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Abstract

An epidemic spreads over the network via infectious links between healthy and infected nodes.

The rate of increase in the number of infected nodes depends on the number of infectious links,

called the cut size. After reviewing results on the cut size, its average and variance are computed

in a simpli�ed case, where each node has equal infection probability v, independent of all the other

nodes. Although the simpli�ed case is approximate for an epidemic process, high degree variance

graphs are shown to di¤use information and diseases in the fastest and most bursty way. Moreover,

variations of the cut size divided by the mean cut size decrease with v and are minimum for any

graph at v = 1
2 .

1 Introduction

Motivated by its crucial role in the spead of epidemics on networks as reviewed below, we investigate

the cut size, which equals the number of links between two partitions of a graph. The determination

of and tight bounds on the cut size continue to play a central role in graph theory. Here, we �rst

review in Section 2 the state of the art about the cut size from an epidemic perspective, where a viral

item propagates from infected nodes towards healthy nodes through links of the cut-set. Additional

results are given in the Appendices. In Section 3, we provide a probabilistic estimate for a simpli�ed

case, where all nodes possess a same probability to belong to the infected partition.

We consider an unweighted, undirected graph G containing a setN of N nodes (also called vertices)

and a set L of L links (also called edges). The topology of the graph is represented by a symmetric
N � N adjacency matrix A. In a SIS epidemic process on G, the viral state of a node i at time t

is speci�ed by a Bernoulli random variable Xi (t) 2 f0; 1g: Xi (t) = 0 for a healthy, but susceptible

node and Xi (t) = 1 for an infected node. A node i at time t can be in one of the two states: infected,

with probability vi(t) = Pr[Xi(t) = 1] or healthy, with probability 1 � vi(t), but susceptible to the
infection. We assume that the curing process per node i is a Poisson process with rate � and that the

infection rate per link is a Poisson process with rate �. Obviously, only an infected node can infect its

direct neighbors, that are still healthy. Both the curing and infection Poisson process are independent.
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The e¤ective infection rate, sometimes also called the spreading rate [1], is de�ned by � = �
� . This

is the general continuous-time Markovian description of the simplest type of a SIS epidemic process

on a network. We do not consider non-Markovian epidemics [2, 3, 4] nor self-infections [5]. The exact

Markovian SIS governing equation [6, 7] for the infection probability of node i,

dE [Xi]

dt
= E

"
��Xi + � (1�Xi)

NX
k=1

akiXk

#
(1)

shows that the time-derivative of the infection probability E [Xi] = Pr [Xi = 1] of a node i consists of

the expectation of two competing processes, expressed in the Bernoulli random variable Xi 2 f0; 1g:
(1) while node i is healthy, i.e. not infected (1�Xi), all infected neighbors

PN
k=1 akiXk of node i try

to infect the node i with rate � and (2) while node i is infected Xi, the node i is cured at rate �.

We de�ne the fraction of infected nodes by

S (t) =
1

N

NX
i=1

Xi (t) (2)

We denote the average fraction of infected nodes, also called the prevalence, by

y (t; �) = E [S (t)] =
1

N

NX
i=1

E [Xi (t)] =
1

N

NX
i=1

vi(t) (3)

that obeys, as demonstrated in [8] and further studied in [9, 10], the di¤erential equation

dy (t�; �)

dt�
= �y (t�; �) + �

N
E
h
w (t�; �)T Qw (t�; �)

i
(4)

where t� = �t is the scaled time, Q = ��A is the Laplacian of the graphG with� = diag(d1; d2; : : : ; dN )
and di is the degree of node i in G, and the Bernoulli vector w = (X1; X2; : : : ; XN ).

2 Cut-set of a graph

We apply the basic [11, p. 72] Laplacian property1 xTQx =
P
l2L (xl+ � xl�)

2, where the link l

connects the node l+ and node l�, to the Bernoulli vector w = (X1; X2; : : : ; XN ),

wTQw =
X
l2L

(Xl+ �Xl�)2 (5)

1By using the de�nition Q = ��A, where an element aij 2 f0; 1g of the adjacency matrix A speci�es the existence
of a link between node i and j in the graph, the quadratic form equals

xTQx =
X
l2L

(xl+ � xl�)2 =
1

2

NX
i=1

NX
j=1

aij (xi � xj)2

=
1

2

NX
i=1

NX
j=1

aijx
2
i +

1

2

NX
i=1

NX
j=1

aijx
2
j �

NX
i=1

NX
j=1

aijxixj

=

NX
i=1

dix
2
i �

NX
i=1

NX
j=1

aijxixj = x
Tdiag (dj)x� xTAx
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Since any nodal infection state Xi 2 f0; 1g, we observe that (Xl+ �Xl�)2 is zero, if both endnodes are
in the same state, while (Xl+ �Xl�)2 = 1, if both endnodes of link l are in a di¤erent state. Hence,

wTQw =
X
l2L

(Xl+ �Xl�)2 � L

where equality in the upper bound can be attained for bipartite graphs. Only the infectious links

between infected and healthy endnodes contribute to wTQw. Alternatively, the quadratic form wTQw

equals the cut size, which is the number of links in the cut-set, de�ned in turn as the set of links with

one healthy endnode, while the other endnode is infected (illustrated in Fig. 1 in [12]). When V
denotes the set of jVj = V = NS infected or viral nodes in the graph G and its complement Vc the
set of jVcj = N (1� S) healthy nodes, then the cut-set is often denoted by @V with corresponding cut
size equal to

j@Vj = wTQw

where wj = 1 if node j 2 V, else wj = 0.
The probability that there is an infectious link directed from node i to j is

Pr [Xi = 1; Xj = 0] = E [Xi (1�Xj)] = E [Xi]� E [XiXj ] (6)

which clearly vanishes if i = j. The net probability �ux follows as

�ij = Pr [Xi = 1; Xj = 0]� Pr [Xi = 0; Xj = 1] = E [Xi]� E [Xj ]

Physically, we may interpret the right-handside as the �probability potential�di¤erence responsible

for a net �probability�current. With the de�nition (6), the SIS governing equation (1) becomes

dE [Xi]

dt
+ �E [Xi] = �

NX
k=1

aki Pr [Xk = 1; Xi = 0] (7)

Summing (7) over all nodes and rewritten in terms of the prevalence (3) yields

dy (t; �)

dt
+ �y (t; �) =

�

N

NX
i=1

NX
k=1

aki Pr [Xk = 1; Xi = 0]

Comparison with the earlier expression (4) shows that the average number of links in the cut-set

between healthy and infected nodes is2

E
�
wTQw

�
=

NX
i=1

NX
k=1

aki Pr [Xk = 1; Xi = 0] (8)

2Another way (see Theorem 17.3.2 in [7, p. 458]) to establish (8) starts by applying the basic [11, p. 72] Laplacian prop-

erty (5). For Bernoulli indicators, it holds that (Xl+ �Xl�)
2 = Xl+ +Xl� �2Xl+Xl� = Xl+ (1�Xl�)+Xl� (1�Xl+)

and

wTQw =
X
l2L

fXl+ (1�Xl�) +Xl� (1�Xl+)g =
NX
i=1

NX
k=1

akiXk (1�Xi)

Taking the expectation of both sides results in (8).
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The expected cutsize equals the joint probability over all node pairs in which neighboring nodes in

the graph are in a di¤erent infectious state; also, rewritten as

E [j@Vj] =
X
l2L

Pr [Xl+ = 1; Xl� = 0] + Pr [Xl� = 1; Xl+ = 0]

These joint probabilities Pr [Xk = 1; Xi = 0] in a Markovian SIS process can be determined precisely as

shown in [6, 7], but require the knowledge of the joint probabilities over all triples of nodal states, which

in turn requires all combinations of four nodal states and so on. Eventually, the exact determination

leads to 2N linear di¤erential equations and this exponentially large number in N is a �nger print of

the NP-hard nature of the cutsize problem.

2.1 Cut size: topological perspective

If one cluster consists of a single node j, the cut size equals j@Vj = dj , the degree of node j. Clearly,
the minimum cut size for V = 1 equals j@Vjmin = dmin and the maximum cut size is j@Vjmax = dmax.
If one cluster consists of two nodes j and l, then j@Vj = dj + dl � ajl and the cut size for V = 2 is

bounded by dmin + d(N�1) � 1 � j@Vj � dmax + d(2), where d(i) denotes the i-th largest degree in G
so that dmax = d(1) � d(2) � : : : � d(N) = dmin. In general for a cluster with V nodes, the cut size

j@Vj = wTQw = wT (��A)w is
j@Vj =

X
i2V

di �
X
i2V

X
j2V

aij (9)

where the last sum wTAw equals all links in the subgraph GV of G on V nodes. Since
PN�V+1
i=N d(i) �P

i2V di �
PV
i=1 d(i) and 0 �

P
i2V
P
j2V aij � 2

�
V
2

�
, but

PN�V+1
i=N d(i)� 2

�
V
2

�
� 0, the cut size in any

connected graph is bounded by

1 � j@Vj �
VX
i=1

d(i)

which illustrates the complicated dependence on the number V of infected nodes. In summary, we

�nd the �topological�bounds of the cut size in a connected graph,

1 � j@Vj � L (10)

2.2 Cut size: spectral perspective

Since �N = 0 and �N�1 > 0 in a connected graph, the quadratic form (36) provides the powerful

spectral representation3 for the cut size

j@Vj =
N�1X
j=1

�2j �j (11)

which consists of N�1 terms, whereas the topological counter part j@Vj =
P
l2L (wl+ � wl�)

2 contains

at least N � 1 terms in any connected graph.

