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Abstract

The decay rate of SIS epidemics on the complete graph KN is computed analytically, based on

a new, algebraic method to compute the second largest eigenvalue of a stochastic three-diagonal

matrix up to arbitrary precision. The latter problem has been addressed around 1950, mainly

via the theory of orthogonal polynomials and probability theory. The accurate determination of

the second largest eigenvalue, also called the decay parameter, has been an outstanding problem

appearing in general birth-death processes and random walks. Application of our general framework

to SIS epidemics shows that the maximum average lifetime of an SIS epidemics in any network with

N nodes is not larger (but tight for KN ) than

E [T ] � 1

�
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p
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�2 exp
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n
log �

�c
+ �c
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= O
�
eN ln �
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�

for large N and for an e¤ective infection rate � = �
� above the epidemic threshold �c. Our order

estimate of E [T ] sharpens the order estimate E [T ] = O
�
ebN

a�
of Draief and Massoulié [6]. Com-

bining the lower bound results of Mountford et al. [14] and our upper bound, we conclude that for

almost all graphs, the average time to absorption for � > �c is E [T ] = O
�
ecGN

�
, where cG > 0

depends on the topological structure of the graph G and � .

1 Introduction

We consider a simple dynamic process, a Susceptible-Infected-Susceptible (SIS) epidemic, on an undi-

rected and unweighted graph G with N nodes and L links, that can be represented by a N � N

symmetric adjacency matrix A. In a SIS epidemic process, the viral state of a node i at time t is

speci�ed by a Bernoulli random variable Xi (t) 2 f0; 1g: Xi (t) = 0 for a healthy, but susceptible node
and Xi (t) = 1 for an infected node. A node i at time t can be in one of the two states: infected,

with probability vi(t) = Pr[Xi(t) = 1] or healthy, with probability 1 � vi(t), but susceptible to the

infection. We assume that the curing process per node i is a Poisson process with rate � and that the
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infection rate per link is a Poisson process with rate �. Obviously, only when a node is infected, it

can infect its direct neighbors, that are still healthy. Both the curing and infection Poisson process

are independent. The e¤ective infection rate is de�ned by � = �
� . This is the general continuous-time

description of the simplest type of a SIS epidemic process on a network. This SIS process with curing

rate � = 1 is sometimes also called the contact process.

Kermack and McKendrick [11], whose work is nicely reviewed in [4], have already demonstrated in

1927 that epidemics generally, thus also the SIS process in particular, possess �threshold behavior�.

For e¤ective infection rates below the epidemic threshold, � < �c, the SIS-infection on networks dies

out exponentially fast [23], while for � > �c, the infection becomes endemic, which means that a

non-zero fraction of the nodes remains infected for a very long time. The precise de�nition (for �nite

N) and the computation of the SIS epidemic threshold is still an active �eld of research [15], though

a sharp lower bound exists for any graph, �c � 1
�1
, where �1 is the largest eigenvalue of the adjacency

matrix of the network [23].

Besides the epidemic threshold, the Markovian SIS process also possesses an important second

property: an absorbing state equal to the overall-healthy state in which the virus has been eradicated

from the network. Draief and Massoullié [6] prove that the time T for the SIS Markov process to hit the

absorbing state when the e¤ective infection rate � < �c is, on average, not larger than E [T ] � logN+1
����1 .

On the other hand, when � > �c, they show that the average time to absorption grows for large N as

E [T ] = O
�
ebN

a
�

(1)

for some constants a; b > 0. Hence, the average �lifetime� of the epidemic below and above the

epidemic phase transition are hugely di¤erent, which is a general characteristic of a phase transition.

Mountford et al. [14] proved that, above the epidemic threshold in trees with bounded degree, i.e.

the maximum degree dmax < a, where a is �nite, but dmax � 2 (thus excluding e.g. the star),

E [T ] = O(ecN ) for large N and a real number c > 0. Moreover, improving a result of Chatterjee and

Durrett [5], they show that for any � > 0 and large N , the time to absorption or extinction on a power

law graph grows exponentially in N .

Fill [8] gave a nice stochastic interpretation of the time T to absorption in a continuous-time birth

and death process with an absorbing state zero and N other states, described by the in�nitestimal

generator Q. Given that the process starts in state N , then the absorption time T is equal to a sum

of independent exponential random variables, whose rates are the nonzero eigenvalues of �Q. Miclo
[13] has extended Fill�s result to a �nite Markov chain, which is irreducible and reversible outside the

absorbing point. Very recently, Economou et al. [7] have analysed the SIS model with heterogeneous

infection rates via a block matrix formalism. In their analysis, they gave the general expression for

distribution of the absorption time T as Pr [T � t] = 1�
�
xT0 e

Q�t
�
2N�1, where x0 is the column vector

with the initial states and Q� is the in�nitesimal generator (see [7] for the labelling of states) in which

the row and column corresponding to the absorbing state are removed. Artalejo [3] has shown that

the time Tq to extinction from the quasi-stationary (or metastable) state obeys Pr [Tq � t] = 1� e�t,

where � � 0 is the second largest eigenvalue1 of the in�nitesimal generator Q.
1More precisely, the largest eigenvalue of the submatrix QS of Q associated to the transient and �nte set S of states,

that is assumed to be irreducible. When the latter condition of irreducibility is omitted, Pr [Tq � t] is still exponentially
distributed [3, Theorem 1], but with a more complicated mean E [Tq] than 1

�
.
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Here, we derive a sharper estimate than E [T ] = O
�
ebN

a�
for the longest possible mean absorption

time in any graph, by computing the spectral decomposition of a tri-diagonal, stochastic matrix P in

(9), which is presented in Appendix A. Invoking the Lagrange series on the characteristic polynomial

of P , the second largest eigenvalue 1 + � (with � � 0) of P is deduced in Appendix B. Generally,

for the state vector x [k] of a discrete-time Markov process at discrete-time k with a real second

largest eigenvalue, it holds that any vector norm jjx [k]� �jj � (1 + �)k+O
�
j1 + z3jk

�
, where � is the

corresponding steady-state vector and z3 is the third largest (in absolute value) eigenvalue of P . The

number of infected nodes in a SIS epidemic process on the complete graph can be determined [21] via

a birth and death process, the continuous-time variant of a general random walk, whose in�nitesimal

generator Q is a tri-diagonal matrix. As shown in Section 2, the second largest eigenvalue � of the

in�nitesimal generator Q can thus be interpreted as the decay rate of the SIS epidemics on the complete

graph towards the overall-healthy state and, approximately, the average lifetime of an SIS epidemics

is about E [T ] ' 1
j�j . Now, given a �xed infection rate � and curing rate �, among all networks with N

nodes, the SIS infection spreads fastest in the complete graph KN with N nodes, because each node

can be infected by a maximum possible number of neighbors. Hence, the longest time T to hit the

overall-healthy state and, equivalently, the minimum decay rate � among all graphs are attained in

the complete graph KN .

Our main result for SIS epidemics is the accurate expression of the decay rate � in KN for e¤ective

infection rates � > �c and large N

�� = 1

F (�)
+O

�
N2 logN

x2N�1

�
(2)

where x = �N ' �
�c
> 1 and where

F (�) =
1

�

NX
j=1

j�1X
r=0

(N � j + r)!
j (N � j)! �

r (3)

The double sum in (3) is hard to compute for large N and, after surprisingly much e¤ort as illustrated

in Appendix C, we established in Theorem 6 the correct behavior2 of

F
� x
N

�
� 1

�

x
p
2�

(x� 1)2
exp

�
N
�
log x+ 1

x � 1
	�

p
N

(4)

for large N and �xed x = �N > 1. Roughly, for x slightly above than 1, we deduce from the asymptotic

expression (4) of F (�) that E [T ] = O
�
eN ln �

�c

�
. The exponentially accurate order estimate (2) thus

speci�es the parameters a = 1 and b = ln �
�c
(or more correctly b = ln �

�c
+ �c

� � 1) in the general
estimate (1). Earlier in [22], we have derived the exact 2N � 2N in�nitesimal generator Q for an SIS

process on any graph and have numerically computed the second smallest eigenvalue of Q for the

complete graph. For small networks up to N = 13, �tting results suggested that E [T ] = O
�
eb(�)N

2
�
.

