The Mittag-Leffler function

P. Van Mieghem*

in honor of Gosta Mittag-Leffler

for Huijuan

vl. 23 May 2020
v2. 22 August 2020
v3. 25 September 2021
v4. 4 September 2022
vd. 18 February 2024

Abstract

We review the function theoretical properties of the Mittag-Leffler function E, 3 (2) in a self-

contained manner, but also add new results; more than half is new!

1 Introduction

We investigate the Mittag-Leffler function,

Eap(2) =) _
k=

0

Lk
I'(b+ ak) (1)

introduced by Gosta Mittag-Leffler [34, 33] in 1903 with b = 1, which he denoted as E,(z) =
SR riiam = Fot (2):

We consider the broader definition E,j (2) and not E, (2), because the functional relations for
Eqp (2) are closed and expressed in terms of E,p (2), whereas confinement to E, (z) only, deprives the
analysis from a complete and more elegant picture. There exist generalizations' of the Mittag-Leffler
function E,; (2), which are beyond the present scope, but discussed by Haubold et al. [25] and also
covered in the recent book by Gorenflo et al. [18] on Mittag-Leffler functions and their applications.
The Mittag-Leffler function E, (z) is treated by Erdelyi et al. [10, Sec. 18.1 on p. 206-211] and by
Sansone and Gerretsen [44, Sec. 6.13 on p. 345-348].

I believe that there are, at least, three compelling reasons that justifies a study of the Mittag-Leffler

function E, (2). First, the Mittag-Leffler function F, (2) naturally arises in fractional calculus
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as shown in Appendix D. The analytic solution (202) is undoubtedly the most important driver
towards the increasing appearance of the Mittag-Leffler function Eqp(2). The application of the
solution (202) of a fractional order integral or differential equations is illustrated in [25], [18], [30] and
[43]; for example, in the fractional generalization of the heat equation, random walks, Lévy flights,
superdiffusive transport and viscoelasticity, and fractional Ohm’s Law. Abel’s integral equation, whose
solution involves E, 4 (2), is treated in [17, Chapter 7]. A “fractional” generalization of the Poisson
renewal process, discussed in [17, Sec. 9.4], consists of replacing the exponential interarrival time
between events by a Mittag-LefHler distribution E,; (—t) with real ¢ > 0 and 0 < a < 1. Second, a
Mittag-Leffler random variable is heavy-tailed and plays a role in so-called stable distributions. Many
observed properties in real-world networks are power-law distributed and the Mittag-Leffler random
variable may model such power-law like properties, although none of its moments exists, which is a
rather complicating, but at the same time fascinating factor. Third and the main focus here, the
Mittag-Leffler function E,4 () in (1) is an entire function in the complex variable z in two real
parameters ¢ > 0 and b and constitutes a broad class of entire functions such as the exponential

function E; (2) = ¢* and many exponential-like functions such as the cosine Fj ; (—22) = cos z and

Ei2(z) = ezz_l and many more.

Our aim? here is to deduce the most relevant functional properties of the Mittag-Leffler function
E.p (#) defined in (1). Since about half of the results have been established before, the manuscript in
the form of articles (art.) as in our book [53], is more a review, without detailed historical citations
as in [18], but enriched with new results: art. 5, 8,9, 12, 13 14, 15, 16, 17, 21, 23, 24, 25, 32, 34, 36,

38, 45, 46, 47, 49, 50, 51, 52, 54, 55, 71, 72 and part of art. 18, 28, 33, 37, 39, 41, 42.

1.1 Outline

Section 2 briefly summarizes the properties of entire functions that are defined for any complex number
z by their Taylor series such as (1) for the Mittag-Leffler function E,j (2). Section 3 starts with the
Taylor series in (1) and deduces unique properties of the Mittag-Leffler function E,j (2) from that
Taylor series (1). We have created a separate Section 4, that only focuses on the logarithm of Mittag-
Leffler function E,} (2). Section 5 explores integrals that contain the Mittag-Leffler function E, 4 (2)
as integrand and that can be evaluated analytically. One of the most important integrals is the Laplace
transform (54) of the Mittag-LefHler function E, 4 (2). We continue in Section 6 with complex integrals
for the Mittag-Leffler function E, (z), some are deduced from the inverse Laplace transform (54) and
others are complex representations of the Taylor series (1). Section 7 is devoted to the Mittag-Leffler
function E,; (2) in probability theory. Art. 39 presents a different proof of the monotonicity of the
Mittag-Leffler function E, 4 (z), while art. 41 and art. 42 focus on the Mittag-Leffler random variable.
Section 8 covers various, unrelated topics such as expansions of the Mittag-Leffler function E,; (2) in
powers of a in art. 45, the deduction of the integral (84) from the Taylor series (1) and the Taylor
series of ﬁ in art. 46, a product form for E,; (2) in art. 47, Mobius inversion in art. 49, Apelblat

series in art. 51 and the Mittag-Leffler function E,j (2) as a limit in art. 52-55. Section 9 is new and

2During my sabattical at Stanford in 2015, I encountered the rather exotic Mittag-Leffler distribution, which I
intended to include in my Performance Analysis book [50] as another example of a power law-like distribution. However,
the functional properties of the Mittag-Leffler function E,  (z) require attention first, before one can turn to probability

theory.



explores the related integral

Iop (Z):/O mdu (2)

that naturally appears in the Euler-Maclaurin summation for E, (2) in art. 24. Section 10 con-
cludes this work with some open problems. For self-consistency, we have included an appendix A
on the Gamma function I' (z), whose properties are essential for the Mittag-Leffler function E, (2).
Appendix B evaluates a Cauchy-type integral and Mellin transforms of product of Gamma functions.
Appendix C investigates the inverse Laplace transform, separated in real and imaginary part. The

last Appendix D emphasizes the key role of the Mittag-Leffler function E, 4 (2) in fractional calculus.

2 Complex function theory: entire functions

Since the Mittag-Leffler function F, (2) is defined in (1) as a power series in z, a first concern is its
validity range in z. The radius R of convergence of the power series f (z) = > 27 fx 2¥ of a function f
! ‘4| when the latter exists [47]. Using 11:((21‘;)) ~ 2070
in [1, 6.1.47] when z — oo, the radius of convergence of the power series in (1) is

satisfies = limsupy,_, | fi|V/* or + = limp_o0

1 . I'(b+ ak)
R _k—>oo

= lim [——— | = fim |ak| " =0

F(b+a+ak)‘ k:l—>nc}o|a |
for Re(a) > 0 and all complex b. For Re(a) < 0, the radius of convergence is R = 0 and the
Taylor series (1) of the Mittag-Leffler function E, 4 (z) does not converge for any b and any complex

number z # 0. If a = 0, then the Mittag-Leffler function Eyj (2) reduces to the geometric series and

Eoyp (2) = ﬁli ~ for |z| < 1, which is the only case where the radius of convergence is finite, i.e.
R=1.

An entire function has a power series with infinite radius of convergence and is, thus, analytic in the
entire complex plane with an essential singularity at infinity. Associated to entire complex functions
is the concept of the order p, which is defined [47, p. 248] for any ¢ > 0 as f(z) = O <e|z|p+5) when
2| = oo. A necessary and sufficient condition [47, p. 253] that f (z) = >3, fx 2* should be an entire
function of order p is that
1 . —log | fx|

im ———

p  kooo klogk
Applied to the power series in (1) of the Mittag-Lefler function E, (z), after invoking Stirling’s
asymptotic formula [1, 6.1.39] that follows from (171) in Appendix A,

T (ak + b) ~ v2re%* (ak)™F+b=2

yields
1 . log|T'(b+ ak)| _logV2m —ak + (ak + b — 3) log (ak)
- = lim —————* = lim
P k—o00 k log k k—ro00 k log k

=a

Hence, we find one of the important properties that the Mittag-Leffler function E, (z) is an entire
complex function in z of order p = % for Re(a) > 0 and any b. For real a and b, the Mittag-
Leffler function Eg (2) is real on the real axis. Moreover, for real positive a and b, the Mittag-LefHler
function E, 4 (#) attains its maximum on the real positive axis, because ’Ea,b (rew) ’ <> %
k

2 k=0 m = Eqp (r).



The number n (r) of zeros z 1, 22, ... of an entire function f(z) of order p, for which |z,| < 7 is
non-decreasing in 7, is n (r) = O (r**¢). Roughly stated [47, p. 249], the higher the order p of an
entire function, the more zeros it may have in a given region of the complex plane. Moreover, if the
modulus of a zero z, is r,, = |2/, then
= 1
Z ()"

n=1

converges if a > p

and the lower bound of « is the exponent p; of convergence; thus p; < p. If 3>, < & )p + converges
for an integer p, then p + 1 > p; and the smallest integer p is called the genus of f(z). In any case,
p < p1 < p. We may have p; < p, for example for f (z) = e*, whose order is p = 1, but the exponent
of convergence p; = 0, because e does not have zeros. Applied to the Mittag-Leffler function E,; (2)
of order p = %, the theory indicates that more zeros are expected for small ¢ than for large a, which
seems contradictory to the monotonicity of E,; (2) for 0 < a < 1 on the negative real axis in art. 39.
The determination of the zeros of E, (2) is generally difficult [58], [17, Sec. 4.6], [40] and omitted
here.

For some special values of the parameter a, the Taylor series (1) reduces to known functions, such

as E1 1 (z) = e® and Ea; (z) = cosh (1/z). From the incomplete Gamma function [1, 6.5.29], we have

e > (—z)k
ro-1) — E'(b—1+k)

= 17 0e? (1 — F(bl_l) /:o e_ttb_2dt) (3)

which can also be written in terms of Kummer’s confluent hypergeometric function [1, 13.1.2]

Eip(z)=ev"(b—1,2) =

T (a) & T (b+k) k!
as
> M(l,b,z)
E
1o Zr (b+ k) T (b)

k=0
Generalizations of (3) to E1 , (2) for fractional a = L where n is an integer, are derived in (23) in art.

7 below. Many analytic functions can be expressed in terms of the hypergeometric function, defined
by Gauss’s series [1, 15.1.1]

S T(a+k)TO+E)
I(c+ k)k!

F(a,b;c;2) convergent for |z| <1 (4)

k:O
where the argument of the Gamma functions is of the form ak + 5 with @ = 1, in contrast to the
Mittag-Leffler function in (1) where a@ = a is real positive. Just the fact that a is real and not an

integer colors the theory of the Mittag-LefHler function Eq (2) and causes its main challenges.



3 Deductions from the definition (1) of £, (2)

1. Special values of a and b. If b =0, then, since lim,_, ﬁ = 0, we have

5 e Zk 0 Zk-i—l
20 ( )_;F(ak) _kzof(ak:+a)
and, hence,
Eo0(2) = 2Eq4 (2) (5)
If a = 0, then
1 1
E(]’b (Z) = mm for |Z| <1

k .
From E,p (2) = ﬁ +30, m, we observe that lim, o0 Fqp (2) = OB

2. After splitting odd and even indices in the k-sum of (1), we obtain

ab(—%) = = o
T (b+ ak) —T (b + 2ak) =T (b+ a+ 2ak)
and
Ea,b (-Z) = E2a,b (22) — ZEQa,bJra (22) (6)

Property (6) cannot be expressed for E, (—z) in terms of itself and motivates our viewpoint that the
complex function theory of the Mittag-Leffler function should focus on E, j (2), rather than on E, (z).
The differentiation rule in art. 6 below is the more fundamental motivation.

