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Abstract

Any symmetric real matrix exhibits double orthogonality in its eigenstructure. While the math-

ematical foundations are crystal clear, the physical meaning of its application to graphs, the un-

derlying topological structure of a network, is surprisingly opaque. This short letter is meant to

provoke and inspire in order to understand; in the spirit of Hilbert, �wir müssen wissen�.

1 Eigenstructure of a symmetric matrix

1.1 Double orthogonality

Following the notation of [1], we denote by xk the eigenvector of the symmetric matrix A belonging

to the eigenvalue �k, normalized so that xTk xk = 1. The eigenvalues of an N �N symmetric matrix

A = AT are real and can be ordered as �1 � �2 � : : : � �N . Let X be the orthogonal matrix with

eigenvectors of A in the columns,

X =
h
x1 x2 x3 � � � xN

i
or explicitly in terms of the m-th component (xj)m of eigenvector xj ,

X =

266666664

(x1)1 (x2)1 (x3)1 � � � (xN )1
(x1)2 (x2)2 (x3)2 � � � (xN )2
(x1)3 (x2)3 (x3)3 � � � (xN )3
...

...
...

. . .
...

(x1)N (x2)N (x3)N � � � (xN )N

377777775
The eigenvalue equation Axk = �kxk translates to the matrix equation A = X�XT , where � =

diag(�k).
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The relation XTX = I = XXT (see e.g. [1, p. 223]) expresses, in fact, double orthogonality. The

�rst equality XTX = I translates to the well-known orthogonality relation

xTk xm =

NX
j=1

(xk)j (xm)j = �km (1)

stating that the eigenvector xk belonging to eigenvalue �k is orthogonal to any other eigenvector be-

longing to a di¤erent eigenvalue. The second equality XXT = I, which arises from the commutativity

of the inverse matrix X�1 = XT with the matrix X itself, can be written as
PN
j=1 (xj)m (xj)k = �mk

and suggests us to de�ne the row vector in X as

ym = ((x1)m ; (x2)m ; : : : ; (xN )m) (2)

Then, the second orthogonality condition XXT = I implies orthogonality of the vectors

yTk ym =
NX
j=1

(xj)k (xj)m = �km (3)

The third combination, namely yTk xm =
PN
j=1 (xj)k (xm)j , does not seem to possess special properties

(see Appendix B).

The sum over j in (3) can be interpreted as the sum over all eigenvalues. Indeed, the eigenvalue

equation is

Ax (�) = � x (�)

where a non-zero vector x (�) only satis�es this linear equation1 if � is an eigenvalue of A such that

xj = x (�j). We have made the dependence on the parameter � explicit and can interpret � as a

frequency that ranges continuously over all real numbers. Invoking the Dirac delta-function � (t), we

can write

NX
j=1

(xj)m (xj)k =
NX

�2f�1;�2;:::;�Ng
(x (�))m (x (�))k

=

NX
j=1

Z 1

�1
� (�� �j) (x (�))m (x (�))k d�

Using the non-negative weight function

w (�) =
NX
j=1

� (�� �j) = � (det (A� �I))
���� d det (A� xI)dx

����
x=�

����
shows that

NX
j=1

(xj)m (xj)k =

Z 1

�1
w (�) (x (�))m (x (�))k d� = �mk (4)

1Di¤erentiation with respect to � yields

Ax0 (�) = � x0 (�) + x (�)

illustrating that no derivative (of any order) of x (�) can satisfy Ax (�) = � x (�) for � 6= 0.
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The right-hand side in (4) is the continuous variant of (3) that expresses orthogonality between func-

tions with respect to the weight function w (see e.g. [1, p. 313]). Speci�cally2, the orthogonality

property (4) shows that the set f(x (�))mg1�m�N is a set of N orthogonal polynomials in �.

1.2 Interpretations of the eigenstructure of a graph

The topology of a network can be represented by a graph G, consisting of a set of nodes connected by

a set of links. Many matrices can be associated to a graph, such as the adjacency, Laplacian, signless

and normalized Laplacian, modularity, incidence and distance matrix, etc.. We con�ne ourselves here

to a simple, undirected graph G and to its corresponding symmetric adjacency matrix A.