Hence, the current analytic result E [T ] = O
�
eN ln �

�c

�
shows that a � 1, in contrast to our earlier

extrapolated order estimates that hinted at a � 2.
2 In October 2017, we discovered accidently that the asymptotic expression (4) was established before by Andersson

and Djehiche [2] in 1998. In particular, their Theorem 1A states that, for large N , the scaled random variable T
E[T ]

tends

to an exponential random variable with mean 1 and E [T ] is given by the right-hand side of (4). The exact form (3) of

E [T ] = F (�) was not derived in [2].
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The probabilistic interpretation of the absorption time T by Fill [8] leads us to conclude that

E [T ] = F (�), for any value of the e¤ective infection rate � (and not, as above in (2), only for � > �c).

Thus, starting from the all-infected state, the exact3 average absorption time T in the SIS process on

the complete graph is given by F (�) in (3). Moreover, as shown in Appendix B, the �rst term in the

Lagrange series for the second largest eigenvalue � of an in�nitesimal generator Q equals the inverse of

the sum of the inverse (non-zero) eigenvalues of Q, which may suggest that, in general Markov chains

with an absorbing state, �� = 1
E[T ] + r, where r are higher order terms in the Lagrange series.

Finally, combining the lower bound results in [14] and the upper bound in (2), we conclude that

for almost all graphs, the average time to absorption for � > �c is E [T ] = O
�
ecGN

�
, where cG > 0

depends on the topological structure of the graph G. The interesting open next question lies in the

accurate determination of cG for a given graph G, di¤erent from KN .

2 Markovian "�SIS epidemics

We �rst de�ne the Markovian "�SIS epidemics on networks. Besides an infection process with rate
� per infected neighbor and a nodal curing process with rate � as in the SIS model, each node

contains a Poissonean self-infection process with rate ". All three Poisson processes are independent.

This "-SIS epidemic process on the complete graph KN is a birth and death process with birth rate

�j = (�j + ") (N � j) and death rate �j = j�, as shown in [21]. When the process X (t) at time t is

at state j, precisely j nodes in KN are infected. For " > 0, all rates are positive and the birth and

death process is irreducible, i.e. without absorbing state. Thus, the theory developed in Appendix A

is applicable when we substitute

pj ! (�j + ") (N � j)
qj ! j�

In an irreducible, n states, continuous-time Markov process, the 1�n state vector s (t), with component
i equal to si (t) = Pr [X (t) = i], satis�es

s (t) = s (0) eQt

where the spectral decomposition of the n� n matrix (see e.g. [19]) is

eQt = u� +
nX
j=2

e�jtxjy
T
j

and xj and yj are the n � 1 right- and left-eigenvector belonging to the i-th largest eigenvalue �j of
Q. The right-eigenvector belonging to the largest eigenvalue �1 = 0 of Q is x0 = u, the all-one vector.

We denote �2 = �. For large t, the tendency of s (t) towards the steady-state vector � equals

s (t)� � � we�t

where s (0)u = 1 and w = s (0)x2y
T
2 is not a function of the time t.

3The exact relation E [T ] = F (�) has been veri�ed by using a hitting time analysis in [16].
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In Appendix B, we demonstrate the general bound � < �f0
f1
, where fk are the coe¢ cients (24)

of the characteristic polynomial of a tri-band matrix. Hence, the continuous-time Markov process

speci�ed by a tri-diagonal in�nitesimal generator Q converges always faster to the steady-state than

O
�
exp

�
�f0
f1
t
��
. This means [21] for an "�SIS-epidemic process on the complete graph that the

epidemics tends to the SIS metastable state with a time constant faster than T (") = f1
f0
time units.

In the limit "! 0, where the "�SIS-epidemic process behaves as the classical SIS epidemics in which
the steady-state is the overall healthy state (which is the absorbing state for the SIS Markov process),

the decay rate of the epidemics towards this absorbing state is never slower than 1
T (0) .

The remainder of this section consists of (a) the determination of the coe¢ cients fk for the "-SIS

epidemic process on the complete graph KN (Section 2.1), (b) the limit form of the these coe¢ cients

for large N and (c) the three regimes, depending on whether � � �c,� ' �c and � < �c, of the resulting

decay rate � in SIS epidemics ( "! 0) for large N , in which our main result (2) is derived.

2.1 Coe¢ cients f0, f1 and f2 in "�SIS epidemics

The inverse of the probability that no node in KN is infected is [21]

f0 =
1

�0
=

NX
k=0

�
N

k

�
�k
�
�
"�

� + k
�

�
�
"�
�

� = 1 +
NX
k=1

�
N

k

�
�k
�
�
"�

� + k
�

�
�
"�
�

�
where "� = "

� and � =
�
� . Since lim"!0

1

�( "
�
� )
= 0,

lim
"!0

f0 = 1

agreeing with the fact that the steady-state in Markovian SIS epidemics is equal to the overall-healthy

state, which is the absorbing state zero. Using

j�1Y
m=0

qm+1 =

j�1Y
m=0

(m+ 1) � = j!�j

and
j�1Y
m=0

pm =

j�1Y
m=0

(�m+ ") (N �m) = N !�j

(N � j)!

j�1Y
m=0

�
m+

"

�

�
=
N !�j�

�
"
� + j

�
(N � j)!�

�
"
�

�
into the general expression (37) for f1 yields

f1 =
1

�

NX
j=1

� j�1

j

j�1X
r=0

j�1�rX
k=0

�
N�j+r

r

��
N

j�1�r�k
��

j�1
r

� �
�
"�

� + j
�
�
�
"�

� + j � 1� r � k
�

�
�
"�
� + j � r

�
�
�
"�
�

� 1

�k

and lim"!0 f1 = F (�), speci�ed in (3).

From the de�nition (24),

f2 =
1

q1q2
+

NX
j=3

c2(j)Qj�1
m=0 qm+1
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where c2 (j) follows from (33), we arrive at

f2 =
1

2�2
+
1

�2

NX
j=3

(N � 2)!� j�2�
�
"�

� + j
�

j! (N � j)!�
�
"�
� + 2

�
+

�
� (N � 1) + "� (2N � 1) + 3

2�2

� NX
j=3

jX
k=3

(k � 1)! (N � k)!� j�k�
�
"�

� + j
�

j! (N � j)!�
�
"�
� + k

�
+
1

�2

NX
j=3

jX
k=3

k�3X
s=1

k�s�1X
l1=0

k�s�l1�1X
l2=0

�
�
"�

� + k � s� 1� l1 � l2
�
�
�
"�

� + k � s
�
�
�
"�

� + j
�

�
�
"�
� + k � s� l1

�
�
�
"�
�

�
�
�
"�
� + k

�
� N ! (N � (k � s� l1))! (N � k)! (k � s� 1� l1)! (k � 1)!� j�1�s�l2
j! (N � (k � s� 1� l1 � l2))! (N � (k � s))! (N � j)! (k � s� l1 � l2 � 1)! (k � s)!

After some tedious calculations, we �nd that

lim
"!0

f2 =
1

2�2
+
1

�2

NX
j=3

(N � 2)!� j�2
j (N � j)! +

�
� (N � 1) + 3

2�2

� NX
j=3

jX
k=3

(N � k)!� j�k
j (N � j)!

