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Abstract

After the addition of one directed link with weight ! > 0 to an undirected and unweighted

graph, we compute at which critical weight !c a complex conjugate eigenvalue in the adjacency

matrix is born. Simulations illustrate that the distribution Pr [!c ! x] converges remarkably fast
in the number (N ! 40) of nodes in ErdNos-RÈnyi random graphs to a limit distribution, close to

a Gamma distribution. Furthermore, the critical weight !c nor the associated complex eigenvalue

pair seem to correlate with degree, betweenness nor e§ective resistance.

1 Introduction

1.1 Directed graphs

A directed graph is often represented by an asymmetric adjacency matrix. Here, we claim, however,

that a directed graph, represented by an asymmetric adjacency matrix, is a misleadingly simple

concept and considerably di§ers from its undirected companion [4]. For example, the Laplacian of

a an asymmetric adjacency matrix is not uniquely deÖned; either the row or column sums can be

zero, but not both. Our argument below is based on a network science point of view: each network

consists of two essential parts, (a) a graph, also called topology or structure which is often associated

with ìhardwareî and (b) a process, also called function or service, associated to ìsoftwareî. In most

networks, items are transported from a source node to a destination node, determined by a process

that steers the tranmission over a certain set of nodes and links of the graph.

A simple graph consists of a set N of N nodes and a set L of L links and each link l 2 L connects
two di§erent nodes. The basic property of a simple graph on N nodes is link existence, which can be

speciÖed by a symmetric adjacency matrix. The direction of a link provides additional information

to the usage of that link, which is related to the function or process on the graph. In áow or áuid

networks (water, electricity, etc.), the underlying graph consists of pipes that allow the áow in both

directions and the process (e.g. potential di§erence over the link), dictated by the laws of nature,

determines the direction [14]. Hence, the graph is undirected, speciÖed by a symmetric adjacency or

Laplacian matrix, while the process determines the direction of a link (that may change over time with

the process). If the underlying graph is made directed, it means by convention that the áow is only
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allowed in one direction, irrespective of the process. In such directed graph, we need a ìnon-linear

elementî such as a shutter in the water tube, a diode in an electrical network, a single lane with

tra¢c bords in road networks, etc. to prevent transport in both directions. The process equations

in a directed graph become essentially non-linear and the beauty of linearity or linear processes on

graphs vanishes. Thus, in physical áow networks, the directions of links are naturally associated to

the process.

Human-created networks lead, more often than physical áow networks, to a directed graph. The

webgraph, consisting of webpages as nodes where hyperlinks point to other webpages, is usually

directed, which means that, only by following the hyperlinks, a walk over webpages in one direction

is constructed. Similarly in social networks as Twitter, where friendship relations are not necessarily

bidirectional, the áow of tweets follows one direction. However, in these examples, it is the function

or process on the graph, rather than the graph itself, that is directed. More generally, any Markov

process can be represented by a directed Markov graph [11], that describes the process transitions

from one state to other states. For example, an SIS epidemic process on a graph with N nodes

(persons) and L links (contact relations between persons) can be represented by a Markov graph, in

which each of the 2N nodes is a possible network infection state decoding the N individual infection

states. The SIS Markov graph [13] is a regular, directed bipartite graph with degree N . In most

cases, the associated probability transfer matrix of a Markov process, which is a stochastic matrix,

is asymmetric; the appearence of a symmetric stochastic matrix is rather exceptional. Unfortunately,

in most cases, it is di¢cult to express the stochastic matrix or inÖnitesimal generator, which is a

weighted Laplacian, of the Markov process as a function of the adjacency (or another graph-related)

matrix of the underlying graph. We believe that this observation holds in general for any process on

a graph (e.g. in human brain networks [6]) and it would be a desirable ambition (as e.g. in [5]) to

design a framework that expresses the function F on the graph in terms of the adjacency matrix A of

the graph, thus, F = f (A; t), where t denotes other process parameters.

In summary, we have argued that the direction of links in a graph is determined by the process in

most cases and that asymmetric matrices arise most often in a process representation, which merges

or couples both structure and function of the network.

1.2 Complex eigenvalues

In contrast to symmetric matrices [10], an asymmetric adjacency matrix as representation of a directed

graph may lead to complex eigenvalues and to a Jordan form (i.e. the asymmetric matrix is not

diagonalizable). Complex conjugate eigenvalues in an otherwise completely real setting must contain

a certain meaning and may refer to properties of the underlying directed graph. A fascinating question

is ìwhat is the structural or topological meaning of complex eigenvalues of the adjacency matrix?î In

order to cope with directed graphs, but to avoid complex eigenvalues, a Hermitian adjacency matrix

has been proposed [2]. Brualdiís [1] review on the spectra of directed graphs, with an emphasis on the

spectral radius and special types of graphs, illustrates the scarceness of general strong results (such

as I. Schurís famous theorem of 1909, [7, p. 310] and also [3]).

Here, we investigate a simple case of asymmetry. We start with an unweighted and undirected

graph G with N nodes and L links. The graph G has a N %N symmetric adjacency matrix A = AT ,
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with spectral decomposition A = X,XT , where X is the orthogonal matrix with the normalized eigen-

vectors x1; x2; : : : ; xN in the columns and , is the diagonal matrix with the ordered real eigenvalues

/1 & /2 & ' ' ' & /N , in which eigenvalue /k corresponds to eigenvector xk. We add one directed link
lij from node i to node j in the graph G and we denote the resulting, directed graph by G0 = G[flijg.
The newly added link lij has, as only link in G0, a link weight wij = ! > 0. The adjacency matrix of

the weighted, directed graph G0 is A0 = A + !eie
T
j and is asymmetric, where the real, non-negative

number ! is a tuning parameter which corresponds to a link in the unweighted case if ! = 1.

We address a couple of research questions. First, which critical link weight !c > 0 of the added link

lij gives rise to complex eigenvalues of A0? Given the spectral decomposition A = X,XT , can we write

the eigenvalues of A0 in terms of X and ,? In other words, does there exist an e¢cient algorithm to

compute the eigenvalues of A0, given the eigenstructure of A? Section 2 presents an algorithm to Önd

the complex eigenvalues of A0 = A+!eieTj in terms of the eigenvalues and eigenvectors of the adjacency

matrix A of the original, undirected and unweighted graph G. Moreover, we also determine the critical

link weight !c above which a complex eigenvalue is born. Simulations in Section 3 on relatively small

graphs allow us to compute the probability that the asymmetric, but unweighted ! = 1, matrix A0 has

no complex eigenvalues. We found that the distribution Pr [!c ! x] in small ErdNos-RÈnyi graphs Gp (N)
with N ! 40 nodes converges remarkably fast to an asymptotic distribution that is likely a Gamma
distribution. On the negative side, the critical link weight !c, nor the associated complex eigenvalue

were found to correlate with degree, e§ective resistance, betweenness, which explains ìmysteriousî in

the title. Thus, we fail to understand the topological meaning of the critical link weight !c or the

complex eigenstructure and add a research agenda in Section 4 to stimulate further investigations.

