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Abstract

We reformulate the governing equation for the nodal infection probability of the exact het-

erogeneous SIS process with time-dependent infection and curing rates on any network into two

equivalent integral equations, that provide a di¤erent view on and a more natural description of

the SIS dynamic process in temporal or time-variant networks. From the integral equations, we

deduce general bounds.

1 Introduction

A huge number of papers has studied the SIS epidemic process on networks [1], mainly because of three

reasons. First, the SIS epidemic models a simpli�ed version of a di¤usion process, which describes a

kind of transport between nodes of its underlying graph [2]. Transport of items between nodes is major

function of a network and is often approximated to ��rst order� by an epidemic type of stochastic

di¤usion, such as real viruses and diseases in a population, malware in digital communication networks

and the spread of information (ideas, opinions, news, alarms, etc.) in social networks. Second and

as earlier mentioned in [3], the SIS epidemic process is one of the simplest members of a particularly

popular class of dynamic processes on networks called the �Local rule-Global emergent properties�

(LrGep) class, where the collective action of the local rules executed at each node gives rise to a

complex, emergent global behavior. Some examples of the LrGep-class are epidemic models (such as

SIS and SIR) and more general reaction-di¤usion processes [1], the Ising spin model [4], the Kuramoto

coupled-oscillator model [5], sandpiles as models for self-organized criticality [6, 7, 8] and opinion

models [9, 10]. Many LrGep models depend heavily on the underlying network topology and feature,

in general, a phase transition [11]. The phase transition of the SIS and SIR epidemic models are

similar to that of the Kuramoto-type of synchronization models, an observation that has received

attention in human brain networks (see e.g. [12]). Third, we believe that the Markovian SIS epidemic

model has the highest potential to analytically study that phase transition in networks. Pursuing

the latter is still a worthwhile endeavor, because, so far, there does not exist (apart from asymptotic
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studies [13]) an exact analysis, not even for the complete graph [14]. Before continuing, we remark

that the �phase transition�in SIS and SIR epidemics occurs due to a change in the parameters (ratio

of infection to curing rate) of the model, which might be di¤erent from a phase transition due to the

non-linear dynamics of the process. Both the SIS and SIR Markovian model on any network are linear

processes (as any Markov process [15]) and linear dynamic processes do not exhibit jumps, limit cycles

nor chaotic behavior that may occur in some non-linear processes [16].

Here, the most general description of a heterogeneous Markovian SIS process with time-dependent

rates on a time-variant network is recast into integral equations. Our main results are the derivations

of integral equations (7) and (9) from the SIS governing di¤erential equation for the nodal infection

probability, from which bounds are deduced in Section 4.

2 Markovian SIS governing equation

The graph G of the network consists of the set N of N nodes and the set L of L links and is represented
by an N � N adjacency matrix A with elements aij = 1 if there is a directed link from node i to j,

else aij = 0. The exact heterogeneous Markovian SIS governing equation [17, 15, 18] for the infection

probability E [Xi] = Pr [Xi = 1] of node i is

dE [Xi (t)]

dt
= E

"
��iXi (t) + (1�Xi (t))

NX
k=1

�kiakiXk (t)

#
(1)

where the Bernoulli random variable Xi 2 f0; 1g de�nes the two possible states, the infected state
Xi = 1 and the healthy state Xi = 0 of node i. The nodal curing is a Poisson process with rate

�i, while the infection from node k towards node i is also described by a Poisson process with rate

�ki. All Poisson processes are independent. When node i is infected at time t and Xi (t) = 1, only

the �rst term in (1) on the right-hand side between the brackets [:] a¤ects and decreases with rate

��i the change in infection probability with time dPr[Xi(t)=1]
dt (left-hand side in (1)). When node i

is healthy and Xi (t) = 0, only the second term between the brackets [:] increases dPr[Xi(t)=1]
dt by

a rate
PN
k=1 �kiakiXk (t) due to all its infected, direct neighbors. We de�ne the nodal curing vectore� = (�1; �2; : : : ; �N ) and the weighted adjacency matrix eA with element eaij = �ijaij . Both the topology

and the rates may dependent upon time; thus eA is generally a time-variant, asymmetric matrix with
zero elements on the diagonal (eaii = 0 for all 1 � i � N).

