace [1] with those of cA1 (x), can serve as optimal abscissa value

and at least one xk must be found by solving (5), which is a polynomial

cA1 (x

k) =

cA2 (y

k)
Pr1
j=1 c

2
A1


xj



Pr1
j=1 cA1


xj


cA2


yj



of degree r in xk, given the right-hand side, thus all x

l for 1  l < k  r and all

n
yj

o

1jr
. The

optimal yl values satisfy c
0
A2
(yl ) = 0 and/or

cA1 (x

l )Pr

j=1 cA1


xj


cA2


yj

 =
cA2 (y


l )Pr

j=1 c
2
A2


yj

 (6)

Now, at most N2  1 di§erent zeros of cA2 (yl) can be chosen as optimal abscissa and the r N1 + 1
other must be found from (6). After determining the zeros of c0A1 (x) and c

0
A2
(x), the remaining

unknowns satisfy, for each l,

cA2 (y

l )

rX

j=1;j 6=l

c2A1

xj

 cA1 (x


l )

rX

j=1;j 6=l

cA1

xj

cA2


yj

= 0

and

cA1 (x

l )

rX

j=1;j 6=l

c2A2

yj

 cA2 (y


l )

rX

j=1;j 6=l

cA1

xj

cA2


yj

= 0

Elimination of cA2 (y

l ) in the Örst and substitution in the second equation yields

cA2 (y

l ) = cA1 (x


l )

Pr
j=1;j 6=l cA1


xj


cA2


yj



Pr
j=1;j 6=l c

2
A1


xj


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and
rX

j=1;j 6=l

c2A2

yj
 rX

j=1;j 6=l

c2A1

xj

=

0

@
rX

j=1;j 6=l

cA1

xj

cA2


yj

1

A
2

By the Cauchy-Schwarz inequality [5], the last equation is only possible if cA1

xj


= cA2


yj


, for

all j 6= l, leading to a maximal . Thus, the remaining unknowns must satisfy cA2

yj


= cA1


xj


,

after veriÖcation that all yl are still di§erent.

By enlarging the dimension N2 of the eigenvalue signature  (G2) up to r, redundant information

in the resulting polynomial signature p (G2) is embedded, which by the ìoptimalî choice cA2

yj


=

cA1


xj


is somehow annihilated: the added rN2 dimensions do not lead to a di§erentiation in the

corresponding vector components of p (G1) and p (G2). The analysis demonstrates that the vectors

 (G1) and  (G2) can be used as well to compute the projection, resulting in a highest possible

value

 =

PN2
j=1 j (G1)j (G2) +

PN1
j=N2+1

2j (G1)rPN2
j=1 

2
j (G2) +

PN1
j=N2+1

2j (G1)
PN1

j=1 
2
j (G1)

=

PN2
j=1 j (G1)j (G2) +

PN1
j=N2+1

2j (G1)r
2L2 +

PN1
j=N2+1

2j (G1)

2L1

because
PN
j=1 

2
j = 2L (see [1, p. 30]). However, we can add r  N2 components to a vector in

many ways and each way may ináuence
PN2
j=1 j (G1)j (G2). Thus, there appears to be too much

arbitrariness which undermines the meaning and use of the projection . Each vector component

speciÖes one dimension in the r-dimensional space and, clearly, just as any coordinate system, the

vectors p (G1) and p (G2) must have a consistent ordering in their components.

2.2 Revisiting the e§ect of abscissa

So far, we have introduced a polynomial signature p for the eigenvector signature  because the

vector length r of p can be chosen arbitrarily long without loosing information (provided r  N +1).
The graph comparison problem was formulated based on well-established concepts of linear algebra

and geometry leading to the projection  = Tp (G1)p (G2) of two vectors in the r-dimensional space.

While the ordering of the vector components for the signature was not important, a consistent ordering

of the coordinates between the two vectors p (G1) and p (G2) ináuences the scalar product .