2 Resolvent approach to the matrix A0

The characteristic polynomial of the matrix A0 is1

cA0 (/) = det
!
A0 , /I

"
= det

!
A, /I + !eieTj

"

Using the Schur-formula [10]

det
!
A+ Cn#kD

T
k#n
"
= detAdet

!
Ik +D

TA$1C
"

yields2

det
!
A, /I + !eieTj

"
= det (A, /I)

#
1 + !eTj (A, /I)

$1 ei

$
(1)

1The expression of the coe¢cients ck (A0) of the characteristic polynomial cA0 (#) =
PN

k=0 ck (A
0)#k in terms of the

coe¢cients ck (A) of the original characteristic polynomial cA (#) = det (A! #I) =
PN

k=0 ck (A)#
k is di¢cult. Actually,

the explicit formula of ck (A0) as a sum over all minors [10, p. 211] indicates that all coe¢cients but cN (A0) and cN#1 (A0)

are a§ected by %, because the sum over all minors will always include the element aij = %.
2A column (row) consisting of a sum of two vectors in a determinant can be split into two determinants [7, p. 10],

from which we obtain

det
"
A! #I + %eieTj

#
= det (A! #I) + % (!1)i+j det (A! #I)n row in col j

Equating this expression and (1) yields

det (A! #I)
"
(A! #I)#1ji

#
= (!1)i+j det (A! #I)n row in col j
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The procedure can be extended to the addition of more than one link. Brualdi [1] shows that, after

ordering the links as l1; l2; : : : lL, any adjacency matrix can be written as A = BoutBTin, where Bin is

the N % L in-incidence matrix and (Bin)ij = 1 if the link lj = (nk; ni) for some node nk, otherwise

(Bin)ij = 0, whereas the N % L out-incidence matrix Bout has an element (Bout)ij = 1 if the link

lj = (ni; ns) for some node ns, otherwise (Bout)ij = 0. For example, for two link additions, the matrix

!1eie
T
j + !2eke

T
l =

h
!1ei !2ek

i
:
h
ej el

iT

and the Schur-formula results in

det
!
A, /I + !1eieTj + !2eke

T
l

"
= det (A, /I) det

'
I2 +

h
ej el

iT
(A, /I)$1

h
!1ei !2ek

i(

= det (A, /I) det

"
!1e

T
j (A, /I)

$1 ei + 1 !2e
T
j (A, /I)

$1 ek

!1e
T
l (A, /I)

$1 ei !2e
T
l (A, /I)

$1 ek + 1

#

where the last determinant can be computed explicitly. The two-position change in a matrix is required

in a companion study about the e§ect of adding a weighted directed link on the Laplacian matrix of

the graph. Here, we conÖne ourselves to the simplest case of one link addition in the adjacency matrix

of the graph.

Any eigenvalue : of A0 obeys cA0 (:) = 0 and (1) indicates that : is a solution of

,
1

!
= (A, :I)$1ij

With the resolvent [10] of an n% n symmetric matrix C

(zI , C)$1 =
nX

k=1

xk (C)x
T
k (C)

z , /k (C)

and
!
xkx

T
k

"
ij
= (xk)i (xk)j , we arrive at an eigenvalue equation for : in terms of eigenstructure of A

NX

k=1

(xk)i (xk)j
: , /k

=
1

!
(2)

provided all eigenvalues /k have multiplicity mk = 1 (we omit the case where the multiplicity exceeds

one). We further conÖne ourselves to connected graphs (with irreducible adjacency matrices). The

resolvent eigenvalue equation (2) also indicates that the addition of a link from i! j or in the opposite

direction from j ! i leads to exactly the same eigenvalues (as expected from det
!
AT
"
= det (A)).

In summary, the eigenvalues :1; :2; : : : ; :N of the adjacency matrix A0 = A+!eieTj of the weighted,

directed graph G0 = G [ flijg satisfy

f (:),
1

!
= 0

which is, indeed, an identity, because for any matrix M , it holds that

$
M#1%

ji
=
(adjM)ji
detM

=
(!1)i+j detMn row in col j

detM
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where the partial fraction expansion in (2) is denoted by the function

f (:) =
NX

k=1

=k
: , /k

(3)

and where the coe¢cients3

=k = (xk)i (xk)j (5)

are the residues of the complex function f (:). Residues play an important role in complex function the-

ory [8, Chapter III]. Our conÖnement to an adjacency matrix A of the original unweighted, undirected

graph with distinct eigenvalues f/kg1%k%N implies that the residues obey =q = lim1!2q (: , /q) f (:)
for each 1 ! q ! N . The resolvent approach is essentially a Greenís function approach (see e.g. [9,

Sec. III.A]).

2.1 The partial fraction expansion (3)

If =q = (xq)i (xq)j = 0, then only the value at : = /q ináuences the function f (:) and only when

=q = 0, an eigenvalue :q = /q of A0 equals an eigenvalue /q of A, but the term
3q
1$2q further plays

no role in the eigenvalue equation (2) of : when ! changes. The Perron-Frobenius Theorem [11] tells

us that all components of the principal eigenvector x1 of a non-negative matrix are non-negative, and

positive for the adjacency matrix of a connected graph, so that the residue =1 = (x1)i (x1)j & 0, while
the sign of the residues =k with k > 1 can be both negative and positive.

Double orthogonality [12] implies that
PN
k=1 (xk)q (xk)r = @qr for any nodal pair (q; r) and since

i 6= j,
PN
m=1 (xm)i (xm)j = 0 shows that there must be both negative and positive residues. More

generally, a function g of a symmetric matrix A is

g (A) =
NX

k=1

g (/k)xkx
T
k (6)

from which (Am)ij =
PN
k=1 /

m
k (xk)i (xk)j equals [10, p. 26, p. 33] the total number of walks with

m-hops from node i to node j. For m > 1, we observe that (Am)ij does not depend upon the link aij
(which is absent in G, but added in G0) and, thus,

PN
m=1 /m (xm)i (xm)j = aij = 0.