An epidemic spreads along infectious links, which are network links with one end node infected

and the other end node healthy. The probability that there is an infectious link directed from node i

to j is

Pr [Xi = 1; Xj = 0] = E [Xi (1�Xj)] = E [Xi]� E [XiXj ] (2)

which vanishes if i = j. With the de�nition (2), the SIS governing equation (1) becomes

dE [Xi (t)]

dt
+ �i (t)E [Xi (t)] =

NX
k=1

eaki (t) Pr [Xk (t) = 1; Xi (t) = 0] (3)

These joint probabilities Pr [Xk = 1; Xi = 0] in a Markovian SIS process can be determined precisely

as shown in [17, 15], but require the knowledge of the joint probabilities over all triples of nodal
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states, which in turn requires all combinations of four nodal states and so on. Eventually, the exact

determination leads to 2N linear di¤erential equations and this exponentially large number in N is a

�nger print of the NP-hard nature of SIS epidemics on networks.

Using in (3) the conditional probability Pr [Xk = 1; Xi = 0] = Pr [Xk = 1jXi = 0]Pr [Xi = 0] and
1�E [Xi] = Pr [Xi = 0], an alternative form of the heterogeneous Markovian SIS governing equation

is
dE [Xi (t)]

dt
+ f�i (t) + bi (t)gE [Xi (t)] = bi (t) (4)

where the overall infection rate of the healthy node i from all its neighbors is

bi (t) =
NX
k=1

eaki (t) Pr [Xk (t) = 1jXi (t) = 0] (5)

which will play a crucial role in the sequel. If dE[Xi(t)]dt = 0 at a time t = � > 0, then the infection

probability Pr [Xi (�) = 1] = E [Xi (�)] of node i is extremal and equal to

Pr [Xi (�) = 1] =
bi (�)

�i (�) + bi (�)
(6)

which resembles [19] the steady-state infection probability of node i in the N -Intertwined Mean-Field

Approximation (NIMFA) [20], that led to a partial fraction expansion [21].

3 An integral equation for Markovian SIS epidemics

In appendix A, we reformulate a linear di¤erential equation of the type of the SIS di¤erential equation

(4) into an integral equation. We apply (21) to the SIS di¤erential equation (4) and deduce the integral

equation

Pr [Xi (t) = 0] =

Z t

x
�i (s) e

�
R t
s f�i(u)+bi(u)gduds+ Pr [Xi (x) = 0] e

�
R t
xf�i(u)+bi(u)gdu (7)

connecting the healthy probability of node i at any two time points t and x. The integral representation

(7) may more naturally describe temporal networks [22], whose topology (and thus adjacency matrix)

changes over time. The complicating quantity in (7) is bi (t) de�ned in (5), where the infectious

treat eaki (u) Pr [Xk (u) = 1jXi (u) = 0] towards the healthy node i from its neighbor k, depends on

the product of three independent factors: the link existence aki (u) at time u which enables the

transmission, the infection rate �ki (u) at time u which characterizes the strength of the infectious

activity and the likeliness Pr [Xk (u) = 1jXi (u) = 0] of transmission over link k ! i, because the SIS

process only spreads over infectious links. The positive integrand in (7) shows that the probability

that node i is healthy is always positive in a �nite graph, provided that the curing rate �i (s) is not

zero at all times s 2 (0; t] and the infection rates �ij are �nite. When the time t increases while x < t
is �xed and the curing rate �i (u) � �i;min > 0, the last term containing the in�uence of Pr [Xi (x) = 0]

at time x on the actual healthy probability at time t disappears exponentially fast.

The asymptotic time regime follows from (7) as

lim
t!1

Pr [Xi (t) = 0] = lim
t!1

R t
x �i (s) e

R s
x f�i(u)+bi(u)gduds

e
R t
xf�i(u)+bi(u)gdu
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Using de Hospital�s rule and assuming that the limits limt!1 �i (t) = �i;1 and limt!1 eaki (t) = eaki;1
in (5) exist, we �nd that

lim
t!1

Pr [Xi (t) = 0] =
�i;1

�i;1 +
PN
k=1 eaki;1 limt!1 Pr [Xk (t) = 1jXi (t) = 0]

which has the form (6) of an �extremal� probability. The governing equation (1) does not contain

information to conclude that limt!1 Pr [Xk (t) = 1jXi (t) = 0] = 0, but, in any �nite graph [23, 15],
the SIS epidemic process ends in the absorbing, all-healthy state where limt!1 Pr [Xi (t) = 0] = 1 for

any node i 2 N . In other words, the infection has disappeared in the network after su¢ ciently long
time.