3Several scalings are possible. For example, de�ne the (N � 1) � 1 vector p =
�

�21
NS(1�S) ;

�22
NS(1�S) ; : : : ;

�2N�1
NS(1�S)

�
so that pTu = 1 and the (N � 1) � 1 vector �+ =

�
�1
dav
; �2
dav
; : : : ;

�N�1
dav

�
obeying uT�+ = N , then (11) becomes

wTQw
davNS(1�S) = p

T�+:
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We introduce the de�nition (41) of the di¤erence vector $ into the quadratic form, invoking the

characteristic property Qu = 0 of any Laplacian,

wTQw = $TQ$

After invoking the inequality [7, (5.4) on p. 99],

�N�1 �
$TQ$

$T$
=

PN�1
k=1 �k

�
$T zk

�2PN�1
k=1 ($

T zk)
2 � �1

we �nd with (43) the �spectral�bounds of the cut size in a connected graph

NS (1� S)�N�1 � j@Vj � NS (1� S)�1 (12)

These upper and lower bounds were derived earlier in [9, Appendix B.2] by a di¤erent method.

If S = 1
N , then the topological lower bound in (10) equals dmin, while the spectral lower bound

in (12) is
�
1� 1

N

�
�N�1 < �N�1 � dmin, where the latter inequality is deduced in [11, p. 82]. The

argument illustrates that the topological lower bound (10) is tighter for S = 1
N than the spectral one

(12). The upper bound in (12), NS (1� S)�1 � N
4 �1, may vary between

L
2 �

N
4 �1 �

N2

4 , while the

topological upper bound L can lie in between these bounds, so that a general comparison is di¢ cult.

Although producing tighter upper and lower bounds than in (12) is di¢ cult, we recently found [13]

for 1 � K < N ,

K�1X
k=1

s2k0 (�k0 � �K0) +NS (1� S)�K0 � j@Vj �
K�1X
k=1

s2k (�k � �K) +NS (1� S)�K (13)

where k0 = N � k, K 0 = N � K and s2k = max

��PNS
i=1

�
z#k

�
i

�2
;
�P(1�S)N

i=1

�
z#k

�
i

�2�
in which the

vector z#k has the same components as the eigenvector zk, but ordered as
�
z#k

�
1
�
�
z#k

�
2
� � � � �

�
z#k

�
N
.

If K = 1, then (13) reduces to (12).

2.3 Isoperimetric bound on the cut size j@Vj in a connected graph

Chung [14] presents a comprehensive study on isoperimetric inequalities in graphs, from which we

mention

Theorem 1 (Theorem 5 in [14]) Suppose that a graph G with N nodes has average degree dav.

Then, for any two disjoint subsets X and Y of nodes in G, the number e(X;Y ) of (ordered) links with

�rst endpoint in X and the second endpoint in Y satis�es����e (X;Y )� davN jXj jY j
���� � max1�j�N�1 j�j � davj

N

p
jXj (N � jXj) jY j (N � jY j) (14)

For the speci�c case, where set Y = GnX is the complement of set X so that N � jXj = jY j, we
provide here a slightly better bound than (14) and discuss, in particular, the right-hand side error

bound.
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Theorem 2 The number j@Vj of infective links in a graph G on N nodes and with L links, in which

a fraction S of the nodes is infected, is upper bounded by����j@Vj � 2LN

N � 1S (1� S)
���� � max

1�j�N�1

�����j � Ndav
N � 1

����NS (1� S) (15)

Proof: The spectral form (11), slightly rewritten for a real number � as,

j@Vj � �
N�1X
j=1

�2j =
N�1X
j=1

(�j � �) �2j

leads, invoking (45), to

j@Vj � �NS (1� S) =
N�1X
j=1

(�j � �) �2j

from which it follows that

jj@Vj � �NS (1� S)j �
N�1X
j=1

j�j � �j �2j (16)

The right-hand side is upper bounded by the Cauchy-Schwarz inequality (see e.g. [7, p. 107]) as0@N�1X
j=1

j�j � �j �2j

1A2 � N�1X
j=1

(�j � �)2
N�1X
j=1

�4j (17)

We proceed by determining the value of � that minimizes the right-hand side. The sum
PN�1
j=1 (�j � �)

2

is minimized when �� = 1
N�1

PN�1
j=1 �j , which either follows by straightforward calculus or directly

using the variational principle [7, p. 13] of the variance of a random variable. Furthermore, since any

N �N Laplacian matrix Q possesses a zero eigenvalue �N = 0, we �nd that the minimizer

�� =
1

N � 1

NX
j=1

�j =
N

N � 1E [�]

where, switching to the stochastic counterpart, E [�] denotes the expectation of a randomly chosen

eigenvalue of the Laplacian matrix Q, which also equals E [�] = E [D], but the variance Var[�] =

Var[D] + E [D] as shown in [11, p. 68-69]. Thus, the minimizer �� = E [�+] = N
N�1E [�] equals the

mean of the positive Laplacian eigenvalues, which is slightly larger than the average degree dav = 2L
N

in the graph. Introducing the minimizer �� = N
N�1dav into (16) results into����j@Vj � N

N � 1davNS (1� S)
���� � N�1X

j=1

�����j � N

N � 1dav
���� �2j

We upper bound the right-hand side in a rather crude way as

N�1X
j=1

�����j � N

N � 1dav
���� �2j � max

1�j�N�1

�����j � N

N � 1dav
����N�1X
j=1

�2j

where equality is only attained when �j� N
N�1dav is the same for any j, and thus only for the complete

graph. Invoking (45), we arrive at the isoperimetric inequality (15). �
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We rephrase (15) in terms of Chung�s Theorem 1. The isoperimetric inequality (15) approximates

the number of infective links j@Vj = e (X;Y ) by dav
N�1 (NS) (N �NS), the product of the number

NS = jXj of infected nodes and the number jY j = N � NS of susceptible nodes multiplied by a
constant probability dav

N�1 that an infectious link exists between with cluster X and Y . In contrast

to Chung�s Theorem 1, the isoperimetric inequality (15) is exact for the complete graph KN , where

�j = N for 1 � j < N , thus
j@VjjKN

= NS (N �NS)

is the largest possible in any graph on N nodes, given a same Bernoulli vector w. If one node, say l,

is infected and S = 1
N , then w = el so that j@Vj = dl and the bound on the isoperimetric inequality

(15) jdl � davj � max1�j�N�1
��N�1
N �j � dav

�� is sharp. We have mentioned that the upper bound in
(15) is rather crude, so that the approximation wTQw � 2LN

N�1S (1� S) is generally better than the
upper bound indicates, which has motivated the probabilistic approach in Section 3.

We end this section by providing an alternative approach to the isoperimetric inequality. Consider

N�1X
j=1

(�j � �)2 �2j =
N�1X
j=1

�2j�
2
j � 2�

N�1X
j=1

�j�
2
j + �

2
N�1X
j=1

�2j

= wTQ2w � 2�wTQw + �2NS (1� S)

which is minimized if � equals e� = wTQw

NS (1� S)
yielding

N�1X
j=1

�
�j � e��2 �2j = wTQ2w � �

wTQw
�2

NS (1� S) � 0 (18)

and
N�1X
j=1

�
�j � e�� �2j = 0

Inequality (17) indicates that
PN�1
j=1 j�j � �j �2j is minimized if � equals �� = E [�+] =

N
N�1E [�] =

N
N�1dav. The di¤erence h =

e� � �� between the two minimizers,
h =

j@Vj
NS (1� S) �

N

N � 1dav

re�ects the precise isoperimetric equality. A sharp isoperimetric inequality thus requires to accurately

lower and upper bound jhj.

3 When components of the Bernoulli vector w are independent

In this section, we provide a probabilistic estimate of the cut size j@Vj in the special case, where we
assume that

(a) each component wk of the N � 1 Bernoulli vector w is a Bernoulli random variable with mean

E [wk] = v and
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(b) each component of w is independent from any other component.

The assumption (a) and (b) mean that each node k has equal probability v to be infected, inde-

pendent of the infection state of any other node. Clearly, this assumption is con�ning. For example, in

any irregular graph, where not all nodes have the same degree, some nodes have higher probability of

infection than others. Examples are hubs (or large degree nodes) in networks. In reality, the infection

of some clusters V is thus more probable than that of others. However, without the assumptions

(a) and (b), an analysis as presented here is intractable and we can only resort to the SIS governing

equation (1) or the prevalence di¤erential equation (4), that cannot be solved analytically so far (not

even for the complete graph [7, p. 456]).