Introducing 1
1$2k

= 1
1

#
1 + 2k

1$2k

$
into (3) yields

f (:) =
1

:

NX

k=1

(xk)i (xk)j +
1

:

NX

k=1

/k (xk)i (xk)j
: , /k

3An explicit form of the residue is proved in [12]:

Corollary 1 The product of the i-th and j-th component of eigenvector xk of A belonging to eigenvalue #k with multi-

plicity 1 equals

(xk)i (xk)j =
(!1)i+j+1

c0A (#k)
det

$
An row in col j ! #kI

%
(4)

where c0A (#) =
d
d)
det (A! #I) = !

PN
n=1 det

$
AGnfng ! #I

%
.
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Since
PN
k=1 (xk)i (xk)j = 0, we arrive at

:f (:) =

NX

k=1

Dk
: , /k

(7)

with residues

Dk = /k (xk)i (xk)j (8)

Thus, :f (:) can be treated similarly as f (:), but with residues Dk = /k=k instead of =k and
PN
k=1 Dk =

0 similar to
PN
k=1 =k = 0 and equivalent to

R
C f (:) d: =

R
C :f (:) d: = 0 for a contour C enclosing

all poles at the eigenvalues of A. Relation (7) also indicates that jf (:)j is large for small j:j, which is
conÖrmed by Fig. 3. Moreover, if eigenvalues of the original adjacency matrix are non-zero, /k 6= 0,
then we observe that lim1!0 :f (:) = 0.

Theorem 1 For real : > /1, it holds that f (:) > 0, whereas f (:) < 0 for su¢ciently large negative
real :, certainly for : < ,/1

#
1 +

221
2(A2)ij

$
.

Proof: Expanding 1
1$2k

=
P1
m=0

2mk
1m+1

, valid if j/kj < j:j, yields

f (:) =
1X

m=0

#PN
k=1 (xk)i (xk)j /

m
k

$

:m+1

Using (Am)ij =
PN
k=1 /

m
k (xk)i (xk)j and

!
A0
"
ij
= (A)ij = 0, leads to the Laurent series

f (:) =
1X

m=2

(Am)ij
:m+1

if j/1j < j:j (9)

Clearly, the Laurent series (9) indicates that f (:) > 0 for real : > /1 (because all terms (Am)ij
in the Laurent series are non-negative). The second claim is demonstrated as follows. We write (9)

as f (:) = 1
1

'
(A2)

ij

12
+
P1
m=3

(Am)ij
1m

(
and if

(A2)
ij

12
+
P1
m=3

(Am)ij
1m > 0, then f (:) < 0 for negative

: = , j:j. Since (Am)ij ! /
m
1 for any pair (i; j) and any non-negative integer m, we have

.....

1X

m=3

(Am)ij
:m

.....
<

1X

m=3

(Am)ij
j:jm

!
1X

m=3

'
/1
j:j

(m
=

1X

m=0

'
/1
j:j

(m+3
=

231
j1j2

j:j , /1

The condition
(A2)

ij

12
> ,

P1
m=3

(Am)ij
1m is obeyed when

(A2)
ij

12
>

)31
j-j2

j1j$21
>
...
P1
m=3

(Am)ij
1m

... & ,
P1
m=3

(Am)ij
1m ,

from which we Önd that j:j > /1
#
1 +

221
(A2)ij

$
. !

From Theorem 1, we deduce that the resolvent equation f (:) = 1
7 has always a real solution or

eigenvalue :1 > /1, in agreement with the Perron-Frobenius theorem and the fact that the spectral

radius of the adjacency matrix is larger than or equal to the largest eigenvalue of any of its subgraphs.

At the other extreme of the spectrum, only a negative residue =N < 0 makes f (:) > 0 for : < /N and

leads to a real eigenvalue :N < /N , since Theorem 1 states that f (:) < 0 for large :, while eventually

lim1!$1 f (:) = 0. Thus, if =N < 0, then :N < /N and the eigenvalue range :1 , :N > /1 , /N . If
=N > 0, on the other hand, then :N > /N , but in spite of (27), we cannot conclude that :1 , :N >
/1 , /N . Both extreme cases give rise to real eigenvalues of A0 and demonstrate that
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Corollary 2 The real part of a possible complex eigenvalue : of A0 = A + !eie
T
j is bounded by

/N < Re (:) < /1.

When an eigenvalue :m of A0 approaches an eigenvalue /m of A, then the term 3m
1m$2m dominates

the sum in (2), so that we can approximate

:m 0 /m + !=m (10)

which corresponds to the Örst-order perturbation approximation [15, 60-70] for small !. In contrast

to simple interlacing [10, p. 245], where all residues are positive, the resolvent equation (2) is more

complicated as stated in Theorem 2:

Theorem 2 Between two (real) eigenvalues of A, there can be zero or one, but at most two real
eigenvalues of A0 = A+ !eieTj as long as link weight ! of the added link directed from node i to node

j is su¢ciently small.

Proof: The resolvent equation (2) demonstrates that only intersections of the horizontal line at
y = 1

7 > 0 and the positive values of the function y = f (:) > 0 at real : lead to real eigenvalues

:m of the matrix A0. The derivative f 0 (:) = ,
PN
k=1

3k
(1$2k)2

indicates that f (:) decreases from +1
for : & /m if =m > 0 and, vice versa, increases from ,1 for : & /m if =m < 0. There are three

cases: (a) if =m > 0 and =m$1 > 0, then f (:) decreases from inÖnity at /m towards some :0 and

further decreases from some :1 > :0 towards ,1 at /m$1. Moreover, (10) tells us for small ! that

/m < :m ! /m$1 < :m$1, implying that there is only one eigenvalue :m of A0 between /m and /m$1.
(b) if =m > 0, but =m$1 < 0, then (10) shows that /m < :m ! :m$1 < /m$1 and there are two

eigenvalues in the interval (/m; /m$1) for small !. (c) The other extreme, =m < 0, but =m$1 > 0,

leads to :m < /m ! /m$1 < :m$1, implying the absense of eigenvalues of A0 in the interval (/m; /m$1)
for small !. Since A0 has a total of N eigenvalues, for small enough !, all eigenvalues of A0 are real

and positioned in one of the N + 1 intervals f(,1; /N ) ; (/N ; /N$1) ; : : : (/2; /1) ; (/1;1)g.
By varying !, real eigenvalues cannot cross the asymptotes at /k, only complex eigenvalues can

turn in the complex plane around the poles at /k. Hence, the number of real eigenvalues for small !

cannot increase in an interval (/m; /m$1), only decrease when complex eigenvalues are born for some

value of !. !

