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Abstract

We show that, at the time being, the probability Pr [M (t) = k] that the number of infected

nodes M (t) at time t equals k in the Markovian continuous-time "-SIS process on the complete

graph cannot be determined exactly.

1 Introduction

In spite of the simplicity of the Markovian continuous-time SIS model, there does not seem to exist

an exact time-dependent solution for any graph. Most analytic results are known for the complete

graph as shown in [12, Sec. 17.6]. Before elaborating on the exact analytic solution of the Markovian

continuous-time SIS model on the complete graph KN containing N nodes, we brie�y review the

classical mean-�eld approximation.

For the complete graph KN , mean-�eld approximations are accurate [3, 16]. Very likely �although

there does not seem to be a rigorous proof �among all graphs, mean-�eld approximations are the most

accurate in the complete graph. In the N -intertwined mean-�eld approximation (NIMFA) [15, 11],

the governing equation for the probability v (t) of infection in a node at time t in a regular graph G

with degree r equals
dv (t)

dt
= r� (t) v (t) (1� v (t))� � (t) v (t) (1)

where the infection rate � (t) and the curing rate � (t) are general non-negative real functions of time

t. The probability v (t) at time t changes due to two possible actions: (a) if the node is healthy with

probability 1�v (t), its r infected neighbors �each neighbor is infected with the same probability v (t)
(due to symmetry) �can infect the node with instantaneous rate � (t); (b) when the node is infected,

which happens with probability v (t), a curing processes with instantaneous rate � (t) can heal the node.

Since the rates are time-varying, the infection and curing process are independent, inhomogeneous

Poisson processes [12]. The di¤erential equation (1) can be solved exactly [13], resulting in

v (t) =
exp

�R t
0 (r� (u)� � (u)) du

�
1
v0
+ r

R t
0 � (s) exp

�R s
0 (r� (u)� � (u)) du

�
ds

(2)
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where v0 is the initial fraction of infected nodes.

As shown in [6] for regular graphs, the governing di¤erential equations are precisely the same for

NIMFA and the heterogeneous mean-�eld (HMF) approximation [8] of Pastor-Satorras and Vespignani.

Hence, the equation (1) constitutes a general SIS mean-�eld approximation for regular graphs. An

interesting feature of (1) is its independence on the size of the network, which avoids (or ignores)

�nite-size e¤ects that often complicate studies of phase transitions. For regular graphs, the NIMFA

average fraction of infected nodes y (t) = v (t) and y (t) is coined the order parameter in statistical

physics. Equation (1) with constant rates, � (t) = � and � (t) = �, has been investigated earlier by

Kephart and White [5]. Many variations on and extensions of the epidemic Kephart and White model

have been proposed (see e.g. [9, 15, 7]). In fact, the di¤erential equation (1) with constant rates has

already appeared in earlier work before Kephart and White (see e.g. [2, 4]) and is also known as the

logistic di¤erential equation of population growth, �rst introduced by Verhulst [17] in 1845.

2 The number of infected nodes in KN

We consider the time-dependent "-SIS process on the complete graph, where a positive self-infection

rate " is crucial for the existence of a non-trivial steady state as shown in [12, Chapter 17]. The

number of infected nodes M (t) at time t in the complete graph KN is described by a continuous-time

Markov process on f0; 1; : : : ; Ng with the following rates:

M 7!M + 1 at rate (�M + ") (N �M)
M 7!M � 1 at rate �M:

Every infected node heals with rate �, which explains the transition rate M 7!M � 1. Every healthy
node (of which there areN�M at stateM) has exactlyM infected neighbors, each actively transferring

the virus with rate � in addition to the self-infection rate ". Alternatively, each of the M infected

nodes can infect its N �M healthy neighbors with a rate � and the N �M healthy nodes can infect

themselves with self-infection rate ".

This Markov process M (t) is a birth and death process with birth rate �k = (�k + ") (N � k) and
death rate �k = k� when it is in a state with M(t) = k infected nodes. The steady-state probabilities

�0; : : : ; �N , where �k = limt!1 Pr [M (t) = k], of a general birth-death process can be computed

exactly [12, p. 230],[14] as

�k = �0

�
N

k

�
"��k�1

�
�
"�

� + k
�

�
�
"�
� + 1

� (k > 0) (3)

and

�0 =
1PN

k=0

�
N
k

�
�k

�( "
�
�
+k)

�( "
�
� )

(4)

where the e¤ective infection rate � = �
� and "