The homogeneous case with �xed rates (�ij (t) = �, �i (t) = � and e¤ective infection rate � =
�
� )

is the simplest version of the general expression (7),

Pr [Xi (t) = 0] = �

Z t

x
e��(t�s)e��

PN
k=1 aki

R t
s Pr[Xk(u)=1jXi(u)=0]duds

+ Pr [Xi (x) = 0] e
��(t�x)e��

PN
k=1 aki

R t
x Pr[Xk(u)=1jXi(u)=0]du (8)

The homogeneous NIMFA reformulation, where vk (u) approximates the nodal infection probability

Pr [Xk (u) = 1] by assuming independence such that vk (u) = Pr [Xk (u) = 1] = Pr [Xk (u) = 1jXi (u) = 0],
follows from (8) with vk (u) = 1� vk (u) as

vi (t) = �

Z t

x
e�(�+�di)(t�s)e�

PN
k=1 aki

R t
s vk(u)duds+ vi (x) e

�(�+�di)(t�x)e�
PN
k=1 aki

R t
x vk(u)du

For an SIS Markovian process with �xed rates, we know [24] that E [XiXj ] � E [Xi]E [Xj ], so that
Pr [Xk (u) = 1jXi (u) = 0] � Pr [Xk (u) = 1]. Then, (8) shows that NIMFA lower bounds the healthy
nodal probability, Pr [Xi (t) = 0] � vi (t), as found earlier [3].

3.1 An alternative integral equation to (7)

We demonstrate in Appendix B that the integral equation (7) is equivalent to

ln

�
Pr [Xi (t) = 0]

Pr [Xi (x) = 0]

�
=

Z t

x
�i (u)

Pr [Xi (u) = 1]

Pr [Xi (u) = 0]
du�

Z t

x
bi (u) du (9)

A general integrated governing equation is presented in (28) in Appendix B.

By the mean-value theorem (see e.g. [15, Chapter 5]), there exist a point in time � 2 [x; t] for
which (9) equals

ln
�
Pr[Xi(t)=0]
Pr[Xi(x)=0]

�
t� x = �i (�)

Pr [Xi (�) = 1]

1� Pr [Xi (�) = 1]
� bi (�) (10)

If the interval [x; t] is not large, we may assume that Pr [Xi (�) = 1] at a particular (unknown) time �

is a good approximation for Pr [Xi (u) = 1] at any time point u 2 (x; t). Thus, for a suitably chosen
timestep h = t�x, we may transform the continuous-time setting from (10) or from (27) into a discrete
time approximation,

Pr [Xi (tk+1) = 0] = Pr [Xi (tk) = 0] e
h

�
�i(tk)Pr[Xi(tk)=1]
1�Pr[Xi(tk)=1]

�bi(tk)
�
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where the (k + 1)-th time slot is expressed in terms of the k-th time slot, in which the infection

probability Pr [Xi (u) = 1] = Pr [Xi (tk) = 1] is constant for all u 2 [tk; tk + h) in time slot k and

tk+1 = tk + h. Such approximation might be valuable for an actual disease spread over a time-

variant contact network, especially when additional information about the conditional probability

Pr [Xk (tk) = 1jXi (tk) = 0] can be obtained.
After solving (10) for Pr [Xi (�) = 1], we obtain

Pr [Xi (�) = 1] =
bi (�) +

ln

�
Pr[Xi(t)=0]
Pr[Xi(x)=0]

�
t�x

�i (�) + bi (�) +
ln

�
Pr[Xi(t)=0]
Pr[Xi(x)=0]

�
t�x

(11)

and (11) resembles the extremal probability (6), but now complemented by the di¤erential quo-

tient ln(Pr[Xi(t)=0])�ln(Pr[Xi(x)=0])t�x that involves the infection probabilities at the beginning time x and

ending time t of the interval [x; t]. This generalized form (11) for a particular (unknown) time �

may suggest that each infection probability at time t obeys, to �rst order, the extremal probabil-

ity form Pr [Xi (t) = 1] =
ri(t)

�i(t)+ri(t)
, in which ri (t) is a correction to the infectious link activity

bi (t) =
PN
k=1 eaki (t) Pr [Xk (t) = 1jXi (t) = 0] at time t towards node i, when healthy, from all its

infected neighbors.