Assumption (a) that E [wk] = v for all 1 � k � N nodes leads to E [w] = v:u. In terms of the

de�nition (3) of the prevalence, we observe that y = 1
NE

�
wTu

�
= v. Under the assumption (a) of

equal expectation E [wk] = v for all 1 � k � N , the expectation of the random vector � = ZTw is

E [�] = ZTE [w] = vZTu =
p
NveN

or, component-wise, (
E [�j ] = 0 for 1 � j < N
E [�N ] = v

p
N

(19)

The joint expectation follows from (39) as

E [�j�m] = E

"
NX
k=1

NX
l=1

(zj)k (zm)l wkwl

#
=

NX
k=1

NX
l=1

(zj)k (zm)lE [wkwl]

=
NX
k=1

(zj)k (zm)k E [wk] +
NX
k=1

NX
l=1;l 6=k

(zj)k (zm)lE [wkwl]

Introducing the assumption (b) of independence, which implies that E [wkwl] = E [wk]E [wl], we

obtain

E [�j�m] =

NX
k=1

(zj)k (zm)k E [wk] +
NX
k=1

(zj)k E [wk]
NX

l=1;l 6=k
(zm)lE [wl]

=

NX
k=1

(zj)k (zm)k E [wk] +

NX
k=1

(zj)k E [wk]

 
NX
l=1

(zm)lE [wl]� (zm)k E [wk]
!

and

E [�j�m] =
NX
k=1

(zj)k (zm)k E [wk] (1� E [wk]) +
NX
k=1

(zj)k E [wk]
NX
l=1

(zm)lE [wl]

=

NX
k=1

(zj)k (zm)k E [wk] (1� E [wk]) + E [�j ]E [�m]

from which the covariance follows, with (19) and Var[wk] = E [wk] (1� E [wk]), as

Cov [�j ; �m] = E [�j�m]� E [�j ]E [�m] =
NX
k=1

(zj)k (zm)k Var [wk]
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Invoking the assumption (a) that E [wk] = v, independent of the nodal index k, and due to �double

orthogonality� [15],
PN
k=1 (zj)k (zm)k = �jm, and zTj u = 0 for j < N , we �nd for j < N that the

covariance simpli�es to4

Cov [�j ; �m] = v (1� v) �jm

Finally, invoking (19), we arrive at the joint expectations(
E [�j�m] = v (1� v) �jm for 1 � j < N
E
�
�2N
�
= v + v2 (N � 1) when j = m = N

(20)

In summary, under the assumptions (a) that each component wk is a Bernoulli random variable

with mean E [wk] = v and (b) independent of any other component wm (with m 6= k), the projection
�j = wT zj with index 1 � j < N is a zero mean random variable with variance Var[�j ] = v (1� v),
and uncorrelated to any other �m with 1 � m 6= j � N . However, the random variables �j and �m are

not independent! Indeed, invoking (46) computed in Appendix B

E
�
�2j �

2
m

�
=
�
v � 7v2 + 12v3 � 6v4

� NX
k=1

(zj)
2
k (zm)

2
k + v

2 (1� v)2 (1 + 2�jm)

and E
h
�2j

i
E
�
�2m
�
= v2 (1� v)2, which follows from (20), illustrates the dependence5 between the

random variables �j and �m.

The random variable �N has mean E [�N ] = v
p
N , but the same Var[�N ] = v (1� v) as Var[�j ]

with 1 � j < N . Since each wk is a Bernoulli random variable with equal expectation E [wk] = v,

the variance Var[wk] = v (1� v) is thus the same as the variance of each dependent random variable

�m, which agrees with the geometric interpretation of the orthogonal matrix Z as a rotation operator

[16, Sec. 8.2]. Indeed, the subspace spanned by all possible Bernoulli vectors w is rotated by Z

into the subspace of all � vectors without changing the distances (due to (40), both vectors have

equal Euclidean norm kwk = k�k). Hence, the variation in distance of all those vectors w around

the mean vector E [w] = vu is thus equal to the variation of all � vectors around their mean vector

E [�] =
p
NveN .

4The dual case, where wj =
PN

k=1 (zk)j �k follows from (38), similarly yields with (20),

Cov [wj ; wm] = E [wjwm]� E [wj ]E [wm] =
NX
k=1

(zk)j (zk)m Var [�k]

Invoking Var[�k] = v (1� v) for all 1 � k � N and double orthogonality
PN

k=1 (zk)j (zk)m = �jm then results in

Cov [wj ; wm] = v (1� v) �jm

5Only if the random variables X and Y are independent, then it holds that E [f (X)g (Y ))] = E [f (X)]E [g (Y )] for

any pair of functions f and g. In the special case where X 2 f0; 1g and Y 2 f0; 1g are Bernoulli random variables for

which f (X) = f (0) (1�X) + f (1)X and E [f (X)] = a+ bE [X] (and similarly for Y ), we observe that

E [f (X)g (Y ))] = E [(a+ bX) (c+ dY )]

Consequently, uncorrelation (i.e. E [XY ] = E [X]E [Y ]) for Bernoulli random variables X and Y implies their indepen-

dence.

9



3.1 Probability generating function '�j (t) of �j

Invoking the independence assumption (b) among components wk of the Bernoulli vector w, the

probability generating function of random variable �j , de�ned in (39), equals

'�j (t) = E
h
e�t�j

i
= E

h
e�t

PN
k=1(zj)kwk

i
=

NY
k=1

E
h
e�t(zj)kwk

i
=

NY
k=1

�
Pr [wk = 0] + e

�t(zj)k Pr [wk = 1]
�

Let us denote Pr [wk = 1] = vk, where vk is the probability that node k belongs to the infected cluster,

then

'�j (t) =

NY
k=1

�
1� vk + e�t(zj)kvk

�
After taking the logarithm, we obtain

log'�j (t) =
NX
k=1

log
�
1 + vk

�
e�t(zj)k � 1

��
We expand the logarithmic terms in a Taylor series,

log
�
1 + vk

�
e�t(zj)k � 1

��
=

1X
r=1

(�1)r�1

r
vrk

�
e�t(zj)k � 1

�r
Invoking the generating function of the Stirling numbers S(k)m of the Second Kind [17],

(ex � 1)k = k!
1X
m=k

S(k)m
xm

m!

yields

log
�
1 + vk

�
e�t(zj)k � 1

��
=

1X
r=1

(�1)r�1 vrk (r � 1)!
1X
m=r

S(r)m
(�1)m (zj)mk

m!
tm

Reversing the r-and m-sum results in

log
�
1 + vk

�
e�t(zj)k � 1

��
=

1X
m=1

 
(zj)

m
k

mX
r=1

(�1)r�1 (r � 1)!S(r)m vrk

!
(�1)m tm
m!

and

log'�j (t) =

1X
m=1

 
NX
k=1

(zj)
m
k pm (vk)

!
(�1)m tm
m!

where pm (v) is a polynomial of order m in v,

pm (v) =

mX
r=1

(�1)r�1 (r � 1)!S(r)m vr (21)

10



for example,

p1 (v) = v

p2 (v) = v (1� v)
p3 (v) = v (1� v) (1� 2v)
p4 (v) = v (1� v)

�
1� 6v + 6v2

�
Using S(m)m = 1 and S(1)m = 1, the �rst term for m = 1 equals

PN
k=1 (zj)k vk and the second term equalsPN

k=1 (zj)
2
k

�
vk � v2k

�
, which are di¢ cult to evaluate, unless all probabilities vk = v are the same. So

far, the derivation is general and holds for any linear transformation of the Benoulli vector w with

independent components.

Con�ning to the case vk = v (assumption (a)), we can exploit the orthogonality propertiesPN
k=1 (zj)k =

p
N�jN and

PN
k=1 (zj)

2
k = 1 for any Laplacian matrix Q, and we �nally arrive for

j < N at

log'�j (t) = v (1 � v) t
2

2
+

1X
m=3

 
(�1)m pm (v)

m!

NX
k=1

(zj)
m
k

!
tm (22)

Expression (22) illustrates that each �j for 1 � j < N possesses a same �rst zero moment and a

same second moment (i.e. v (1� v)) and that only higher moments are di¤erent, because, generally,PN
k=1 (zj)

m
k 6=

PN
k=1 (zi)

m
k for m > 2.

3.1.1 The polynomial pm (v)

Since
���PN

k=1 (zj)
m
k

��� �PN
k=1

��(zj)k��m decreases withm, because ��(zj)k�� < 1 by (35) and thus ���PN
k=1 (zj)

m
k

��� �PN
k=1

��(zj)k��2 = 1, the series (22) converges faster than the generating function of the polynomials

pm (v),

log
�
1 + v

�
e�t � 1

��
=

1X
m=1

pm (v)
(�1)m tm
m!

After di¤erentiation with respect to t, we obtain

ve�t

1 + v (e�t � 1) =
1X
m=1

pm (v)
(�1)m�1 tm�1
(m� 1)! =

1X
m=0

pm+1 (v)
(�1)m tm
m!

Since ve�t

1+v(e�t�1) =
1

1�v
v
et+1

= 1

1+et+log
1�v
v
and log 1�vv = � log v

1�v , we observe that the transform

v ! 1� v results in the symmetry equation

pm (v) = (�1)m pm (1� v) for m > 1

The invariance of the cut size j@Vj in (11) under the transform v ! 1�v is natural, because v ! 1�v
transforms the set V of infected nodes to its complement Vc, the healthy nodes and vice versa, but
does not change the number j@Vj of infectious links.