As a consequence, the radius of convergence of the perturbation series in ! equals !c speciÖed in

(14), above which a complex zero is born. Finally, we provide bounds on the largest eigenvalue :1 of

A0,

/1 ! :1 !
(/1 + /N ) + (/1 , /N )

q
1 + 47

21$2N

2
(11)

as well as bounds for the smallest eigenvalue, when :N < /N ,

(/1 + /N ), (/1 , /N )
q
1 + 47

21$2N

2
! :N < /N (12)

7



2.2 Complex eigenvalues of A0

If eigenvalues of the directed adjacency matrix A0 = A + !eie
T
j are complex, then they occur in

conjugate pairs, because the characteristic polynomial cA0 (/) =
PN
k=0 ck (A

0)/k has real coe¢cients

ck (A
0) and the general reáection principle [8] applies. Let :m = H+ iI and its conjugate :!m = H, iI ,

then (2) is written as

1

!
=

NX

k=1

=k
H + iI , /k

=
NX

k=1

=k (H , /k)
(H , /k)2 + I2

, iI
NX

k=1

=k

(H , /k)2 + I2

Equating real and imaginary parts leads to equations for H and I in a complex eigenvalue :m = H+ iI

of A0, 8
<

:

PN
k=1

3k2k
(8$2k)2+92

= ,1
7PN

k=1
3k

(8$2k)2+92
= 0

only valid for I 6= 0. Indeed, the last equation with I = 0 would erroneously imply that f 0 (:m) = 0
for a real eigenvalue :m = H of A0.

A complex eigenvalue : of A0, that satisÖes the resolvent eigenvalue equation (2), also obeys

jf (H + iI)j =
1

!
(13)

because both : = H + iI and :! = H , iI must satisfy (2), i.e. f (H + iI) = 1
7 and f (H , iI) =

1
7 , and

multiplying both equations leads to (13) for ! > 0. The converse is not generally true: a solution of

(13) does not always satisfy the resolvent eigenvalue equation (2), in particular, not when f (:) < 0.

When ! increases, the largest eigenvalue always increases (because uTAu increases and /1 & uTAu
N )

and most eigenvalues also start either increasing or decreasing. Only when an eigenvalue :m increases

and :m$1 & :m decreases with !, they meet at a double eigenvalue of A0. At that moment, a slight

increase of ! creates a complex eigenvalue. Di§erentiation of the resolvent eigenvalue equation (2)

with respect to ! yields

d:m (!)

d!
=
1

!2

 
NX

k=1

=k

(:m (!), /k)2

!$1
= ,

1

!2
1

f 0 (:m)

and the sign of d1m(7)d7 will be initially determined by the residue =m for :m close to /m. Hence, the

conditions for :m ! :m$1 are that
d1m(7)
d7 > 0 and d1m#1(7)

d7 < 0, or, equivalently, f 0 (:m) < 0 and

f 0 (:m$1) > 0. If a double, real zero is reached at f 0 (:m) = 0 for ! = f (:m) > 0, then
d1m(7)
d7 ! 1.

The double, real zero can be interpreted as an unstable bifurcation with respect to !, which jumps

orthogonally o§ the real axis into the complex plane.

The interesting point is that complex eigenvalues, born between two real eigenvalues /m$1 and

/m$2 of the original adjacency matrix A, may start moving in the complex plane as ! further increases.

At some value of !, the real part of those complex eigenvalue can enter between other real eigenvalues

/m and /m$1 of A. Moreover, they can become real again so that, three real eigenvalues can occur

between /m and /m$1 (as exempliÖed in the examples below).

In summary, complex conjugate eigenvalues : = H + iI and :! = H , iI of the adjacency matrix
A0 = A+ !eie

T
j of the weighted, directed graph G

0 = G [ flijg appear when ! > !c, where the critical
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link weight strength !c corresponds to a double real eigenvalue and satisÖes

8
><

>:

f 0 (:) = 0

!c =
1
f(1) > 0

f 00 (:) > 0

(14)

where the latter convexity prevents a positive maximum, which does not generate a complex eigenvalue

if ! is increased beyond !c, but two real eigenvalues.

2.3 Algorithm to determine complex eigenvalues of A0

Consider the eigenvalue resolvent equation (2) when /m < : < /m$1. We deÖne the function

6 (:) =
=m$1

: , /m$1
+

=m
: , /m

(15)

that obeys

6 (:) =
1

!
, rm (:) (16)

as follows from the eigenvalue resolvent equation (2) where

rm (:) =

NX

k=1;k 6=fm$1;mg

=k
: , /k

= f (:), 6 (:)

is a di§erentiable, bounded function of : on the interval (/m; /m$1). We exclude the situation where

either =m$1 = 0 or =m = 0.

Theorem 3 The function 6 (:) = 3m#1
1$2m#1 +

3m
1$2m possesses either a minimum or a maximum if

=m=m$1 < 0. In particular,

if =m > 0 > =m$1 :min =
p
3m2m#1+

p
$3m#12mp

3m+
p
$3m#1

6 (:min) =
(
p
3m+

p
$3m#1)2

2m#1$2m > 0

if =m < 0 < =m$1 :max =
p
$3m2m#1+

p
3m#12mp

$3m+
p
3m#1

6 (:max) = ,
(
p
$3m+

p
3m#1)

2

(2m#1$2m)
< 0

(17)

where :min; :max 2 (/m; /m$1). If =m=m$1 > 0, then 6 (:) has a zero :0 =
#
1, 3m

3m#1+3m

$
/m +

#
3m

3m#1+3m

$
/m$1 lying between /m and /m$1.

Theorem 3, proved in Appendix A, leads to a good approximation of the eigenvalue :m 2 (/m; /m$1).
In particular, if rm (:) is su¢ciently small, then :min is a good approximation of an eigenvalue of A0

with multiplicity two as follows from the resolvent eigenvalue equation (2). Theorem 3 also indicates

that no complex eigenvalues can occur, irrespective the strenght of !. Such graphs do exist4. Since

=1 > 0, Theorem 3 shows that a complex eigenvalue of A0 between /2 and /1 is very unlikely (and

impossible if rm (:) = 0), which suggests a sharpening of Corollary 2 to /N < Re (:) < /2.