The SIS process possesses a quasi-stationary regime, also called the metastable regime. In the

metastable regime, the nodal infection or healthy probability hardly changes anymore. Hence, if both

time x and t belong to the metastable regime, then Pr [Xi (t) = 0] ' Pr [Xi (x) = 0] ' Pr [Xi (u) = 0]
for u 2 [x; t], so that (11) reduces to the equilibrium form given by the extremal probability (6).

However, it is possible that Pr [Xi (t) = 0] = Pr [Xi (x) = 0] for a time x and t in the transient regime as

reported1 in [18], but where Pr [Xi (u) = 0] for u 2 [x; t] is not equal to Pr [Xi (t) = 0] = Pr [Xi (x) = 0]
so that the extremal probability form (11) may not be a good approximation for those intermediate

time points u 2 [x; t]. The SIS process in some graphs may be not unimodal, implying that there is
more than one �nite time � at which extremes (satisfying dE[Xi(t)]

dt = 0 and (6)) are reached.

4 Bounds

In addition to a general convexity bound (29) derived in Appendix B, we will deduce an upper and

lower bound for Pr [Xi (t) = 1] by bounding

i (x; t)

Z t

x
eaik (u) du � Z t

x
eaki (u) Pr [Xk (u) = 1jXi (u) = 0] du � �i (x; t)Z t

x
eaik (u) du

where

�i (x; t) = max
k2Ni and u2[x;t]

Pr [Xk (u) = 1jXi (u) = 0] (12)

i (x; t) = min
k2Ni and u2[x;t]

Pr [Xk (u) = 1jXi (u) = 0] (13)

and Ni denotes the set of neighbors of node i. Thus, �i (x; t) � 1 (and similarly for i (x; t) � 1) is
the probability of occurrence of the most (least) infectious link incident to a healthy node i during

1Non-unimodality was �rst observed by Joel Miller and communicated to me.
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the time interval [x; t]. The de�nition (12) for �xed and small x = c and large t = T suggests that the

higher �i (c; T ) is, the better node i is reachable. Hence, �i (c; T ) can be considered as a centrality

or importance measure for node i, such as betweenness, closeness and the diagonal element of the

pseudo-inverse of the Laplacian [2] and suggests that �i (c; T ) may be approximated by topology

information from the adjacency matrix A. By the non-negative SIS correlation property [24], we have

Pr [Xk (u) = 1jXi (u) = 0] � Pr [Xk (u) = 1], so that

�i (x; t) � max
k2Ni and u2[x;t]

Pr [Xk (u) = 1] (14)

The minimum i (x; t) in (7) produces the upper bound

Pr [Xi (t) = 0] �
Z t

x
�i (s) e

�
R t
sf�i(u)+i(x;t)edi(u)gduds+ Pr [Xi (x) = 0] e� R txf�i(u)+i(x;t)edi(u)gdu

where edi (u) =PN
k=1 eaik (u) is the time-dependent, weighted degree of node i. The maximum �i (x; t)

in (7) produces the lower bound

Pr [Xi (t) = 0] �
Z t

x
�i (s) e

�
R t
sf�i(u)+�i(x;t)edi(u)gduds+ Pr [Xi (x) = 0] e� R txf�i(u)+�i(x;t)edi(u)gdu

We useZ t

x
�i (s) e

R s
xf�i(u)+�i(x;t)edi(u)gduds = eR txf�i(u)+�i(x;t)edi(u)gdu�1��i (x; t)

Z t

x

edi (s) eR s0 f�i(u)+�i(x;t)edi(u)gduds
in the above bounds for Pr [Xi (t) = 0] to obtain bounds for the probability Pr [Xi (t) = 1] that node

i is infected at time t:

Pr [Xi (t) = 1] � i (x; t)
Z t

x

edi (s) e� R tsf�i(u)+i(x;t)edi(u)gduds+ Pr [Xi (x) = 1] e� R txf�i(u)+i(x;t)edi(u)gdu
Pr [Xi (t) = 1] � �i (x; t)

Z t

x

edi (s) e� R tsf�i(u)+�i(x;t)edi(u)gduds+ Pr [Xi (x) = 1] e� R txf�i(u)+�i(x;t)edi(u)gdu
The �rst integral over s in the above bounds is always positive, but generally di¢ cult to evaluate.