+
1

�2

NX
j=3

jX
k=3

k�3X
s=1

k�s�1X
m=0

(N � (k � s�m))! (N � k)!� j�k+m
j (N � j)! (k � s) (N � (k � s))! (5)

2.2 Asymptotics of f0, f1 and f2 in "�SIS epidemics for large N

For large N , lim"!0 f1 in (3) behaves as

lim
"!0

f1 = F (�) =
1

�

NX
j=1

j�1X
r=0

(N � j + r)!
j (N � j)! �

r

� 1

�

NX
j=1

1

j

j�1X
r=0

N r� r =
1

�

NX
j=1

1

j

(N�)j � 1
N� � 1

where we have used [1, 6.1.47]

� (N � a)
� (N � b) = Na�b

�
1 +

(a� b) (a+ b� 1)
2N

+O
�
N�2�� (6)

to �rst order. The accurate asymptotic behavior of F (�) is deduced in Appendix C.3. Hence, using

x = N� , we �nd

� lim
"!0

f1 =
1 +O

�
1
N

�
(x� 1)

NX
j=1

xj � 1
j

(7)

From (7), the three regimes for x lead to the following growth. If N� = x < 1, then

� lim
"!0

f1 =
1 +O

�
1
N

�
(1� x)

0@ NX
j=1

1

j
�

NX
j=1

xj

j

1A
=
1 +O

�
1
N

�
(1� x) (HN + log (1� x)) = O (logN)
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If x > 1, then

� lim
"!0

f1 =
1 +O

�
1
N

�
(x� 1)

NX
j=1

xj � 1
j

= O

�
xN�1

N

�
whereas for x = 1

� lim
"!0

f1 =

�
1 +O

�
1

N

�� NX
j=1

1 = N

�
1 +O

�
1

N

��
= O (N)

Invoking (6), the asymptotic expression of lim"!0 f2 in (3) for large N is

lim
"!0

f2 �
1

2�2
+
1

�2

NX
j=3

(N�)j�2

j
+

�
�N + 3

2�2

� NX
j=3

jX
k=3

(N�)j�k

j
+
1

�2

NX
j=3

jX
k=3

k�3X
s=1

k�s�1X
m=0

(N�)j�k+m

j (k � s)

Using x = N� , we have

�2 lim
"!0

f2 �
1

2
+

�
3x+ 1

2 (x� 1)

� NX
j=3

xj�2

j
� x+ 3

2 (x� 1)

NX
j=3

1

j
+R4

where

R4 =

NX
j=3

jX
k=3

k�3X
s=1

k�s�1X
m=0

xj�k+m

j (k � s)

which can be simpli�ed to

R4 =
1

(x� 1)2
NX
j=3

xj

j

j�1X
m=3

1

m

�
1� xm�j � x�m + x�j

�
After further rearrangement of terms in R4, we arrive at

�2 lim
"!0

f2 �
1

2
+

�
3x+ 1

2 (x� 1)

� NX
j=3

xj�2

j
� x+ 3

2 (x� 1)

NX
j=3

1

j

+
1

(x� 1)2
NX
j=3

xj

j

0@ j�1X
m=3

1

m
�

NX
m=j+1

1

m

1A+ 1

2 (x� 1)2

0@ NX
j=3

1

j

1A2

� 1

(x� 1)2
N�3X
j=1

xj

j

0@ 3+jX
m=3

1

m
�

NX
m=N+1�j

1

m

1A
If x < 1, then

�2 lim
"!0

f2 �
1

2 (x� 1)2

0@ NX
j=3

1

j

1A2 � x+ 3

2 (x� 1)

NX
j=3

1

j
+O (1)

= O
�
log2N

�
whereas for x > 1, collecting the largest power in x yields

�2 lim
"!0

f2 �
xN�2

N

 
3

2
+
N�1X
m=3

1

m

!
= O

�
logN

N
xN�2

�
For x = 1, we can show that

�2 lim
"!0

f2 �
N2

4
� 9
4
N + 4

NX
j=1

1

j
� 2 = O

�
N2
�
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2.3 Scaling of � with N in SIS epidemics (when " # 0)

In the limit for "! 0, the upper bound (36) for � becomes, with (3),

� < �f0
f1
=

�PN
j=1

1
j(N�j)!

Pj�1
r=0 (N � j + r)!� r

(8)

Using the asymptotic expressions for lim"!0 f1 = 1, lim"!0 f1 and lim"!0 f2, the second order

Lagrange series (38) for � is

� � � 1
f1
� f2
f31

Thus, for x = N� > 1,

�� � O

�
N

xN�1
+
N2 logN

x2N�1

�
= O

�
N

xN�1

�
illustrating that the �rst term in the Lagrange series is su¢ cient, leading to our main result (2).

Numerical computations support this result. For x < 1,

�� � O

�
1

logN
+
log2N

log3N

�
= O

�
1

logN

�
Since now the �rst and second term are of equal order, both need to be taken into account. A

second order Lagrange expansion is not su¢ cient and higher order terms need to be evaluated in order

to guarantee accuracy of �. In view of the dramatic increase in the computations, we refrain from

pursuing this track and content ourselves with numerical calculations. Finally, when x = 1, we have

�� � O

�
1

N
+
N2

N3

�
= O

�
1

N

�
leading to a similar conclusion as the case for x < 1. In fact, we can compute this zero a little more

precise as

�� �
�
1 +O

�
1

N

�� 
�

N

 
1 +

N2

4 �
9
4N + 4

PN
j=1

1
j � 2

N2

!!
=
5�

4N

�
1 +O

�
1

N

��
We also observe that �� is a rate, which is here naturally expressed in units of the curing rate �.

Fig. 1 shows the accuracy (for " = 10�5) of the second order Lagrange series (38), the upper bound

(39) derived from the Newton identities and the exact (numerical) computation of the second largest

eigenvalue of the in�nitesimal generator matrix Q of the continuous-time "-SIS Markov process on the

complete graph N , for which the epidemic threshold �c is slightly larger than 1=N . These numerical

results con�rm the order estimates (even for "! 0) above, at and below the epidemic threshold. Both

Lagrange�s second order and Newton�s upper bound are increasingly sharp for increasing values of �

above the epidemic threshold. Our exact asymptotics in (2) of the order of �� = O
�

N
xN�1

�
for x >> 1

is di¢ cult to verify for N > 10 since numerical root �nders only provide an accuracy of about 10�10.

For 1 < x < 2:5, (2) is veri�ed up to N = 100. The relative accuracy for " < 1
N is about the same as

the results shown in Fig. 1.
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Figure 1: The second largest zero �, exactly computed in red, by a second order Lagrange series (38)

in blue and by Newton�s identity (39) in black as a function of N for " = 10�5 and four values for the

e¤ective infection rate � = f1=(2N); 1=N; 2=N; 3=Ng.
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3 Conclusion

Our asymptotic order results agree with the general estimates of the average lifetime of a SIS epidemics

in Draief and Massoulié [6]. For large t, the probability of survival of the SIS epidemics or probability

that the life-time T of an SIS epidemics exceeds t time units equals about

Pr [T > t] ' e�j�jt

Hence, the life time of an epidemics (for large t) can be interpreted as being exponentially distributed

with mean 1
j�j . In particular, above the epidemic threshold (equal to x > 1 to �rst order in N), the

SIS epidemics in KN dies out exponentially in time t with decay rate �, which tends to zero at least as

fast as e�N ln �
�c , where x = �

�c
> 1 is measured in units of the epidemic threshold �c � 1

N for large N .

This means that the probability that an SIS epidemic in any network survives longer than t time units

is smaller than about e�te
�N ln �

�c or that the average life time is at most E [T ] ' 1
j�j ' O

�
eN ln �

�c

�
,

which is unrealistically long. Hence, for su¢ ciently large N and an e¤ective infection rate � > �c,

the SIS epidemics hardly ever dies in reality. When � approaches �c, the decay rate � of the SIS

epidemics decreases at least as fast as O
�
1
N

�
, equivalent to an average life time E [T ] ' O (N). Below

the epidemic threshold x = �
�c
< 1, the decay rate � decreases at least as fast as O

�
1

logN

�
and the

average life time is about E [T ] = O (logN).

Finally, the lower bound results in [14] together with our upper bound in (2) leads us to conclude

that for almost all graphs, the average time to absorption for � > �c is E [T ] = O
�
ecGN

�
, where

cG > 0. The precise expression of cG for a given graph G stays on the agenda of future work.