� = "
� . Thus, �0 is the steady-state probability that the

complete graph KN is infection free or overall healthy. When "! 0 for N �xed, we observe from (3)

that lim"!0 �k = 0 for k > 0 and, consequently, that lim"!0 �0 = 1, which re�ects that the steady

state of the SIS process (in any �nite graph) is the overall-healthy state or absorbing state.
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3 A generating function approach

We denote the probability that the number of infected nodes M (t) at time t equals k (or that the

"-SIS process at time t is in state k) by

sk (t) = Pr [M (t) = k] (5)

By convention, we agree that sk (t) = 0 if k > N or if k < 0. Thus, s0 (t) is the probability that the

epidemic dies out at time t or that the complete graph KN is infection free at time t, but only remains

infection free provided the self-infection rate " = 0. Further, the steady-state probabilities

�k = lim
t!1

sk (t)

are explicitly known in (3). The birth rate �k = (�k + ") (N � k) = ��k2 + (N� � ") k + N" is
quadratic in k and the death rate �k = �k is linear in k for any state k 2 f0; 1; 2; : : : ; Ng. The
time-dependent evolution of the constant birth and death process [12, p. 239] as well as the linear

birth and death process is described in [12, p. 243]. Here, we study the quadratic birth and death

process, whose solution has, by the best of our e¤orts, not yet appeared in the literature.

Applying the di¤erential equations of a general birth and death process to "-SIS process yields the

set

s00(t) = �s1(t)�N"s0 (t) (6)

s0k(t) =
�
�k2 � (N� + � � ") k �N"

	
sk(t) (7)

+
n
�� (k � 1)2 + (N� � ") (k � 1) +N"

o
sk�1(t) + � (k + 1) sk+1(t)

where all involved rates �; � and " can depend upon time t. The �rst di¤erential equation (6) is

incorporated in the general one (7) for k = 0, since s�1 (t) = 0 by our convention. If k = N , then

�N = 0 as well as sN+1 (t), so that (7) reduces to

s0N (t) = ��NsN (t) + f� (N � 1) + "g sN�1(t)

Since the "-SIS epidemic must always be in one of the possible states, there holds that
PN
k=0 sk (t) = 1.

Following the general method illustrated in [12, Sec. 11.3.3-11.3.4] for the constant and linear rate

birth and death process, we start by de�ning the probability generating function (pgf)

'(x; t) = E
h
xM(t)

i
=

NX
k=0

sk(t)x
k (8)

which we can equally well write as '(x; t) =
P1
k=0 sk(t)x

k, according to the convention that sk (t) = 0

if k > N or if k < 0. For any probability generating function 'X(z) = E
�
zX
�
=
P1
k=0 Pr [X = k] zk,

the radius R of convergence around z = 0 in the complex z-plane is at least equal to one, because for

jzj � 1, it holds that j'X(z)j �
P1
k=0 Pr [X = k] jzjk �

P1
k=0 Pr [X = k] = 'X(1) = 1.

Theorem 1 In the time-dependent "-SIS process on the complete graph KN , the probability generating
function '(x; t) of the number of infected nodes M (t) at time t obeys the partial di¤erential equation

@'

@t
= (x� 1)

�
��x2@

2'

@x2
+ f[(N � 1)� � "]x� �g @'

@x
+N"'

�
(9)
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Proof: After multiplying both sides in (7) by xk and summing over all k � 0, the �rst line in (7)
is transformed as

T1 =

NX
k=0

�
�k2 � (N� + � � ") k �N"

	
sk(t)x

k

With @'
@x =

PN
k=0 ksk(t)x

k�1 and @2'
@x2

=
PN
k=0 k (k � 1) sk(t)xk�2, we have

T1 = �x
2@

2'

@x2
� ((N � 1)� + � � ")x@'

@x
�N"'

Similarly, the transform of the second line in (7) taking our convention s�1 (t) = 0 into account is

T2 =
NX
k=1

n
�� (k � 1)2 + (N� � ") (k � 1) +N"

o
sk�1(t)x

k

leading to

T2 = ��x3
@2'

@x2
+ ((N � 1)� � ")x2@'

@x
+N"x'

Finally, the transform of the third and last line in (7) is, with sN+1 (t) = 0,

T3 = �
NX
k=0

(k + 1) sk+1(t)x
k = �

N+1X
k=1

ksk(t)x
k�1 = �

NX
k=1

ksk(t)x
k�1 = �

@'

@x

Equating the three right-hand side contributions T1 + T2 + T3 and the transform of the left-hand side

in (7) yields

@'

@t
= ��x2 (x� 1) @

2'

@x2
+ f(N � 1)�x (x� 1)� "x (x� 1)� � (x� 1)g @'

@x
+N" (x� 1)'