Perhaps more important, the generating function of the polynomials pm (v) is a member of the

Fermi-Dirac integrals, because

1

1 + et+log
1�v
v

= F�1

�
log

v

1� v � t
�

11



where the Fermi-Dirac integral of order p, for Re (p) > �1, is de�ned as

Fp(y) =
1

�(p+ 1)

Z 1

0

xp

1 + ex�y
dx (23)

from which the complex integral for the Fermi-Dirac integral, for any p 2 C,

Fp(y) = �
�(�p)
2�i

Z
C

(�z)pdz
1 + ez�y

(24)

with contour C starting at +1 above the positive real axis, encircling the origin and returning to

+1 below the positive real axis, be deduced [18, Chapter 13]. Since Fp(0) = � (p+ 1), where the Eta

function � (s) =
�
1� 21�s

�
� (s), the zero argument Fermi-Dirac integral is connected to the Riemann

Zeta function � (s) investigated in [19]. By di¤erentiating (24) with respect to y, we �nd a functional

equation, valid for all complex y and p,

dFp(y)

dy
= Fp�1(y) (25)

It follows from the generating function and (25) that

pm+1 (v) = (�1)m
dm

dtm
F�1

�
log

v

1� v � t
�����
t=0

= F�1�m

�
log

v

1� v

�
Thus for m > 0, the polynomial pm (v) equals the negative, integer order Fermi-Dirac integral

pm (v) = F�m

�
log

v

1� v

�
(26)

There exists a wealth of properties of the Fermi-Dirac integrals, for which we refer to [18, Chapter 13].

We add to the theory of the Fermi-Dirac integrals by demonstrating that all zeros of the polynomial

pm (v) are real and lie in the interval [0; 1]. Applying the functional equation (25) to pm (v) =

F�m
�
log v

1�v

�
yields

pm (v) = (1� v) vp0m�1 (v) (27)

Suppose that pm (v) has only real zeros in [0; 1], then also p0m (v) has all zeros in [0; 1] by Gauss�s

theorem [11, p. 296] or Rolle�s theorem. Relation (27) then demonstrates that also pm+1 (v) has all

zeros in [0; 1]. The induction is initiated for m = 3, which then proves the truth for all m.

3.1.2 The moments E
h
�mj

i
The probability density function (50) of f�j (x) =

d
dx Pr [�j � x] is computed in Appendix C as

f�j (x) =
e
� x2

2v(1�v)p
2� (v (1� v))

(1 + hj (x))

where hj (x) speci�es the deviation from the Gaussian distribution. For our purpose, the investigation

of the cut size, we further con�ne to the moments E
h
�mj

i
.

Our characteristic coe¢ cients s[k;m] of a complex function f (z) =
P1
k=0 fkz

k, de�ned as

s[k;m] =
X

Pk
i=1 ji=m;ji>0

kY
i=1

fji (28)

12



and introduced in [20, Sec. 2 and Appendix], can be shown to provide the Taylor series for any x,

ex f(z) = ex f0

 
1 +

1X
m=1

"
mX
k=1

xk

k!
s[k;m]

#
zm

!
(29)

Applying (29) to the function log'�j (t) �
P1
k=0 fk (j) z

k in (22) for 1 � j < N , with Taylor coe¢ cients
f0 (j) = f1 (j) = 0, f2 (j) =

v(1�v)
2 and fm (j) =

(�1)mpm(v)
m!

PN
k=1 (zj)

m
k for m � 3, we �nd

'�j (t) = 1 +

1X
m=2

"
mX
k=1

1

k!
slog'�j (t)

[k;m]

#
tm

Since '�j (t) = E
�
e�t�j

�
=
P1
m=0

(�1)m
m! t

mE
h
�mj

i
, equating corresponding powers in t yields E [�j ] = 0

and, for m > 1,

E
�
�mj
�
= (�1)mm!

mX
k=1

1

k!
slog'�j (t)

[k;m] (30)

The characteristic coe¢ cients s[k;m] satisfy a recursion [20, eq. (3)], from which, denoting Zj (m) =PN
k=1 (zj)

m
k , the �rst few moments E

h
�mj

i
are computed as6

E [�j ] = v
p
N�jN

E
�
�2j
�
= v (1� v)

E
�
�2j
�
= (v � 3v2 + 2v3)Zj (3)

E
�
�4j
�
=
�
v � 7v2 + 12v3 � 6v4

�
Zj (4) + 3(1� v)2v2

E
�
�5j
�
= 10(1� v)v(v � 3v2 + 2v3)Zj (3) + (v � 15v2 + 50v3 � 60v4 + 24v5)Zj (5)

E
�
�6j
�
= 10

�
2v3 � 3v2 + v

�2
Z2j (3) + 15(1� v)v

�
�6v4 + 12v3 � 7v2 + v

�
Zj (4)�

�120v6 + 360v5 � 390v4 + 180v3 � 31v2 + v
�
Zj (6) + 15(1� v)3v3

3.2 The number of links in the cut-set

The spectral decomposition (11) of the cut size j@Vj =
PN�1
j=1 �

2
j �j , the number of links in the cut-set

of a connected graph speci�ed by the Bernoulli vector w, is a weighted linear combination of dependent

random variables �2j , with mean E
h
�2j

i
= v (1� v) and variance Var

h
�2j

i
= E

h
�4j

i
�
�
E
h
�2j

i�2
=�

v � 7v2 + 12v3 � 6v4
�
Zj (4)+2(1�v)2v2. Unfortunately, the dependence among the random variables

�2j prevents the application of the powerful method of probability generating functions [7],

'j@Vj (t) = E
h
e�tj@Vj

i
= E

h
e�t

PN�1
j=1 �2j �j

i
6=
N�1Y
j=1

E
h
e��

2
j t�j
i

so that a simple relation between '�2j (t) = E
h
e�t�

2
j

i
, which is generally computable7 as shown in

Section 3.1 and 3.1.2, and 'j@Vj (t) = E
�
e�tj@Vj

�
is unlikely to exist. One may question as well

6We can verify E
�
�4j
�
from (46).

7The Taylor expansion

E
h
e�z�

2
j

i
=

1X
k=0

(�1)k

k!
E
h
�2kj

i
zk = 1� v (1� v) z + 1

2
E
�
�4j
�
z2 +O

�
z3
�

in z around z = 0 has coe¢ cients (�1)k
k!

E
�
�2kj
�
determined in (30).
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whether the spectral approach (11) of the cut size j@Vj has actually advantages over the topologicial
one in (5)? Nevertheless, the �rst few moments E

h
j@Vjk

i
can be computed,

Theorem 3 In a graph G with N nodes and L links, there are two partitions, the set of all infected

nodes and the set of all healthy nodes. The N � 1 vector w is a Bernoulli random vector that speci�es

whether a node k in G belongs to the infected partition if wk = 1, else the node k belongs to the other

partition (wk = 0). Each node k is assumed to have equal probability, independent of all the other

nodes, to be infected with mean E [wk] = Pr [wk = 1] = v for all 1 � k � N nodes. Under these

assumptions, the average cut size, i.e. the number of links in the cut-set, equals

E [j@Vj] = 2Lv (1� v) (31)

and the corresponding variance of the cut size is

Var [j@Vj] =
�
v � 5v2 + 8v3 � 4v4

� NX
k=1

d2k + 4Lv
2 (1� v)2 (32)

where dk is the degree of node k.

Proof8: Under the above assumptions (a) and (b), the average number (31) of links in the cut-set
follows from (11), (20) and

PN�1
j=1 �j = 2L (see e.g. [11, p. 68]) as

E [j@Vj] =
N�1X
j=1

E
�
�2j
�
�j = v (1� v)

N�1X
j=1

�j = 2Lv (1� v)

Next, we compute

E
h
j@Vj2

i
= E

24N�1X
j=1

N�1X
m=1

�j�m�
2
j �
2
m

35 = N�1X
j=1

N�1X
m=1

�j�mE
�
�2j �

2
m

�
Invoking (46) from Appendix B

E
�
�2j �

2
m

�
=
�
v � 7v2 + 12v3 � 6v4

� NX
k=1

(zj)
2
k (zm)

2
k + v

2 (1� v)2 (1 + 2�jm)

we obtain

E
h
j@Vj2

i
=

N�1X
j=1

N�1X
m=1

�j�mE
�
�2j �

2
m

�

= v2
�
1� v2

�N�1X
j=1

N�1X
m=1

�j�m (1 + 2�jm) +
�
v � 7v2 + 12v3 � 6v4

� NX
k=1

0@N�1X
j=1

�j (zj)
2
k

1A2

Since
PN�1
j=1 �j (zj)

2
k = dk (see e.g. [15]), we have

E
h
j@Vj2

i
=
�
v � 7v2 + 12v3 � 6v4

� NX
k=1

d2k + (2Lv (1� v))
2 + 2v2

�
1� v2

�N�1X
j=1

�2j

8Alternatively, we can compute (32) directly from (5), or from the quadratic form as demonstrated at the end of

Appendix B.
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Finally, with
PN�1
j=1 �

2
j = 2L+

PN
k=1 d

2
k (see [11, art. 70, p. 68]), we arrive at

9

E
h
j@Vj2

i
=
�
v � 5v2 + 8v3 � 4v4

� NX
k=1

d2k + (2Lv (1� v))
2 + 4Lv2

�
1� v2

�
The variance Var[j@Vj] = E

h
j@Vj2

i
� (E [j@Vj])2 in (32) then follows with (31). �

3.3 Consequences of Theorem 3

Rewriting (31) as

E [j@Vj] = dav
N
Nv (N �Nv)

shows agreement with Chung�s Theorem 1, but di¤ers in the prefactor dav
N instead of dav

N�1 from our

Theorem 2 and Omic�s Theorem 4 in Appendix D. The di¤erence between (31) and the latter two

Theorems lies in the consideration of a partition of m infected nodes, while here only the average Nv

of the infected nodes is de�ned. The di¤erence is comparable to the Erd½os-Rényi random graph with

link existence probability p versus the Erd½os-Rényi random graph with precisely L links.