Acknowledgement I am very grateful to Erik van Doorn for pointing me to his and earlier work.
Ruud van de Bovenkamp has provided me with numerical data to test (2) for N = 100 and various

� > �c.
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A General tri-diagonal matrices

We study the eigen-structure of tri-diagonal matrices of the form

P =

26666666664

r0 p0 0 0 � � � 0 0 0

q1 r1 p1 0 � � � 0 0 0

0 q2 r2 p2 � � � 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 � � � qN�1 rN�1 pN�1

0 0 0 0 � � � 0 qN rN

37777777775
(9)

where pj and qj are probabilities and where P obeys the stochasticity requirement Pu = u, where u is

the all-one vector. The matrix P frequently occurs in Markov theory, in particular, P is the transition

probability matrix of the generalized random walk. The stochasticity requirement re�ects the fact

that a Markov process must be in any of the N +1 states. If pj = p and qj = q, the matrix P reduces

to a Toeplitz form for which the eigenvalues and eigenvectors can be explicitly written, as shown in

11



[19]. Here, we consider the general tri-diagonal matrix (9) and show how orthogonal polynomials enter

the scene. The theory for the discrete-time generalized random walk is readily extended to that for

the continuous-time general birth-death process. While our approach is more algebraic, Karlin and

McGregor [10] have presented a di¤erent, more probabilistic and function-theoretic method, which is

reviewed and complemented by Van Doorn and Schrijner [17].

When P is written as a block matrix

P =

"
Ak�k Bk�(N+1�k)

C(N+1�k)�k D(N+1�k)�(N+1�k)

#
then the matrix B and C only consist of one non-zero element, so that, using the basic vector ej
whose j-th component equals 1 while all others are zero, B = pk�1 (ek)k�1 : (e1)

T
1�(N+1�k) and C =

qk (e1)(N+1�k)�1 (ek)
T
1�k. The determinant of P evaluated with Schur�s formula

det

"
A B

C D

#
= detAdet

�
D � CA�1B

�
shows that

CA�1B = pk�1qk (e1)(N+1�k)�1 (ek)
T
1�k A

�1 (ek)k�1 : (e1)
T
1�(N+1�k)

= pk�1qk
�
A�1

�
kk
(e1)(N+1�k)�1 : (e1)

T
1�(N+1�k)

Thus, the matrix CA�1B only contains one non-zero element on position (1; 1). Only the �rst element

in eD = D � CA�1B is changed from rk in D to rk � pk�1qk
�
A�1

�
kk
in eD and pk�1qk

�
A�1

�
kk
can

be considered as the coupling between the �rst k � 1 states in the generalized random walk and the

remaining other states. If pk�1 = 0 or/and qk = 0, then detP = detAdetD, which is the product of

two individual tri-diagonal determinants. In that case, the Markov chain is reducible. Hence, in the

sequel, we assume that all elements of P are non-zero and time-independent so that the Markov chain

is irreducible.

A.1 A similarity transform

We apply a similarity transform analogous to that of the Jacobi matrix for orthogonal polynomials

as studied in [20, Section 10.6]. If there exists a similarity transform that makes the matrix P

symmetric, then all eigenvalues of P are real, because a similarity transform preserves the eigenvalues.

The simplest similarity transform is H = diag(h1; h2; : : : ; hN+1) such that

eP = HPH�1 =

26666666664

r0
h1
h2
p0 0 0 � � � 0 0 0

h2
h1
q1 r1

h2
h3
p1 0 � � � 0 0 0

0 h3
h2
q2 r2

h3
h4
p2 � � � 0 0 0

...
...

...
...

...
...

...
...

0 0 0 0 � � � hN
hN�1

qN�1 rN�1
hN
hN+1

pN�1

0 0 0 0 � � � 0
hN+1
hN

qN rN

37777777775
Thus, in order to produce a symmetric matrix eP = eP T , we need to require that � eP�

i;i�1
=
� eP�

i�1;i
for all 1 � i � N , implying that,

hi+1
hi

qi =
hi
hi+1

pi�1

12



whence �
hi+1
hi

�2
=
pi�1
qi

Assuming that all pi and qi are positive4, we �nd that hi+1 =
q

pi�1
qi
hi for 1 � i � N and we can

choose h1 = 1 such that

hi =

vuuti�1Y
k=1

pk�1
qk

(10)

and
hi+1
hi

qi =
hi
hi+1

pi�1 =
p
pi�1qi

After the similarity transform H, the symmetric matrix eP becomes

eP =

26666666664

r0
p
p0q1 0 0 � � � 0 0 0

p
p0q1 r1

p
p1q2 0 � � � 0 0 0

0
p
p1q2 r2

p
p2q3 � � � 0 0 0

...
...

...
...

...
...

...
...

0 0 0 0 � � � p
pN�2qN�1 rN�1

p
pN�1qN

0 0 0 0 � � � 0
p
pN�1qN rN

37777777775
(11)

In conclusion, if all pi and qi are positive, then all eigenvalues of P are real. Rather than solving the

eigenvector ex from the eigenvalue equation eP ex = �ex, we determine the eigenvector x as a function of
� from the original matrix P for reasons explained below and use the similarity transform ex = Hx,

where H is independent of �, later for the left-eigenvectors of P .

A.2 Eigenvectors of P

The right-eigenvector x of P belonging to eigenvalue � satis�es (P � �I)x = 0 so that8><>:
(r0 � �)x0 + p0x1 = 0

qjxj�1 + (rj � �)xj + pjxj+1 = 0 1 � j < N

qNxN�1 + (rN � �)xN = 0

We replace the last equation, that breaks the structure, by

qNxN�1 + (rN � �)xN + pNxN+1 = 0

and the condition that pNxN+1 = 0. Using rj = 1 � qj � pj for 0 � j � N with q0 = 0 and pN = 0

and making the dependence on � = � � 1 explicit, the above set simpli�es, subject to the condition
pNxN+1 (�) = 0, to (

x1 (�) =
p0+�
p0

x0 (�)

xj+1 (�) =
pj+qj+�

pj
xj (�)� qj

pj
xj�1 (�) 1 � j < N

(12)

For the stochastic matrix P , that obeys Pu = u, there holds that rN = 1� qN so that pN = 0 and
that the condition pNxN+1 = 0 seems to be obeyed. In the theory of orthogonal polynomials (see e.g.

4 If pi�1 = 0 (or qi = 0), then the states 0 up to i� 1 are uncoupled from the states i up to N .
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[20, Chapter 10]), a similar trick is used where the orthogonal polynomial xN+1 (�) needs to vanish,

because pN is not necessarily zero in absence of the stochasticity requirement Pu = u. The zeros

of the orthogonal polynomial xN+1 (�) are then equal to the eigenvalues of the corresponding Jabobi

matrix. Moreover, the powerful interlacing property for the zeros of the set fxj (�)g0�j�N+1 applies.
We will return to the condition pNxN+1 = 0 below.

Solving (12) iteratively for j < N ,

x2 (�) =
x0 (�)

p0p1

�
�2 + (q1 + p1 + p0) � + p1p0

�
x3 (�) =

x0 (�)

p2p1p0

�
�3 + (q1 + q2 + p2 + p1 + p0) �

2
�

+ (q2q1 + q2p0 + p2q1 + p2p1 + p2p0 + p1p0) � + p2p1p0

reveals that xj(�)
x0(�)

is a polynomial of degree j in � with positive coe¢ cients, whose zeros are all non-

positive5. This simple form is the main reason to consider the eigenvector components of P instead

of eP . By inspection, the general form of xj(�) for 1 � j � N is

xj(�) =
x0 (�)Qj�1
m=0 pm

jX
k=0

ck(j)�
k (13)

with6

cj(j) = 1; cj�1(j) =
Pj�1
m=0 (pm + qm) ; c0(j) =

Qj�1
m=0 pm; (14)

where q0 = pN = 0. By substituting (13) into (12),

j�1X
k=1

ck(j + 1)�
k =

j�1X
k=1

[(qj + pj) ck(j)� qjpj�1ck(j � 1) + ck�1(j)] �k

and equating the corresponding powers in �, a recursion relation for the coe¢ cients ck(j) for 0 � k < j

is obtained with cj (j) = 1,

ck(j + 1) = (qj + pj) ck(j)� qjpj�1ck(j � 1) + ck�1(j) (15)

from which all coe¢ cients can be determined as shown in Section A.3. The stochasticity requirement

Pu = u implies that the right-eigenvector belonging to the largest eigenvalue � = 1, equivalently to

� = �� 1 = 0, equals x (0) = u.