Thus, we �nd the partial di¤erential equation (9). �

The factor (x� 1) at the right-hand side of (9) is a consequence of the conservation of probability
at any time t, namely that '(1; t) =

P1
k=0 sk(t) = 1, implying that the "-SIS stochastic process is

surely in one of the possible states. Furthermore, @'
@x

���
x=1

=
P1
k=0 ksk(t) is the average number of

infected nodes at time t. Hence, the average fraction of infected nodes at time t equals

y (t; �) =
1

N

@' (x; t)

@x

����
x=1

(10)

Initial condition. The "-SIS process can start with a certain probability distribution, which then
requires that the initial state vector s (0) = (s0 (0) ; s1 (0) ; : : : ; sN (0)) is given. When precisely m

nodes in KN are infected initially at t = 0, then the boundary condition '(x; 0) =
P1
k=0 �kmx

k = xm.

Clearly, the value of m > 0 must exceed zero, because '(0; t) = s0(t) is the probability that the

complete graph is infection free at time t and, on the long run, limt!1 '(0; t) = �0 is given by (4).

Con�nement. In the sequel, we limit ourselves to constant rates: none of the infection rate �,
self-infection rate " or curing rate � is a function of time t. In addition, we assume that the "-SIS

process starts at t = 0:
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3.1 The steady-state probability generating function '1(x)

The steady-state probability generating function (assuming constant rates) equals with (3)

lim
t!1

'(x; t) =
1X
k=0

lim
t!1

Pr [M (t) = k]xk =
1X
k=0

�kx
k = '1(x)

where

'1(x) = �0 +
"��0

��
�
"�
� + 1

� NX
k=1

�
N

k

�
�

�
"�

�
+ k

�
(�x)k (11)

Thus, if " = 0, then �0 = 1 and there holds that limt!1 '(x; t) = '1(x) = 1. If " > 0, the steady-

state probability generating function '1(x) is a polynomial of degree N in x, which is more elegantly

written as

'1(x) =
�0

�
�
"�
�

� NX
k=0

�
N

k

�
�

�
"�

�
+ k

�
(�x)k (12)

and the general relation for any pgf, '1(1) = 1, also follows from (4). Finally, '1(x) is a function of

three parameters

'1(x) = '1(x; �; "
�; N)

The partial di¤erential equation (9) simpli�es, in the steady state for t!1 and @'
@t = 0, to

��x2@
2'1
@x2

+ f[(N � 1)� � "]x� �g @'1
@x

+N"'1 = 0 (13)

Introducing the integral for the Gamma function � (s) =
R1
0 us�1e�udu, valid for Re (s) > 0, into

(12) yields

'1(x) =
�0

�
�
"�
�

� NX
k=0

�
N

k

�
(�x)k

Z 1

0
u
"�
�
+k�1e�udu

=
�0

�
�
"�
�

� Z 1

0
u
"�
�
�1e�u

(
NX
k=0

�
N

k

�
(u�x)k

)
du

Invoking Newton�s binomium leads to an integral representation1 of the steady-state probability gen-

erating function for " > 0,

'1(x; �; "
�; N) =

�0

�
�
"�
�

� Z 1

0
u
"�
�
�1e�u (1 + u�x)N du (15)

1Assuming a positive real x and letting w = (�x)u, we �nd

'1(x) =
�0

(�x)
"�
� �

�
"�
�

� Z 1

0

e�
w
�xw

"�
�
�1 (1 + w)N dw

We conclude that the steady-state probability generating function '1(x) can be written as

'1(x) =
�0

(�x)
"�
�

U

�
"�

�
;
"�

�
+ 1 +N;

1

�x

�
(14)

where the con�uent hypergeometric function [1, 13.2.8]

U (a; b; z) =
1

� (a)

Z 1

0

e�ztwa�1 (1 + w)b�a�1 dt

is one of the independent solutions of Kummer�s di¤erential equation x d
2f
dx2

+ (b� x) df
dx
� af = 0 (see e.g. [1, Chapter

13]).
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3.2 General solution of the partial di¤erential equation (9)

Theorem 2 In the time-dependent "-SIS process on the complete graph KN with constant infection

rate �, self-infection rate " and curing rate �, the probability generating function '(x; t) of the number

of infected nodes M (t) at time t can be written as a Laplace transform

'(x; t) =

Z 1

0
e�ctg (x; c) dc (16)

where the function g (x; c) obeys the di¤erential equation

�x2 (x� 1) d
2g

dx2
+

��
(N � 1)� "

�

�

�
x� 1

�

�
(x� 1) dg

dx
+
1

�
(N"� (x� 1) + c�) g = 0 (17)

and � = �
� , "

� = "
� and c

� = c
� � 0.