Within the proposed framework, a natural way to deÖne an ordering in the vector components

is by conÖning to one set of abscissa fxjg1jr for both G1 and G2. Hence, the projection  in (4)
reduces to

 = Tp (G1)p (G2) =

Pr
j=1 cA1 (xj) cA2 (xj)qPr

j=1 c
2
A1
(xj)

Pr
j=1 c

2
A2
(xj)

and the equations for the optimal abscissa set
n
xj

o

1jr
, satisfying @ log 

@xl
= 0 for 1  l  r, are

c0A1 (x

l ) cA2 (x


l ) + c

0
A2
(xl ) cA1 (x


l )

Pr
j=1 cA1


xj


cA2


xj

 
cA1 (x


l ) c

0
A1
(xl )

Pr
j=1 c

2
A1


xj

 
cA2 (x


l ) c

0
A2
(xl )

Pr
j=1 c

2
A2


xj

 = 0
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from which the optimal projection follows, for any l, as

 =


c0A1 (x


l ) cA2 (x


l ) + c

0
A2
(xl ) cA1 (x


l )
rPr

j=1 c
2
A1


xj

Pr
j=1 c

2
A2


xj



cA1

xl

c0A1


xl
Pr

j=1 c
2
A2


xj


+ cA2


xl

c0A2


xl
Pr

j=1 c
2
A1


xj



The l equations form a set of l polynomial equations,

0 =

c0A1 (x


l ) cA2 (x


l ) + c

0
A2 (x


l ) cA1 (x


l )
 rX

j=1

c2A1

xj
 rX

j=1

c2A2

xj


 cA1 (x

l ) c

0
A1 (x


l )

rX

j=1

cA1

xj

cA2


xj
 rX

j=1

c2A2

xj


 cA2 (x

l ) c

0
A2 (x


l )

rX

j=1

cA1

xj

cA2


xj
 rX

j=1

c2A1

xj


Rewritten explicitly for y = xl after some tedious manipulations,

0 = c0A1 (y)

0

@cA2 (y)
rX

j=1;j 6=l

c2A1

xj

 cA1 (y)

rX

j=1;j 6=l

cA1

xj

cA2


xj

1

A

0

@c2A2 (y) +
rX

j=1;j 6=l

c2A2

xj

1

A

+ c0A2 (y)

0

@cA1 (y)
rX

j=1;j 6=l

c2A2

xj

 cA2 (y)

rX

j=1;j 6=l

cA1

xj

cA2


xj

1

A

0

@c2A1 (y) +
rX

j=1;j 6=l

c2A1

xj

1

A

(7)

illustrates that y is a real zero of a polynomial of degree 4r  1 in y (since all summations are
independent of y = xl ). Each l of the r equations is similar, except that the summations are di§erent

per equation, which constitute the coupling between the r polynomial equations. The common zeros

of both c0A1 (y) and c
0
A2
(y) satisfy the above polynomial equation. In general, solving the polynomial

set of equations is involved. Moreover, it is di¢cult to demonstrate that there is an optimal solution

fxl g1lr for each pair (cA1 (x) ; cA2 (x)) of characteristic polynomials. However, when a solution
fxl g1lr is found, we may consider the resulting ìbestî projection 

 as a representative measure to

compare the two graphs by one number.

In summary, observe again that we Önd a solution, leading to  = 1 and cA1 (x

l ) = cA2 (x


l ) for

all l, when we require that the brackets with di§erences in (7) are both set to zero. In that case, all

xl are the zeros of the di§erence polynomial cA1 (x)  cA2 (x) that has degree r (unless N1 = N2),

provided those zeros are distinct and real. The analysis here and the earlier conclusions indicate that

this solution is not a desired one. On the other hand, the fact that we can Önd an optimal solution

fxl g1lr for each pair of graphs (G1; G2) with  = 1 (or at least very close to  ! 1) questions the

possibility to Önd a meaningful number for graph comparison.
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A Computation of cA (x) in (2) and entire functions

The computation of the polynomial signature p may pose numerical problems3. When N is large, the

product in (2) may not converge resulting in large overáows or underáows. Even some simple scaling

is inadequate such as

cA (x) =
cA (x)
NQ
j=1

j

=
NY

j=1


1

x

j



where4
NQ
j=1

j = detA = cA (0).