Surprisingly little is known [1, Chapter 1] about the �physical� meaning of the eigenvalue �k
and its corresponding eigenvector xk (for each 1 � k � N) of the adjacency matrix A. One of the

best interpretations follows from the probabilistic matrix, P = ��1A, where � = diag(dj) and the

degree of node j is dj =
PN
k=1 akj . The largest eigenvector component (x1 (P ))j of P , normalized as

uTx1 (P ) = 1, where u is the all one vector, re�ects the probability that a random walk on the graph

G visits node j in the long run. Theorem 2.2.4 in Cvetkovíc et al. [3] provides the explicit relation

between the number Nk (j) of walks of length k starting at node j in a non-bipartite graph and the

eigenvector component (x1)j of A as

lim
k!1

Nk (j)PN
l=1Nk (l)

= (x1)j

The case of k = 1 is studied most and the principal eigenvector x1 corresponding to the spectral

radius �1 can be regarded as a �dynamic� degree vector (see Appendix A), where each component

(x1)j re�ects all possible walks passing through node j. Most insight and most relations in graph theory

(see e.g. [1]) are based on the set fxkg1�k�N of eigenvectors. When studying spectral clustering, Von
Luxburg et al. [4] show �gures of several eigenvectors of the Laplacian as a function of the nodal

components.

The vector ym, de�ned in (2), re�ects the role of the nodem over all eigenfrequencies or eigenvalues

of A. From a graph metrics point of view, we may argue that ym speci�es how important or �central�

node m is with respect to the important or characteristic frequencies (i.e. the eigenfrequencies) of the

graph matrix A, that speci�es links in G. Perhaps, the following geometric interpretation is daring.

Imagine that the graph G is embedded in some geometric structure with negligible mass compared to

those of the nodes and links. For example, a planar graph on a large �exible sheet that can be brought

into vibration by an external force. Thus, the force bends the sheet up and down so that waves travel

over the sheet at certain frequency. The vector ym may be interpreted as the displacements of node

m on the sheet at the eigenfrequencies of the adjacency matrix of the graph G. Another view on the

vector ym = (x (�1)m ; x (�2)m ; : : : ; x (�N )m) or, more generally, on the set f(x (�))mg1�m�N versus

frequency �, is inspired by our human vision: we perceive the real-world only via the frequency range

of visible light, while we know (for example from Röntgen photographs) that additional information

is revealed in other frequency bands of the spectrum.

2The eigendecomposition of a general tri-diagonal stochastic matrix in [2, Appendix] exempli�es how orthogonal

polynomials as a function of � enter.
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Another thought is that, if the frequency interpretation of � is correct, then we may use Fourier

analysis to rigorously de�ne localization in space or in frequency. For example, if all components of

ym are constant (or more or less of the same magnitude), then the Fourier (or Laplace) transform

indicates that node m is very localized in space3. The opposite is also true, if only a few components

of ym in successive order are signi�cant, hence localized in the frequency domain, then node m is

globally connected in the spacial domain.

The case yTmym =
PN
j=1 (xj)

2
m = 1 in second orthogonality relation (3) means that, considered over

all eigenvalues (eigenfrequencies or eigenmodes) of a graph, each node in G is equally important. In

other words, the often associated importance to high-degree nodes seems only partially true, i.e. only

for certain eigenfrequencies and certain types of graphs (the largest eigenvalue and graphs with large

spectral gap; see Section A below).

The equations (1) and (3) constitute in total N2 orthogonality conditions associated to the matrix

X, whose rank is N (since jdetXj = 1). Although the N2 elements of X represent a set of inde-

pendent row and/or column vectors, curiously, an equal number of additional conditions is embedded

in them. The latter seems to indicate that considerable information condensation can be attained,

raising the question how many bits are minimally needed to reconstruct X exactly. Any orthogonal

matrix describes a rotation of an orthogonal set of basis vectors in the N -dimensional space, which

suggests that, beside N bits (corresponding to the basis vectors ej), N rotation angles (N real num-

bers) are needed. Similar considerations have likely led Cvetkovíc et al. [3] to de�ne graph angles.

The fundamental weight wk = uTxk =
PN
j=1 (xk)j provides additional information to determine the

eigenvector components, illustrating its important role4. The graph angle 
k is related to fundamental

weight by cos 
k =
wkp
N
. These considerations may hint that only 2N real numbers (eigenvalues and

fundamental weights or graph angles) are needed to construct the graph G exactly. A rigorous proof

of the minimum number of bits needed to construct a graph is currently an open problem.

2 Summary

The key relation A = X�XT shows that all �topological�information about the graph (left-hand side)

is contained in the �spectral space�(right-hand side). While linear algebra, in particular eigenvalue

decomposition, is a mature branch of mathematics, the physical meaning of its application to networks

and graphs remains puzzling. Many articles have been written on graph metrics and many will still

appear. Nearly all metrics are correlated and so far there is no generally accepted set that characterizes

a graph without loosing too much information. The set of orthogonal �thus uncorrelated �vectors

y1; y2; : : : ; yN mathematically re�ects the complete information about the importance of each node in

G over all eigenfrequencies �1; �2; : : : ; �N and can thus be considered as an �ideal�nodal centrality

set of metrics.