Proof: The usual recipe of the separation of the variables t and x, by assuming that a solution in
product form as '(x; t) = g (x)h (t) exists, transforms (9) to

@ log h

@t
=
(x� 1)
g

�
��x2 d

2g

dx2
+ f[(N � 1)� � "]x� �g dg

dx
+N"g

�
(18)

By taking the derivative of both sides with respect to x, we �nd with @
@x

@ log h
@t = 0 that

(x� 1)
g

�
��x2 d

2g

dx2
+ f[(N � 1)� � "]x� �g dg

dx
+N"g

�
= c1 (19)

where c1 is a constant that is neither a function of x nor of t, because the left-hand side in (19) is

independent of t. Similarly, by taking the derivative of both sides in (18) with respect to t, we �nd

that
@ log h

@t
= c2 (20)

and (18) shows that c1 = c2 = �c.
We rewrite (19) with "� = "

� and c
� = c

� to �nd (17).

From (20), we �nd h (t) = h (0) e�ct for the time t � 0. If c were complex and Im (c) 6= 0, then

h (t) = h (0) e�Re(c)t (cos t Im (c) + i sin t Im (c)) and '(x; t) = g (x)h (t) is generally complex for t > 0.

However, the de�nition (8) of the pgf '(x; t) illustrates that '(x; t) is real for real x at any time t � 0.
Hence, c must be real. Moreover, since the asymptotic pgf limt!1 '(x; t) = '1(x) exists, c must be

non-negative, otherwise limt!1 h (t) = h (0) limt!1 e�ct = 1. We conclude that the eigenvalue c is
real and non-negative.

The general solution of the eigenvalue di¤erential equation in c consists of a linear combina-

tion
P
c�0 e

�ctg (x; c) if the eigenvalues c are discrete. Generally, one readily veri�es that '(x; t) =R1
0 e�ctg (x; c) dc satis�es the partial di¤erential equation (9) provided that g (x; c) is a solution of the

di¤erential equation (17) as a function of the �eigenvalue�c. �

In fact, we need to solve an eigenvalue problem that can be expanded in a Sturm-Liouville series

[10]. For c = 0, the di¤erential equation (17) reduces to the di¤erential (13) and we conclude that

g (x; 0) = '1(x)
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The "-SIS process on the complete graph KN with N nodes is described by a general birth-death

process by the di¤erential equations (6) and (7). This set of linear di¤erential equations possesses

a general (N + 1) � (N + 1) tri-diagonal matrix, whose eigenstructure is studied in depth in [12,

A.6.3]. The N +1 non-negative, real eigenvalues (and one of them is zero) imply that the eigenvalues

c are a discrete set fc0 = 0; c1; : : : ; cNg, so that the Laplace integral in (16) will reduce to a sum
'(x; t) = '1(x) +

PN
k=1 e

�cktg (x; ck) for �nite size N .

The second-order di¤erential equation (17) in the function g is of the type

x2 (1� x) d
2g

dx2
+ (ax+ b) (1� x) dg

dx
+ (�+ d (1� x)) g = 0 (21)

where a = "�

� � (N � 1), b = 1
� , d = N "�

� and � = c�

� are real numbers. Unfortunately, (21) does

not seem to be of a known type. Gauss�s hypergeometric function F (a; b; c;x) obeys the di¤erential

equation [1, Chapter 15]

x (1� x) d
2g

dx2
+ [c� (a+ b+ 1)x] dg

dx
� abg = 0

Slightly more general, (17) is of the type

p3 (x) g
(2) (x) + p2 (x) g

(1) (x) + p1 (x) g (x) = 0

where pk (x) is a polynomial in x of degree k, where the hypergeometric di¤erential equation is of the

form

p2 (x) g
(2) (x) + p1 (x) g

(1) (x) + p0 (x) g (x) = 0

In conclusion, unless an analytic solution of the di¤erential (21) can be found, we are afraid that

the probability sk (t) = Pr [M (t) = k], that the number of infected nodes M (t) at time t equals k

in the Markovian continuous-time "-SIS process on the complete graph KN , cannot be determined

exactly.

Acknowledgement. I am grateful to Johan Dubbeldam for checking the computations and for

useful discussions.
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A Reduction of the di¤erential equation (17) to the standard form

We aim to transform (21) into the form [10]

d2y

du2
+ (�� q (u)) y (u) = 0 (22)

The standard form has many interesting properties. First, the Wronskian is constant in u. Second,

Titchmarsh [10] gives, at the beginning of the chapters, insight in the spectrum of � and he also

presents bounds to the solution y.