Adding E, (2) = Eaqp (z2) + 2E%.b+a (z2) to (6) leads to

Ea,b (Z) + Ea,b (_Z)
2

E2a7b (2’2) = (7)

and, similarly,

Bsapia (2%) = Eap (2) —Qfa,b (—2) .

Examples From FE;; (z) = E; (2) = €*, the relation (7) indicates that Es (z) = cosh (1/z) and

next
E,(z) = % {cosh (zi) + cos (zi>}

The odd variant (8) gives Ea 2 (2?) = sinhz

z

3. Cyclotomic property. When introducing the identity » - 01 eIt = 176_2;:,:' = ml,,;, into (1),
1—e""m

m—1 Z27rkr k

it 2y Doty € m 2 o Logez® S~ *
;Eavmez) Z 0b+ak: :mzm:mzm

k=0 1=0
we obtain
1 m—! 2nr
Bamp (") = — 3" Fuy (zelW) 9)
r=0



For m =2 in (9),
2E2a,b (22) = Ea,b (Z) + Ea,b (—Z)

we retrieve (7), because (9) essentially follows by multisectioning of a power series [42, Section 4.3] of

which splitting in odd and even terms is the obvious case in m = 2 sections.

Example The case a =b =1 in (9)

1 m—1 1,
B () = S (10)
m
r=0
can be extended to certain integer values of b. Indeed, using
00 © _k—(n—1) n=2 j
z
E —_ = Zi(nil) 62 _
1 (2) =D G (k+n—1)! Z ! L |
n (9) yields
1 n—1 m-—1 n—2 J ;27r
1 i 1 2nr z m 27r 1 ;2mr Zmel m J
B (2) = = 3 By (56 %) = o) [ el _ |
m r=0 m r=0 j=0 J
The last double sum
m—1n—2 2 Zl n—1 Zm m—1 ) n—1 mel
2nr m m . 27qr m
o = = DI B
r=0 j=0 7= (n—1-9! = g=1 (n—1-q)t
vanishes for all integers n < m. Thus, for integer 0 < n < m, we arrive at
_nT_l m-! 27rr 1 ;2nr
Em,n e—z— n— 1 zme' ™ m (11)
m
r=0

4. Mittag-Leffler function with b =  + am where m € Z. Another rewriting of the definition (1) of
Ea,b (Z)a

= s - 1 [ 2k 1
Eap ( _Z;)F b+ ak) Z:IF —a—l—ak) z(%l“(b—a—kak)_l“(b—a))

leads to “the shift down of b by a” formula

N |

Bus ()= £ (Buvea () - 1 (12)

or, similarly after b — a + b,

Eap(2) = sz) + 2Eqpta (2)

from which, for b = 0, we find again (5). If b = 8 + ma in (12), then we obtain a recursion in m

Bupima () =+ (Busitm-1a () - ryron—1ro7) (13)

1
z



After iteration of (13), we find

m—1

2" Eq g4ma (2) = Z

=0

I( B + la) (14)

The case for m =1 in (14) is again (12). Relation (14) is directly retrieved from the definition (1) of
Ea,b (2)7

[e'e) Zk_m o [e'e) Zk m—1 Zk
Eagtma ZF ﬁ—l—a m—i-k’)) kg;nf(ﬁjLak‘):Z (ZF(ﬁ+ak)ZF(6+ak)>

Similarly,

00 00 Zk+m . o zk m Z—k
Ea,6-ma Zr /3+ak m))_k:sz(ﬁ—i—ak)_z ( F(6+ak)+k:11“(6—ak)>

and, hence,

Subtracting (15) from (14) yields?

m—1 1

z
mE _ _mE _ — — _
" Ea,gma (2) = 27" Ea,p-ma () lzz_;nl“(6~l—la)

illustrating for real a > 0, > 0 and positive 8 > ma that :EQmEaﬁera () < Eq8—ma ().

Example If a =1 and § =1 in (15), the pgloy = gy = 0 for k > 1 and, with By (2) = ¢
we find (also from (3)), for integers m > 0, that

)

Ei1-m(z) =2"e* (16)

5. Differentiation with respect to z. The derivative of the definition (1) with respect to z is

Mg

=~ (k+1)z
F +ak ZF b+a+ak)

k=1 k=0

li (ak +b+a—1)2F b—li P

a i~ b+a—|—ak) a kZOI‘(b+a+ak:)
715‘@: b—1 2

a I( b—i—a—l—l—ak) kZOF(b+a+ak)

3which we can write as
m—1 1 m
z
- =5 1 TN — - 1R Ea ua
2 TG [ B

m
= logz/ 2" Eq gtua (2)du —a
—m

d Zk+u

Z@r 5+a(u+k))d

w = 28 (B + a(u+ k)
Z FB+a(ut+k)) du

N

“= /.,

where 9 (z) = dl%f(z) is the digamma function [1, 6.3.1].



and, with the definition (1),

d 1 b—1
%Ea,b (2) = 5Ea,b+a71 (Z> - TEa,bJra (Z)

Using (12), Eqptq (2) = % (Eal, (z) — ﬁ), simplifies to

d
azaEa,b (2) =Eqp—1(2) = (b—1) Eqp (2) (17)
The m-derivative
dm dmfl dmfl
GMEa,b (2) = WEa,b+a—l( z) = (b—1) dam— ———Eapta(2)
has a recursive structure, when denoting hy, (b) = L2 E,; (2) and hq (b) = E, 4 (2),

ah () = hyn1 (b+a —1) — (b— 1) hyn_y (b+ a)

which can be iterated resulting in

m/dm -
e E.p(2) = Z qj (a,b,m) Eq pyma—j (2)
J=0
where the coefficients g, (a,b,m) = 1, g1 (a,b,m) = (mb + m(m Dy — m(”;ﬂ)) and qo (a,b,m) =

Z:()l (b — 1+ ka). In general, g; (a,b, m) are polynomials in a and b of order m — j. Unfortunately?,

it is not easy to write all coefficients ¢; (a,b, m) in closed form. With (14), we have

dm m—1
(az)™ qu (a,b,m) ( ab—j ( ;I‘ 5o j—l—la)) (18)

For z = 0, we obtain from (18) with ;i—mmEa,b (z)‘Z:O = m,

1 1 < gj(a,b,m)
L'(b+am) _7’“2 —]+ma)

and, with % = ;:1 (b+ am — q), the polynomial nature of g; (a,b,m) is apparent:
m J m—1
ZH(b—i—am—q)qj(a,b,m) =a" — H (b—1+ ka)

4For example,

d’E,
a? dzg ( ) = Fqpt2a—2 (Z) - (2b +a— 3) Eopt2a-1 (Z) + (b — 1) (b +a— 1) Eopt2a (z)
d°E,
ani;() = FEap+30-3(2) — (3b+ 3a — 6) Eq,p+30—2 (2)
{2+ a—3)(b+2a—2)+(b—1)(b+a—1)} Easrsas (z) = (b—1) (b—1+a) (b—1 + 2a) Eaps3a ()
d*E,
4d7;;(z) — Bapiaat (2) — (4b+ 60 — 10) Bupsaa_s (2)

+{@2b+a—3)(b+2a—2)+(b—1)(b+a—1)+30b+a—2)(b+3a—3)} Eapraaz (2)

—{(b+3a—2)(2b+a—3)(b+2a—2)+(b—1)(b+a—1)(b+3a—2)+B—1)(b—1+a)(b—1+20)} Eapisa_1(2)

+b-1)(b—=14a)(b—142a)(b—1+3a)Eqp+4a (2)



Art. 9 below will present a closed form for %Emb (2).

6. Differentiation recursion. Using the functional equation of the Gamma function, I' (z + 1) = 2" (z),

we write
k k

E (mz)_i a:kzk _io: 'z
T T T (b+ak) T & (b—1+ak)T (b— 1+ ak)

Thus,
ok b= 1+ak

(b—1+ak)T(b—1+ ak)

00
Zb_lEa,b (J:Za) = Z
=0

Differentiation with respect to z gives us

d b1 kb2+ak b2 k’
5{ E“”"’“"z} Zr — 1+ ak) ZFb—1+ak)

With the definition (1), we arrive for any x at the differentiation recursion in b,

d
e {zb_lEa’b (xz“)} = zb_2Ea7b_1 (xz%) (19)
z
Differentiating (19) again m-times and using the recursion (19) yields
4 LTIE, (2%} = 2 ME (x2%) (20)
dzm a,b = a,b—m

7. Fractional values of a. Let a = "% where m < n are integers, then the differentiation formula (20)

becomes, for z =1,

k k=1 k=0
and we find that
= { b—1 m b—1 - z nk b—1 m
— 1z Em,b<2n)}:z — + 2z Em,b(zn) (21)
dz ! k=1 r (b o %k) "
For n =1, (21)
am 3 belfm B
qm {Zb 1Em,b (Zm)} = m +2° 1Em,b (=)

In particular, when b = 1, then it holds for m > 1 that jz—mmEm (z™) = Ep, (2™), which illustrates that
y = Ep, (™), explicitly given in (10), is a solution of the differential equation fil;nm =y.
For m =1, (21) reduces to

n _1_1
d f b1 Ak b—1 1
E < n>} - T(b— Lk E ( n)
B (2 Zr(p—1p 7 e
from which L
d oo n Z l—fk
dz{e AN ;F (b—Lk)



Integrating both sides from 0 to z yields, for b > 1,

E%,b <2%> = zl_bez {l{b:l} + Z P(bilk)/(; tb_l_%k _tdt} (22)
k=1 n

where the indicator function 1, equals one if the condition x is true, else 1, = 0. After letting =z = o

in (22) and replacing j = n — k in the summation, we obtain®

Ei,(x)= g=0ner” Lip—1) + Z / $(b-1+3) L=t gy (23)
w =T (b 1+ )

that reduces, for n =1, to (3) and for b = 1, to Wiman’s form in [57]

n z" g—l
Ei(x)=¢€" / _t

ek

For positive real z, it holds that foxn $(b-1+3) 1ot gy < I $(b-1+3)"le=tgs = T (b -1+ %) and (23)
shows that E1 , (z) < z(1=)n ez {1{b:1} +n— 1{b:1}}. Thus,

E1,(z) < na=0ne?

illustrates for a = % that the entire function E1 , (2) has order p = % = n. This bound also reappears

in art. 31. Moreover, it is interesting to compare (11) formally, written for an integer b < m,

1=t 1 m—1 1.2
Z m e _s27mr L j&nr
Emp(2) = - {ezm + ) et brlezmenm }

r=1

with Bieberbach’s integral (141) for E, (2) and with the bound, where % is replaced by m,

1-b
Z m

3

62

Em,b (Z) <

We return to the relation between E,p (2) and E1 , (2) later in art. 31.
Example If n =1 in (22), we retrieve (3) and when n = 2 in (22), we find for b =1

By (1) =e {Hr(l;) /Ozt%etdt} {1+/ et du}

®Using the recursion P (a,z) = P (a+1,x)