The inequalities for the homogenous case with constant rates simplify to

Pr [Xi (t) = 1] �
i (x; t)�di

� + i (x; t)�di
+ e�(�+i(x;t)�di)(t�x)

�
Pr [Xi (x) = 1]�

i (x; t)�di
� + i (x; t)�di

�
(15)

Pr [Xi (t) = 1] �
�i (x; t)�di

� + �i (x; t)�di
+ e�(�+�i(x;t)�di)(t�x)

�
Pr [Xi (x) = 1]�

�i (x; t)�di
� + �i (x; t)�di

�
(16)

with equality at t = x. The upper bound (analogously for the lower bound) only exceeds �i(x;t)�di
�+�i(x;t)�di

for �nite time t provided the infection probability at time x is Pr [Xi (x) = 1] >
�i(x;t)�di
�+�i(x;t)�di

. These

bounds (15) and (16) resemble the time-dependent solution of a general continuous-time two-state

Markov process [15, p. 231], which is also the underlying basis for NIMFA as explained in [21, Sec.

2.1 and Fig. 1.].

After su¢ ciently large time t = T to ignore the initial condition at time x (i.e. e��T Pr [Xi (x) = 1] <<

1), the inequalities (15) and (16) simply with � = �
� to

i (x; T )�di
� + i (x; T )�di

� Pr [Xi (T ) = 1] �
�i (x; T )�di

� + �i (x; T )�di
(17)
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Similarly, the extremal probability (6) for constant rates can be bounded as

i (x; �)�di
� + i (x; �)�di

� Pr [Xi (�) = 1] �
�i (x; �)�di

� + �i (x; �)�di

The correspondence with (17) indicates that the quasi-stationary (or metastable) SIS regime attained

after time T operates around the maximal value within bounds depending on infectious links. The

smaller the di¤erence �i (x; T ) � i (x; T ), the sharper and more promising the above bounds will
be. Also, (17) supports the earlier claim based upon (11) that the nodal infection probability can be

approximated by Pr [Xi (t) = 1] � ri
�i(t)+ri

.

De�ning the maximum possible infection probability vmax = maxk2N and u2[0;T ] Pr [Xk (u) = 1] in

the interval [0; T ], then the upper bound on �i (x; t) in (14) shows that �i (0; T ) � vmax and the upper
bound in (17) is

Pr [Xi (T ) = 1] �
vmax�di

1 + vmax�di

whereas the corresponding upper bound for the steady-state infection probability vi1 in NIMFA [15,

Theorem 17.4.2 on p. 464] obeys

vi1 � �di
1 + �di

If vmax occurs at node i, the above upper bound becomes vmax � vmax�di
1+vmax�di

and, equivalently for

� � 1
di
,

vmax � 1�
1

�di
� 1� 1

�dmax

For any regular graph with degree r, we thus observe that Pr [Xi (T ) = 1] � 1 � 1
r� , while equality

holds in NIMFA. Despite the lack of a companion of (14) for the minimum min = mini2N i (0; t) in

(13), we can proceed similarly,
min�di

1 + min�di
� Pr [Xi (T ) = 1]

If the minimum possible infection probability vmin in the interval [0; T ] occurs at node k, then

min�dmin
1 + min�dmin

� min�dk
1 + min�dk

� vmin

from which an upper bound for the e¤ective infection rate follows as

� � 1

mindmin

vmin
1� vmin

(18)

More equations for the e¤ective infection rate � of this type are presented in Appendix C.

5 Summary

Integral equations (7) and (9) for the most general Markovian setting of SIS epidemics are derived. The

analysis illustrates that only the N �rst, linear Markovian equations (1, 4, 3) for the nodal infection

probabilities alone out of the 2N other equations for joint probabilities are elegantly bounded by

the extremal probability form (6,11) and the bounds resemble the behavior of the corresponding N

non-linear NIMFA equations.
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A Linear �rst order di¤erential equation

We rewrite (4) as
df (t)

dt
+ g (t) f (t) = g (t)� �i (t) (19)

where f (t) = E [Xi (t)] and g (t) = �i (t) + bi (t) = G (f (t)), where G (:) is an unknown function.