Given the eigenvalue decomposition A = X,XT , a reasonably accurate algorithm based upon The-

orem 3 to Önd complex eigenvalue of A0 is as follows. For each added directed link lij , compute the

couple (:min;6 (:min))m from (17) for each eigenvalue pair (/m; /m$1) indexed from m = 2; 3; : : : ; N .

4For example, for a directed, weighted link between i = 1 and j = 2 in
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We ignore :max and 6 (:max) in (17) of Theorem 3, because 6 (:max) < 0 cannot be reached by varying

the positive ! from zero to inÖnity. Let n1 denote the number of all such couples (:min;6 (:min))m
when m runs from 2 to N . Next, order the n1 couples in decreasing order based on the value of

6 (:min). The ranked list is written as (:min;6 (:min))(1) ; (:min;6 (:min))(2) ; : : : ; (:min;6 (:min))(n-)
where (6 (:min))(1) & (6 (:min))(2) & ' ' ' & (6 (:min))(n-). If ! increases from zero to inÖnity, then

a Örst complex zero will occur approximation at (:min)(1) corresponding to link weight strength

! 0 1
(0(1min))(1)

, further increasing ! generates a second complex (conjugate) zero pair at (:min)(2)
corresponding to link weight strength ! 0 1

(0(1min))(2)
and so on. Hence, in total approximately n1

complex zeros can be generated, starting from A by adding link lij , with link weight ! varying from

zero to inÖnity.

Of course, the above algorithm is approximate. Computations show that rm (:) is about the same

order of magnitude as (6 (:min))m, and generally, (:min)m is a reasonably accurate approximation

of the exact double zero e:m of f (:), satisfying (14) with equality in the second inequality. The

comparison between the exact (e:; f (e:))m and the corresponding approximation (:min;6 (:min))m is

reasonable, however, the rank m of (:min;6 (:min))(m) does not always agree with the rank m of

(e:; f (e:))(m), mainly due to small di§erences in numerical values. In contrast to the simpler function
6 (:) in (15), we mention that the function f (:) in (3) can possess maxima (minima) that are positive

(negative). Eigenvalues : deduced from such extrema cannot occur in (16). Hence, the total number

nc of complex eigenvalues of the resolvent eigenvalue equation (2) when ! increases from zero to inÖnity

can be di§erent from the approximate number n1. We deduce from Theorem 3 that the number n1
entirely depends on the number of sign changes in the residues f=mg1%m%N that additionally obey

=m > 0 > =m$1. The actually number nc of complex eigenvalues of A0 depends on the residues in a

more complex way and, most likely, it holds that nc > n1 (although we do not have a proof).

A =

2

666666666666666666
4

0 0 0 1 0 0 1 1 0 1

0 0 1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0

1 0 1 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0 0 1

1 0 0 0 1 0 0 0 1 0

3

777777777777777777
5
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2.4 Examples

1. An instance of an ErdNos-RÈnyi (ER) graph G0:6 (10) with N = 10 and link density p = 0:6 has an

adjacency matrix

A =

2

6666666666666666666
4

0 1 0 1 0 1 1 1 1 1

1 0 1 0 0 1 1 1 0 1

0 1 0 1 1 1 0 0 1 1

1 0 1 0 1 1 0 0 0 1

0 0 1 1 0 1 1 1 1 1

1 1 1 1 1 0 0 0 1 1

1 1 0 0 1 0 0 1 0 1

1 1 0 0 1 0 1 0 1 0

1 0 1 0 1 1 0 1 0 0

1 1 1 1 1 1 1 0 0 0

3

7777777777777777777
5

with eigenvalue vector

/ = (6:1143; 1:6970; 0:9551; 0:3011; 0;,0:9505;,1:2304;,1:7154;,2:5448;,2:6262)

Between node 9 and 10 a directed link with weight ! is placed. The correspond partial fraction function

(3) is

f (x) =
0:0982451

x, 6:11427
+
0:00220921

x, 1:69696
,

0:277967

x, 0:955063
,

0:0448324

x, 0:301059
+

0:0790953

x+ 0:950517

+
0:0947427

x+ 1:2304
,
0:00497767

x+ 1:71537
,

0:0220569

x+ 2:54483
+

0:0755413

x+ 2:62625

and drawn in Fig. 1.

Figure 1: The partial fraction expansion f (x) and its derivative f 0 (x) versus x. When f 0 (x) = 0, a

double zero of f (x), 1
7 is found, which determines the onset of a complex zero.

11



Our approximate algorithm Önds the existence of complex eigenvalues at

(:min;6 (:min))(1) = (,2:57339; 2:20153)

(:min;6 (:min))(2) = (,0:236502; 0:194175)

while the exact sequence is

(e:; f (e:))(1) = (,2:57337; 2:1706)

(e:; f (e:))(2) = (,0:296125; 0:52218)

(e:; f (e:))(3) = (,2:4516; 0:158324)

The onset of the Örst complex eigenvalue with !c = !1 =
1

2:1706 = 0:4607 and the second with

!2 =
1

0:52218 = 1:91505 is reasonable well found by the approximate algorithm. However, the example

illustrates the complication around x = ,2:45, where f (x) shows a ìthird orderî behavior that cannot
be reconstructed from 6 (:) so that the onset of third complex eigenvalue at !3 = 1

0:158324 = 6:31615

is not retrieved.

2. Another instance of an ErdNos-RÈnyi graph G0:6 (10) has an adjacency matrix

A =

2

6666666666666666666
4

0 1 1 1 0 0 1 1 1 1

1 0 1 1 1 1 1 0 0 0

1 1 0 1 0 1 0 1 0 1

1 1 1 0 1 0 1 0 0 1

0 1 0 1 0 0 1 1 0 1

0 1 1 0 0 0 0 1 1 1

1 1 0 1 1 0 0 0 1 0

1 0 1 0 1 1 0 0 1 0

1 0 0 0 0 1 1 1 0 1

1 0 1 1 1 1 0 0 1 0

3

7777777777777777777
5

with eigenvalue vector

/ = (5:6810; 1:6971; 0:8175; 0:2805; 0:2116;,0:1213;,1:4127;,1:8032;,2:1863;,3:1642)

Between node 1 and 5 a directed link with weight ! is placed. The correspond partial fraction function

(3) is

f (x) =
0:107557

x, 5:68101
+
0:00277403

x, 1:69715
+

0:0126244

x, 0:817474
,

0:202543

x, 0:280509
,

0:172377

x, 0:211585
+

0:0492927

x+ 0:121302

+
0:0927033

x+ 1:41273
,

0:0133299

x+ 1:80323
,

0:030405

x+ 2:1863
+

0:153703

x+ 3:16417
(18)

and drawn in Fig. 2.