We now express the left-eigenvectors of P in terms of the right-eigenvector by using the similarity

transform H. Since eP is symmetric, the left- and right-eigenvectors are the same [20, p. 222-223]. The
left-eigenvector x of P equals x = H�1ex, while the right-eigenvector y of P equals y = Hex. Hence,
we �nd that y = H2x and explicitly with (13) and (10),

yj(�) =
y0 (�)Qj�1
m=0 qm+1

jX
k=0

ck(j)�
k (16)

5 If P is a stochastic, irreducible matrix, then the Perron-Frobenius Theorem [20] states that the largest (in absolute

value) eigenvalue is one, hence �1 < � = � + 1 � 1.
6We use the convention that

Pb
k=a f (k) = 0 and

bQ
k=a

f (k) = 1 if a > b.
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For any matrix, the left- and right-eigenvectors obey the orthogonality equation

xT (�) y
�
�0
�
= xT (�) y (�) ���0 (17)

that holds for any pair of eigenvalues � = �+1 and �0 = �0+1 of that matrix. For symmetric matrices,

usually, the normalization exT (�) ex ��0� = ���0 (18)

is chosen, which implies, after the similarity transformH = diag(hi), that xT (�) y (�0) = exT (�) ex (�0) =
���0 and that xT (�)H2x (�0) = ���0 and similarly that yT (�)H�2y (�0) = ���0 . These normalizations of

the eigenvector components imply, using (13) and (16) and with the de�nition of the polynomial for

0 � j � N + 1

�j (�) =

jX
k=0

ck(j)�
k (19)

that

x0 (�) y0 (�) = x20 (�) = y20 (�) =

0@1 + NX
j=1

�2j (�)Qj�1
m=0 qm+1pm

1A�1 (20)

The orthogonality equation (17) together with our choice of normalization, exT (�) ex (�0) = ���0 , lead to

a couple of important consequences.

Using the general form (13), the initially made condition pNxN+1 = 0 translates to

pNxN+1(�) =
x0 (�) �N+1 (�)QN�1

m=0 pm
= 0

Since �j (�) is a polynomial, (20) indicates that neither x0 (�) nor y0 (�) can vanish for �nite � so that

the initial condition is met provided

�N+1 (�) = 0 (21)

which closely corresponds to results in the theory of orthogonal polynomials. Thus, �j (�) should be

considered as orthogonal polynomial, rather than xj (�) due to the scaling of x0 (�), de�ned in (20).

For the set of orthogonal polynomials f�j (�)g0�j�N+1 interlacing applies, which means that the zeros
of �j (�) interlace with those of �l (�) for all 1 � l 6= j � N + 1. Moreover, the eigenvalues of P are

equal to the zeros of �N+1 (�) in (21).

For stochastic matrices, the left-eigenvector y(0) belonging to � = 0 equals the steady-state vector

� (see [19]). For � = 0, the orthogonality relation (17) becomes uT y (�0) = 0 and uT y (0) = uT� = 1,

from which the j-th component in (16) of the left-eigenvector y (0) = � follows, for 1 � j � N , as

�j = yj(0) =
y0 (0) c0 (j)Qj�1
m=0 qm+1

=

Qj�1
m=0

pm
qm+1

1 +
PN
k=1

Qk�1
m=0

pm
qm+1

(22)

which precisely equal the well-known steady-state probabilities of the generalized random walk [19, p.

207]. For � 6= 0, the orthogonality relation (17) and the fact that y0 (�) is non-zero for �nite � imply
that

0 = 1 +
NX
j=1

1Qj�1
m=0 qm+1

jX
k=0

ck(j)�
k = 1 +

NX
j=1

j�1Y
m=0

pm
qm+1

+
NX
k=1

0@ NX
j=k

ck(j)Qj�1
m=0 qm+1

1A �k
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We write the right-hand side polynomial as

NX
k=0

fk�
k = fN

NY
k=1

(� � zk) (23)

where f0 = 1
�0
by (22) and where, for k > 0,

fk =
NX
j=k

ck(j)Qj�1
m=0 qm+1

(24)

and, explicitly,

fN =
1QN�1

m=0 qm+1

fN�1 =
1QN�2

m=0 qm+1
+

PN�1
m=0 (pm + qm)QN�1
m=0 qm+1

Relation (24) illustrates that all coe¢ cients fk are non-negative. Moreover, the orthogonality relation

(17) implies that the polynomial
PN
k=0 fk�

k possesses the same zeros as cP (�)� , where

cP (�) = det (P � (� + 1) I) = �

NY
k=1

(zk � �)

is the N + 1 degree characteristic polynomial of the matrix P , in particular,

cP (�)

(�1)N �
=

1

fN

NX
k=0

fk�
k (25)

Finally, since the eigenvalues of P also obey (21) so that

cP (�)

(�1)N �
=

1

fN

NX
k=0

fk�
k =

N+1X
k=1

ck(N + 1)�k�1

after equating corresponding powers in �, we �nd that

ck+1(N + 1) =
fk
fN

=

NX
j=k

ck(j)
N�1Y
m=j

qm+1 (26)

In summary, the stochasticity property of P provides us with an additional relation (26) on the

coe¢ cients of cP (�), that is not necessarily obeyed for general orthogonal polynomials.

A.3 Solving the recursion (15)

We now propose two di¤erent types of solutions of the recursion (15) for the coe¢ cients ck (j) of xj (�)

in (13).

Theorem 1 A recursion relation for cj�m (j), valid for 2 � m � j, is

cj�m(j) =

j�1X
l=0

((ql + pl) cl�m+1(l)� qlpl�1cl�m+1(l � 1)) (27)
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Proof : Letting k = j �m in (15) yields

cj+1�(m+1)(j + 1) = (qj + pj) cj�m(j)� qjpj�1cj�1�(m�1)(j � 1) + cj�(m+1)(j)

With tm (j) = cj�m(j), the above equation transforms into the di¤erence equation

tm+1 (j + 1) = tm+1 (j) + (qj + pj) tm (j)� qjpj�1tm�1 (j � 1)

whose solution is

tm+1 (j) =

j�1X
l=0

((ql + pl) tm (l)� qlpl�1tm�1 (l � 1))

With the initial values t0 (j) = 1 and t1 (j) =
Pj�1
m=0 (pm + qm) from (14), all tm (j) can be iteratively

found from (27). �

Thus, letting m = 2 in (27) yields

cj�2(j) =

j�1X
l=0

 
(ql + pl)

l�1X
m=0

(pm + qm)� qlpl�1

!
(28)

Next, for m = 3 in (27), we have

cj�3(j) =

j�1X
l=0

0@(ql + pl) l�1X
l1=0

 
(ql1 + pl1)

l1�1X
m=0

(pm + qm)� ql1pl1�1

!
� qlpl�1

l�2X
m=0

(pm + qm)

1A
and so on.

For the polynomial in (23), the next general expression will prove more useful.

Theorem 2 The explicit general expression for the coe¢ cients ck (j) in terms of ck�1 (l) for all l �
k � 1 is

ck (j) =

j�1Y
m=k

pm +

j�k�1X
l=0

j�l�1Y
m=k

qm

j�1Y
m=j�l

pm +
k�1X
m=0

(pm + qm)

j�k�1X
l=0

j�l�1Y
m=k+1

qm

j�1Y
m=j�l

pm

+

j�k�1X
l=0

j�l�k�1X
s=1

ck�1 (j � l � s)
j�l�1Y

m=j�l+1�s
qm

j�1Y
m=j�l

pm (29)

Proof: Rewriting (15) as

ck(j + 1)� pjck(j) = qj fck(j)� pj�1ck(j � 1)g+ ck�1(j)

and de�ning bk (j) = ck(j) � pj�1ck(j � 1) shows that the second order recursion (15) in j can be
decomposed into two �rst order recursions in j(

ck(j) = pj�1ck(j � 1) + bk (j)
bk (j) = qj�1bk (j � 1) + ck�1(j � 1)

Since k < j, the choice for j = k + 1 yields

bk (k + 1) = ck(k + 1)� pkck(k)

=

kX
m=0

(pm + qm)� pk = qk +

k�1X
m=0

(pm + qm)