Since v � 5v2 + 8v3 � 4v4 = v (1� v) (2v � 1)2 and using 1
N

PN
k=1 d

2
k = Var[D] + (E [D])2 and

E [D] = dav =
2L
N , the variance is rewritten as

Var [j@Vj]
2Nv (1� v) = 2

�
v � 1

2

�2
E
�
D2
�
+

 
1

4
�
�
v � 1

2

�2!
E [D]

and illustrates that Var[j@Vj] � v (1� v) (2v � 1)2NE
�
D2
�
when N !1.

The Chebyshev inequality [7, p. 104],

Pr [jX � E [X]j � t] � �2

t2
(33)

quanti�es the spread of a random variable X around its mean E [X]. The smaller � =
p
Var [X], the

more concentrated X is around the mean. Applying the Chebyshev inequality (33) to the cut size

yields

Pr [jj@Vj � 2Lv (1� v)j � x] � v (1� v) (2v � 1)2
PN
k=1 d

2
k + 4v

2 (1� v)2 L
x2

Let t = x
2Lv(1�v) , then we arrive at

Pr

����� j@Vj
2Lv (1� v) � 1

���� � t� � 1

Lt2

 
1 +

2(v � 1
2)
2

v (1� v)

�
Var [D]
E [D]

+ E [D]

�!
(34)

The topological upper bound (10), wTQw � L, recast in probabilistic setting as

Pr

����� j@Vj
2Lv (1� v) � 1

���� > 1� 2v (1� v)
2v (1� v)

�
= 0

9The polynomial r4 (v) = v � 5v2 + 8v3 � 4v4 obeys the invariance v ! 1 � v or r4 (v) = r4 (1� v), as physically
required.
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demonstrates the weakness of the Chebyshev inequality, because, for t > 1�2v(1�v)
2v(1�v) , the right-hand

side in (34) can always be replaced by zero. Nevertheless, the Chebyshev inequality (34) provides

interesting insights.

The right-hand side of Chebyshev inequality (34) is minimal for v = 1
2 at which the graph is

separated into two clusters of equal size on average connected by L
2 links on average. For v =

1
2 , the

Chebyshev inequality (34) shows that the cut size j@Vj tends to L
2 in any graph, when the number L of

links grows large. Simulations seem to indicate that the cut size j@Vj for v = 1
2 is close to a Gaussian

distribution.

Furthermore, among all graphs with �xed number N of nodes and �xed number L of links, the

graphs that maximize the variance Var[D] of the degree incur the largest variations of the number of

links in the cut-set. The maximum variance graphs10 contain s =
h

L
N�1

i
full star nodes with degree

N � 1 and one partially �lled node with degree L � s, while all other nodes have degree s or s + 1.
Generally, but subject to the assumption in Theorem 3, power-law graphs with large degree variance

lead to large �uctuations in the cut size, which may cause a fast and bursty epidemic spread. Under

the less realistic assumption (a) of equal nodal infection probability, Theorem 3 supports the frequently

repeated claim [22] of a vanishing epidemic threshold in power law graphs, although a rigorous proof

(such as a demonstration that an upper bound of the epidemic threshold vanishes for power law graphs

when N !1) is missing.
The Chebyshev inequality (34) shows that, among all graphs with N nodes and L links, the

deviation from the mean number of links in the cut-set is smallest for a regular graph with degree

D = r and L = 1
2rN , because

Pr

����� j@Vjreg. graphrNv (1� v) � 1
���� � t� � 2

rNt2

 
1 +

2(v � 1
2)
2

v (1� v) r
!

which illustrates that, if the degree r and stringency11 t are �xed and not a function of N , then
j@Vjreg . graph
rNv(1�v) ! 1 almost surely for large N and 0 < v < 1. Moreover, the assumption (a) that each node

has equal infection probability, E [wk] = v, holds in SIS epidemics for a regular graph after su¢ ciently

long time. The independence assumption (b) is typically made in mean-�eld approximations [23, 24].

The SIS prevalence di¤erential equation (4) reduces for a regular graph with y = v and (31) to
dv
dt� = �v + r�v(1� v), with steady-state v1 = 1� 1

�r equal to that of the N-Intertwined Mean-Field

Approximation (NIMFA) [7, p. 465].

Since the Chebyshev inequality (33) can be sharpened considerably if more of the distribution is

known, we infer that the isoperimetric inequalities in Section 2.3 can be improved very likely. Indeed,

the isoperimetric inequality (14) reads���� j@Vj
2Lv (1� v) � 1

���� � max j�1 � dav; dav � �N�1j
dav

and for large N the right-hand side grows with N , where the Chebyshev inequality (34) rather shows

an increased accuracy with N (unless Var[D]E[D] grows with N).

Acknowledgements. We are very grateful to Qiang Liu and Yingli Ni for simulations that hint
to Gaussian cut sizes for v around 1

2 .

10We may deduce this result by invoking the principle of majorization [21].
11The same conclusion follows by letting t = 1

N0:5�" and " > 0 (so that Nt
2 = N

N1�2" = N
2").
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A Background

This section extends the analysis in [9, Appendix B].

A.1 Orthogonal eigenvector matrix Z of the Laplacian Q

As in [15], the N � 1 real vector zk denotes the k-th eigenvector of the symmetric N �N Laplacian

matrix Q belonging to the eigenvalue �k and the eigenvalues of the Laplacian Q are ordered as

�1 � �2 � : : : � �N�1 � �N = 0. The vector component (zk)i represents the eigenvector component at
eigenvalue or eigenfrequency �k for node i. The eigenvectors are normalized and obey the orthogonality

requirement zTk zm = �km, where �km is the Kronecker delta, which is equal to one, if k = m, and

otherwise �km = 0. The eigenvector belonging to the zero eigenvalue �N = 0 equals zN = up
N
, where

the all one vector u = (1; 1; : : : ; 1). A major advantage in the spectral theory of the Laplacian Q

over the adjacency matrix A is the knowledge of the eigenvector zN . Indeed, the orthogonality of the

eigenvectors shows that zTk u = 0, implying that the sum over all components of any eigenvector zk
for 1 � k < N equals zero,

PN
j=1 (zk)j = 0, while

PN
j=1 (zk)

2
j = 1. Due to zTk u = 0 and the fact

that an eigenvector is never equal to the zero vector, there must be at least two non-zero components

(zk)i and (zk)j . Suppose that there are precisely two such non-zero components of zk, then the

normalization zTk zk = 1 demonstrates that (zk)i = � (zk)l =
p
2
2 . Hence, the maximum possible value

of any normalized eigenvector component zk for 1 � k � N equals

j(zk)ij �
p
2

2
(35)

Since the eigenvectors of Q constitute an orthogonal basis, any N�1 real vector x can be expressed
as a linear combination of the eigenvectors z1; z2; : : : ; zN of Q,

x =
NX
k=1

�kzk

where the scalar product �k = xT zk. In terms of the N �N orthogonal matrix Z with eigenvectors

in its columns [15], which satis�es the orthogonality conditions ZZT = ZTZ = I so that Z�1 = ZT ,

we have

� = ZTx and x = Z�
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illustrating the one-to-one relation between the coordinates of x expressed in the standard basis

e1; e2; : : : ; eN , where (ek)j = �kj , and its coordinates � expressed in the basis of eigenvectors z1; z2; : : : ; zN
of Q. Moreover, an orthogonal transformation Z preserves the scalar product and, thus, also the

Euclidean norm, �T� = xTx. Just as any real symmetric matrix, the Laplacian Q has the eigende-

composition Q = ZMZT , where M = diag(�i), or, in vector form, Q =
PN
k=1 �kzkz

T
k . The quadratic

form xTQx = xTZMZTx or xTQx =
PN
k=1

PN
m=1 �k�mz

T
k Qzm equals

xTQx =
NX
k=1

�2k�k (36)

A.2 A spectral view on the Bernoulli vector w

The Bernoulli vector w is a so-called binary vector, because each component wk is either zero or one,

so that wrk = wk for any real r > 0. For any Bernoulli vector w, we observe from (2) that

wTw =

NX
k=1

w2k =

NX
k=1

wk = u
Tw = NS (37)

which means that the Euclidean norm of w equals the sum of its vector components uTw, equal to the

number NS of infected nodes in an epidemic setting. Let us consider the transformation between the

vector � = ZTw and the Bernoulli vector w = Z�, which is the decomposition of the Bernoulli vector

w in terms of the eigenvectors z1; z2; : : : ; zN of the Laplacian Q,

w =
NX
k=1

�kzk (38)

where

�k = w
T zk =

NX
j=1

wj (zk)j (39)

is the k-th coordinate of the Bernoulli vector w along the k-th eigenvector zk in the eigenspace of Q.