Since the dependence of g (t) on f (t) is unknown, the solution of the di¤erential equation (19) (see

e.g. [25, Sec. 5.2])

f (t) = exp

�
�
Z t

0
g (u) du

��Z t

0
exp

�Z s

0
g (u) du

�
(g (s)� �i (s)) ds+ f (0)

�
(20)

expresses f (t) in terms of g (t) and thus results in an integral equation for f (t), rather than in its

solution. After integrating the �rst term,Z t

0
exp

�Z s

0
g (u) du

�
g (s) ds = exp

�Z t

0
g (u) du

�
� 1

and some rearrangements, we arrive at

1� f (t) =
Z t

0
� (s) exp

�
�
Z t

s
g (u) du

�
ds+ f1� f (0)g exp

�
�
Z t

0
g (u) du

�
(21)

We rewrite the di¤erential equation (4) with the de�nition bi (t) in (5) as

dPr [Xi (t) = 0]

dt
+ f�i (t) + bi (t)gPr [Xi (t) = 0] = �i (t) (22)

Only if � is a constant (independent of time) and assuming that G (h (t)) = �i + bi (t) exists and is

known, then the above di¤erential equation becomes with h (t) = Pr [Xi (t) = 0] = 1� f (t),

dh (t)

dt
+G (h (t))h (t) = �i
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whose solution is Z h(t)

h(0)

dx

�i � xG (x)
= t

Let dH(x)dx = 1
�i�xG(x) , thenH (h (t))�H (h (0)) = t and the explicit solution is h (t) = H

�1 (t+H (h (0))).

For the particular example where g (t) = �f (t), the di¤erential equation (19) becomes a generalized

�logistic�or non-linear Bernoulli di¤erential equation df(t)
dt ��f (t) = ����f

2 (t), which describes, in

the mean-�eld approximation, the probability v (t) of infection in a node at time t in a regular graph

G with degree r obeying
dv (t)

dt
= r� (t) v (t) (1� v (t))� � (t) v (t) (23)

where the infection rate � (t) and the curing rate � (t) are general non-negative real functions of time

t. By the same technique �variation of a constant�, we �nd in [26] the solution

v (t) =
exp

�R t
0 (r� (u)� � (u)) du

�
1
v0
+ r

R t
0 � (s) exp

�R s
0 (r� (u)� � (u)) du

�
ds

(24)

where v0 is the initial fraction of infected nodes.

B The function pi (t; q) and proofs of (9)

We give two proofs of (9): after introducing the function pi (t; q) in (25), the �rst proof transforms the

integral equation (7) into (9), while the second proof of (9) is based on the governing SIS equation

(1).

Proof 1: Let us denote

pi (t; q) = Pr [Xi (t) = 0] e
R t
q f�i(u)+bi(u)gdu (25)

where q is an arbitrary point in time, then the integral equation (7) can be recast as

pi (t; q)� pi (x; q) =
Z t

x
�i (s) e

R s
q f�i(u)+bi(u)gduds

After invoking the de�nition (25), we obtain an integral equation in pi (t; q),

pi (t; q)� pi (x; q) =
Z t

x
�i (s)

pi (s; q)

Pr [Xi (s) = 0]
ds (26)

Since the integrand is non-negative, then pi (t; q) � pi (x; q) for t > x and pi (t; q) is non-decreasing in
time t.

Given pi (x; q), we can iterate the integral equation (26). After n iterations, we obtain the series

of multiple integrals,

pi (t; q)

pi (x; q)
= 1 +

Z t

x

�i (t1) dt1
Pr [Xi (t1) = 0]

+

Z t

x

�i (t1) dt1
Pr [Xi (t1) = 0]

Z t1

x

�i (t2) dt2
Pr [Xi (t2) = 0]

+ � � �+
Z t

x

�i (t1) dt1
Pr [Xi (t1) = 0]

� � �
Z tn�1

x

pi (tn; q)

pi (x; q)

�i (tn) dtn
Pr [Xi (tn) = 0]
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Using the multiple integral formula (which can be veri�ed by partial integration )Z t

x

�i (t1) dt1
Pr [Xi (t1) = 0]

Z t1

x

�i (t2) dt2
Pr [Xi (t2) = 0]

� � �
Z tn�1

x

�i (tn) dtn
Pr [Xi (tn) = 0]

=
1

n!

�Z t

x

�i (s) ds

Pr [Xi (s) = 0]

�n
yields

pi (t; q)

pi (x; q)
= 1 +

n�1X
k=1

1

k!