We make the transformation x = h (u), so that u = h�1 (x). Thus, by using the chain rule and

denoting f (u) = g (h (u)), we have

dg (x)

dx
=
d

du
g (h (u))

du

dx
=
df

du

1
dx
du

=
1

h0 (u)

df

du

and
d2g (x)

dx2
=
d

dx

�
dg (x)

dx

�
=
d

du

�
dg (x)

dx

�
du

dx
=

1

(h0 (u))2
d2f

du2
� h00 (u)

(h0 (u))3
df

du

We obtain

h2 (1� h)
(h0 (u))2

d2f

du2
+
(1� h)
h0 (u)

�
(ah+ b)� h2 h

00 (u)

(h0 (u))2

�
df

du
+ (�+ d (1� h)) f = 0 (23)

Nex, we choose h such that h2 (1� h) 1
(h0(u))2

= 1. Thus, h2 (1� h) = (h0 (u))2 or dhdu = �h
p
1� h and

integrated

�
Z

dh

h
p
1� h

= u

As in Tichmarsh [10], we assume the positive sign and �nd

u = log
1�

p
1� h

1 +
p
1� h

and, inversed,

x = h (u) = sech2
�u
2

�
Thus, x = h (u) = sech2

�
u
2

�
and u = 2ArcSech(

p
x), which is only real and positive for x 2 (0; 1).

After introducing h (u) = sech2
�
u
2

�
into (23) yields

d2f

du2
+

�
coshu� 2
sinhu

� a tanh u
2
� b

2
sinhu

�
df

du
+
�
�+ d tanh2

u

2

�
f = 0

Let

r (u) =
coshu� 2
sinhu

� a tanh u
2
� b

2
sinhu (24)

then we obtain the di¤erential equation in f (u) = g
�
sech2

�
u
2

��
and x = sech2

�
u
2

�
or u = 2ArcSech(

p
x),

d2f

du2
+ r (u)

df

du
+
�
�+ d tanh2

u

2

�
f = 0

We proceed with the reduction to the standard form by considering f (u) = p (u) s (u) and the

above di¤erential equation becomes

0 = p00 (u) + p0 (u)

�
2
s0 (u)

s (u)
+ r (u)

�
+ p (u)

�
s00 (u)

s (u)
+ r (u)

s0 (u)

s (u)
+
�
�+ d tanh2

u

2

��
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The standard form requires that 2 s
0(u)
s(u) + r (u) = 0, or

2
d

du
log s (u) = �r (u)

and

s (u) = exp

�
�1
2

Z
r (u) du

�
Explicitly, we have

s (u) = exp

�
�1
2

Z
r (u) du

�
=
tanhu

�
cosh u2

�a
p
sinhu

e
b
4
coshu (25)

From 2 s
0(u)
s(u) + r (u) = 0 or

s0(u)
s(u) = �

1
2r (u), equivalent to 2s

0 (u) + s (u) r (u) = 0, we �nd that

s00 (u) = �1
2
s0 (u) r (u)� 1

2
s (u) r0 (u)

which we use in

X =
s00 (u)

s (u)
+ r (u)

s0 (u)

s (u)
= �1

4

�
r2 (u) + 2r0 (u)

	
Hence, with s (u) in (25) and obeying s0(u)

s(u) = �
1
2r (u) and with p (u) =

f(u)
s(u) , we arrive at

p00 (u) + p (u)

�
�+ d tanh2

u

2
� 1
4

�
r2 (u) + 2r0 (u)

	�
= 0

so that

q (u) =
1

4

�
r2 (u) + 2r0 (u)

	
� d tanh2 u

2
(26)

We now compute q (u). From the de�nition (24) of r (u),

r2 (u) + 2r0 (u) = 1� a+ a (a+ 1) tanh2 u
2
+ b

�
b

4
coshu+

b

4
� 2
�
(coshu� 1) + 1

sinh2 u

+ a tanh
u

2

�
b sinhu� 2coshu� 2

sinhu

�
which is not such an insightfull expression!

Finally, we arrive with p (u) = f(u)
s(u) at the standard form

p00 (u) +

�
�+ d tanh2

u

2
� 1
4

�
r2 (u) + 2r0 (u)

	�
p (u) = 0

Explicitly, with �0 = �+ a
4 �

b
2

p00 (u) +

 
�0 +

�
d� a2

4 �
a
4

�
tanh2 u2 �

b2

16 sinh
2 u� cosh2 u+2

4 sinh2 u
� ab

4 sinhu tanh
u
2

+1
2a tanh

u
2
coshu�2
sinhu + b

2 coshu

!
p (u) = 0
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