The approximate algorithm Önds the existence of complex eigenvalues at

(:min;6 (:min))(1) = (,0:0053; 1:21972)

(:min;6 (:min))(2) = (,2:48733; 0:328092)

12



Figure 2: The partial fraction expansion f (x) and its derivative f 0 (x) versus x. The insert shows a

region where three eigenvalues occur when ! > 1:1 and all three are real only when 2:004 < ! < 2:269.

while the exact sequence is

(e:; f (e:))(1) = (,0:0240595; 1:96212)

(e:; f (e:))(2) = (,0:346894; 0:498787)

(e:; f (e:))(3) = (,0:783158; 0:440652)

(e:; f (e:))(4) = (,2:48316; 0:359844)

The Örst complex eigenvalue, created just above !c = !1 =
1

1:96212 = 0:5096 at : = ,0:0240595,
lies between /5 = 0:2116 and /6 = ,0:1213. When ! increases roughly around ! = 1:1, the real

part of that complex (conjugate) pair is smaller than /6 (at ! = 1:1, the complex eigenvalue is : =

,0:12964120:148389i and at ! = 2, we Önd : = ,0:34524220:0222726i). At !2 = 1
0:498787 = 2:00486,

the complex pair again becomes a double real eigenvalue at : = ,0:346894. The next change occurs
at !3 = 1

0:440652 = 2:26937 at a double real eigenvalue : = ,0:783158 and for ! 2 (!2; !3), three real
eigenvalues exists in between /6 = ,0:1213 and /7 = ,1:4127. When ! > !3, again a complex pair

is created that moves to more negative real part values, for example, : = ,0:788374 2 0:105644i at
! = 2:3 and becomes smaller than /6 around ! = 4:75. Figure 3 draws jf (x+ iy)j, speciÖed in (18),
in the complex plane and the eigenvalues : of A0 are also solutions of (13), but not vice versa.

13



Figure 3: The absolute value of f (x+ iy) in (18) for ,4 ! x ! 7 and ,1 ! y ! 1.

3 The probability distribution of "c = "1

We have simulated 103 ER graphs with N = 10 and link density p = 0:6 and in each of them, all

possible, open link position for lij were investigated as a function of !. Fig. 4 shows the probability

density function f71 (x) of !1, the link weight strength of the added link lij that creates the Örst complex

zero in the adjacency matrix A0. We observe remarkable high peaks in f71 (x) values at integer values

of x. The probability Pr [!1 > 1] in Fig. 4 that !1 exceeds unity is about 56% and Pr [!1 > 1] equals

the probability that, after adding a link lij with weight ! = 1 to the graph G, all eigenvalues of the

adjacency matrix A0 of the directed graph G0 with one directed link lij are real.

Figure 4: The probability density funtion f71 (x) of the link weight strength !1 that creates the Örst

complex eigenvalue in A0 in G0:6 (10). The binsize is 0.05 with 100 bins in total.

Fig. 5 shows the probability density function f71 (x) of !1 in 200 instances of an ER random graph

14



G0:6 (20) and all possible link positions.

Figure 5: The probability density funtion f71 (x) of the link weight strength !1 that creates the Örst

complex eigenvalue in A0 in G0:6 (20). The binsize is 0.05 with 100 bins in total.

The probability Pr [!1 > 1] in Fig. 5 that !1 exceeds unity is about 55% for N = 20, close to

the corresponding value for N = 10. The discrete peaks at integer values of x have disappeared and

f71 (x) for ER random graphs Gp (N) is likely a Gamma distribution (with exponential tail as shown

in Fig. 6 and Fig. 7). Fig. 6 and Fig. 7 are based on 104 independent realizations of Gp (N) and

only one directed link per graph was considered (as opposed to Fig. 4 and Fig. 5, where all possible

directed links in 103 and 2:102 random graphs were taken into account and p = 0:6). At Örst glance,

the correlation in the former Ögures hardly seems to play a signiÖcant role. The exponential tails

decay fast with increasing link density p in Gp (N), whereas the probability that all eigenvalues of A0

are real, i.e. Pr [!1 > 1], decreases with p (and only signifantly when p approaches 1, in which case a

peak around x = 1 remains visible for N = 20).

Fig. 8 illustrates that !1 converges very rapidly in N to an asymptotic distribution in ER graphs

Gp (N) with a same and constant p. The Öt (in thick line in orange) illustrates that the asymptotic

distribution may be close to a Gamma distribution with probability density function f6 (x;=; D) =
3(3x).#1

6(?) e$3x, with D 0 3 and = 0 2:4. It would be desirable to have a mathematical proof of this

observation.

Plots of !1 versus the e§ective resistance !ij , the degree product didj , the node betweenness product

bibj (computed before adding the link lij) do not seem to exhibit any correlation (same conclusion for

N = 20). We also found that the approximate (!1)a =
1

(0(1min))(1)
is mostly larger than !1, but that

:a = (:min)(1) reasonably well approximates :, the Örst complex eigenvalue at link weight strength !1
as illustrated in Fig. 9 in a total of 17999 instances.

The correlation between the approximate (!1)a and !1 seems better (i.e. more on a line) for N = 20

than for N = 10, and similarly, also the correlation between :a and : seems to increase with N .

Fig. 10 illustrates that a Örst complex eigenvalue : of A0 lies between /N ! : ! /2. It seems

15



Figure 6: Probability and probability density function of !1 for 4 link densities p in an ER-graph on

N = 10.

that, only in the bulk of the Wigner semi-circle law, complex eigenvalue can be born (and not in the

spectral gap between /1 and /2).

4 Agenda of future research

On the agenda of future research stands (a) the investigation of the link weight strength !m with

m > 1 as well as the determination of the total number nc of complex eigenvalues when ! ranges

over all real, positive values. A study of the link weight strength ! and complex eigenvalues when

the adjacency A possesses multiple eigenvalues is here omitted. Further (b), what is the e§ect of the

addition of more than one directed and weighted link?

We only considered ErdNos-RÈnyi random graphs, so that (c) an extension to other graphs might be

desirable. In particular, are there graphs that allow an exact analytical computation? Finally (d), we

lack at the moment strong and general mathematical results about properties of complex eigenvalues

in directed graphs.
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A Proof of Theorem 3

We provide two di§erent proofs.