�Z t

x

�i (s) ds

Pr [Xi (s) = 0]

�k
+

Z t

x

�i (t1) dt1
Pr [Xi (t1) = 0]

� � �
Z tn�1

x

pi (tn; q)

pi (x; q)

�i (tn) dtn
Pr [Xi (tn) = 0]

The last integral can be bounded asZ t

x

�i (t1) dt1
Pr [Xi (t1) = 0]

� � �
Z tn�1

x

pi (tn; q)

pi (x; q)

�i (tn) dtn
Pr [Xi (tn) = 0]

� pi (t; q)

pi (x; q)

1

n!

�Z t

x

�i (s) ds

Pr [Xi (s) = 0]

�n
and illustrates that the series converges in any �nite interval when n!1. Hence,

pi (t; q)

pi (x; q)
= 1 +

1X
k=1

1

k!

�Z t

x

�i (s) ds

Pr [Xi (s) = 0]

�k
= exp

�Z t

x

�i (s) ds

Pr [Xi (s) = 0]

�
Introducing the de�nition (25) of pi (t;x) results in

Pr [Xi (t) = 0] e
R t
xf�i(u)+bi(u)gdu

Pr [Xi (x) = 0]
= exp

�Z t

x

�i (s) ds

Pr [Xi (s) = 0]

�
(27)

which can be rewritten as (9). �

Proof 2: We can generalize (9) to any integrable function h (x) = dH(x)
dx as

H (Pr [Xi (t) = 0])�H (Pr [Xi (x) = 0]) =
Z t

x
h (Pr [Xi (u) = 0])

dPr [Xi (u) = 0]

du
du

Introducing the governing SIS equation (22) for the healthy probability Pr [Xi (u) = 0] leads to the

general formula

H (q)jPr[Xi(t)=0]Pr[Xi(x)=0]
=

Z t

x
h (Pr [Xi (u) = 0])

 
�i (u) Pr [Xi (u) = 1]�

NX
k=1

eaki (u) Pr [Xk (u) = 1; Xi (u) = 0]
!
du

(28)

where the special case h (x) = 1
x leads to (9). �

Lemma 1 Provided that the curing rate �i (t) � 1
t+ 1

�i(0)

, the function pi (t; q), de�ned in (25), is

convex for all time t.

Proof: Di¤erentiating (26) with respect to time t yields

dpi (t; q)

dt
=

�i (t)

Pr [Xi (t) = 0]
pi (t; q)

A second di¤erentiation, in which we use the above �rst order di¤erential, leads to

d2pi (t; q)

dt2
=

(
d

dt

�
�i (t)

Pr [Xi (t) = 0]

�
+

�
�i (t)

Pr [Xi (t) = 0]

�2)
pi (t; q)
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and
d2pi (t; q)

dt2
=

�
�i (t) +

�0i (t)

�i (t)
Pr [Xi (t) = 0]�

dPr [Xi (t) = 0]

dt

�
�i (t) pi (t; q)

(Pr [Xi (t) = 0])
2

Introducing the governing equation (22) yields

d2pi (t; q)

dt2
=

�
�0i (t)

�i (t)
+ �i (t) + bi (t)

�
�i (t) pi (t; q)

Pr [Xi (t) = 0]

which is always non-negative provided �0i(t)
�i(t)

+ �i (t) � 0, which is, after integration, equivalent to the
condition stated in Lemma 1. �

As a consequence of Lemma 1, we conclude for a constant curing rate �i (t) = �i that pi (t; q) is

always convex. Applying the convexity de�nition (see e.g. [15, p. 101]),

pi (�u+ (1� �) v; q) � �pi (u; q) + (1� �) pi (v; q)

with � 2 [0; 1] where �i (t) obeys the condition in Lemma 1, then the expression (27), after choosing
x = u, leads to a bound involving the healthy probability where the time e� = �u+ (1� �) v 2 [u; v]:

e

R �u+(1��)v
u

�i(s)ds

Pr[Xi(s)=0] � �+ (1� �) e
R v
u

�i(s)ds

Pr[Xi(s)=0] (29)

C The prevalence and e¤ective infection rate

Summing (3) over all nodes and rewritten in terms of the prevalence

y (t) =
1

N

NX
i=1

Pr [Xi (t) = 1] = E

"
1

N

NX
i=1

Xi (t)