+ F(xj-l) e~ in [1, 6.5.21] for the incomplete Gamma function P (a,z) =

fozt‘l*le*tdt in (23), E1 , (x x) = 217D {l{b 1+ 20 1P(b—l—f— i )},shows that

e} : n—1 n—1
Ei,(z)= AR {1{b y+ P(b+ . >}+
o e 0+ S

3=0

1
'(a)

which agrees with the Wiman-recursion (23) when b — b+ 1,

oo ; n—1
x’ n n_(1— (b+1))n " ] n
Ty g ¢ Phen ()= oo+ P (0t e

j=n 7=0

10



so that, with the definition [1, 7.1.1] of the error function erf (z f Z e~ du,

E

1
2

(2) = {1+/ —u du} =" {1 +erf (2)} (24)

8. Hadamard’s series > - (lf% and E, (z). Sharp bounds of the Gamma function for ak +b > 0,

that follow from (171) in Appendix A, are
V2m (ak + b)ak%*% e (R0 < T (ak + b) < V2r (ak + b)ak%** ¢~ (@h+D) o TotakTD)
a—1 b_ 1 a
Now, V27 (ak + b)ak%_% e=(@h+) — \Brqalkti) =3 (k+2) = <(k + )(HE ) e(HZ)) and again

using (171),

a-1 by @
V2r (ak + b)) e < fomgel(ita) =3 (k + ") C (L)
a \/ﬂ
and replacing the inequality by an order estimate, we have for large ak + b,

I (ak + b) = (\/%);\/Tagbé (akmr (k+2>)“ <1+O <ak1+ b))

If b =1, then for ak 4+ 1 > 0, the above reduces to

I'(ak+1) = ‘/a\(/\l:ijzla (akmr <k+i)>a < \/a(\/\/?)l_a (akr (k—i—i"i‘l))a

For large a, we approximate as

Va (var)' "
Vk

In art. 66, Gauss’s multiplication formula is writtenas I' (nz + 1) = (27r)_n%1 n"i s [[-. T (z + %)

and indicates, assuming that n = a is an integer, that

T (ak+1) = ﬁ(@)l_aaakﬁr <k+ i)
j=1

T (ak+1) ~ (akT (k + 1))“ (25)

11



from which, with T (k) < T (k: + g) < T (k+1), it holds® for k > 2,

Va (\/ﬂ)l_” (T (k))“ <T(ak+1)<a (x/%)l_“ (T (k + 1))“

After introducing (25) in the definition (1) of the Mittag-Leffler function for real, positive z, we

approximately obtain

700 N(ﬁ)aloo k
_ZF(ak—i—l)N Jva Z

k=0

while Gauss’s multiplication formula produces the bounds

(Ve a5 (2)" e VT @)
Vi a2 B@ T w ey > ;; k) (26)

About 10 years before Mittag-Leffler has introduced his function E, (z), Hadamard [22, p. 180]

-1 T
suggests in his study of entire functions that F, (z) = Y_,—, F(aﬂl) ~ (@ Yoo (k,ga for large x.

Hadamard derives an exact a-fold integral for the last series, from which he deduces that y 72 (k!)a <

1
are Art. 7 shows that E, (z) < 16“ Combined with (26) leads to

which is considerably sharper for a > 1 than Hadamard’s [22, p. 180] bound.

We also give Hadamard’s [22, p. 180] nice argument, starting from

1 0
Tra Z F

k=0

1 ' .
and letting m/ = %, which runs over fractions for a > 1, so that e** =" _, m Comparing

terms with E, (z) =Y W, then shows that E, (z) < e“ For a < 1, Hadamard states that

H

E,(z) < [1] zaed”. However, the bounds presented here based on the theory of the Mittag-Leffler

function are sharper than Hadamard’s estimates.

r (k + 1) < (T (k+ 1))% and, hence

a

“Now, (T' (k)% < [I2, T (k+2) < (T (k+1))% and (T (k+1))% <12

(T (k)% (r (k+ ;))2 <

a

£ (ee2) e )< ) e

e

i= i=%
The duplication formula of the Gamma function, I'(2z) = %2%7111 (2)T (2 + 3) indicates that T (k+3) =
2%% ((2 ::11))!! so that

a

\/a(x/ﬂ)lfaa“’“ (r(k)r <k+;>>2 <T(ak+1) < \/a(\/ﬂ)kaa“k (F (k—k%) P(k+1)) ’

and a sharper upper and lower bound is

V2TA k(9 — 1)1)% < T (ak + 1) < Y272 55 0% (2% — 1))
2ka7-r4 2ka7-(-4

12



9. Taylor expansion around zy. Since the Mittag-Leffler function Eqp (2) is an entire function, any

Taylor expansion around an arbitrary (finite) point zp has infinite radius of convergence,
_ — 1 d"E E, b( )
a b - Z H rm
m=0

With the m-th derivative (18), we find

0o m m—1 £-20 "
Eup(2) =) qu(%@m)( ab—j (#0) Zr b— j+la)) (”i‘)

m=0 | j=0 =

(z —20)™
=20

but, unfortunately (see art. 5), the coefficients g; (a, b, m) are not available in closed form. However,
the closed form (20), which is a rather fundamental property of E, (z), opens a new avenue. The

Taylor expansion around zy of

— 1 am
2~ 1Eab Z ol dom {xbilEa,b (xa)} . (z — 20)
m=0 =Z0
becomes with the differentiation recursion (20)
o
Eqp—m (28)
b b b _
5 1Ea,b(za):z() IZGTT";UZOm(Z_ZO)m
m=0

The function zbilanb (z%) has a branch cut at the negative real axis for real a and b, implying that
the radius R of convergence equals |zp|. Using the defining relation of the radius of convergence in

Section 2,
1

m—00

zo_m_lEa,b,m,l (z§) m!
% " Bapm () (m+ 1)

Eazbimfl (Z(C)L)
m=o0 | Bqp—m (25) (m +1)

then indicates for any finite z # 0, a and b that

‘ Ea,bfmfl (Z)
Ea,b—m (Z)

~(m+1) ifm— o (27)

Introducing (33) for z # 0 that

o Eqp-m—1(2) . az dlog Eqp—m (2) b
1= lim = lim |[|— (1= =
m—oo | Eqpm (2) (m + 1) m—oo | m dz m
shows that
lim 1 dlog Eqp—m (2) _0
m—00 | M dz

Thus, for large m, the logarithmic derivative for z # 0 and finite a and b is of order %ﬁ”’m =
0] (ml_e) for any positive € > 0.

We proceed by removing real powers of z° = e81°8% that destroy analyticity in the complex plane
1-b 1-b
and introduce formally the Taylor series <i> = (% -1+ 1) = 10 (1 b) (— — 1) , valid

20
for any b and |z| < |20, in



yielding, after executing the Cauchy product,

Eun() =Y {ij (;:Z)E";(O)} (Z-1)"  forkl<la

m=0 \ k=0

Next, letting y = 2 and yo = 2, we first expand in a Taylor series around yo
1 m 1 m

<y> EPD I o i <y> .

Yo = k! dzk Yo
q m q

m Yy \“ m— m Y —Yo @ m—
) S (5 o

(2) Go) =2 () (1)

7=0 q=0

S}

(y — yo)k

Z=Y0

as

SIS
~_
|
[a—

i
[}
7 N\
N
< ||
(«)
<
(e)
~_
<

Substitution and reversing the m- and k-sum yields

Ea,b(y):i ,:0,:0 <;:Z) ek (v0) qf:( ><§> g <y;0y0>a

-2 |2 l’”“;(“%i()(g) v (450

The characteristic coefficients [49, Appendix] of a complex function f (z) with Taylor series f(z) =
Y reo fu (20) (2 — Zo)k, defined by s[k,m]]f (20) = % dd;n (f ()= f (zo)kﬂ , possesses a general
z2=z0

form

k
sleomllp (0= Y ][ fi(=0) (28)
iy Ji=migi>0 =1
and obeys s[k,m||, (z0) = 0if k <0 and k > m. Also, s[1,m][; (20) = fm (20), while (28) indicates
that s[m,m]|; (20) = f1" (20). We can show [48] that

k . m
aj k! SR
oy =20 () () =5y S st 2
et

Jj=1

where S,gf) and Sr(r]f) are the Stirling numbers of the first and second kind [1, Sec. 24.1.3 and 24.1.4],
respectively. We apply these properties to the Taylor series

& B (o) & (1—b ; y—w)’
Eap (y) = Z Z e Z m—k S[m’]”(l—l-z)% Yo
=0 Lk=0 m=Fk -
i Z abkyo i(l—b) _— _<y—yo>j
= , 1
~\& — (1+2) | Yo

14



Finally, we arrive with (29) at the Taylor series of E,; (y) around yyo,

= [y? < T Im T(2-b) 4 (
Eab () Z[ > Fask (v Z(k) (2_b m—f—k:ZS sy w=w)  (30)

j=0 'ko m=k

from which the closed form of the j-th derivative of the Mittag-Leffler function, evaluated at yg = w,

follows as

Clj Ea,b (Z)
dzJ

. J J m r2-=a) )

Z=w k=0 m=k q:m

Since the Mittag-Leffler function E, (2) is an entire function, the j-th Taylor coefficient around w

decreases faster than any power of (z — w)j for large j and any z, we deduce that %’f(z) =
. Z=w
o (j!w’). Thus, the j-th Taylor coefficient % d]%z’]’-’ (2) increases at most as a polynomial in w of

order j. In contrast to the relatively simple Taylor series of E,4(z) in (1) around the origin, the
general form (31) emphasizes the complicated nature of the Mittag-LefHler function E, (z) elsewhere
in the complex plane.

As a check for a = b =1, the orthogonality condition of the Stirling numbers

> SISE = b (32)
k=n

With (16), we find

S e

7=0 Lk=0

J o J
(y _.'yo) — Yo Z (v — %) — Y0¥ —Y0 — oY
7!

4 Logarithm of the Mittag-Lefller function

d
10. Logarithmic deriwative. The logarithmic derivative 2 ZlogEqyp(2) = ’“E b(z(; ) follows directly from

(17) as

dlog Bup(2) 1 (Bapi(2)
emab A\ - | 2R (p—1
dz az Eap (2) ( ) (33)
Similarly, invoking (19), we find the companion logarithmic derivative
d 4 {zb_lEa b (xza)} 1 Eyp_1 (z2%)
71 ( b—lEa a ) — dz ) — a, 34
dz B \* »(@2%) 1B, (229) z Eup(x22) (34)

Since b — 1+ ak > b—1 for kK > 1 because a > 0, we have for positive real z and b > 1,

k 1 o0 k E,
z < Z z _ bl()
(b—14ak)T (b—1+ak) b—lk:OF(b—1+ak) b—1

WE

Ea,b (Z) =

i

0

15



and that (b—1) < %” (1()Z ). The logarithmic derivative (33) becomes %j’b(z) > 0, illustrating that

log E, 4 (%) is increasing for real z > 0 and b > 1. More precisely, with b—1+ak > b—1+4a for k > 1,
we have for real positive z and for b > 1 — a, because then I' (b — 1+ ak) > 0 for k > 1,

> k
E,
% (b +; b—1+ak)T (b— 1+ ak)
1 1 - 2" 1
STW T h-i+a (gr(b—1+ak)_r(b—1)>

and

1 a
Eap(2) < 6-1+ta) (F o) + Eap—1 (2)>

Thus, for real positive z and for b > 1 — a, the inequality is equivalent to

. 1 Ea,b—l (Z)_ _
(- roEE) < e Y

and the logarithmic derivative (33) is lower bounded by

dlogE,p(2) 1 1
iz oz <1 “T()Ea., (z)>

Example If b =1 and a = 1, then E; ; (2) = e* and the above inequality for real positive z results
in the well-known bound (see e.g. [50, p. 103]) that e™* > 1 — z, which holds for all real z.