17



Iterating the �rst recursion downwards yields

ck(j) = pj�1pj�2ck(j � 2) + pj�1bk (j � 1) + bk (j)
= pj�1pj�2pj�3ck(j � 3) + pj�1pj�2bk (j � 2) + pj�1bk (j � 1) + bk (j)
= pj�1pj�2pj�3pj�4ck(j � 4) + pj�1pj�2pj�3bk (j � 3) + pj�1pj�2bk (j � 2) + pj�1bk (j � 1) + bk (j)

from which we deduce that

ck (j) = ck(j � p)
j�1Y

m=j�p
pm +

p�1X
l=0

bk (j � l)
j�1Y

m=j�l
pm

When j � p = k, then ck (k) = 1 and thus

ck (j) =

j�1Y
m=k

pm +

j�k�1X
l=0

bk (j � l)
j�1Y

m=j�l
pm (30)

Similarly, we iterate the second recursion downwards,

bk (j) = qj�1qj�2bk (j � 2) + qj�1ck�1(j � 2) + ck�1(j � 1)
= qj�1qj�2qj�3bk (j � 3) + qj�1qj�2ck�1(j � 3) + qj�1ck�1(j � 2) + ck�1(j � 1)

which suggests that

bk (j) = bk(j � p)
j�1Y

m=j�p
qm +

pX
l=1

ck�1 (j � l)
j�1Y

m=j+1�l
qm

For j � p = k + 1 or p = j � k � 1, we have

bk (j) = bk(k + 1)

j�1Y
m=k+1

qm +

j�k�1X
l=1

ck�1 (j � l)
j�1Y

m=j+1�l
qm

=

j�1Y
m=k

qm +

j�1Y
m=k+1

qm

k�1X
m=0

(pm + qm) +

j�k�1X
l=1

ck�1 (j � l)
j�1Y

m=j+1�l
qm (31)

Combining (30) and (31) yields (29). �

For k = 1 and using c0(j) =
Qj�1
m=0 pm, we �nd from (29) that

c1 (j) =

j�1X
l=0

j�1�lX
s=0

j�2�l�sY
m=0

pm

j�1�lY
m=j�l�s

qm

j�1Y
m=j�l

pm (32)

Introducing the expression (32) for c1 (j) into (29) produces the explicit form for c2 (j),

c2 (j) =

j�1Y
m=2

pm + (p0 + p1 + q1 + q2)

j�3X
l=0

j�l�1Y
m=3

qm

j�1Y
m=j�l

pm

+

j�3X
l=0

j�l�3X
s=1

j�l�s�1X
l1=0

j�l�s�l1�1X
l2=0

j�l�s�2�l1�l2Y
m=0

pm

j�l�s�1�l1Y
m=j�l�s�l1�l2

qm

j�l�s�1Y
m=j�l�s�l1

pm

j�l�1Y
m=j�l+1�s

qm

j�1Y
m=j�l

pm

(33)

and so on. In this way, all coe¢ cients ck (j) in the polynomial (13) can be explicitly determined7. Since

all pj and qj are probabilities and thus non-negative, the recursion (29) together with c0(j) =
Qj�1
m=0 pm

illustrates that all coe¢ cients ck (j) are non-negative.
7For j = k in (29), we �nd indeed that ck (k) = 1 (based on our convention).
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A.4 The second set of orthogonality conditions

Since the matrix eX, with the eigenvectors ex of the symmetric matrix eP as columns, is orthogonal, it

holds that eXT eX = eX eXT = I

and the last equation means that X
�2f�1;�2;:::;�N ;�N+1g

exj (�) exm (�) = �jm

where �1 = 1 � �2 � � � � � �N+1 are the eigenvalues of P corresponding to the zeros of cP (�) by

� = �� 1 and X
�2f�1;�2;:::;�N ;�N+1g

hj+1hm+1xj (�)xm (�) = �jm

Using (13) and (10) yields

X
�2f�1;�2;:::;�N ;�N+1g

x20 (�� 1)
jX
k=0

ck(j) (�� 1)k
kX
l=0

cl(k) (�� 1)l =

vuut jY
m=1

qm

kY
m=1

qm�jk

which we rewrite, with the de�nition (19), asX
�2f�1;�2;:::;�N ;�N+1g

x20 (�� 1) �j (�� 1) �k (�� 1) = �jk

kY
m=1

qm

Finally, introducing the Dirac delta-function, the left-hand side is rewritten as an integral

I =
X

�2f�1;�2;:::;�N ;�N+1g
x20 (�� 1) �j (�� 1) �k (�� 1)

=
N+1X
j=1

Z 1

�1
� (�� �j)x20 (�� 1) �j (�� 1) �k (�� 1) d�

because the eigenvalues of P lie between [�1; 1]. Further,

I =

Z 1

�1
d�x20 (�� 1) �j (�� 1) �k (�� 1) � (det (P � �I))

���� d det (P � xI)dx

����
x=�

����
=

Z 0

�2
d�x20 (�) �j (�) �k (�) � (det (P � (� + 1) I))

����� d det (P � xI)dx

����
x=�+1

�����
De�ning the weight function as

w (�) = x20 (�) � (det (P � (� + 1) I))
����� d det (P � xI)dx

����
x=�+1

�����
= x20 (�) � (cP (�))

����dcP (�)d�

���� = N+1X
j=1

x20 (�j) � (� � �j)

we �nally obtain the orthogonality condition for the orthogonal polynomials rj and rk asZ 0

�2
w (�) �j (�) �k (�) d� = �jk

kY
m=1

qm

In summary, the derivation provides an explicit way to determine the weight function w (�) in the

orthogonality relation corresponding to a tri-diagonal stochastic matrix P .
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A.5 The Christo¤el-Darboux formula for eigenvectors of P

We derive the Christo¤el-Darboux formula (see [20, p. 357]) for the matrix P . Indeed, multiply the

equation for xj+1 (�) in (12) by xj (!)

pjxj+1 (�)xj (!) = �xj (�)xj (!) + (pj + qj)xj (�)xj (!)� qjxj�1 (�)xj (!)

Letting � ! ! in (12) and multiply both sides by xj (�),

pjxj+1 (!)xj (�) = !xj (�)xj (!) + (pj + qj)xj (�)xj (!)� qjxj (�)xj�1 (!)

Subtracting both equation yields,

pj fxj+1 (�)xj (!)� xj+1 (!)xj (�)g+ qj fxj�1 (�)xj (!)� xj (�)xj�1 (!)g = (� � !)xj (�)xj (!)

Now, we transform to xj (�) =
exj(�)
hj+1

,

pj
hj+2hj+1

fexj+1 (�) exj (!)� exj+1 (!) exj (�)g+ qj
hjhj+1

fexj�1 (�) exj (!)� exj�1 (!) exj (�)g = (� � !)
h2j+1

exj (�) exj (!)
Using (10) shows that pj

hj+2hj+1
=

p
pjqj+1
h2j+1

and qj
hjhj+1

=
p
pj�1qj
h2j+1

so that

gj+1 � gj = (� � !) exj (�) exj (!)
where

gj =
p
pj�1qj fexj�1 (!) exj (�)� exj�1 (�) exj (!)g

Summing over j 2 [0;m],

(� � !)
mX
j=0

exj (�) exj (!) = mX
j=0

gj+1 �
mX
j=0

gj = gm+1 � g0

where g0 = 0 because ex�1 = 0. Hence, we arrive at the Christo¤el-Darboux sum for the eigenvectors

of eP ,
(� � !)

mX
j=0

exj (�) exj (!) = ppmqm+1 fexm (!) exm+1 (�)� exm (�) exm+1 (!)g
which extends the orthogonality relation (18). Transformed back to xj (�) using (10) yields

(� � !)
mX
j=0

h2j+1xj (�)xj (!) = pmh
2
m+1 fxm (!)xm+1 (�)� xm (�)xm+1 (!)g (34)

Since ! = 0 is an eigenvalue with corresponding eigenvector x(0) = 1
N+1u, each other real eigenvalue

� 6= 0 must obey

�
mX
j=0

h2j+1xj (�) = pmh
2
m+1 fxm+1 (�)� xm (�)g

Taking pN = 0 into account, the Christo¤el-Darboux formula (34) extends (18) to all 0 � m � N .