For large N , the product (2) does not necessary converge. This convergence problem is rather

fundamental and related to the factorization of entire or integral functions. While a polynomial like

cA (x) can be factored into the simple factors (x i), less simple factors need to be considered in the
factorization of entire functions.

This classical problem in analysis has been solved elegantly, mainly by Weierstrass and Hadamard,

whose theory has given birth to the product form for the entire functions [6]. Entire functions f (z)

are analytic complex functions without singularities in the (Önite) complex plane (z 2 C), but with
an essential singularity at z ! 1. Liouville has shown that an entire function without essential
singularity at inÖnity is a constant. Entire functions can possess zeros in the Önite plane. Examples of

entire functions are ez; sin z; cos z and 1
(z) . Weierstrass has made a number of intriguing observations.

First, the exponential function does not have zeros nor poles and consequently, when multiplying a

function by an exponential function, the zeros are not altered. This means that the entire function

f (z) =

NY

k=1


1

z

k


e

Pm
j=1

zj

j
j
k

possesses precisely the same zeros as cA(z) for a Önite integer m. The expressions

E (u; 0) = 1 u

E (u;m) = (1 u) e
Pm
j=1

uj

j

are called primary factors. Each primary factor vanishes when u = 1, but the behavior of E (u;m) as

u! 0 depends on m. Indeed, for juj < 1,

logE (u;m) = log (1 u) +
mX

j=1

uj

j

Using the Taylor series log (1 u) = 
P1
j=1

uj

j , we obtain

logE (u;m) = 
1X

j=1+m

uj

j

3Wynand Winterbach has conveyed this problem to me.
4We assume that the adjacency eigenvalues are di§erent from zero, because we can always write cA (x) =

xm

NmQ

j=1
j

NmQ
j=1


1 x

j


, where the eigenvalue at zero has multiplicity m.
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and

jlogE (u;m)j 
1X

j=0

jujj+m+1

j +m+ 1
 jujm+1

1X

j=0

jujj =
jujm+1

1 juj

This inequality determines the convergence of a product of primary factors (see [6, p. 246-248]). For

entire functions of Önite order, we can determine the value of m precisely to assure convergence. An

entire function f (z) is of order  if f (z) = O

er

+"

for everywhere " > 0 when jzj = r ! 1. For

example, ez
k
is of order k, while ee

z
is of inÖnite order. In what follows, we shall suppose that f (0)

is not zero to simplify the analysis somewhat and a division of f (z) by zk does not a§ect the order.

Titchmarsh [6, p. 249-250] proves that, if rj is the modulus of the j-th zero of f (z), then
P1
j=1

1
rj
is

convergent if  > . The lower bound min of positive numbers  for which
P1
j=1

1
rj
convergence is

called the exponent of convergence of the zeros. Moreover, if f (z) is of order , then

f (z) =

1Y

j=1

E


z

j
;m



and
P1
j=1

1
rm+1j

is convergent, where the integer m, called the genus of the above canonical product,

obeys  1  m  min  . A necessary and su¢cient condition that f (z) =
P1
k=0 fkz

k should be

an entire function of Önite order  is that

lim
k!1

log (1= jfkj)
k log k

=
1


(8)

The application of the theory of entire functions to the characteristic function f (z) = det (A zI)
of a graph when N !1 still needs to be developed in graph theory. The lack of convergence of the

product in (2) may limit the size N of the graphs. Because the entire functions are very likely not

polynomials anymore, the ìreconstructabilityî property of the Lagrange interpolation of polynomials

disappears.
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