(A) First, we determine when a zero :0 of 6 (:) occurs that lies in between /m < : < /m$1. We

write (16) as

6 (:) =
f=m$1/m + =m/m$1g , f=m$1 + =mg :

(/m$1 , :) (: , /m)

17



Figure 8: The pdf and distribution of !1 in ER graphs G0:5 (N) for various N , together with a Öt of

the Gamma distribution with parameter = = 2:4 and D = 3:0.

which possesses a zero at

:0 =

'
1,

=m
=m$1 + =m

(
/m +

'
=m

=m$1 + =m

(
/m$1

Only if 0 < 3m
3m#1+3m

< 1, then the right-hand side shows that :0 indeed lies between /m and /m$1. If

=m$1+=m > 0, then the condition 3m
3m#1+3m

< 1, means that 0 < =m$1, while 0 < 3m
3m#1+3m

indicates

that also =m > 0. On the other hand, if =m$1 + =m < 0, then the condition 3m
3m#1+3m

< 1, means

that 0 > =m$1, while 0 < 3m
3m#1+3m

indicates that also =m < 0. Thus, 6 has a zero between /m and

/m$1, provided both =m and =m$1 have the same sign.

Next, 6 has a minimum at :min 2 (/m; /m$1) that obeys d0
d1

...
1=1min

= 0 and d20
d12

...
1=1min

> 0. Thus,

the condition for an extremum,d0d1 = 0, translates to

(: , /m)2

(: , /m$1)2
= ,

=m
=m$1

which requires that =m and =m$1 have a di§erent sign! Assume that =m > 0 > =m$1, then the

condition for a minimum :min 2 (/m; /m$1) reads

0 = =m (:min , /m$1)2 + =m$1 (:min , /m)2

= (
p
=m (/m$1 , :min))

2 ,
!p
,=m$1 (:min , /m)

"2

=
!p
=m (/m$1 , :min) +

p
,=m$1 (:min , /m)

" !p
=m (/m$1 , :min),

p
,=m$1 (:min , /m)

"

Since
p
=m (/m$1 , :min) +

p
,=m$1 (:min , /m) > 0 due to the assumption =m > 0 > =m$1, a

solution is only possible if

p
=m (/m$1 , :min) =

p
,=m$1 (:min , /m)
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Figure 9: The Örst complex eigenvalue : versus the approximate :a in (17).

from which we Önd

:min =

p
=m/m$1 +

p
,=m$1/mp

=m +
p
,=m$1

which lies in between /m < : < /m$1 (and which agrees with the quadratic solution below). Moreover,

the value of 6 (:min) equals

6 (:min) =

!p
=m +

p
,=m$1

"2

/m$1 , /m
indicating that 6 (:min) > 0 and that a zero :0 2 (/m; /m$1) of 6 (:) is not possible when =m > 0 >
=m$1. We verify that the extremum is indeed a minimum for /m < : < /m$1,

d26

d:2

....
1=1min

=
2=m$1

(:min , /m$1)3
+

2=m

(:min , /m)3

=
2=m

(:min , /m)3

=
1 +

p
=mp

,=m$1

>
> 0

Similarly, if =m < 0 < =m$1, then we will Önd a maximum :max 2 (/m; /m$1),

0 = =m (:max , /m$1)2 + =m$1 (:max , /m)2

=
!p
=m$1 (:max , /m) +

p
,=m (/m$1 , :max)

" !p
=m$1 (:max , /m),

p
,=m (/m$1 , :max)

"

Since
p
=m$1 (:max , /m) +

p
,=m (/m$1 , :max) > 0 due to the assumption =m < 0 < =m$1, a

solution is only possible if

p
=m$1 (:max , /m) =

p
,=m (/m$1 , :max)

from which we Önd

:max =

p
,=m/m$1 +

p
=m$1/mp

,=m +
p
=m$1
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Figure 10: The probability that a complex eigenvalue : lies between the eigenvalues /m$1 and /m of

the original matrix A. If m = 1, then : > /1 and m = 21 means that : < /N , both do not occur.

which lies in between /m < : < /m$1 (and which agrees with the quadratic solution below in (B)).

Moreover, the value of 6 (:max) equals

6 (:max) = ,
!p
,=m +

p
=m$1

"2

(/m$1 , /m)

indicating that 6 (:max) < 0 and that a zero :0 2 (/m; /m$1) of 6 (:) is not possible when =m < 0 <
=m$1 due to the fact that 6 (:max) is a maximum for /m < : < /m$1. Indeed,

d26

d:2

....
1=1max

=
2=m

(:max , /m)3

=
1 +

p
,=mp

=m$1 (=m$1)

>
< 0

(B) An alternative method determine the zeros of the function 6 (:) in (15) between /m < : <

/m$1, by translating (15) into a quadratic equation in :

6:2 , f6 (/m$1 + /m) + =m$1 + =mg : + 6/m$1/m + =m$1/m + =m/m$1 = 0

with roots

:1;2 =
f6 (/m$1 + /m) + =m$1 + =mg 2

p
>

26

where the discriminant > is negative (leading to complex conjugate eigenvalues :1 and :2 = :!1) if

f6 (/m$1 + /m) + =m$1 + =mg2 < 46 (6/m$1/m + =m$1/m + =m/m$1)

or

62 (/m$1 , /m)2 , 26 (/m$1 , /m) (=m , =m$1) + (=m$1 + =m)2 < 0

Let f = 6(/m$1 , /m), then

f2 , 2 (=m , =m$1) f + (=m$1 + =m)2 < 0
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which indicates that the roots have the same sign (because their product (=m$1 + =m)
2 is always

positive) and

f1;2 = (=m , =m$1)2
q
(=m , =m$1)2 , (=m$1 + =m)2

= (=m , =m$1)2 2
p
,=m$1=m

which requires also that =m$1=m < 0, because f = 6(/m$1 , /m) must be real and none of =m = 0
nor =m$1 = 0. To proceed further, we distinguish between two cases: (a) =m > 0 > =m$1 and thus

6 > 0 as follows5 from (16) for /m < : < /m$1 and (b) =m < 0 < =m$1 (but then 6 < 0) and the

roots satisfy (
f1;2 =

!p
=m 2

p
,=m$1

"2 if 6 > 0

f1;2 = ,
!p
,=m 2

p
=m$1

"2 if 6 < 0

Hence, the condition for 6 to create a complex : is
8
<

:
0 <

(
p
3m$

p
$3m#1)2

(2m#1$2m)
! 6 ! (

p
3m+

p
$3m#1)2

(2m#1$2m)
if 6 > 0

,(
p
$3m+

p
3m#1)

