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Abstract

We present the exact solution of the classical mean-Öeld SIS epidemics on regular graphs with

general time-dependent rates. Our solution provides an explanation why Öts of measured data on

popularity of on-line social networks and of websites based on models with constant rates seem

to be so successful. Moreover, we show that oscillatory rates may model mutation behavior in

epidemics.

1 Introduction

Most papers on SIS epidemics assume, for simplicity, that the infection rate  and curing rate  are

constant, independent of time. In reality, these rates are not necessary constant during the lifetime

of an epidemic. The infection strength can diminish over time. For example, consider information

spread on a network (such as Twitter). When the news is ìhotî, it spreads fast, but after some time,

the information ages and looses attraction, so that retweeting fades. Another example of time-varying

rates stems from real epidemics, where the virus can mutate over time or where infected hosts increase

their resistance against the virus and their immune system slowly recovers to annihilate the virus.

From a modeling point of view, there are not many analytically solvable SIS-like epidemic models,

that can incorporate time-dependent rates. Kendallís linear rate birth and death process [1] is, perhaps,

the Örst epidemic model with time-dependent rates that has an analytic solution. Kendall computes

the probability that the infected subpopulation has k members. Each infected individual can infect

a susceptible member of the population with infection rate  (t). At the same time, an infected

individual can be cured at rate  (t) and leave the infected subpopulation. Solving the exact SIS

Markovian epidemics with time-dependent rates is currently intractable, even on the complete graph.

Indeed, the SIS Markovian epidemics on the complete graph can be reduced to a quadratic rate birth

and death process as shown in [2]. While a linear rate birth and death process still has an analytic

solution (as beautifully shown by Kendall [1]), we are in doubt whether a quadratic rate birth and
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death process with general time-dependent rates is solvable (as argued in [3, p. 243]). However, if a

mean-Öeld approximation is made, which is very accurate for the complete graph, then an analytic

solution is possible as we will show here.

In the N -intertwined mean-Öeld approximation (NIMFA) [4, 5], the governing equation for the

probability v (t) of infection in a node at time t in a regular graph G with degree r equals

dv (t)

dt
= r (t) v (t) (1 v (t))  (t) v (t) (1)

where the infection rate  (t) and the curing rate  (t) are general non-negative real functions of time

t. The probability v (t) at time t changes due to two possible actions: (a) if the node is healthy with

probability 1  v (t), its r infected neighbors ñ each neighbor is infected with the same probability
v (t) (due to symmetry) ñ can infect the node with instantaneous rate  (t); (b) when the node is

infected, which happens with probability v (t), a curing processes with instantaneous rate  (t) can

heal the node. Since the rates are time-varying, the infection and curing process are independent,

inhomogeneous Poisson processes [3]. As shown in [6] for regular graphs, the governing di§erential

equations are precisely the same for NIMFA and the heterogeneous mean-Öeld (HMF) approximation

[7] of Pastor-Satorras and Vespignani. Hence, the equation (1) constitutes a general SIS mean-Öeld

approximation for regular graphs. An interesting feature of (1) is its independence on the size of the

network, which avoids (or ignores) Önite-size e§ects that often complicate studies of phase transitions.

Finally, for regular graphs, the NIMFA average fraction of infected nodes y (t) = v (t) and y (t) is

coined the order parameter in statistical physics.

Equation (1) with constant rates,  (t) =  and  (t) = , has been investigated earlier by Kephart

and White [8]. Many variations on and extensions of the epidemic Kephart and White model have been

proposed (see e.g. [9]). In fact, the di§erential equation (1) with constant rates has already appeared

in earlier work (see e.g. [10, 11]) and is also known as the logistic di§erential equation of population

growth, Örst introduced by Verhulst [12] in 1845. Verhulst has deduced (1) for the population size

p (t) = v (t) at time t, with r (t) = m (population growth rate) and r (t)  (t) = n (ìundetermined
coe¢cientî) and has written the solution as

t =

Z p(t)

p0

ds

nsms2
=
1

m
ln

 
p (t)


m
n  p0



p0

m
n  p (t)


!

which is further interpreted in terms of mn and compared with demographic data.

Motivated by the large application range of the di§erential equation (1), which has to our knowledge

previously not been studied in the Öeld of epidemics, we present here a short analysis with most

mathematics deferred to the Appendices.