11. Second-order logarithmic derivative. Similarly as in art. 10, we can directly differentiate (33)

d? log Ea,b (Z) _ _i Ea,bfl (Z) _ (b B 1) 4L 1 d Ea,bfl (Z)
dz? az? \ Egup (2) azdz \_ Eu(2)

The derivative at the right-hand side is computed by using (17),

d <Eab_1(z)> 1 {Ea,b—z (2) n Eop-1(2) <Ea,b—1 (Z)>2} (35)

dz Ea,b (Z) az anb (Z) Ea,b (Z) Ea,b (Z)

After substitution of the latter into the former, we arrive at the second-order logarithmic derivative

again,

d? log Ea,b (Z) . 1 . Ea,b—2 (Z) . B Ea,b—l (Z) _ Ea,b—l (Z) 2
N {a(b R TEREGRE vzl € =y } (%6)

As already observed in art. 5, higher-order derivatives will become less wieldy, which suggests us to

consider the companion differential rule (19) in art. 14.

12. The Taylor series of log E,p (2) around z = 0. From the power series definition (1) of E,j (2),

we have

dlog E, 1 1 (< = b —1)z
2—0 z z—0 Zk:o F(b—l—ak) z— ( —14a 0 + a
o k.zkfl

) im S
OV 2 b+ ah)
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and find ilos E T
lim 0g Lig.b (2) . (b)

2—0 dz - T'(b+a)

Proceeding in this way to higher-order derivatives becomes cumbersome. The general theory of

characteristic coefficients [49, Appendix]| provides us with

o o z mﬂ m| (z z—2z20)"
log f(z) = log fo (20) +Z<;kf0(20) sk, Mo))( 0) (37)

Confining to zp = 0, the characteristic coefficients (28) of the Mittag-Leffler function E,; (2) are

sleomllp, o= D H M

Zl 1]1 7]1>OZ 1

and the Taylor series of log E, 5 (2) around 2y = 0 follows as

log Ea b Z Cm 2

where we define ¢ = log (—I" (b)) and the coefficients ¢, for m > 0

T S (D! L))\
_I‘(b+ma)+z k 2 H b+]z m (F(b—i—a))

k=2 Z 1.7L— 7Jz>OZ 1

The list of the coefficients ¢, for m =1 up to m =5 is

L' (b)
T T(h+a)

T (b) 1/ T®B \?
CQ:F(b+2a)_2(F(b+a)>

T (b) 2 (b) 1/ 0®B \°
T T+ 3a) F(b+2a)F(b+a)+3<F(b+a)>

T (b) 2 (b) 1/ T@® \? I3 (b) 1/ T® \*
C4:r(b+4a)_r(b+3a)r(b+a)_2<r(b+2a)> +r(b+2a)r2(b+a)_4<r(b+a)>

L'(b) I (b) I (b) I’ (b) I (b)
CS:I‘(b—I—&L)_F(b+4a)F(b+a)_F(b+3a)F(b+2a) I‘(b+3a)f‘2(b—|—a)+F(b+a)F2(b+2a)

I (b) 1/ T®) \°
" T3(b+a)T (b+2a) t3 (r(b+a)>

Unfortunately, it seems difficult to further sum the terms in ¢,,. The closest zero to zg = 0 lies at a

distance from zy equal to the radius R of convergence of log E, ; (2), which is

I ’Zm—i_l = F(b [kv m + 1] |Ea,b(z)
= 1m

m o0 k
- ’Zk 17k s[k, m] |Ea,b(z)

Cm+1

Cm

17



The generalization towards the closest zero to zy requires the Taylor coefficients of (30).

13. An expansion of log E,y (2) in powers of logz. Integration of (33) leads to

log Ea,b (Z) (1 —b i 41 / Eab 1 dw
Eap (z0) @

w

Using (35), partial integration shows that
? Bop1 (w)dw  Egp 1 (w) 1 [Flogw | Eapo(w)  Eap1(w) [ Eap(w))?
— = ——"logw| —— + - dw
w @)z W Eqp (w) Eqp (w) Eqp (w)

20 Fap(w) w Eqp (w)

and
Eq.p(2) (1-10) z 1 <Ea b—1 (2) Eqp-1(20) )
lo : = log—+ - —=——Flogz — ————"logz
& Ea,b (Zo) a & 20 a Ea,b (Z) & Ea,b (Zg) &0
1 [logw [Bura(w) | Bapi (@) (Ea,b_l (w>>2 N
a2 20 w Ea,b (w) Ea,b (w) Ea,b (w)
Since loi “dw = 1d (log” w), again partial integration of the right-hand side integral R leads to

_ Zlng Ea,b72 (w) Eavbfl (w) _ Ea,bfl (w) 2 w
R_/zo w { Eup () | Bop (w) ( Eqp (w) > }d
) Eap2(w)  Egp1(w) B Eqp—1 (w) 2 log? w :
_{ Eqp (w) " Eqap (w) < Equp (w) ) } 2|,

“log”w d Eop2(w) | Eop1(w) (Eap1(w) ?
_/20 2 % <{ Ea,b (w) * Ea,b (U}) ( Ea7b (U}) ) }) dw

Each derivative of a fraction of Mittag-Leffler functions can be computed with (35), which indicates

2
that again a factor ﬁ will appear so that logdew = %d (log3 w) which enables a next integration.
Continuing partial integration and choosing 2y = 1 to simplify the sums will lead to an expansion of

the form

K
E.p(z) (1-0) log” 2 “loghw d
1 @ = 1 — - d
%8 s (D) —logz > Fi(z) /ZO T ! k(W) dw
where K > 1 is an integer and Fj (z) consists of sum of fractions of Mittag-Leffler functions, whose

explicit evaluation is possible, but tedious and omitted. We have computed above,

ne =

__i Ell,b—2(w) Ea,b—l (w)_ Ea,b—l (w) 2
Fa(z) = az{ Eqp (w) + Eap (w) ( Eop (W) ) }

)

14. Higher-order logarithmic derivatives. The second-order logarithmic derivative of the companion
n (34) is

- dz

d? d <1Ea,b—1(332a)> _d <zb2Ea,b—1 (fﬂza))

1 ( b— 1Ea a ) - =
a2 8 b (@) dz \z Egp(xz?) 2B,y (229)

18



Invoking (19) yields

d <zb_2Ea’b1 (mz“)) B zb_3Ea7b,2 (xz%) <zb_2Ea,b1 (a?za)>2

dz 1B, (229) 1B, (29) 2P71E, p (229)

d? o) _ 1 (Eapa(@z") [ Eapa (229
& log( "By (22 )) =2 ( Fop (179) ( By (229) ) ) (38)

whose structure is more pleasing than that of (36).

and

A next differentiation yields

_ _ 2
i log( T Eqp (xza)) = a @ Eap-2 (22") — & Bap1 (22)
dz3 ’ dz \ z71E, (229) 2 1B,y (229)
The first derivative equals

d <Zb3Ea,b—2 (ma)> 1 (Ea,b—3 (x2%)  Eap—o (2%) Eqp—1 (ma)>

dz 207 1E, p (229) Eqp (x2%) B (Eap (;rz“))2

The second is

d 2P72E,  (22%) 2 2 [ Egpoi1(22%) Egpn (22°) ([ Eap1 (22%)\*
dz \ z71E.p (x2%) 23 (Eayp (mza))Q Eqp (22%)

Combining results in

L g (1 By 259 -

1 [ Eap-s(22")  3Eap-1 (22") Egp—2 (x2%) Eap_1 (z2%)\?
( Eap (@27 (Eap (229))* +2< Eap (22%) ) )

(39)
Rather than continuing step-wise differentiation, we consider

dm+1 dm Zb—QEa (2%
log ( 1Ea7b (xza)) = < b1 ( )>

dzm+l dzm \ 2b71E,p (22%)

and invoke Leibniz’ rule

dm b 2Eab 1 xz m 1 dm—k b2
25 a
dz"m ( 2b=1E, p (129) > Z( )dzk (zblEavb (;vz“)) dzm—k (Z ab-1 (22 ))

k=0

With (20), we obtain
dmfk

dzm—k

b—2 b—2—m-+k R O
{z ““Eap-1 (xz“)} = 2" gk (227) = Tk {z " Eap (mza)}

The Taylor series of ( ) around zp, in terms of our characteristic coefficients [48],

o0 m

B _|_Z Zﬂs[k‘m](z) (z—20)" (40)
7 Jo(0) BT () ’

m=1 Lk=1 70

where the characteristic coefficient s[k, m| (zo) is defined in (28), illustrates for m > 1 that

1 dm [ 1 = (D
i (77) |~ A o

z=z0 k=140 20)

19



Applying (40) and replacing zp by z specifies, for k > 1,

1 d* 1 : (="
K dzF (blEm)) =2 g, @y T

where the explicit form (28) of the characteristic coefficient indicates that

b—1

s[n, k‘” (Z) = Z H 1' j;l { b— lEa,b (xz“)} _ Z H z 7JiEC?,b*ji (H?Za)

— - Ji!
S di=kgi>0i= 1/ Sor o i=k;ji>01=1

b=1-4i
. z iEg p_i (xz
Since [];, i HC)

2

oy ji =k, we find

= X100 7 Bab—g (@) n(b-1)-X7, di [T Bap—3i (@) 1d

i=1 7i! =1 Ji!

s[n, k]| (z) = 20Dk Z H Eap- ]Z (w2

Zl 1Ji= =k;ji>01=1
so that
1 ( 1 > Mki (-1)" Z ] Zeams )
- D — = Z - 11
k! dzk ZbilEa,b (mza) n=1 (Ea,b (xza))n+1 =k;j;>01=1

for k > 1. Substituting these results into Leibniz’s formula yields the logarithmic derivatives [, =
dom log (2" Eqp (22%))

Zb—2—mE

m
1
A ab=1-m I I S a
e 21 Eq b (2%) +; dzk P TEey (w29) ) © ab-1-mk (777)

Eqp— ]Z(:pza)
_ Eab-1-m (22" +m‘z Z - Zzz 1 Ji=k3ji>0 Hz 1 Ji! Eop—1-m+k (2?)