3Recall that sin(ar) = eiar�e�iar
2i

(broad in space) has a Fourier transform proportional to �(f �a)��(f +a) (peaked
in frequency domain).

4We mention [1, p. 41] that the vector w =
�
w21; w

2
2; : : : ; w

2
N

�
satis�es VN (�)w = N, where VN (�) is the Vandermonde

matrix of the vector with eigenvalues � = (�1; �2; : : : ; �N ) and where the vectorN = (N1; N2; : : : ; NN ) has as components

the total number of walks with k hops, Nk = uTAku. Since VN (�) can be inverted when all eigenvalues are di¤erent,

the fundamental weights w can be expressed in terms of the eigenvalues and the number of walks in the graph G:
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Let A and AGnfjg denote the adjacency matrix of the graph G and of the graph Gnfjg in which

node j is removed from G, respectively. The square of the j-th component of eigenvector xk of A

belonging to eigenvalue �k with multiplicity 1 equals [5]

(xk)
2
j = �

1

c0A (�k)
det
�
AGnfjg � �kI

�
(5)

where cA (�) = det (A� �I) is the characteristic polynomial of A and c0A (�) =
dcA(�)
d� . Akin to

sensitivity or robustness analyses on graphs [6], the elegant expression (5) associates (xk)
2
j to the

impact of the removal of node j in the graph G at the characteristic frequency �k corresponding to

eigenvector xk of a graph matrix.

Unfortunately, this positive view also has darker sides. First, each graph matrix (such as e.g. the

Laplacian, adjacency and modularity matrix) possesses such doubly orthogonal eigenvectors. Thus,

the N nodal frequency centrality metrics for node m, i.e. the components or squared components of

ym, are also dependent on the speci�c graph matrix. Hence, there does not seem be a single ideal set of

centrality metrics per graph. Still, we are confronted with the choice of the �ideal�centrality metrics

over the space of all possible (symmetric) graph matrices. Second and as mentioned several times, the

meaning of both the impact (or amplitude) and characteristic frequency are waiting for an explanation

useful to networks. Third, from a practical point of view, the vectors y1; y2; : : : ; yN , though complete

and uncorrelated, require global information, i.e. the full knowledge of the adjacency matrix of G.

Even if we would understand the meaning of each vector ym or of its squared components (xk)
2
m, their

complete use (i.e. all components over all frequencies �k) as a centrality metrics set is hardly feasible

for large networks. Fourth, besides this computationally infeasibility objection, we can question the

normalizations xTk xk = 1 for each 1 � k � N that consider each eigenvalue as equally important.

Indeed, for a positive semi-de�nite symmetric matrix A (whose eigenvalues are non-negative), we can

write the spectral decomposition

A =

NX
k=1

�kxkx
T
k =

NX
k=1

�p
�kxk

��p
�kxk

�T
which suggests to scale the importance of an eigenvector as vk =

p
j�kjxk. Clearly, the eigenvectors

corresponding to the larger (in absolute value) eigenvalues deserve more weight, as earlier was exploited

in graph reconstructability [7] and only a few of the larger ones may be su¢ cient as centrality metrics.
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A The degree vector d

Any vector in the N -dimensional space can be written as a linear combination of orthogonal vectors

x1; x2; : : : ; xN that span that space. Hence, the degree vector d = (d1; d2; : : : ; dN ) of a graph G, where

dj denotes the degree of node j, can be written as

d =
NX
j=1

rjxj

where the scalars rj are computed using orthogonality of the vectors x1; x2; : : : ; xN . Multiplying both

sides by xTm and using the orthogonality x
T
mxj = �mj yields

xTmd = rm

Further, d = Au (see e.g. [1, p. 15]), where the vector u = (1; 1; : : : ; 1) is the all-one vector so that

xTmd = x
T
mAu = (Axm)

T u = �mx
T
mu = �mu

Txm

Hence, we �nd that5 the spectral decomposition of the degree vector,

d =
NX
j=1

�j
�
uTxj

�
xj (6)

where we call the real numbers

wj = u
Txj =

NX
k=1

(xj)k

fundamental weights, that turn out to be equally important as the eigenvalues. Further (see e.g. [1,

p. 33]), we have that

N =
NX
j=1

�
uTxj

�2
and 2L =

NX
j=1

�j
�
uTxj

�2
5When we write the spectral decomposition (6) of the k-th component of the degree vector as

dk =

NX
j=1

�
dTxj

�
(xj)k =

NX
j=1

NX
m=1

dm (xj)m (xj)k =

NX
m=1

dm

(
NX
j=1

(xj)m (xj)k

)