2 General solution of (1)

As shown in Appendix A, the di§erential equation (1) can be solved exactly, resulting in

v (t) =
exp

R t
0 (r (u)  (u)) du



1
v0
+ r

R t
0  (s) exp

R s
0 (r (u)  (u)) du


ds

(2)
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where v0 is the initial fraction of infected nodes. The crucial quantity is the net dose

 (t) =

Z t

0
(r (u)  (u)) du (3)

which equals the net average number of infection minus curing events in [0; t] at a particular node in

the regular graph. The net dose  (t), which also appears as a key quantity in Kendallís [1] model, can

be negative as well as positive and can change over time, which complicates a further general analysis

(without detailing the speciÖc functions  (u) and  (u)). In terms of the net dose, (2) becomes

v (t) =
e(t)

1
v0
+ r

R t
0  (s) e

(s)ds
(4)

Since 0 (s) = r (s)  (s) and
R t
0 

0 (s) e(s)ds = e(t)  1, we have that

r

Z t

0
 (s) e(s)ds = e(t)  1 +

Z t

0
 (s) e(s)ds

so that

v (t) =
1

1 +

1
v0
 1

e(t) + e(t)

R t
0  (s) e

(s)ds
(5)

Since1 0  e(t)
R t
0  (s) e

(s)ds  e(t)maxs2[0;t] e
(s)
R t
0  (s) ds, we deduce from (5) the lower

bound

v (t) 
1

1 +

1
v0
 1

e(t)

(6)

and the lower bound

v (t) 
1

1 +

1
v0
 1

e(t) + e(t)maxs2[0;t] e(s)

R t
0  (s) ds

(7)

Since the lowest possible value of e(t)maxs2[0;t] e(s) is one, which occurs if  (t) = maxs2[0;t]  (s),

for example, if  (t) is increasing for all t, the highest possible lower bound is achieved2

v (t) 
1

1 +

1
v0
 1

e(t) +

R t
0  (s) ds

(8)

1The mean value theorem [13, p. 65] states that, if  (x)  0 and f (x) is continuous, there exists a number a    b
such that Z b

a

f (x) (x) dx = f ()

Z b

a

 (x) dx

Application of the mean value theorem yields, with 0    t,

e(t)
Z t

0

 (s) e(s)ds = e(t)+()
Z t

0

 (s) ds

2Alternatively, after partial integration, we obtain

e(t)
Z t

0

 (s) e(s)ds =

Z t

0

 (s) e(t)
Z t

0

dse(s)0 (s)

Z s

0

 (u) du

and

v (t) =
1

1 +
R t
0
 (s) + e(t)


1
v0
 1

R t
0
dse(s)0 (s)

R s
0
 (u) du



which illustrates that, if
R t
0
dse(s)0 (s)

R s
0
 (u) du  0, the largest possible lower bound (8) is reached and this happens,

e.g. if 0 (s)  0 for s 2 [0; t].
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These bounds (6) and (7) help to evaluate some limit cases. If limt!1  (t) = 1 ! 1, then
the upper bound (6) shows that the steady-state infection probability v1 = 0. Also, if 1 is Önite,

then v1 is always smaller than 1, but larger than zero. On the other hand, if 1 ! 1, so that
limt!1 e

(t)maxs2[t0;t] e
(s) = 1, the lower bound (7) becomes

v1 
1

1 +
R1
0  (s) ds

If, in addition to 1 !1,
R1
0  (s) ds is Önite, then v1 > 0, implying that there is always a non-zero

fraction of nodes infected. On the other hand, if
R1
0  (s) ds ! 1, then v1  0 and the steady

state can still be infection free. Given that 1 =
R1
0 r (s) ds 

R1
0  (s) ds ! 1, this conclusion

is quite remarkable, because inÖnitely many more infection events can still be annihilated. In other

words, even if there is (inÖnitely) more ìinfection powerî than ìcuring powerî, the epidemics can still

disappear eventually. In some sense, this imbalance is a reáection of the asymmetry in the governing

equation (1), namely v (t) (1 v (t)) for r versus v (t) for .
If limt!1  (t) = 1 and limt!1  (t) = 1 exist, then the steady state can also be deduced from

the di§erential equation (1), leading to

0 = r1v1 (1 v1) 1v1

that has the trivial solution v1 = 0 and, with 1 = 1
1
, the non-trivial one

v1 = 1
1

r1

which resembles the classical NIMFA steady state for a regular graph. Extremal values of v (t) are

investigated in Appendix B.