= mr Eqp (129 o (B (xza))n-i-l (m —k)!

which shows that I/, = 2™, is a sum of m fractions of Mittag—Lefﬂer functions. In addition to (34),

. . . . . ’ b—1
Y - m a @ = Y
(38) and (39), we list the scaled logarithmic derivatives I}, = 2™ dz = log (2" 1E,p (#2)) for m = 4,5

20



and 6,

Bapa(2%)  4Bap 3 (22%) Bap 1 (32°) 4 3 (Fap2 (12))° L 12Bup-o (22%) (Bqp_1 (22%))?
Eqp (129) (Eqp (129))? (Eqyp (29))?
—6 (Eaﬁb—l (932“)>4
Eqp (x2%)
Eop—s(22?)  10Eqp_3(22%) Egp—2 (2) + 5Eqp—4 (v29) Egp—1 (22%)
Eop(x2%) (Eqp (x2%))?
L 20Eqp 3 (22%) (Bap1 (229)° + 30Egp 1 (22°) (Bap-s (22))°
(Bap (z24))°
_ 60Bqp2 (22%) (Bap1 (v29)° (Ea,b_l (ma))f’
(Eqp (229))* Eop (229)
Eap6(x2%) 10 (Eqpy_3 (£2%)* + 15Eqp 4 (22%) Egp o (12%) + 6Eqps (£2%) Eqpy_ 1 (£2%)
Eqp (x2%) - (Eap (:cza))2
L 30 (Bap_o (£2%))® + 30E0p_4 (22%) (Bap_1 (22%))* + 120E04_3 (22%) Eqpo (22%) By pq (22%)
(Eayp (222))°
 120Bap 5 (22) (Bap-1 (#2%))° + 270 (Bapg (22)* (Bap-1 (227))°
(Bap (z24))"
. 360Eqp—2 (x2) (Ea,b5—1 (z2)" 120 (Ea,b_l (zz“))G
(Eqp (z2)) Eop (227)

The recursion of the characteristic coefficients [48]

)=

=

lg =

3[17m] = fm
slkym] = fnjer slk— 1,5 — 1] (k>1)
j=k
m—k+1
= > fislk—1,m—j] (k>1) (41)
j=1

enables exact computation to any desired (finite) m by symbolic software.

dm
dz™

In summary, the explicit derivatives of I, = log (zbilEaJ, (acz“)) for any z, a and b provides

us with the Taylor series around any complex zg

log (Ea,b ({L‘za)) = (1 — b) log (;) +10g (Ea,b (ﬂj‘zg)) + Z i 7 IOg (Zb_lEa,b (l’Za)) (Z _ Zo)m
m=1

(42)
The Taylor series around zp = 0 in art. 12 is limited to a region around the origin in the complex
plane. Taylor series (42) possesses a radius R (zp) of convergence around zy that equals the distance

between zy and the nearest zero of E,p (x2%) to zp.

5 Integrals containing E,; (2)

15. Integral duplication formula for Eqp (—z). Using the duplication formula of the Gamma function,

21



['(22) = 5=2%71T' (2) T (2 + 3), the definition (1) is rewritten as

v
k

> 2T AT (3 + b+ ak) (2222)
kZ:OI‘ b+ak) T — I (2b + 2ak)

Invoking the Euler integral I' (s) = [t~ te~"dt for Re(s) > 0,

92b—1 (_22az)k
E ) = b—f ak
ab(=2) = —7 kzr(2b+2ak)/ et

22b 1 )k
S Z
NZS 2b + Zak‘

and the definition (1), we find an integral duplication formula for Re (z) > 0 and Re (b) > —3,

22b—1

Eop(—2) = N 13 Epqp (—2 (41)7) dt (43)
After substituting the Gamma duplication formula in the slightly rewritten power series
o k e k
z z
Ea = =
»(2) kZOF(b+ak:) kzo(b—1+ak)F(b—1+ak:)
22b—2 e a\k
= (4%2) r(b+ak—2
N kZOF(2b—1+2ak) 2

we find alternatively,

22b—2 o (_4az)k [e'e) 3
Eu,p(—2) = tr2 ket gt
(=2 = —= ;F(2b—1+2ak)/ e

22b2 . )k:
= Zem dt
J / ZF b—1+2ak)

for Re (b) > 3 and Re (z),
Bup(en) = 20 [ ety o (e (4)) di (44)
ab\—%2) = 2e 2a,2b—1 (—%
VT Jo

which also applies to E, (2) = Eq1 (2) after choosing b = 1.

Let u® = z (4t)" or u = 4,2%15, then (44) is, for real, nonnegative z,

22-2 /1 b=z oo b3 _(lz*%)u
Eop(—2) = —= <Z> / utre M Eaq2p-1 (—u®) du
0

v o \4
Let s = %:f% or z = (4s)” %, then we arrive at the Laplace transform
o0
—5u b a ﬁ —a
E =——FF.p (—(4 4
/0 e 2 Eyq o1 (—u®) du S22y L ab (—(45)7) (45)

Example For b =1 and a = %, the Laplace transform (45) becomes

1 o0 o0
ﬁE; - :/ w3 eV y — 2/ et gt
Vs 2\ 24 0 0
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With st? +t =s (t+ %)2 - 4—15, we have

o o o0
ﬁE; —L — 9eis e_s(t+i)2dt — eis e duy = els 2 e dt
VAR AN : . Vsl

2s 2y/s

e e du =1 — erf (z) and erf (—z) = % Jo " e du = — erf (x)

E% (—z) = exzﬁ/x e~ dt = e erfe ()

is again (24), because erf (—x f fo “e e du = —erf ().

16. Integral multiplication formula for E,p(z). The method of art. 15 is readily generalized.
Invoking Gauss’s multiplication formula (162) into the definition (1) yields

) ﬁr‘(b—l—akJrj)

20027: 1(1-n) nb** J=1 na \k
Eap (2) z(:) I'(b+ ak) (2m)> kzo I’ (nb + nak) (n"2)

e
Il

We introduce the Mellin transform (184) of a product of Gamma functions for Re (s) > 0,

ﬁr (s + ‘771) = /OOO w " hy, (u) du

where the inverse function h,, (u) is specified in (187) in art. 72 as a Taylor series in u, and we obtain
o0 a,,nNa
Eap(2) = (2m)20 >nnbé/ “Z (u?n™z)
0

k

(nb+ nak

Thus, for any integer n, we arrive at an integral multiplication formula for the Mittag-LefHler functions,

Bup (2) = @r)207 0 [ b ) 7 B (™) du (46)
0

The companion of (46) follows similarly from Eqj (2) = Y 5o (b—1+ak;)zrk(b—1+ak) as

[ee]
Eap(2) = (2m) 207" e+ / i () 0" B 1)1 (0n"2) du (47)
0

which directly reduces for b = 1 to the Mittag-Leffler function E, (2) = Eq1 (2),
E,(2) = (27r)%(1_”) né/ B (W) u ™ By (un™2) du
0

17. Special cases of the integral multiplication formula for E, (2). The case n = 3 in (46) with h3 (u)
in (191) expressed in terms of the modified Bessel function K, (z), defined in (189), becomes

33b—3
Ea,b (Z) =

/0 K% (2v/u) Ub_%Egmgb (33auaz) du (48)

T
The companion of (48) follows from (47) as
33(b—1)+5 oo 5
Eup(z) = —— / %(2f u) ub zEgaﬁgb_Q (3%uz) du (49)
0

™
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In [2, eq. (25), (28) and (31)], Apelblat has recently presented three remarkable integral functional

relations,

E, (") = — e 1t By (u®*) du (50)

B, (1%) = i/ooo %K% (3%) Es, (u3*) du (51)
E, (t)—1 /00 Ji (2v/tu)
Vit 0

which he has skillfully derived by manipulations of Laplace transforms. Apart from the last relation

E, (u®) du (52)

(52), where J, (2) is the Bessel function of order p, the first two are special cases of the multiplication

formula for E,; (z) in art. 16. Indeed, after substitution of 2 = ;Lu? in the first integral (50), we

obtain

1
5 ]

a S
= by

which is a special case of (45), more easily noticed from its generalization (55) below, for a — 2a,

b=1and x = (4st)”. With z = ¢t* and after substituting z = 273t (49), we obtain

1
ta—b u3 5
)= [T (25 s
0

which leads to (51) by choosing b = 1.

ﬂj_%e_S:CEQaJ ((4st)* x*) dx

18. Laplace transform of Eq (xzﬂ). The Laplace transform of t“/_lEa,b (wtﬂ) is

* st 8 L R ek ak % st BR—1
—styr-1p (t)dt:/ —StNTT L gt = / —styrHBk—1 gy
/0 ‘ ab \* 0 ZF (b + ak) Zr btak) Jy ©

for Re (7) > 0 and Re () > 0. Fubini’s theorem” states that the summation and integration can be

reversed, leading to

k
—St y— 1E 8 ")/ -+ ﬁk) x
/0 O By (at”) dt = < T (b+ ak) 57+ (58)

provided the integrals [, e~ E,;, (xt7) dt and fooo e St A1t = % exist and the resulting
series at the right-hand side of (53) converges. Stirling’s formula (173) indicates for large k that, to

first order,

Ly +Bk) o s-an <5B)k

I'(b+ ak) a®
Hence, the series in (53) diverges if 5 > a and converges for all % if B < a. However, if 8 = q,
then ((176) shows, for any complex number z = re? with large modulus » = |z|, that ||11:EZI§))|‘ =

“(1+0(2)) and thus that ((Zj:a:)) ~ (ak)"™" for large k > ko >> 1. The convergence of the

series & D ko F(Zj;g,]j)) (s—a)k ‘ﬂ ’ D ke K7 o ( a)k in (53) requires that |35| < 1, for any finite v
and b.

" Another argument is that a Taylor series can be integrated within its range of convergence.
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A first choice is § = a and v = b in (53), which restricts s so that |s*| > |z|, is, for Re (b) > 0 and

Re(a) > 0,
afb

o 1

—st b—1 a

t" ' E t) —E ( ) = 54
/o abe bk: s “—gx (54)

The Laplace transform (54) plays a key role in the theory of the Mittag-Leffler function.

Two other choices in (53) follow after the introduction of the duplication formula of the Gamma

function
I(y+B8k) _ V7 I' (v + Bk)
U(b+ak)  2b-1oaky (54 ak)T (b+1 + 2k)

as y = % and 8= 5 and v = l’% and 8 = g, respectively. If v = 5 and § = 3, then we find

o0 st b 1 a d e k
e 27 Eyyp (xtf) t= E ( a>
/0 ® Qb 132 P b+l ) 2452

resulting, with the definition (1), in

(o]
/ e_Stt%_lEaJ, (l’t%) dt = VT B bi1 ° @ (55)
0 Q—1gs 2772 (43)5

while the third choice v = HTl and 8 =
x
b a 56
2 <(4S)2> ( )

Both (55) and (56) are slightly more general than and reduce to (45) and (43), respectively, for x = —1.