2

(2m#1$2m)
! 6 ! ,(

p
$3m$

p
3m#1)

2

(2m#1$2m)
< 0 if 6 < 0

(19)

Just before a complex root arises, the discriminant is zero (equivalent with equality sign in the condition

on 6) and the double eigenvalue then is

:1;2 =
f6 (/m$1 + /m) + =m$1 + =mg

26
=
/m$1 + /m

2
+
=m$1 + =m

26
(20)

(a) Introducing in (20) the largest 6 > 0, corresponding to the smallest ! > 0 in the resolvent

eigenvalue equation (2), from (19) yields

:1;2 =
/m$1 + /m

2
+

=m + =m$1
!p
=m +

p
,=m$1

"2

'
/m$1 , /m

2

(

and, Önally,

:1;2 = /m$1

' p
=mp

=m +
p
,=m$1

(
+ /m

'
1,

p
=mp

=m +
p
,=m$1

(

illustrating that :1;2 indeed lies between /m < : < /m$1 and equivalent (17). (b) The case where

6 < 0, is analogous and omitted.

These two demonstrations A and B prove Theorem 3. !

5 If + = /m"1
-#)m"1

+ /m
-#)m

< 0 in (16) for #m < - < #m#1, then /m
-#)m

<
/m"1

)m"1#-
, which is possible if .m < 0 < .m#1!

On the other hand, + > 0 if /m"1
-#)m"1

+ /m
-#)m

> 0 or /m
-#)m

>
/m"1

)m"1#-
implying that .m > 0 > .m#1, because we know

that .m.m#1 < 0.

21



B Theorems on eigenvalues of an n% n matrix

We list two interesting theorems and present Theorem 6 for adjacency matrices.

A circuit (closed walk) with length k consists of the ordered links (j1 ! j2) ; : : : ; (jk$1 ! jk) ; (jk ! j1).

Hence, the indices j1; j2; : : : ; jk form a circuit if and only if the product aj1j2aj2j3 : : : ajkj1 6= 0.

Theorem 4 Let /1 denote the largest eigenvalue of the asymmetric adjacency matrix A of a directed
graph G and let m denote the length (in hops) of the longest circuit in G. If m = 2, then all eigenvalues

of A are real. If m > 2, then any eigenvalue / of A satisÖes

Re (/) + jIm (/)j tan
N

m
! /1 (21)

Proof: see [3, p. 210]. !

Theorem 5 (Schur, 1909) If /1; / 2; : : : /n are the eigenvalues of a complex n% n matrix A, then

nX

k=1

j/kj2 !
nX

i=1

nX

j=1

jaij j2 (22)

nX

k=1

(Re/k)
2 !

nX

i=1

nX

j=1

....
aij + a

!
ji

2

....

2

(23)

nX

k=1

(Im/k)
2 !

nX

i=1

nX

j=1

....
aij , a!ji

2

....

2

(24)

Equality in any one of these relations implies equality in all three and equality occurs if and only if A

is normal, which obeys (A!)T A = A (A!)T also written as AHA = AAH .

Proof: see Mirsky [7, p. 310]. !

The proof applies the trace-formula
Pn
k=1 /

2
k = trace

!
A2
"
to Schurís famous theorem that every

matrix A is unitarily similar to a triangular matrix T , i.e. A = UTU$1 = UTUH (because a unitary

matrix obeys UHU = UUH = I). Equality follows because a matrix A is unitarily similar to a diagonal

matrix if and only if A is normal.

Schurís inequality (24) provides the bound on the imaginary part of eigenvalues of A0 = A+ !eieTj ,

NX

k=1

jIm :kj2 !
NX

i=1

NX

j=1

....
a0ij , a

0
ji

2

....

2

=
!2

4
(25)

In particular, after the birth of the Örst complex conjugate pair at !c = !1, we have that 2 jIm :j2 !PN
k=1 jIm :kj

2, untill ! < !2, so that

jIm :j !
!2

2
p
2

In the general trace-formula [10, art 138, p. 212]

nX

k=1

/mk =
nX

j=1

(Am)jj = trace (A
m)
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we compute

/mk = (Re/k + i Im/k)
m =

mX

q=0

'
m

q

(
(Re/k)

m$q iq (Im/k)
q

We split the sum into odd and even terms, using

mX

q=0

p (q) =

[m2 ]X
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p (2q) +

[m+12 ]X
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valid for any function p (:) and obtain
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(
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Since trace(Am) is real, the imaginary part must vanish and we arrive at

trace (Am) =
[m2 ]X

q=0

'
m

2q

(
(,1)q
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2q (26)

Explicitly, for m = 2, 3 and 4, (26) is
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Theorem 6 If /1; / 2; : : : /n are the eigenvalues of a real n % n adjacency matrix A of a graph G

without self-loops (i.e. ajj = 0), with Ldirected links and in total L = Ldirected + 2Lbidirected links, then

nX

k=1

(Re/k)
2 ,

nX

k=1

(Im/k)
2 = L, Ldirected = 2Lbidirected (27)

Proof: From (26) for m = 2 and
!
A2
"
jj
=
Pn
k=1 ajkakj , the trace

!
A2
"
formula equals

nX
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(Re/k)
2 ,

nX
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(Im/k)
2 =

nX

i=1

nX

j=1

aijaji

With aijaji =
a2ji+a

2
ij$(aji$aij)

2

2 , we Önd the general relation
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nX
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a2ij ,
1

2

nX

i=1

nX

j=1

(aij , aji)2 (28)

In particular, if A is an adjacency matrix of a graph G with a total of L links and Ldirected links

(but without self-loops, i.e. ajj = 0), then a2ij = aij and (aij , aji)2 = 0 for a bidirectional or
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undirected link, while (aij , aji)2 = 1 for a directed link. For such an asymmetric adjacency matrix,
(28) translates to (27). !

Schurís inequality (24) tells us
Pn
k=1 (Im/k)

2 ! 1
4

Pn
i=1

Pn
j=1 (aij , aji)

2 = Ldirected
2 , so that (27)

can be bounded

L, Ldirected !
nX

k=1

(Re/k)
2 ! L,

Ldirected
2

Since L , Ldirected = 2Lbidirected, we observe that
Pn
k=1 /

2
k = 2Lbidirected is always even and thatPn

k=1 (Re/k)
2 is larger for an asymmetric than for symmetric matrix, because equality of the lower

bound holds for a symmetric matrix. Simulations indeed conÖrm that Schurís inequality (25) is not

sharp, at least when one link is added.
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