2.1 Linear scaling of quantities

In measurements, a linear scaling of time t = u or q (t) = sv (t) is often useful. For example, usually,

the number of infected nodes q (t) = Nv (t) is measured, rather than the average fraction of infected

nodes or the probability of infection v (t). The time scaling (in units of either hours, minutes or

seconds), t = u, is relatively easily incorporated in the di§erential equation (1),

dv (u)

du
= r (u) v (u) (1 v (u))  (u) v (u)

DeÖning v (u) = v (u) and similarly,  (u) =  (u) and  (u) =  (u), we arrive at

dv (u)

du
= r (u) v (u) (1 v (u))  (u) v (u)

By comparing with the orginal di§erential equation (1), we conclude that the linear time transfor-

mation t = u, transforms the rate functions  (t) !  (u) and  (t) !  (u), which physically

makes sense because a rate is expressed as an average number of events per unit time.

The other scaling q (t) = sv (t) is a little more involved. After multiplying both sides of the

di§erential equation (1) by s, we observe that

d (sv (t))

dt
= fr (t)  (t)g (sv (t))

r

s
 (t) (sv (t))2
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resulting, by letting q (t) = sv (t), in the di§erential equation

dq (t)

dt
= fr (t)  (t)g q (t)

r

s
 (t) q2 (t)

which is slightly di§erent from (1). Its solution follows from the Appendix A, where the function

h (t) = r
s (t) q

2 (t) instead of h (t) = r (t) v2 (t), as

q (t) =
e(t)

1
q0
+ r

s

R t
0  (s) e

(s)ds
(9)

with the net dose  (t) still unchanged and precisely equal to (3), thus without scaling r ! r
s . Another

way to see the result (9) of the scaling q (t) = sv (t) follows by multiplying both sides of (4) by s and

using q (t) = sv (t) and q (0) = q0 = sv0,

q (t) =
v (t)
1
s

=
e(t)

1
sv0
+ r

s

R t
0  (s) e

(s)ds

In conclusion, a scaling q (t) = sv (t) only changes the degree r ! r
s in (9), but leaves the net dose

 (t) in (3) unchanged.

2.2 Examples

When the rates vary as a power in t, i.e.  (t) = tb and  (t) = td, then

 (t) =

Z t

0


rub  ud


du =

r

b+ 1
tb+1 



d+ 1
td+1

where both b > 1 and d > 1 must be positive (else  (t) does not exist). Only if the powers are
equal, b = d > 1, we can evaluate the integral in (2), leading to

r

Z t

0
 (s) exp

Z s

0
(r (u)  (u)) du


ds =

r

r  


exp


(r  )

tb+1

b+ 1


 1


and (2) becomes

v (t) =
1


1
v0
 1

1 1
r


exp

0

BB@ (r  1)

 
t


1
b+1

!b+1

b+1

1

CCA+
1

1 1
r

(10)

which generalizes the Kephart and White solution, that corresponds to b = 0, to any real power

b > 1. We observe that the exponent b is merely a form factor that does not essentially change

the physical interpretation, only the speed towards the steady state. Also, the time unit is most

conveniently expressed in terms of 
1
b+1 , i.e. t = t


1
b+1
. When 0 > b > 1, the rates decrease over

time and are very high for small t.

A more intriguing behavior is generated for oscillatory rates. We conÖne here3 to r (t) =

eat cos2 !t and  (t) = eat cos2 !t, for which the instantaneous e§ective infection rate  (t) =
(t)
(t) =

3There is a wealth of oscillatory functions such as cos (!t + '), cos (! (log t) + ') and Bessel functions Jp (t). In

fact, the real (or imaginary) part Re f (x+ it) of most analytic functions f (z) that are real on the real axis; e.g. the real

part of the Gamma function  (z) and of the Riemann Zeta function  (z).
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Figure 1: The fraction of infected nodes v (t) versus time t for oscillatory infection and curing rates

with parameters ! = 10, ! = 5 and three exponential arguments a = 0:1; 0; 0:1. The initial
fraction of infected nodes was v0 = 0:1. The inset shows the e§ect of changes in the frequencies

! = (1; 2; 3; 4; 5; 6), while ! = 10 and a = 0:5. The higher
!
!d
, the more bursty v (t) varies over time

t:

1
r


cos!t
cos!t

2
can tend to inÖnity when !