% leads to

o0
/ T, (w18 ) dt = VT B
0

b+1
21)—18T

(SIS}

19. Generalized integration. By using a variation of the integral of the Beta-function [1, 6.2],
o ut ! (z—u)" tdu = :17“‘“"1% for real x > 0, Re(z) > 0 and Re(w) > 0, we obtain a
generalized integral variant of the Mittag-LefHler function E,p (2) in (1),

1 ’ w—1_ -1 3 1 & AF /I Bl4y—1 w—1
— = Eop (M?) du = "z — d
F(w)/o (o =)~ " By (M) du F(w)kZ:OF(bJrak:) o (@ =w)" du

_ vt 1i NeaPk T (y + Bk)
L'b+ak)I (v +w+ Bk)

which reduces for 8 =a and v = b to

1 /z w—1_ p—1 b—1+
—_— Tr—u w By (M) du = YEqptw (Az” 57
T Jo ( ) (Au?) +w (Az?) (57)

The m-fold integral® (57) for w = m and A = 1 possesses the same form as the m-fold differentiation
n (20)
dm

dxim {xb_lEa,b (xa)} — xb_l_mEa,b—m (:L,a)

8The n-fold integral is

Py (2, a) /du1/ dus . /7dunf(un)zﬁ/j(m—u)n_lf(u)du

The generalization towards fractional calculus, where the integer n is extended to a real number, is treated in [19].
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that is better recognized with Cauchy’s integral for the m-th derivative of an analytic function,

%’i&z) == fC (z0) %, where C (zp) is a closed contour around z,
# / (w _ w)—m—lwb—lEmb (wa) dw = xb—l—manb_m (xa)
2 C(x)

Hence, (57) written with the reflection formula (161), suggests that

sinTw (1 —
7r(w)/ (@ —w) W By (W) dw = 2TV By (%)
C(z)

21

holds for any negative real w, leading to fractional derivatives [52]. The Laplace transform (54) easier
connects to fractional derivatives, avoiding the contour integral. Applications of the Mittag-Leffler
function to fractional calculus are amply illustrated in [17].

Example For a = b =1 in (57) and, next, z = 1, A = z and w + 1 — b, we obtain, for Re (b) > 1,

1
(bl— 0 / (1-— u)b_2 e*“du

Let t = 1 — u, then the incomplete Gamma function appears

By (z) =

e

rToh-1/,  °© “To-n "™

20. Integration of a product of Mittag-Leffler functions. We extend the idea in art. 19 and consider,
for x > 0,

Eyp(2) =

which is again equal to (3).

L= F(lw) /0m (z—uw)" T By (\u®) B (1 (x — u)?) du

)\k Mm v w+my—1 _ B+ka—1
T T(w) & 2 T+ ak) T (d+om) / (z—u) ut du

Introducing the integral of the Beta-function results in

ghrw-1 2220 Az (ua)™ T (B+ ka)T (w + my)
I (w) L'(b+ak)T (d+cm) I' (B + ka + w + my)

k=

o

m=0
After the choice @« = a, 8 = b, v = ¢ and d = w, the double sum simplifies to

b+w 1 & C>m

I‘ b+w+ka—|—mc)

Further computations require the choice ¢ = a,

_:L,b+w—1 x© (/\a:a)k(,ux“)m
L= I (w) Zf(b—i-w—i-a(k—i-m))

k=0m=0

Let ¢ = k+ m, then 0 < g and m = g — k > 0, while k > 0, thus

> 9 )\kuqkaaq phtw—1 oo iz q
Zgr(b—l—w—i-aq)_ I (w) qz: I'(b+w+aq) Z{)( >

q=0 k=0

b+w 1
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k
Executing the finite geometric series ZZ:O (%) = leads to

b+w 1

L:—
I (w) ( ZF b+w+aq MZF b+w+aq)

Finally, we arrive for b > 0 and w > 0 at

r AE b (A FEiprw @
/ (3:‘ - u>w—1 UbilEa,b ()‘ua) Ea,w (N (x - u)a) du = b+w ' o ( - ))\ Z = (,ux ) (58)
0

Clearly?, since lim, o Eq 4 (1 (x — u)®) = then (58) reduces to (57).

r (w)
21. An asymptotic result. We invoke the device!®, used by Gauss in his grand treatise [16, p. 146]

on the hypergeometric function [27, p. 74] to deduce the Euler integral for the Gamma function from
t rm
lim <1 - ) — e
n—o00 n

xT w—1
/ <1 — g) ubilE(l’b ()\Ua) du=T (U)) wbEa,ber (Ama)
0

T

the Beta-integral based on

and start from (57)

Let w =1+ xs with Re (s) > 0 and x is real, then

z s
/ (1= )" W™ Bup Q) du =T (@5 + 1) 2 By s (M)
0 X

and, after taking the limit for x — oo

o
/ e T By (Ou®) du = lim T (25 4+ 1) 2°F, pypsr1 (A2®)
0

T—00

Comparison with the Laplace transform (54) for |s?| > |A| shows that

lim T (xs + 1) 2°Fy pypsi1 (Az®) =

—00 s — \

9n case p — A, then, after using de 'Hospital’s rule,

lim )\E(L ,b4+w ()\$ ) NEa,b+1u (NZE ) — Ea bt (Axa) + A:Ea dEa,b+u; (Z)
=\ )\ 12 ’ dZ JO
and the differential rule (17), formula (58) becomes
x xb+w71
/ (@ —w) " U By Au®) Eaw (A (z — u)*) du = o {Eaptw-1 Az*) + (a+1— (b+w)) Eqptw (Az*)}
0

10Starting from the above Beta-integral, it holds that

ZF 1 x _ x oo _ _
I'(z) lim l@t+l) lim w Tt (1 - E) du = / u” e "du = T'(2)
z%oor(z—f—l‘—"—l) Tr— 00 0 0

from which
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and, for large real x,
1 1

1— 2T (zs) (sz)

Ea,b—i—a:s ()\xa)

Let z = Az?, obeying |zs|* > |z|, then for real r = x |s| — 00

—b —bi 1y g
E ' (Z) - r be bif 1 N 1 rz e bi6 efr(ln(T)*l) cos 0+0r sin 6 14+0 1
a,b+retf 1 — zp—@g—aif T (reie) m 1 — zp—ae—ait r

where in the last step (176) is used. Thus for a > 0 and for —§ < 6 < 7, we evidently find that
Eqp (2) = 0 for Re (b) — oo and for T < 6 < 2 that E,y (2) — oo for Re (b) — —oc. For 6 = £Z, it

b
holds that Eg piir (2) ~ \/ﬂlr;ﬁ

22. Berberan-Santos’ integral for the double argument. Berberan-Santos [4] applied a simplified form
(195) of the inverse Laplace contour integral (193), which he deduced in [3], to the Mittag-Leffler
function Ea » (2). First, let the Laplace transform of a real function g (u) be equal to E, ; (—2), hence,
foo g (u)du = Eqp (—s). From the Laplace transform with s = o + 4T

/ e e Mg (u) du §/ e g (t)dt
0 0

it follows that lims_,oo [;° € g (t)dt = 0 for any direction in which s with Re(s) > 0 tends to
1
infinity. Since E,p(z) is entire function of order 1, E,; () = O <e“>, we have that E,p(—z) =

ln ™ . i
“re2”, from which |Ey 44 (2)] ~ % for real b — 0.

|Eap (—5)| =

1 0+7

O(e”e ¢ > = O( ri cos 04 > and |E,p (—s)] — 0 provided that C089+7r <Oor B —7m <0<

370 — 7. With s = re and =% < 6 < I because Re(s) > 0, the limit lim,_,o0 [Eqp (—s)| = 0

requires that 0 < a¢ < 1. Incidentally, the definition of ¢ in Appendix C indicates that ¢ = 0 and

Berberan-Santos’ inverse Laplace transform (195) then yields
2 o0
g(t) = / Re (Eqp (—iw)) cos twdw fort >0
T Jo

Next, Berberan-Santos observed from (6) that E,; (—iw) = Eaqp (—w2) — iwF p424 (—w2) so that,

for real w,
Re (B p (—iw)) = Egqp (—w?)
Hence, the inverse Laplace transform becomes

2

o0
g(t) = / Esqp (—w?) cos twdw fort >0
T Jo

Finally, taking the Laplace transform of both sides and reversing the integrals

2 oo o
= / Eoqp (—w2) </ e 5t cos twdt> dw
m™Jo 0

results in Berberan-Santos’ remarkable integral for the double argument in a (not b)

2s o0 E2a,b —w2
Ea’b (—S) = 71'/0 SQ_EU}Q)CZ'UJ for 0 S a S 1, Re (8) >0 (59)

28



Example For a = 5, b = 1 and with E; (z) = e?, Berberan-Santos’ integral (59) yields again (24),

2r [ et 2
E% (—LU) = 7_‘_/0 mdt = €x erfc ($)

23. Another proof of Berberan-Santos’ integral (59). Application of Theorem 1 in Appendix B to

E, p(s—ir) .

—22o— =0 (see art. 22), yields

2

f(2) = Eqp (s — z), only valid for 0 < a <1 because then lim,_,«

s [ Egp(—iw)
Eop(—s) = / — Zdw
“ oo 82+ w?
Using (6), Eqp (—iw) = Eaqp (—w2) — iwEaq pt2q (—wz) and the fact that wEsq py24 (—w2) is odd
and Faqp (—w2) is even, again leads to (59).
Using fooo e (s* ) gt in (59) and reversing the integrals, justified by absolute convergence, gives

2 (0.9} o0 o o
E.p(—s) = 7;9/0 o—ts? {/0 €_tw2E2a,b (—w2) dw} dt = 7Sr/0 e ts° {/O e_th_%Ezmb (—x) dac} dt

Thus, Berberan-Santos’ integral (59) is equivalent to the statement that the Laplace transform of the
Laplace transform of a:_%Ega,b (—x) equals %\ﬁ_ﬁ) In fact, the latter property follows from the
Stieltjes transform, which is an iteration of the Laplace transform and which is treated in the book
by Widder [56, Chapter VIII]. Appendix C discusses Gross’ Laplace transform pair [21], in which the

inverse Laplace transform (193) is of the same form as the Laplace transform (192) itself.

24. Euler-Maclaurin summation. The Euler-Maclaurin summation formula [41, p. 14] is

/ (0 dt+2 D[ 7r(8) — 7D (0)] + R (60)

n= a+1

with remainder term N1
CON 7 ) £
S [ B () £ () du
where B,, and By (z) are the Bernoulli numbers and the Bernoulli polynomials defined in [1, Chapter
23].

The right-hand side summation in the Euler-Maclaurin summation formula (60) requires higher

Ry =

order derivatives for the function f (w) = We invoke Leibniz’ rule

Zw
L'(b+aw) "

k .
d’ 1
(log2)F 20 — — —
Z() ) G T ot aw)

w=x =0

dF 2%

Wy = &2
Fo@) = G T o aw)

wW=x

hd7 1 j o4l 1

which simplifies, with 2 Toraw) = @ 47 T

(log )"~
y=b+ax (k - ])'

Since ﬁ is an entire function, the j-sum converges when k — oo. Applying the Euler-Maclaurin

summation formula (60) to the definition (1) of Eqp (2) = Y 1o, X0 +ak) shows that  — oo, but that we
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M

can choose the integer o = m. The asymptotic form (176) indicates that limg_, %m 5 =0
w=

for all j and (60) becomes

0 k 00 t N—-1 n n i i n—j
-1)"B Jod 1 1
Z S :/ S dt—i—zmzi( ) n+1z%7j7 7(ng).' + Ry
k=m+1 I (b - ak) m I (b + at) n=0 n+1 =0 J- dy r (y) y=b+am (TL - ])
(61)
The integral is written in terms of the integral I, (2), defined in (2), as
[oe} Zt 9] Zu
L __dgt=2m du =21
/m I'(b+ at) ‘ /0 T (b+ am + au) u=2"laptma (2)
In summary, the Euler-Maclaurin expansion (61) is, with -7 F(%kak_) =3, %7
Zm+1Ea,b+(m+1)a (Z) = ZmIa,b—l—ma (Z) + 2SN + Ry (62)
where Nl
— B "o &1 log z)" ™7
D - PR
o n+ 1=t P T(Y)lypima (0= 3)!