Since such a spectral decomposition holds for any N -dimensional vector, we naturally �nd the second type (3) of

orthogonality.
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and, in general, the total number of walks with k hops in the graph G equals

Nk =

NX
j=1

�kj
�
uTxj

�2
The general relation for diagonizable matrices, f (A) =

PN
k=1 f (�k)xkx

T
k , valid for a function f

de�ned on the eigenvalues f�kg1�k�N (see e.g. [8, p. 526]), reduces for the element for node j to

(f (A))jj =

NX
k=1

f (�k) (xk)
2
j

illustrating that the squares of the eigenvector component arise as weights for f (�k) to specify a

function of the adjacency matrix A at node j. In particular, for powers f (z) = zn, nice formulae

appear: for n = 0, we �nd the second orthogonality relation (3) and for n = 1 (since Ajj = 0, from

which trace(A) =
PN
k=1 �k = 0)

0 =
NX
k=1

�k (xk)
2
j

while for n = 2 (since
�
A2
�
jj
= dj)

dj =
NX
k=1

�2k (xk)
2
j (7)

From (6) and (7), we �nd that the degree dj of node j can be expressed as

dj =
NX
k=1

�kwk (xk)j =
NX
k=1

�2k (xk)
2
j

Now, we rewrite (6) as

d = �1
�
uTx1

�
x1 + c

where the correction vector c equals

c =
NX
j=2

�j
�
uTxj

�
xj

The correction vector is c = 0 only for regular graphs, where the principal eigenvalue is x1 = 1p
N
u

and uTxk = 0 for each 2 � k � N because eigenvectors are orthogonal. If the correction vector c is

negligibly small (e.g. when the spectral gap is large (�1 >> �2) or for almost regular graphs or in

other cases that we still need to investigate), then

d � �1
�
uTx1

�
x1 (8)

In simple dynamic processes on a network, such as SIS epidemics6, the vector v with the nodal

infection probabilities is proportional to x1 close to the epidemic phase transition. Only in those graphs

obeying (8) where the degree vector d is (approximately) proportional to the principal eigenvector x1,

the dynamics (e.g. v) is directly proportional to the graph�s topological structure.

6Also Kuramoto synchronization, see e.g. [9].
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B The set of orthogonal vectors y1; y2; : : : ; yN and the network�s topol-
ogy

We now proceed by writing the �classical�eigenvector xj as a linear combination of the set of orthog-

onal vectors y1; y2; : : : ; yN that span the N -dimensional space,

xk =
NX
j=1

bkjyj

where the real number

bkm = x
T
k ym =

NX
l=1

(xk)l (xl)m

Written in matrix form

X = BY (9)

where the matrix Y is

Y =

266666664

(y1)1 (y2)1 (y3)1 � � � (yN )1
(y1)2 (y2)2 (y3)2 � � � (yN )2
(y1)3 (y2)3 (y3)3 � � � (yN )3
...

...
...

. . .
...

(y1)N (y2)N (y3)N � � � (yN )N

377777775
=

266666664

(x1)1 (x1)2 (x1)3 � � � (x1)N
(x2)1 (x2)2 (x2)3 � � � (x2)N
(x3)1 (x3)2 (x3)3 � � � (x3)N
...

...
...

. . .
...

(xN )1 (xN )2 (xN )3 � � � (xN )N

377777775
= XT

Hence, we have that

X = BXT

and, after right-multiplying by X and using XTX = I, we �nd that

B = X2

Since the inverse X�1 = XT , consistency is found by inverting (9),

Y = B�1X =
�
XT
�2
X = XT

We are now prepared to write the adjacency matrix A in terms of the orthogonal vectors y1; y2; : : : ; yN .

Starting from (see e.g. [1, p. 2])

A = X�XT = BY � (BY )T = BY �Y TBT

or from (see e.g. [1, p. 226])

A =
NX
k=1

�kxkx
T
k =

NX
k=1

�k

0@ NX
j=1

bkjyj

1A NX
l=1

bklyl

!T

=

NX
j=1

NX
l=1

 
NX
k=1

�kbkjbkl

!
yjy

T
l

shows that the orthogonal vectors y1; y2; : : : ; yN are, by no means, naturally related to the topology of

the graphG, because the expressions in terms of orthogonal vectors y1; y2; : : : ; yN are more complicated

and less transparent than expressing A in terms of its eigenvectors.
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