!
is not an odd integer. The net dose

 (t) = eat

0

@a
2 cos(2!t) + a

2 + 2a! sin(2!t) + 4!
2


2

a3 + 4a!2

 
a2 cos(2!t) + a

2 + 2a! sin(2!t) + 4!
2


2

a3 + 4a!2



1

A

oscillates between eat and eat. As illustrated in Fig. 1, the average fraction of infected nodes exhibits
a rich oscillatory behavior with similar features as in the simple pathogen mutation model of Girvan

et al. [14].

3 Applications and conclusion

In a study on the growth and death of websites, Ribeiro [15] has modeled measured data based on a

variant of (10) with b = 0. Although the rates in his model were constant, interestingly, Ribeiro was

able to Öt the data well. When replacing the integrals over [0; t] in  (t) by constants (that act as Öt

parameters) and noting that the sensitivity (15) of the integral in (5) is weak as shown in Appendix

C, (2) reduces roughly to the constant rate case (i.e. (10) with b = 0). Hence, Ribeiroís Öt function

also appears valid for time-dependent growth and decay of websites, which may explain the success of

Ötting the measured data of websites.

Gleeson et al. [16] investigated the popularity of memes in Twitter. When competition between

memes is ignored, their model is based on the di§erential equation (1) with constant rates,  (t) = 
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and  (t) = . Even with this constant rate model, Gleeson et al. [16] found a relatively good match

with Twitter data. Just as in Ribeiroís study, our analysis here support the wider validity of their

model.

In summary, we have derived the general solution (2, 5) of the di§erential equation (1), which

only gives a Örst-order description of many spreading phenomena, because the underlying network is

largely simpliÖed and a mean-Öeld approximation is made. In spite of these shortcomings, the model

(2, 5) seems capable to explain the success of Öt models with constant rates of measured processes

possessing time-dependent rate functions. Also, the e§ect of mutation can be modeled (in contrast to

the constant-rate logistic function).
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A Derivation of (2)

We rewrite the di§erential equation (1) as

dv (t)

dt
 fr (t)  (t)g v (t) = h (t)

where

h (t) = r (t) v2 (t)

First5, we focus on the linear di§erential, homogeneous equation,

dvh (t)

dt
 fr (t)  (t)g vh (t) = 0

whose general solution is

evh (t) = cw (t)

where c is a constant and

w (t) = exp

Z t

0
(r (u)  (u)) du



Next, we assume the existence of a solution of the form v (t) = c (t)w (t), where c (t) is a function to

be determined from the di§erential equation (1). After substitution of v (t) = c (t)w (t) into (1), we

obtain
dc (t)

dt
= r (t) c2 (t)w (t)

This non-linear Örst-order di§erential equation can be rewritten as


dc

c2
= r (t)w (t) dt

and, after integration of both sides, we Önd

1

c (t)


1

c (0)
= r

Z t

0
 (s)w (s) ds

Hence, the solution for v (t) = c (t)w (t) becomes

v (t) =
w (t)

1
c(0) + r

R t
0  (s)w (s) ds

where the constant c (0) = v (0) = v0. Finally, the solution of the di§erential equation (1) is (2).We

can verify, by substitution, that this solution (2) obeys the di§erential equation (1).

5This solution is inspired by the method of the variation of a constant, which is proven to be successful for any linear

di§erential equation.
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B Extremal values for v (t)

Next, we rewrite (1) as
dv (t)

dt
= v (t) fr (t)  (t) r (t) v (t)g

If v (t) > 0, then the sign of dv(t)dt depends on the sign of r (t)   (t)  r (t) v (t). In particular, if
1  1

r(t)  v (t) > 0, then dv(t)
dt  0, where  (t) = (t)

(t) , whereas, if 1 
1

r(t)  v (t), then dv(t)
dt  0.