The total number uTw of infected nodes in the graph equals, by the Bernoulli vector property (37)

and the fact that Z is an orthogonal matrix

�T � = wTw = NS (40)

Since the normalized vector zN = up
N
is the eigenvector of any Laplacian matrix Q belonging to the

zero eigenvalue �N = 0, we deduce that �N = wT zN = wTup
N
=
p
NS, and (38) becomes

w = Su+
N�1X
k=1

�kzk

which suggests us, as in [25], to de�ne the di¤erence vector

$ = Su� w (41)
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where S = uTw
N equals the fraction of infected nodes, de�ned in (2). It is immediate that the di¤erence

vector equals12

$ =
N�1X
k=1

�
$T zk

�
zk (42)

a linear combination of all eigenvectors of the Laplacian Q belonging to positive eigenvalues (for a

connected graph). The de�nition (41) and (42) have two direct consequences. First,

$Tu = 0

implying that the di¤erence vector $ has mean zero, is orthogonal to the eigenvector zN = up
N

belonging to the zero Laplacian eigenvalue �N = 0. Next, the norm k$k =
p
$T$ follows, using

wTw = NS, from

$T$ = (w � Su)T (w � Su) = NS (1� S) (43)

which also equals13, invoking (42) and orthogonality of the eigenvectors,

$T$ =
N�1X
k=1

�
$T zk

�2
(44)

The di¤erence vector $ determines for each node j in the graph the variation of its infection state

wj = Xj from the mean S in the graph. Since �k = $Txk = wTxk for all 1 � k < N , combining (43)
and (44) gives us

N�1X
j=1

�2j = NS (1� S) (45)

Finally, a Bernoulli vector w, which is di¤erent from the all-one vector u, can never be an eigenvector

of the Laplacian Q of a connected graph as shown in [27, Theorem 2], which implies that the vector

� = ZTw is never proportional to a basic vector ek for 1 � k � N . In other words, the probability

mass in the vector � is never concentrated in one eigenfrequency and at least two components of vector

� are non-zero.

12Moreover, with the de�nition (38), it holds that $Txk = wTxk = �k for all 1 � k < N and, $TxN = 0, while

wTxN = �N =
p
NS. In fact, �k =

�
wT + cu

�
zk, for any number c.

13Relation (44), written as
PN

j=1$
2
j =

PN
k=1

�
$T zk

�2
is a discrete version of Parseval�s or Plancherel�s theorem in

the theory of Fourier transforms [26]. Geometrically, (44) arises from the fact that the Euclidean norm of a vector is

maintained after an orthogonal transformation.
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B Computation of the joint expectation E
�
�2j �

2
m

�
We compute the joint expectation by invoking de�nition (39) of �j for j < N and m < N ,

E
�
�2j �

2
m

�
= E

24 NX
k=1

(zj)k wk

!2 NX
l=1

(zm)l wl

!235
= E

24 NX
k=1

NX
r=1

NX
l=1

NX
q=1

(zj)k (zj)r (zm)l (zm)q wlwrwkwq

35
=

NX
k=1

(zj)k

NX
r=1

(zj)r

NX
l=1

(zm)l

NX
q=1

(zm)q E [wlwrwkwq]

We write the quadruple sum as

E
�
�2j �

2
m

�
=

NX
k=1

(zj)k

8<:(zj)k
NX
l=1

(zm)l

NX
q=1

(zm)q E
�
wlw

2
kwq

�
+

NX
r=1;r 6=k

(zj)r

NX
l=1

(zm)l

NX
q=1

(zm)q E [wlwrwkwq]

9=;
Exploiting the Bernoulli property w2k = wk in the product wlwrwkwq of Bernoulli random variables,

yields

E
�
�2j �

2
m

�
=

NX
k=1

(zj)
2
k

NX
l=1

(zm)l

NX
q=1

(zm)q E [wlwkwq]+
NX
k=1

(zj)k

NX
r=1;r 6=k

(zj)r

NX
l=1

(zm)l

NX
q=1

(zm)q E [wkwlwrwq]

Next, the individual sums in E
h
�2j �

2
m

i
= S1 + S2 are rewritten as

S1 =
NX
k=1

(zj)
2
k

8<:(zm)k
NX
q=1

(zm)q E [wkwq] +
NX

l=1;l 6=k
(zm)l

NX
q=1

(zm)q E [wlwkwq]

9=;
=

NX
k=1

(zj)
2
k (zm)k

NX
q=1

(zm)q E [wkwq] +

NX
k=1

(zj)
2
k

NX
l=1;l 6=k

(zm)l

NX
q=1

(zm)q E [wlwkwq]

The �rst sum further simpli�es, with E [wj ] = v, to

R1 =
NX
k=1

(zj)
2
k (zm)k

8<:(zm)k E [wk] + v
NX

q=1;q 6=k
(zm)q E [wq]

9=;
= v

NX
k=1

(zj)
2
k (zm)

2
k + v

2
NX
k=1

(zj)
2
k (zm)k

8<:
NX
q=1

(zm)q � (zm)k

9=;
Invoking orthogonality,

PN
q=1 (zm)q = 0 for m 6= N , and the de�nition

T0 =

NX
k=1

(zj)
2
k (zm)

2
k

we obtain,

R1 =
�
v � v2

�
T0
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The second sum is

R2 =
NX
k=1

(zj)
2
k

NX
l=1;l 6=k

(zm)l

NX
q=1

(zm)q E [wlwkwq]

=

NX
k=1

(zj)
2
k

NX
l=1;l 6=k

(zm)l

8<:(zm)k E [wlwk] + (zm)lE [wlwk] +
NX

q=1;q 6=k;l
(zm)q E [wlwkwq]

9=;
Taking into account independence E [wlwk] = E [wl]E [wk] = v2 if l 6= k,

R2 =

NX
k=1

(zj)
2
k

NX
l=1;l 6=k

(zm)l

8<:v2 (zm)k + v2 (zm)l + v3
NX

q=1;q 6=k;l
(zm)q

9=;
=
�
v2 � v3

� NX
k=1

(zj)
2
k

NX
l=1;l 6=k

(zm)l f(zm)k + (zm)lg

=
�
v2 � v3

� NX
k=1

(zj)
2
k (zm)k

NX
l=1;l 6=k

(zm)l +
�
v2 � v3

� NX
k=1

(zj)
2
k

NX
l=1;l 6=k

(zm)
2
l

With

NX
k=1

(zj)
2
k (zm)k

NX
l=1;l 6=k

(zm)l = �
NX
k=1

(zj)
2
k (zm)

2
k = �T0

NX
k=1

(zj)
2
k

NX
l=1;l 6=k

(zm)
2
l =

NX
k=1

(zj)
2
k

 
NX
l=1

(zm)
2
l � (zm)

2
k

!
= 1� T0

we obtain

R2 = �2
�
v2 � v3

�
T0 +

�
v2 � v3

�
and S1 = R1 +R2 is

S1 =
�
v2 � v3

�
+
�
v � 3v2 + 2v3

�
T0

Similarly, the second sum

S2 =

NX
k=1

(zj)k

NX
r=1;r 6=k

(zj)r

NX
l=1

(zm)l

NX
q=1

(zm)q E [wkwlwrwq]

is rewritten as

S2 =
NX
k=1

(zj)k

NX
r=1;r 6=k

(zj)r

8<:(zm)k
NX
q=1

(zm)q E [wkwrwq] + (zm)r

NX
q=1

(zm)q E [wkwrwq]

+
NX

l=1;l 6=k;r
(zm)l

NX
q=1

(zm)q E [wkwlwrwq]

9=;
=

NX
k=1

(zj)k (zm)k

NX
r=1;r 6=k

(zj)r

NX
q=1

(zm)q E [wkwrwq] +

NX
k=1

(zj)k

NX
r=1;r 6=k

(zj)r (zm)r

NX
q=1

(zm)q E [wkwrwq]

+

NX
k=1

(zj)k

NX
r=1;r 6=k

(zj)r

NX
l=1;l 6=k;r

(zm)l

NX
q=1

(zm)q E [wkwlwrwq]
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Next, we must split up the q-sums each of the three sums in S2 = V1 + V2 + V3. First,

V1 =
NX
k=1

(zj)k (zm)k

NX
r=1;r 6=k

(zj)r

NX
q=1

(zm)q E [wkwrwq]

=

NX
k=1

(zj)k (zm)k

NX
r=1;r 6=k

(zj)r

8<:(zm)k E [wkwr] + (zm)r E [wkwr] +
NX

q=1;q 6=k;r
(zm)q E [wkwrwq]

9=;
Invoking independence,

V1 = v
2
NX
k=1

(zj)k (zm)k

NX
r=1;r 6=k

(zj)r

8<:(zm)k + (zm)r + v
NX

q=1;q 6=k;r
(zm)q

9=;
=
�
v2 � v3

� NX
k=1

(zj)k (zm)k

NX
r=1;r 6=k

(zj)r f(zm)k + (zm)rg

=
�
v2 � v3

� NX
k=1

(zj)k (zm)
2
k

NX
r=1;r 6=k

(zj)r +
�
v2 � v3

� NX
k=1

(zj)k (zm)k

NX
r=1;r 6=k

(zj)r (zm)r

With
PN
k=1 (zj)k (zm)

2
k

PN
r=1;r 6=k (zj)r = �T0 and

NX
k=1

(zj)k (zm)k

NX
r=1;r 6=k

(zj)r (zm)r =
NX
k=1

(zj)k (zm)k

NX
r=1

(zj)r (zm)r � T0 = �jm � T0

we have

V1 =
�
v2 � v3

�
(�jm � 2T0)

where �double�orthogonality [15],
PN
k=1 (zj)k (zm)k = �jm, has been invoked. Similarly as for V1, we

proceed as

V2 =

NX
k=1

(zj)k

NX
r=1;r 6=k

(zj)r (zm)r

NX
q=1

(zm)q E [wkwrwq]