20



B Second largest zero of cP (�)

The zero of a complex function can be expressed as a Lagrange series [24, 12]. When all Taylor

coe¢ cients fk of a function expanded around a point z0 are known, our framework of characteristic

coe¢ cients, �rst published in [18], provides all coe¢ cients in the corresponding Lagrange series in

terms of fk. In particular, the second largest zero � closest to � = 0, based on the Lagrange expansion

(see e.g. [20, p. 305]) up to order 4 in f0
f1
, is

� � �f0
f1
� f2
f1

�
f0
f1

�2
+

"
�2

�
f2
f1

�2
+
f3
f1

# �
f0
f1

�3
+O

 �
f0
f1

�4!
(35)

Since all Taylor coe¢ cients fk of the characteristic polynomial cP (�) around � = 0 are known, we can

formally compute the zero � to any order or accuracy. The fact that all coe¢ cients fk are non-zero

and that � = 0 is the largest zero of cP (�) guarantees that the Lagrange series converges fast. In fact,

the �rst term in (35) equals the �rst iteration in the Newton-Raphson method and the point z0 = 0

is an ideal expansion point. This article demonstrates this computation up to second order, hence,

using the explicit knowledge of f0; f1 and f2. Proceeding further with f3 is possible, however, at the

expense of huge computations, from which we refrained, mainly because numerical computations in

Section 2 demonstrate a good accuracy of � only based on the three coe¢ cients f0; f1 and f2.

The sum8 of the inverse of the zeros of cP (�)� follows from the Newton identities [20, p. 305] as

NX
k=1

1

zk
= �f1

f0

from which

�� = 1
f1
f0
+
PN
k=2

1
zk

Since all zeros zk of
cP (�)
� are negative, we have

�� = 1
f1
f0
+
PN
k=2

1
zk

>
f0
f1

8The sum of the zeros of cP (�)
�

(taking into account that pN = 0) equals

NX
k=1

zk = �
fN�1
fN

= �
NX

m=0

(pm + qm)

Since 0 � pm+qm = 1�rm � 1 and pN = q0 = 0, the average of the zeros lies between zero and minus one. The product
of the zeros follows from (23) as

NY
k=1

(�zk) =
f0
fN

=

QN�1
m=0 qm+1

�0
=

N�1Y
m=0

qm+1 +

N�1X
j=1

N�1Y
m=j

qm+1

j�1Y
m=0

pm +

N�1Y
m=0

pm

which is, by the Perron-Frobenius Theorem strictly smaller than 1. Finally, we also compute
PN

k=1 z
2
k =

�
fN�1
fN

�2
�2 fN�2

fN

from the Newton identities with (28) as

NX
k=1

z2k =

NX
m=0

�
(qm + pm)

2 + 2qmpm�1
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so that

� < �f0
f1

(36)

demonstrating that�f0
f1
is an upper bound for �. This observation also follows from the above Lagrange

series (35).

From (24), we have that f0 = 1
�0
, where �0 is the zero component of the state-state vector of P

(eigenvector belonging to eigenvalue � = 1), and

f1 =
1

q1
+

NX
j=2

c1(j)Qj�1
m=0 qm+1

which becomes with (32),

f1 =
1

q1
+

NX
j=2

1Qj�1
m=0 qm+1

j�1X
r=0

j�1Y
s=j�r

ps

j�1�rX
k=0

j�2�r�kY
m=0

pm

j�1�rY
l=j�r�k

ql (37)

The number of terms in f1 equals 1 +
PN�1
j=1

Pj
r=0

Pj�r
k=0 1 =

N(N+1)(N+2)
6 =

�
N+2
3

�
. Hence, the lower

bound for �� is

f0
f1
=

1 +
PN
j=1

Qj�1
m=0

pm
qm+1

1
q1
+
PN
j=2

1Qj�1
m=0 qm+1

Pj�1
r=0

j�1Q
s=j�r

ps
Pj�1�r
k=0

j�2�r�kQ
m=0

pm
j�1�rQ
l=j�r�k

ql

Similarly, combining (24), (33) and (37) yields f2f1 , and so establishing the Lagrange series for � up

to second order in f0
f1
,

� � �f0
f1
� f2
f1

�
f0
f1

�2
(38)

The inverse of the squares of the zeros of cP (�)� equals [20, p. 305]

NX
k=1

1

z2k
=

�
f1
f0

�2
� 2f2

f0
� 0

from which
1

�2
=

�
f1
f0

�2
� 2f2

f0
�

NX
k=2

1

z2k

and

�2 =
1�

f1
f0

�2
� 2f2

f0
�
PN
k=2

1
z2k

�
�
f0
f1

�2 1

1� 2f2
f0

�
f0
f1

�2
where the inequality follows because all zeros are real. Thus, a sharper upper bound for � is found

� � �f0
f1

1r
1� 2f2

f0

�
f0
f1

�2 (39)

After expansion of the right-hand side in (39), we �nd

j�j �
�
f0
f1

�0@1 + f2
f0

�
f0
f1

�2
+
3

2

(
f2
f0

�
f0
f1

�2)2
+O

0@(f2
f0

�
f0
f1

�2)31A1A
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which should be compared with the Lagrange expansion up to third order,

�� �
�
f0
f1

� 
1 +

f2
f1

�
f0
f1

�
+

"
2

�
f2
f1

�2
� f3
f1

# �
f0
f1

�2!

=

�
f0
f1

�0@1 + f2
f0

�
f0
f1

�2
+ 2

(
f2
f0

�
f0
f1

�2)2
� f3
f1

�
f0
f1

�21A
In summary, based on the knowledge of the coe¢ cients f0, f1 and f2, the second largest zero � of

cP (�) is approximated by a Lagrange series (38) up to second order, possesses an upper9 bound (36)

and a sharper bound (39).

Incidentally, we have also shown how subsequent terms in the Lagrange series can be computed from

the Newton identities for the sum of inverse powers of the zeros. The combination of the knowledge of

the Newton identities with the Lagrange series around a certain complex number can shed additional

insight into the convergence of the Lagrange series.

C The function F (�)

We have shown that � � � 1
f1
for � > 1

N , which led to the result (2). We reconsider F (�) = lim"!0 f1
in (3), which is also rewritten as

�F (�) =

NX
j=1

jX
r=1

(N � 1� j + r)!
j (N � j)! � r (40)

In this section, we explore properties of F (�): in Section C.1, F (�) is expressed as a Laplace transform,

from which alternative exact forms for F (�) are deduced in Section C.2. Finally, Section C.3 presents

the asymptotic form (4) of F (�) for � = x
N , with �xed x and large N .

C.1 F (�) as a Laplace transform

Theorem 3 For � > �c, F (�) = lim"!0 f1 can be expressed as a Laplace transform

F (�) =
1

�

Z 1

0

 Z 1

1

dx

xN+1
(u+ x)N � 1
(u+ x)� 1

!
e�

1
�
udu (41)

Proof : We rewrite (3) as

F (�) =
1

�

NX
j=1

xj
j

with

xj =

j�1X
r=0

(N � j + r)!
(N � j)! � r

9The interlacing property of the orthogonal polynomials provides us with lower bounds for �. The interlacing theorem

for orthogonal polynomials states that between two zeros of �k (�), de�ned in (19), there is at least on zero of �l (�) with

l > k. The best lower bound for � thus equals the second largest zero of �N (�), which is, unfortunately, more di¢ cult

to compute than � itself, because the largest zero is negative and unknown in contrast to �N+1 (�) where it is zero.
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which obeys the recursion

xj+1 = xj(N � j)� + 1 (42)

with x1 = 1. Furthermore, xk = 0 for k < 1. Indeed,

xj+1 =

jX
r=0

(N � j � 1 + r)!
(N � j � 1)! � r = � (N � j)

j�1X
r=�1

(N � j + r)!
(N � j)! � r

= xj(N � j)� + � (N � j) (N � j � 1)!
(N � j)! ��1 = xj(N � j)� + 1

Now, consider

g (z;N) =

N�1X
j=0

xj+1z
j =

1

z

NX
j=1

xjz
j (43)

with g (0; N) = x1 = 1 so thatZ 1

0
g (z;N) dz =

N�1X
j=0

xj+1
j + 1

=
NX
j=1

xj
j
= �F (�)