#
(30)

de�ned as the expected fraction of infected nodes in a graph at time t, yields

dy (t)

dt
+
1

N

NX
i=1

�i (t)E [Xi (t)] =
1

N

NX
i=1

NX
k=1

eaki (t) Pr [Xk = 1; Xi = 0]
Only when all curing rates �i (t) = � (t) are equal, we �nd a di¤erential equation in the prevalence

dy (t)

dt
+ � (t) y (t) =

1

N

NX
i=1

NX
k=1

eaki (t) Pr [Xk = 1; Xi = 0]
Earlier, we have demonstrated in [27] and further studied in [28, 29], that

dy (t�; �)

dt�
= �y (t�; �) + �

N
E
h
w (t�; �)T Qw (t�; �)

i
(31)

where t� = �t is the scaled time, Q = ��A is the Laplacian of the graphG with� = diag(d1; d2; : : : ; dN )
and di is the degree of node i in G, and the Bernoulli vector w = (X1; X2; : : : ; XN ). If we con�ne

ourselves for simplicity to �xed rates and a time-invariant topology, then the comparison with (31)

shows that the average number of links in the cut-set between healthy and infected nodes is

E
�
wTQw

�
=

NX
i=1

NX
k=1

aki Pr [Xk = 1; Xi = 0] (32)
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which is investigated further in [30].

In the metastable regime, the homogeneous case with �xed rates (�ij (t) = �, �i (t) = �) and

time-invariant topology aki (t) = aki in (6) with (5) satis�es to a very good approximation

Pr [Xi (�) = 1] =
�
PN
k=1 aki Pr [Xk (�) = 1jXi (�) = 0]

1 + �
PN
k=1 aki Pr [Xk (�) = 1jXi (�) = 0]

from which the e¤ective infection rate � = �
� is solved as

� =
Pr [Xi (�) = 1]PN

k=1 aki Pr [Xk (�) = 1; Xi (�) = 0]
(33)

The e¤ective infection rate � can also be solved2 from (31) with (32) in terms of the prevalence as

� =
y (�)

1
N

PN
i=1

PN
k=1 aki Pr [Xk (�) = 1; Xi (�) = 0]

(34)

We revisit the deduction3 from [27] and rewrite (34) as

��1 =

PN
k=1 Pr [Xk (�) = 1]

PN
i=1 aki Pr [Xi (�) = 0jXk (�) = 1]PN

k=1 Pr [Xk (�) = 1]

for a time �, somewhere in the metastable regime (see Section 3.1). Now

Pr [Xi (t) = 0jXk (t) = 1] =
Pr [Xi (t) = 0]

Pr [Xk (t) = 1]
Pr [Xk (t) = 1jXi (t) = 0]

appears as the probability that node i is healthy given an infected neighbor k, which opposes the

�dual�conditional probability Pr [Xk (t) = 1jXi (t) = 0] above and both conditional probabilities are
only equal when Pr [Xi (t) = 0] = Pr [Xk (t) = 1], i.e. when both nodes have equal probability to be

in an opposite state at any time t. Upper and lower bounding in the usual way leads to

min
1�k�N

NX
i=1

aki Pr [Xi (�) = 0jXk (�) = 1] � ��1 � max
1�k�N

NX
i=1

aki Pr [Xi (�) = 0jXk (�) = 1]

Using the degree di =
PN
j=1 aij and con�ning to the lower bound, we have

��1 � min
1�k�N

NX
i=1

aki Pr [Xi (�) = 0jXk (�) = 1] � min
1�k�N

�
min
(i;l)2L

Pr [Xi (�) = 0jXl (�) = 1] dk
�

After a similar treatment of the upper bound, we arrive at

dmin min
(i;l)2L

Pr [Xi (�) = 0jXl (�) = 1] � ��1 � dmax max
(i;l)2L

Pr [Xi (�) = 0jXk (�) = 1] (35)

We remark that min = mini2N i (�) = min(i;l)2L and u2[0;�] Pr [Xk (u) = 1jXi (u) = 0], expressed in
�dual�conditional probability, appears in (18) and is di¤erent from the above.

2Also by summing (33) over all nodes after obvious manipulations.
3Earlier, (34) has already appeared in the proof of Theorem 17.3.2 in [15, p. 458] and in [27]. The last part of the

proof in [15, p. 459] was, unfortunately erroneous and thus also Theorem 17.3.2, as reported in [28].
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