=
NX
k=1

(zj)k

NX
r=1;r 6=k

(zj)r (zm)r

8<:(zm)k E [wkwr] + (zm)r E [wkwr] + E [wkwr]
NX

q=1;q 6=k;r
(zm)q E [wq]

9=;
=
�
v2 � v3

� NX
k=1

(zj)k

NX
r=1;r 6=k

(zj)r (zm)r f(zm)k + (zm)rg = V1

The third sum

V3 =
NX
k=1

(zj)k

NX
r=1;r 6=k

(zj)r

NX
l=1;l 6=k;r

(zm)l

NX
q=1

(zm)q E [wkwlwrwq]

is treated analogously. First we decompose the q-sum as

eQ = NX
q=1

(zm)q E [wkwlwrwq]

= (zm)k E [wkwlwr] + (zm)r E [wkwlwr] + (zm)lE [wkwlwr] + E [wkwlwr]
NX

q=1;q 6=k;l;r
(zm)q E [wq]
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Invoking independence and orthogonality yields

V3 =
�
v3 � v4

� NX
k=1

(zj)k

NX
r=1;r 6=k

(zj)r

NX
l=1;l 6=k;r

(zm)l f(zm)k + (zm)r + (zm)lg

=
�
v3 � v4

� NX
k=1

(zj)k (zm)k

NX
r=1;r 6=k

(zj)r

NX
l=1;l 6=k;r

(zm)l

+
�
v3 � v4

� NX
k=1

(zj)k

NX
r=1;r 6=k

(zj)r (zm)r

NX
l=1;l 6=k;r

(zm)l

+
�
v3 � v4

� NX
k=1

(zj)k

NX
r=1;r 6=k

(zj)r

NX
l=1;l 6=k;r

(zm)
2
l

With

T1 =

NX
k=1

(zj)k (zm)k

NX
r=1;r 6=k

(zj)r

NX
l=1;l 6=k;r

(zm)l = �
NX
k=1

(zj)k (zm)k

NX
r=1;r 6=k

(zj)r ((zm)k + (zm)r)

= �
NX
k=1

(zj)k (zm)
2
k

NX
r=1;r 6=k

(zj)r �
NX
k=1

(zj)k (zm)k

NX
r=1;r 6=k

(zj)r (zm)r

= 2T0 � �jm

and

T2 =
NX
k=1

(zj)k

NX
r=1;r 6=k

(zj)r (zm)r

NX
l=1;l 6=k;r

(zm)l = �
NX
k=1

(zj)k

NX
r=1;r 6=k

(zj)r (zm)r ((zm)k + (zm)r)

= �
NX
k=1

(zm)k (zj)k

NX
r=1;r 6=k

(zj)r (zm)r �
NX
k=1

(zj)k

NX
r=1;r 6=k

(zj)r (zm)
2
r

= 2T0 � �jm

and

T3 =

NX
k=1

(zj)k

NX
r=1;r 6=k

(zj)r

NX
l=1;l 6=k;r

(zm)
2
l =

NX
k=1

(zj)k

NX
r=1;r 6=k

(zj)r

�
1� (zm)2k � (zm)

2
r

�

=

NX
k=1

(zj)k

NX
r=1;r 6=k

(zj)r �
NX
k=1

(zj)k (zm)
2
k

NX
r=1;r 6=k

(zj)r �
NX
k=1

(zj)k

NX
r=1;r 6=k

(zj)r (zm)
2
r

= �1 + 2T0

we have

V3 =
�
v3 � v4

�
f6T0 � 2�jm � 1g

and

S2 = V1 + V2 + V3

= 2
�
v2 � v3

�
(�jm � 2T0) +

�
v3 � v4

�
f6T0 � 2�jm � 1g

= �
�
v3 � v4

�
+ 2�jm

�
v2 � 2v3 + v4

�
+ T0

�
�4v2 + 10v3 � 6v4
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Finally, we arrive with E
h
�2j �

2
m

i
= S1 + S2 at

E
�
�2j �

2
m

�
=
�
v2 � v3

�
+
�
v � 3v2 + 2v3

�
T0�

�
v3 � v4

�
+2�jm

�
v2 � 2v3 + v4

�
+T0

�
�4v2 + 10v3 � 6v4

	
and

E
�
�2j �

2
m

�
=
�
v � 7v2 + 12v3 � 6v4

� NX
k=1

(zj)
2
k (zm)

2
k + v

2 (1� v)2 (1 + 2�jm) (46)

The tedious computation is readily generalized to

E
h�
wTQw

�ki
= E

24N�1X
j1=1

N�1X
j2=1

� � �
N�1X
jk=1

�j1�j2 : : : �jk�
2
j1�

2
j2 : : : �

2
jk

35
=

N�1X
j1=1

N�1X
j2=1

� � �
N�1X
jk=1

kY
i=1

�jiE

"
kY
i=1

�2ji

#

Further, by invoking the de�nition (39) of �j for j < N and m < N , we have

E

"
kY
i=1

�2ji

#
= E

24 kY
i=1

 
NX
k=1

(zji)k wk

!235
= E

24 kY
i=1

NX
mi=1

(zji)mi

NX
li=1

(zji)li wmiwli

35
= E

24 NX
m1=1

(zj1)m1

NX
l1=1

(zj1)l1 wm1wl1 � � �
NX

mk=1

(zjk)mk

NX
lk=1

(zjk)lk wmk
wlk

35
=

NX
m1=1

(zj1)m1

NX
l1=1

(zj1)l1 � � �
NX

mk=1

(zjk)mk

NX
lk=1

(zjk)lk E

"
kY
i=1

wmiwli

#

Since all wk are independent Bernoulli random variables (or indicators that are either zero or one),

E

"
kY
i=1

wmiwli

#
= vq

where q equals the number of indices in the set fm1; : : : ;mk; l1; : : : ; lkg that are di¤erent. If all indices
are di¤erent, then q = 2k. If all but 1 pair of indices are di¤erent, then q = 2k � 1 and, so on. Thus,
if all indices are the same, then q = 1. Further, we observe that E

hQk
i=1wmiwli

i
is independent of

the fj1; : : : ; jkg, so that the general result E
hQk

i=1 �
2
ji

i
can be checked by the explicit expression (30)

of the moments E
h
�mj

i
.

Direct evaluation of the quadratic form j@Vj = wTQw =
PN
m=1

PN
l=1 qmlwmwl leads to

j@Vjk =
NX

m1=1

NX
l1=1

� � �
NX

mk=1

NX
lk=1

kY
i=1

qmili

kY
i=1

wmrwlr

so that

E
h
j@Vjk

i
=

NX
m1=1

NX
l1=1

� � �
NX

mk=1

NX
lk=1

kY
i=1

qmiliE

"
kY
i=1

wmrwlr

#
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which again requires to split the multiple sum into sub-sums in which q indices in the set fm1; : : : ;mk; l1; : : : ; lkg
are di¤erent. It would be convenient to �nd a recursion that expresses E

h
j@Vjk

i
into E [j@Vjn] with

integer power n < k.

We have not computed higher moments E
h
j@Vjk

i
for k > 2 explicitly and suggest its computation

as an open problem.

C Probability density function f�j (x) of �j

In order to derive a fast converging probability density function f�j (x), application of (29) to the

function gj (z) with Taylor coe¢ cients gm (j) =
(�1)mpm(v)

m!

PN
k=1 (zj)

m
k for m � 3 derived from (22),

we obtain

'�j (t) = e
t2

2
v(1�v)

 
1 +

1X
n=3

cn (j) t
n

!
(47)

where

cn (j) =

nX
k=1

1

k!
sgj(z)[k; n] (48)

Due to the recursion formula of the characteristic coe¢ cients s[k;m], we can evaluate the coe¢ cients

cn (j) to any desired order. For example,

c3 (j) = g3 (j) = �
v � 3v2 + 2v3

3!

NX
k=1

(zj)
3
k

c4 (j) = g4 (j) =
v � 7v2 + 12v3 � 6v4

4!

NX
k=1

(zj)
4
k

c5 (j) = g5 (j) = �
v � 15v2 + 50v3 � 60v4 + 24v5

5!

NX
k=1

(zj)
5
k

c6 (j) =
1

2
(g3 (j))

2 + g6 (j)

=
1

72

 
(v � 3v2 + 2v3)

NX
k=1

(zj)
3
k

!2
+
v � 31v2 + 180v3 � 390v4 + 360v5 � 120v6

6!

NX
k=1

(zj)
6
k

We now compute the inverse Laplace transform f�j (x) =
1
2�i

R c+i1
c�i1 '�j (t) e

txdt results. With the

Laplace transform of the Gaussian [7, p. 43], we have

1

2�i

Z c+i1

c�i1
e
t2

2
v(1�v)tmetxdt =

dm

dxm

�
1

2�i

Z c+i1

c�i1
e
t2

2
v(1�v)etxdt

�

=
dm

dxm

0@ e
� x2

2v(1�v)p
2� (v (1� v))

1A
Using the Hermite polynomials [28], de�ned by the generating function for all z,

e2xz�z
2
=

1X
m=0

Hm(x)

m!
zm (49)
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or the Rodrigues�formula [17, Sec. 22.11 on p. 785]

Hm (x) = (�1)m ex
2 dm

dxm
e�x

2

yields

dm

dxm

0B@ e
�
�

xp
2v(1�v)

�
p
2� (v (1� v))

1CA =
e
� x2

2v(1�v)p
2� (v (1� v))

(�1)m�p
2v (1� v)

�mHm
 

xp
2v (1� v)

!

and

f�j (x) =
e
� x2

2v(1�v)p
2� (v (1� v))

0@1 + 1X
m=3

(�1)m cm (j)�p
2v (1� v)

�mHm
 

xp
2v (1� v)

!1A (50)

The expansion (50) allows us to accurately assess the deviations of the probability density function

f�j (x) from a Gaussian pdf.