25. Fuler-Maclaurin sum Sp. We concentrate on Sy and reverse the summations,

N-1

—~a &1 Bt (logz)" ™
SN: Z&'ii (_1)n n+1(0g2)‘ ‘
= dyl T (y) y=btma o] n+1 (n—j)!
v ' B
Let x = log z and use %x” = ﬁaz” J, then
N-—1 . N—-1 .
Z(_l)anH v Z(_l)anJrl & .
, n+1(n—j)! n+ 1n!dxi
n=j n=0
and
N-1 ; ;00
) By a7 a’ Bt
1 —1)nnt = — ntl ()
Nfloo;( ) n+1(n—j)! dxﬂngo(n—i—l)!( z)

o

&1 B, . A1 [SS B, N
“dr o Y S s (Zn!(‘@ ‘1>

The generating function (168) of the Bernoulli numbers B,

t =, "
= E Bn — convergent for |t| < 2
— n!
n=0

et

leads, for |z| < 2, to

o0 n—j j _ j 1
SRRy S S S R
n+1l(n—7"! deiaz\e?*-1 dxd \1—e®
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For N — oo and |log z| < 27, we obtain
o
a &1
S —
> Z j! dyi T (y)

a’
_Zj' dyJF

S (_ )nBTH-l (log Z)n_j

n+1 (n—j)!

y=b+ma ,—

d’ 1 .
—_— — X
y:b+ma dxd \1—e™=

Using the Fermi-Dirac integrals in art. 45, F_;_1(y) = iR < 1 ) and %afl = (—=1)7 jla=17, we

dy? \ T+e—v
( a )j
y=b+ma IOgZ

rz=log z

have

1 = & 1

F_;_1(logz+im) — —— —
! log z <= dy’ T (y)

y=b+ma

o
a & 1

S =) — ———

~ JZ% ' dy T (y)

We recognize from (106) that, for |z| < 1,

. 1 VA |
Ea7b(—Z€“r):Eab() _— Zafi

— F_;_1(logz + im)
— j! dy’ T'(y) ‘yb

I'(b)
and from the series (143) for Iop (2), we obtain, for | E-| <1,
S, E (2) + ! +1 (2) (63)
oo = —Labtma R L N a,b+ma \#

which is thus valid for

The Euler-Maclaurin expansion ( 2) becomes, for N — oo and with (63) and assuming that
Ry — 0,

2" E bt mi1)a (2) + 2™ Eapima (2) = 22™ Iy poma (2) + M
With (14), we arrive, for |z| < 1, Togz
m
Eop (2) = 2™ Lapyma (2) + IZ; T+ 1a) (64)

Numerical computations for m < 20 show that (64) is increasingly accurate for increasing m as
Toe 2 (up to 20) show

a decreasing accuracy. Since thHOO 2" 1o bima (2) = (), (64) reduces to an identity when m — oc.

long as

Anticipating (140), the Euler-Maclaurin sum (61) becomes

_ 1 .
i P B S ez% N e Mlnm—kcos(b—f—ma)w i
L'(b+ak) a xbtma 2
k=m+1 0 (Inz)

w2+
+ 2" Ni< by &L log2)" 7 (65)
n=0 n+1l j=0 ]! dyj L (y) y=b+am (n - J)'
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Numerical computations (for m = —1) indicate that the n-summation converges for small a and small

z, with fast convergence when z = 1. For z = 1, (65) simplifies to

i 1 1 +/°O e wlnm—i—cos(b—i—ma)ﬂ J
_— = — e T
ke L (bF k) a o atme 72 + (Inz)’
rodr1
n+1
+ R
Z:: (n+1)! dy»T (y)

where the latter sum converges for |a| < 1.

y=b+am

6 Complex integrals for E,; (z)

Two different complex integrals for the Mittag-Leffler function E, 4 (z) are discussed. The first in
Section 6.1, called the basic complex integral (66), follows from the inverse Laplace transform of (54).
The second complex integral (78) in Section 6.2 is an instance of a Plana-like summation formula.
Section 6.3 derives further forms of the integral (86) for E, (—z), which is the special for b = 1 and
0 < a <1 of the integral (85).

6.1 Basic complex integral
26. Basic complex integral for Eqp (z). Inverse Laplace transformation (193) of (54) yields, with

1
¢ > |x|= for Re(b) > 0,
1 ' +ico La—b st
tb_lEab (xta) = / 5 ds
’ 270 Jo—ijne 8¢ —

where the integrand is analytic for Re(s) > ¢/. For real ¢ > 0, we can move the line of integration
to ¢ > t%|x| = t* (/)" and perform an ordinary substitution w = st. Let z = zt%, then we arrive, for
Re (b) > 0 and Re (a) > 0, at the basic complex integral

1 c+i00 ,,,a—b w
Fup(2) = — / W e e | (66)
C

) a
27 Jolioo WP — 2

The basic complex integral (66) of E, (2) can also be deduced from Hankel’s deformed integral
(180) in the power series of the Mittag-Leffler function (1)

0 k 0
z 1 —_ank  _p —b
Ea,b(z)zg 7:—,5 / (zw™) w wdw—/ g zw“ e“dw
— L'(b+ak) 2mi —Jec, 2mi Je, =
Only if |zw™¢| < 1, implying |2| < |w®| for any w along the contour Cy described in art. 70, then we

1 wbet
E, = — —d 67
»(2) 2 /% 1—zw™e v (67)

obtain

where the radius p of the Circle at w = 0 in the contour Cy (see art. 70) can be appropriately chosen

Rea

to satisfy |z| < p"®? or |z|Rea Rea < p for any z. We obtain again (66) by choosing ¢ = § and ¢ = p.
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27. Mittag-Leffler function Eq (2) for negative real a. Although Eq (2), defined by the power series

(1), is not valid for negative Re (a) values, the Taylor series (106) of E, (2) in a around ag = 0,

indicate that

Eap (—i) = Fib) —E_qp(—2)

which may be used, by analytic continuation, as a definition of E,j (z) for Re(a) < 0. Thus, for
Re (a) < 0, the Mittag-Leffler function E,p (z) possesses an essential singularity at z = 0 and is not
an entire function.

The same result is also deduced in [17, Sec. 4.8, pp. 80-82] from the basic complex integral (67)

in art. 26 X
1 a— w
Eab(Z)Z./ S
’ 2mi Jo, wt =z

is valid for any complex a,b and z. Introducing the identity

wab 1 1 1

b

wt —z  wb—zwbme  wb b — %w““’

1 w 1 —a—b, w
Ea’b (Z) = / ibdw — / %dw
2mi Jo, w 2mi Jo, wT —

Invoking Hankel’s integral (181) to the first integral and the basic complex integral (67) to the last

Eop(2) = I‘ib) —E a4 (i) (68)

The Taylor series (1) of E,y (2) then shows that

1 1 > 7k
E_ = B =) ==y =
ab (2) = F @ <z> 2T (b + ak)

leads to

integral leads again to

28. Ewaluation of the basic complex integral for E,p(2). We will now evaluate the integral (66) by

closing the contour over the negative Re (w)-plane. Consider the closed loop integral

1 w* e

2mi J;, w* —z

where the contour L consists of the vertical line at w = ¢ + it, the circle segment at infinity turning
from § towards 7 — €, the line above the negative real axis, the small circle with radius ¢ turning
around the origin from m — ¢ to —m + ¢, the line from the origin just below the negative real axis,

over the circle segment with infinite radius from —m + ¢ to —7 and ending at the negative side of the
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vertical line. The integrand has only singularities of (w® — z)_l, which are simple poles because the

A8z 2k
zeros of w® — z = 0 are all simple and lie at wy = |z|a ¢ e"a for cach k € Z. If a is irrational,
there are infinitely many zeros. The contour L only encloses the poles with argument 6, = %fz + ?

between —m < 6, < 7. Thus, the integer k ranges from
_la arng<k<[g_arng
L2 + 2 17— T L2 27

and there are precisely |a] enclosed poles, where |v] is the integer smaller than or equal to v. Hence,

a must be at least equal to 1, else no singularities are enclosed. By Cauchy’s residue theorem, we

obtain

dw = Z lim — kgyabew
w—w, W — 2
ke[| +55 s ]
1 = 2m
== Z ,i bewr with wg = |z]a ettt et e
ke[=[5+957 15 -57 ]

We can always choose 0 < & < r small enough, provided that Re(a —b) > —1. Evaluation of the

S

contour L yields

a—b w c+ioo ,a—b w 0 ir\a—b —y A 00 —imya—b _y A
Y v dw+1.{/ Wd@em/ (?f.)aed@e—”)}
e 0

27t J;, w® — z 2700 Jpjoo WP — 2 271 (yer™)" — z ye i) — 2

1 0 efiﬂ'(afb) e1'71'(afb) by
= Ea7b (Z) - 27”/0 <yae—imz _ Zdy o yaeiﬂa — 2 y* ey

Hence, for Re (a — b) > —1, we have

1 0 ef(afb)ifr e(afb)iﬂ’ 1
E,,(2) = — . - — a=be=yq - wl bWk
a,b( ) 27”/0 (e—azwya_z eawrya_z Y y+ak [ L ;L . J] k
-5+ ] [3-52

L < —(a=b)iz  gla—b)im _2.sin7rby“+zsin7r(a—b)
7a7,7rya z eaiﬂ'ya_z - y2a72cosa7rzya+z2 I

Finally, wit we arrive for Re (a) > Re (b) — 1 at a funda-

mental formula

By (2) sin(a—b) 7w /°° Yy leVdy sin b /‘X’ y?@ ey i
2) =2z
ab 0 0 Y** —2zy%cosarm + 22 7 Jo Y% —2zy®cosarm + 22 4
1-b
Z a ork 1 ;argz 27k
o S e )

ke[=[5+957 1[5 -57 ]
1

The last residue sum illustrates again that FE,; (z) is an entire function of order -. The sign of

wp = |z|a 2 el ™R zel¥ is determined by cos (%) Consequently for large |z|, in the sectors
—Tt —2mk < argz < T — 27k, the function E,; (z) tends to infinity, while in the complementary
sectors — 21k < argz < 33% — 27k, E, (2) — 0.

29. Discussion of (69). If a = m and b = n are integers, then sin (a — b) 7 = sin7b = 0, the integrals
in (69) disappear and (69) simplifies to

1—n

ke[-[5+55 L5 -5 ]
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which equals (11). The contribution of the integrals in (69), studied further in art. 34-36, can be

regarded for a real pair (a,b) as an interpolator between integer pairs (m,n).