After multiplying both sides of the recursion (42) with zj and summing over j, we obtain

g (z;N) =
N�1X
j=0

xj+1z
j = �

N�1X
j=0

xj(N � j)zj +
N�1X
j=0

zj

= �N

NX
j=1

xjz
j � �

NX
j=0

jxjz
j +

zN � 1
z � 1

since x0 = 0. With the de�nition (43) and

d

dz
(zg (z;N)) =

1

z

NX
j=0

jxjz
j

we �nd

g (z;N) = �Nzg (z;N)� �z d
dz
(zg (z;N)) +

zN � 1
z � 1

Thus,
d

dz
(zg (z;N)) =

�
N � 1

�z

�
g (z;N) +

zN � 1
�z (z � 1)

The di¤erential equation for g becomes

��z2 d
dz
(g (z;N)) + (� (N � 1) z � 1) g (z;N) = �z

N � 1
z � 1

The homogeneous di¤erential equation is rewritten as

d

dz
(log h (z;N)) =

� (N � 1) z � 1
�z2

=
(N � 1)

z
� 1

�z2

Integration yields

log h (z;N) = (N � 1) ln z + 1

�z
+ lnC
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where C is a constant. Thus,

h (z;N) = CzN�1e
1
�z

Using the variation of a constant method yields

g (z;N) = C (z) zN�1e
1
�z

where the function C (z) must obey the di¤erential equation. Hence, after substitution, we have

g0 (z;N) = C 0 (z) zN�1e
1
�z + C (z)

d

dz

�
zN�1e

1
�z

�
and

��z2C 0 (z) zN�1e
1
�z � �z2C (z) d

dz

�
zN�1e

1
�z

�
+ (� (N � 1) z � 1)C (z) zN�1e

1
�z = �z

N � 1
z � 1

Since

��z2C (z) d
dz

�
zN�1e

1
�z

�
= ��z2C (z) (N � 1) zN�2e

1
�z + �z2C (z) zN�1e

1
�z

�
1

�z2

�
= f��z (N � 1) + 1g zN�1C (z) e

1
�z

we see (as required by the method of the variation of a constant) that

C 0 (z) =
1

�

zN � 1
(z � 1) zN+1 e

� 1
�z

from which C 0 (0) = 0 for any �nite N . After integration, we arrive at

g (z;N) =
1

�
zN�1e

1
�z

�Z z

0

uN � 1
(u� 1)uN+1 e

� 1
�udu+ C (0)

�
where the constant C (0) needs to be chosen so that g (0; N) = 1. The only possible value is C (0) = 0

in order to have a �nite limit for limz!0 g (z;N). Then,

g (z;N) =
1

�
zN�1e

1
�z

Z z

0

uN � 1
(u� 1)uN+1 e

� 1
�udu

Substituting u = 1
y ,

g (z;N) =
1

�
zN�1e

1
�z

Z 1

1
z

�
1� yN

�
(1� y) e

� 1
�
ydy (44)

Finally,

�F (�) =
1

�

Z 1

0
dz zN�1e

1
�z

Z 1

1
z

�
1� yN

�
(1� y) e

� 1
�
ydy

=
1

�

Z 1

1
dx

1

xN+1

Z 1

x

�
1� yN

�
(1� y) e

� 1
�
(y�x)dy

Let u = y � x in the y-integral, then

�F (�) =
1

�

Z 1

1
dx

1

xN+1

Z 1

0

�
1� (u+ x)N

�
(1� u� x) e�

1
�
udu

so that F (�) can be written as a Laplace transform (41). �
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C.2 F (�) in terms of exponential integrals

The integrand in (41) can be rewritten as

hN (u) =

Z 1

1

dx

xN+1
(u+ x)N � 1
(u+ x)� 1 =

Z 1

0

(yu+ 1)N � yN
(yu+ 1)� y dy

so that we obtain an alternative integral

�F (�) =

Z 1

0

 Z 1

0

(yu+ 1)N � yN
(yu+ 1)� y dy

!
e�

1
�
udu

or

�F (�) =

Z 1

0

 Z 1

0

(yu+ 1)N e�
1
�
u

yu+ 1� y du

!
dy �

Z 1

0
yN

 Z 1

0

e�
1
�
u

yu+ 1� ydu
!
dy (45)

which will be exploited below.

In the next Theorem 4, we show that F (�) can be expressed in terms of the exponential integrals

En (x) of integer order n, de�ned in [1, Chapter 5] as

En (x) =

Z 1

1

e�xt

tn
dt

Theorem 4 For � > 1
N , F (�) = lim"!0 f1 equals

F (�) =
N !

�

N+1X
k=1

Lk (�)

(N + 1� k)! �
1

�

Z 1

0

ewEN+1 (w) dw

w + 1
�

(46)

where

Lk (�) =

Z 1

0

ewEk (w)�
w + 1

�

�k dw (47)

Proof : We start with the second u-integral in (45) for �F (�),

Z 1

0

e�
1
�
u

yu+ 1� ydu =
e
1
�

�
1
y
�1
�

y

Z 1

0

e
� 1
�

�
u+ 1

y
�1
�

u+ 1
y � 1

du

=
e
1
�

�
1
y
�1
�

y

Z 1

0

Z 1

1
�

e
�p
�
u+ 1

y
�1
�
dpdu

=
e
1
�

�
1
y
�1
�

y

Z 1

1
�

e
�p
�
1
y
�1
� Z 1

0
e�pududp

=
1

y

Z 1

1
�

e
�(p� 1

� )
�
1
y
�1
�

p
dp

=
1

y

Z 1

0

e
�w

�
1
y
�1
�

w + 1
�

dw
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where the reversal of integrations is allowed by absolute convergence (Fubinni�s Theorem). The second

u-integral in (45) for �F (�) becomesZ 1

0
yN
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�
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We now focus on the �rst integral in (45) and start with
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where the incomplete Gamma function for integer kZ 1

x
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is used. Hence10,
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because then the p-integral diverges.
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We consider now the �rst integral in the expression (45) for �F (�),
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which proves the theorem. �

An expression that avoids the summation is
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We will not further use this triple integral, although it suggests a change of variables s = p + u and

r = pu, which, as we found, did not lead to useful results.

C.2.1 Other exact series for �F (�)

The expression (46) for �F (�) in Theorem 4 will be further explored by using properties of the

exponential integral.

After partial integration of Ek (w) =
R1
1

e�wt

tk
dt, we obtain the recursion,

Ek+1 (w) =
1

k
e�w � w

k
Ek (w) (50)
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After p iteration, we �nd
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After combining the above, we arrive atZ 1
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Theorem 5 The Taylor series of �F (�) is de�ned by
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From (48), we �nd that
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The uniqueness of the Taylor series implies that (54) equals the Taylor series in (52). �

C.2.2 The coe¢ cients Bj

We present other properties of the Taylor coe¢ cients Bj , de�ned in (55). Starting from
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A recursion for the Taylor coe¢ cient
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C.3 Order estimate of F (�) for large N

The exponential integral is bounded [1, 5.1.9] by

1
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The bound (59) will play a crucial role in the proof of Theorem 6 below. In the determination of the

order of F (�) for large N (and �xed x = N�), the bound (59) can be used when the last term in the
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Since Ek (w) < Ek�1 (w), we �nd, for k > 1, that
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The function L1 (�) requires a di¤erent treatment,
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Thus,
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 = �0:5227, we obtain the �rst-order di¤erential equation
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The main result here is the following theorem
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Proof: Using the bounds (59) for the exponential integral, the negative term in (46)Z 1
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we arrive at�
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Using the bounds (59) in the expression (47) of Lk (�) yields, for 0 � j < N ,Z 1
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When making the rather crude approximation
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A much better approximation, that is asymptotically correct for large N and constant x > 1, is
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Since the terms u[y]+h are increasingly peaked around the maximum y = N
x , we can approximate
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Using Stirling�s approximation N ! �
p
2�NNNe�N and � = �� = x

N �, we �nally obtain
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which proves the theorem after some simpli�cations. �
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