D A combinatorial computation of the average cut size (updated
from [29])

Let us start from the governing equation (4) of the prevalence, which we rewrite withNy (t) = E [jV(t)j]
and the cut size j@Vj = e (V(t);Vc(t)) = wTQw as

dE [jV(t)j]
dt

= E [�e (V(t);Vc(t))� � jV(t)j]

Formally summing both sides over all possible clusters of size V yields

d

dt
E

24 X
8V:V�N ;jVj=V

jV(t)j

35 = E
24� X

8V:V�N ;jVj=V
e (V(t);Vc(t))� �

X
8V:V�N ;jVj=V

jV(t)j

35
where X

8V:V�N ;jVj=V
jV(t)j = V

X
8V:V�N ;jVj=V

1 = V

�
N

V

�

Assuming that all clusters are equally probable, the average increment dy(t)dt in the number of infected

nodes for a given cluster size of V nodes at time t is a sum over all the clusters divided by the total

number of combinations
�
N
V

�
,

N
dy (t)

dt
=

��
N
V (t)

�E
24 X
8V:V�N ;jVj=V (t)

e (V(t);Vc(t))

35� �V (t)
For dy(t)dt = 0 (which �xes a time t = � and V (�) = V ), we �nd the e¤ective infection rate � = �

� as

� =
V
�
N
V

�
E

" P
8V:V�N ;jVj=V

e (V(t);Vc(t))
#
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Finally, E

" P
8V:V�N ;jVj=V

e (V(t);Vc(t))
#
=

P
8V:V�N ;jVj=V

E [e (V(t);Vc(t))] =
P

8C:C�N ;jCj=V
e (C;Cc), where

we have replaced, in the summation over all sizes of the infected set V of nodes, the random variable

V by a cluster C or subgraph of G, so that

� =
1

1

(NV )

P
8C:C�N ;jCj=V

e(C;Cc)
V

(51)

In summary, if all clusters are equally probable, the e¤ective infection rate at an extremal time �

(obeying dy(t)
dt = 0) can be expressed as

� =
1

�(G;V )

where the average interconnection constant of a graph G is de�ned as

�(G;V ) =
1�
N
V

� X
8C:C�N ;jCj=V

e (C;Cc)

jCj (52)

Simply stated, we have averaged the ratio e(C;Cc)
jCj over all clusters C with V nodes, taking any of them

as equiprobable, divided by the total number of V -sized clusters in a network with N nodes.

Theorem 4 (J. Omic [29, p. 49-50]) The average interconnection constant of a graph G obeys

�(G;V ) =
dav
N � 1 (N � V ) (53)

Proof: Assume that node i with degree di has k of its neighbors in the cluster C and, thus, di� k
neighbors in Cc, implying that node i contributes di�k links to the cut-set e (C;Cc). With these k+1
nodes �xed, we need to determine the number of ways to form C with the remaining V � k� 1 nodes,
which equals

�
N�di�1
V�k�1

�
. For each node i with di neighbors, there are

�
di
k

�
possible ways to choose a set

of k neighbors in C. Hence, in total, there are
�
N�di�1
V�k�1

��
di
k

�
clusters C of size V , that contain node

i with k neighbors and that contribute di � k links to the cut-set e (C;Cc). The number V of nodes

in cluster C is larger than or equal to k + 1, while, in the complement Cc, the node i connects to

di � k � N � V neighbors. Thus, the minimum number of neighbors k that can be in a cluster C is

k = max(0; V + di �N) and the maximum number is k = min(di; V � 1).

For each node i with di neighbors, there14 are
min(di;V�1)P

k=max(0;V+di�N)

�
N�di�1
V�k�1

��
di
k

�
=
�
N�1
V�1

�
of clusters

C with V nodes that contain node i and that contribute to all those corresponding cut-sets a total

number of links equal to

min(di;V�1)X
k=max(0;V+di�N)

(di � k)
�
N � di � 1
V � k � 1

��
di
k

�
After summing over all possible nodes and using (di � k)

�
di
k

�
= di

�
di�1
k

�
, we obtain

X
8C:C�N ;jCj=V

e (C;Cc) =
NX
i=1

di

min(di;V�1)X
k=max(0;V+di�N)

�
N � di � 1
V � k � 1

��
di � 1
k

�
14The number of clusters of size V , in which a node i appears, is equal to

�
N�1
V�1

�
, because the number of clusters of

size V in which node i does not appear is
�
N�1
V

�
and

�
N
V

�
�
�
N�1
V

�
=
�
N�1
V�1

�
. This observation agrees with the direct

computation of the sum by invoking Vandermonde�s binomial identity.

28



Recalling that
�
V
j

�
= 0 if j =2 f0; 1; : : : ; V g and with the convention that

Pb
k=a f (k) = 0 if b < a, the

bounds on the double sum can be simpli�ed,

min(di;V�1)X
k=max(0;V+di�N)

�
N � di � 1
V � k � 1

��
di � 1
k

�
=

V�1X
k=0

�
N � di � 1
V � 1� k

��
di � 1
k

�

The latter sum is an instance of Vandermonde�s binomial identity (54) for any complex number �1
and �2, �

�1 + �2
m

�
=

mX
j=0

�
�1
j

��
�2
m� j

�
(54)

so that
min(di;V�1)X

k=max(0;V+di�N)

�
N � di � 1
V � k � 1

��
di � 1
k

�
=

�
N � 2
V � 1

�
Invoking the basic law of the degree

PN
i=1 di = 2L, the total number of links in all possible cut-sets

with V nodes equals

X
8C:C�N ;jCj=V

e (C;Cc) =

�
N � 2
V � 1

� NX
i=1

di = 2L

�
N � 2
V � 1

�

Finally, with the de�nition (52) of the averaged interconnection constant and of the average degree,

dav =
2L
N , we arrive at (53). �

The isoperimetric inequality (15) suggests that the number of infective links wTQw = e (C;Cc)

approximately equals dav
N�1 (NS) (N �NS) plus minus a possibly large bound. The de�nition (52) of

the averaged interconnection constant shows that

1�
N
V

� X
8C:C�N ;jCj=V

e (C;Cc) = V �(G;V )

which represents the average number of infective links, given that NE [S] = V , thus

E
�
wTQw

��NS = V � = V �(G;V )
Introducing (53) in Theorem 4 results in

E
�
wTQw

��NS = V � = dav
N � 1V (N � V )

which precisely agrees with E
�
wTQw

�
= dav

N�1E [(NS) (N �NS)] from (15), conditioned to jCj =
NS = V . Furthermore,

E
�
wTQw

�
=

N�1X
V=1

E
�
wTQw

��NS = V �Pr [NS = V ]
=

L

2N
�
N
2

� N�1X
V=1

�
N

V

�
V (N � V )
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With
�
N
V

�
V (N � V ) = N (N � 1)

�
N�2
V�1

�
and

PN�1
V=1

�
N
V

�
V (N � V ) = N (N � 1)

PN�2
V=0

�
N�2
V

�
= N (N � 1) 2N�2,

we arrive at

E
�
wTQw

�
=

2L

2N (N (N � 1))N (N � 1) 2N�2 = L

2

Under the assumption that all cut-sets have equal probability to occur, the average number of links

in a random cut-set equals L2 , which corresponds to the case of v =
1
2 in (31) because the number

�
N
V

�
of cut-sets is maximal for size V = N

2 . Theorem 4 can be reformulated as

Theorem 5 The average cut size j@Vj for subsets V � N of size jVj = V is equal toP
8V;jVj=V j@Vj�

N
V

� =
2L
N

N � 1V (N � V ) (55)

Proof: The sum of all cut sizes with V nodes can be written using (9) asX
8V;jVj=V

j@Vj =
X

8V;jVj=V

X
i2V

di �
X

8V;jVj=V

X
i2V

X
j2V

aij (56)

Since each node appears
�
N�1
V�1

�
times in all cut sets of size V , the �rst term in the right-hand side of

(56) equals X
8V;jVj=V

X
i2V

di =

NX
k=1

�
N � 1
V � 1

�
dk =

�
N � 1
V � 1

�
2L

Similarly, since each pair of nodes appears
�
N�2
V�2

�
times in all cut sets of size V , the second term in

the right-hand side of (56) becomes

X
8V;jVj=V

X
i2V

X
j2V

aij =
NX
k=1

NX
m=1

�
N � 2
V � 2

�
akm =

�
N � 2
V � 2

�
2L

so that the sum of all cut sizes with V nodes isX
8V;jVj=V

j@Vj = 2L
�

(N � 1)!
(V � 1)!(N � V )! �

(N � 2)!
(V � 2)!(N � V )!

�

Division by
�
N
V

�
= N !

V !(N�V )! then leads to the average in (55). �

Clearly, the proof of Theorem 5 is an alternative and shorter proof of Theorem 4.
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