This behavior reáects the stable ìattractorî

v (t) = 1
1

r (t)

because, if the value of v (t) di§ers from v (t) at any time t, the process will tend to direct v (t)

towards v (t). A consequence is also that v1 = 1  1
r is the steady state when both  (t) =  and

 (t) =  for all times t  0. Hence, if

0 < v (t) = v (t) = 1
1

r (t)

at some time t and  (t) = (t)
(t) >

1
r (due to the requirement that v (t) > 0), then

dv(t)
dt = 0, implying

that the infection process attains an extremum.

Now, consider

d2v (t)

dt2
=
dv (t)

dt
fr (t)  (t) r (t) v (t)g+

+ v (t)


r0 (t) 0 (t) r0 (t) v (t) r (t)

dv (t)

dt


(11)

In general, it is di¢cult to determine regimes where v (t) is convex or concave. However, we observe

from (11) that, at an extremal point where dv(t)
dt = 0, it holds that

d2v (t)

dt2
= v (t)


r0 (t) 0 (t) r0 (t) v (t)


(12)

When both  (t) =  and  (t) =  for all times t  0, then we Önd that d2v(t)
dt2

= dv(t)
dt = 0 if

v (t) = 1  1
r , which corresponds to the steady state. In the other cases where not both rates are

constant, (12) illustrates that, if v (t) = 1 1
r(t) > 0 and

if 1 1

r
0(t)
0(t)

 1 1
r(t) > 0 then d2v(t)

dt2
 0

implying that v (t) = 1 1
r(t) > 0 corresponds to a minimum, else,

if 1 1

r
0(t)
0(t)

 1 1
r(t) then d2v(t)

dt2
 0

and v (t) = 1 1
r(t) > 0 is a maximum. Notice that

d2v(t)
dt2

= dv(t)
dt , if

v (t) = 1
1

r (t)(t)

= 1
1

r 
0(t)
0(t)
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implying that
 (t)

 (t)
=
0 (t)

0 (t)

which is equivalent to
0 (t)

 (t)
=
0 (t)

 (t)

Hence, if the logarithmic derivatives d ln(t)dt = d ln (t)
dt are equal at some time t, then v (t) corresponds

to an ináection point, else, if d ln(t)dt < d ln (t)
dt , then v (t) is minimal; otherwise, if d ln(t)dt > d ln (t)

dt ,

then v (t) is maximal.

C Variational calculus

The expression (5) suggests us to consider the e§ect of rates  (t) and  (t) on the infection probability

v (t) (or prevalence, since y (t) = v (t) for regular graphs). We focus on

V [; ] = v1 (t) = 1 +


1

v0
 1

e(t) + e(t)

Z t

0
 (s) e(s)ds (13)

and we study how V changes when the function  (t) is slightly changed. We use functional derivatives

(see [17, p. 170]). We consider, for any x 2 [0; t],

V [ (x) +  (x) ;  (x)] = V [ (x) ;  (x)] +

Z
V

 (x)
 (x) dx+ o ( (x))

where  (x) is a small perturbation function. First,

Z
e(t)

 (x)
 (x) dx = exp

Z t

0
(r (u) + r (u)  (u)) du


 exp

Z t

0
(r (u)  (u)) du



Now,

exp

Z t

0
(r (u) + r (u)  (u)) du


= exp

Z t

0
(r (u)  (u)) du


exp


r

Z t

0
 (u) du



= exp

Z t

0
(r (u)  (u)) du


1 + r

Z t

0
 (x) dx



to Örst order in . Thus,

Z
e(t)

 (x)
 (x) dx =

Z t

0
r exp

Z t

0
(r (u)  (u)) du


 (x) dx

so that we arrive, for x 2 [0; t], at

e(t)

 (x)
= r exp

Z t

0
(r (u)  (u)) du


= re(t) (14)

Next,



 (x)


e(t)

Z t

0
 (s) e(s)ds


=
e(t)

 (x)

Z t

0
 (s) e(s)ds+ e(t)

Z t

0
 (s)

e(s)

 (x)
ds
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and invoking (14)



 (x)


e(t)

Z t

0
 (s) e(s)ds


= re(t)

Z t

0
 (s) e(s)ds+ re(t)

Z t

0
 (s) e(s)ds = 0 (15)

which illustrates that the sensitivity of e(t)
R t
0  (s) e

(s)ds on changes in the infection rate  is

negligibly small. Finally, we obtain

V

 (x)
= r


1

v0
 1

e(t)

This form shows that, merely the Örst term in (13) is sensitive to changes in the infection rate .
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