L (2k+1)7
For real z = —z% = 2% in (69) and wy, = xe" « , we find
sin(a—b)m [ a=beyq sinwb [ 2a=be—y
By (—2%) = —z° (a —b) / _ y y . / i Y dy
' s o Y+ 22%y%cosam 4 x=® s 0o Y4 22%%cosarm 4+ z

1 b (2k—1)7 1)7r 2k7‘r(1 b)}

_l’_

z 71'(1 b)}z 2z cos k=D 1)7r Z{_wsm

For real x, b =1 and 0 < a < 1, the condition to enclose a pole is —anw < argz + 2wk < am. Since

argz = m ¢ [—am,an] for 0 < a < 1, the residue sum disappears and we obtain

si o a Yd
E,(—z%) =2 man A for0<a<1 (70)
T Jo y**+ 2x%cosar + x2¢
from which the asymptotic behavior for large x, with y?* 4+ 22%y® cos am + 2% ~ 22, are
sinar I' (a)
Ea (_xa) ~ T o

Art. 34 presents another derivation in (86) that is equivalent to (70). Art. 46 verifies the integral in

(69), thus only for 0 < a < 1, via a series approach. For small, real x, the series (1) gives

ak a 7@

oo
x
_ — -1 9] 2a\ _ _ O 2a
ZO 1+ak T(lta) (™) eXp( I‘(1+a)>+ (%)
Hence, E, (—z%) for 0 < a < 1 is said to “interpolate” between an exponential (for small z) and a

power law (for large x). These two regimes have been studied by Mainardi [28], who illustrated their
accuracy with several plots for a = 0.25,0.5,0.75,0.9 and 0.99.

30. Mittag-Leffler’s contour integral. In a rather long article of 1905, Mittag-Leffler [35, at p. 133-
135] proceeds one step further and substitutes w = ta in the basic complex integral (66). The map
w — te is multi-valued. For w = |w| e with —7 < 6, < 7, the inverse map t — w® shows that
t = |t| et = |w|® ef®wt2miak from which the argument §; = af,, +2rak for any integer k. The contour

Cy in the w-plane requires that § < |¢| < 7, because e” — 0 for large w at the contour Cy. Similarly,

1
the transformed contour Cyy in the ¢-plane requires that % < |argt| < ar in order that e'* — 0

along the straight lines towards infinity. Thus, the map w — ta changes the angles from ¢ to a¢ of
the straight lines in the contour (Fig. 43 in Bieberbach’s book [7, p. 273]). Moreover, we must choose
the branch (i.e. the appropriate integer k in 0; = af,, + 2mak) of the function ta that is positive for
positive t, i.e. along the positive real t-axis, because the same holds along the positive real w-axis.
Performing the substitution w = ta in (66) leads, for |z| < |t| and |argz| < %F, to Mittag-LefHer’s

contour integral
1-b

1 ta el T
Eay(2) = dt ith = 71
) =g [ with 7 < || < 7 (1)

2

Mittag-Leffler’s integral (71) for b = 1 is actually more elegant than the basic complex integral (66)

at the expense of a more complicated contour Cyg.
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31. Deductions from Mittag-Leffler’s contour integral (71) for Eqp(2). Based on (71), we follow
Bieberbach [7, p. 273], who deduces two bounds for 0 < a < 2 and b = 1. First, using

1 1 t

t—z z+z(t—z)

in (71), we have

1
1—b+a a

11 b 1 1 t a €
Bapd) =1 [ 5 [ L
’ z2mia Jg,, 2mia Jo,, (L —2)
11 1 et
= - w beWdw + —— / dt
z2mi Jo, 2mia Jo,, 2z (t— z)
With Hankel’s contour integral (180),

a 1
11 1 et

t
E, =—- , dt
0(2) zF(b—a)+2ma/Ca¢ z(t—2)

The remaining integral is upper bounded by

—b+1 1
T L e c
: / dt| < —— 7 ldt| = —5
2mia Jo,, 2 (t—2) 2malz| Jo,, |2] |11 |2]
|t|117271 et% 1 SR
because ﬁfcw o] |dt| converges for t — oo if ’eta = eltl® s == 5 0 for large t, which

requires that %gt > 7. In addition, we must prevent that é for large z can tend arbitrarily close to
1, which is guaranteed if |arg z| ¢ (%", an), because |argt| € (%", an). Hence, for |argz| ¢ (%, an),

we arrive at .

—— | <
2 (b — a)
For the second bound, Bieberbach [7, p. 275] cleverly observes that a similar integration path C’, "

C
ER

Ea,b (Z) + ’Z

as in Mittag-Leffler’s integral (71) can be followed with the only difference that the circular part of
the path now has a radius smaller than |z|. In other words, while |z| < |¢| in Mittag-Leffler’s integral
(71), the path C! » Dow turns over an angle —a¢ to a¢ with the radius smaller than |z|. The closed
contour (see also [44, p. 346, Fig. 6.13-2]), that first follows the Mittag-LefHler path C,4 and returns
via the path C’, " encloses the point ¢ = z as the only singularity, provided —a¢ < arg z < a¢. Hence,
by Cauchy’s residue theorem, it holds that

1 1ttt 1 PRt 1 1
a a 1— L
. / dt — — / dt = -z a e*"
2mia Jo,, t—2 2mia L, t—=z2 a
and
1 traet® 1 10 2
E,p(z) = — dt + —z"a *°
ab (2) 2mia /C/ t—=z a
from which
1-b|| .4
B 1-b 1 1 talle d !
z)——za " t=—
ab (2) 2ra|z| Jor L1 |2|




by the same convergence argument as above, where now on the circular segment |¢| < |z| can be chosen

small enough. In summary, the second bound for |arg z| € ( aw) is

1
1-b =
— za
Z a €

SHN

Ea,b (2) - <1z

2]

The derivation illustrates why Bieberbach considers 0 < a < 2, because |arg z| € (0, 27).

1-b,z

The second bound shows that aF,p (2%) ~ z'e” is independent of a so that aFE,; (2%) ~

Q=

1 .
E., (zE). Hence, we are led for non-negative real z and |z| > ¢ to

Ei,(2)~ a2Ea7b (zaQ)

a’

whose exact corresponding relation (135) for the associated integral I, ( T(ran) du, explored

fO r b+au
in Section 9, is 11 , (2) = a 2Lab (z
32. Fwaluation of the basic complex integral along the line w = ¢+ it. The basic complex integral in

(66) is evaluated along the straight line w = ¢ + it as

1 00 it a—b c+tit
/ (c+it)" Ve i@t

E : c> |z
ab() 27T - (C—i—Zt)a— | ’
Since ¢ + it = V2 + t2¢ amtan%, we have
a=b . ¢ .
1 oo (2 + £2) 2 ez(afb) arctan ¢ c+it
Ea,b(z):/ ( ) a t —dt c> ‘Z|
o2 o (62 —I—t2)2 ezaarctanE _ |Z| et
We split the integration interval into two parts
By, () = 1 0 (CQ + t2)“7’b ila=b) arctan%echit 1 00 (02 + t2)“7’b cila—b) arctangecﬂt o
a,b Qﬂ- oo (CQ + tg)f iaarctan & . _ |Z’ i 27T 0 (CQ + tz)* ia arctan & < _ |Z’ elf
and change the integration parameter in the first integral from t to —t,
a—b . t ) a=b . t .
1 0o (2 + £2) 2 efz(afb) arctan ¢ ,c—it 1 0o (2 + £2) 2 ez(afb) arctanzec—i-zt
Ea,b(z):/ ( )2 tan ¢ » 9 ( )7 t ot
2w (C2+t2)2 —taarctan ¢ _ |Z|€19 2 Jo (62+t2) ia arc an |z|€19

We simplify the integrand further and we find, for ¢ > |z|,

Eoy(2) = e /00 (@ + ) as [ (e + t2) cos (t — barctan £) - zcos (t + (a — b) arctan £) 5
0 (2 +12)" — 2z (c® + 12)2 cos (aarctan L) + 22

t

After substitution u = ¢, we arrive, for Re (b) > 0 and Re (a) > 0 and for ¢ > |z, at

oy (2) = eCel—b /oo (1 . u2) at ( (1 + UQ)% cos (cu — barctanu) — % cos (cu + (a — b) arctan u)) "
0

@ (1+u?)"—2% (1+u2)? cos (aarctanu) + (c%)2
(72)
For z =0 and ¢ > 0, (72) simplifies to
1 c,1-b o'} —b t
Fouy (0) = _ e / cos (cu arcb an u)du (73)
I (b) T Jo (14 u2)?



After choosing ¢ = 1, we obtain

ro) =«

1 * cos (t — barctant
e / cos ( arctant) dt
0

(1+12)2

The positive real number ¢ > |z|, which is a tuneable parameter, makes the integral (72) interesting.
For z # 0, there are several choices for ¢ > |z| in (72). For example, we can choose ¢ = 3 |z| with real
B > 1 or simply ¢ = |z| + 8. The more interesting choice for z # 0 is either (1) ¢ = ]z\% > |z|, for
0<a<1land|z| >1orfora>1and|z|<1or(2)c=]|z|" > |z], which holds for a > 1 and |z| > 1
orfor 0 <a<1and |z <]1.

(1) The choice ¢ = |z[é in (72), valid for {0 < a <1 and |2| > 1} or {a > 1 and |2| < 1}, becomes
with z = |2| ®
20

b o (1—|—u2)%cos (|z|%u—barctanu) — e cos <|z|%u—|—(a—b) arctanu)
/ du
0

b—a a .
(14+wu?) 2 ((1 +u2)® — 2" (1 4 u?)2 cos (a arctanu) + (619)2)
(74)
1o
The prefactor el*® |z]17b in (74) gives the correct order of magnitude (see Bieberbach’s second bound

in art. 31). A conservative upper bound (74) is

o7l ]z\%b o0 (1+ u2)% +1
B2 < A [ e
T O (1+4u?) 2 ((1+u2)5—1)

(14‘“2)%“)‘“ 00 (1+u?) 2 du Var (25
But, ( > — 7 = = 2. The last ste
fo 1+u2) ((1+u2) 1)2 fO (1—|—u2)bT ((1+u2)7) fo 1-&-u2 3 20 (3) P
i . 1 2p—1 D(p
follows from the Beta-function integral (157): B (p,q) = [;° (f:t)ﬁq =2 [ (ﬂ;);ﬁq = ((13+51(§) for
b—1
p=1andg= bT Hence, we may approximate |Eqy (2)| ~ Q}F( ))e| A% |z |lTb illustrating that the

mtegral in (74) is weakly dependent on a and z, agreeing with Bieberbach’s estimate.
(2) The choice ¢ = |z|* in (72), valid for {0 < a <1 and |z| <1} or {a > 1 and |z| > 1}, becomes

| 5 du
, (1 +u2)% os (aarctan u) + <|Zza2> )
(75)

f“z‘ < 1 in both regimes {0 < a <1 and |z| < 1}
z

lel? [z[a1=b)  poc (1+ ug)% cos (|2] u — barctanu) — % cos (|z|*u+ (a — b) arctan u)
z
Eqp (2) = /
0

s

(1+u) p <(1+u2) 2‘Z|

The appearing ratio is smaller than 1, i.e.

z
a2

|2l . ,
and {a > 1 and |z| > 1}. However, in the regime {0 < a <1 and |z| < 1}, |2]*

for a — 0, whereas in the regime {a > 1 and |z| > 1}, \z|a2

z
2
El

latter regime {a > 1 and |z| > 1} for sufficiently large a, the denominator is expanded with - =

38



14 2 + O (2?) and the integral (75) equals

du

Eop(2) = M /OO cos (|z]" u — baﬁctanu) Ju
2 el?l” \Z|a(1fb) /OO 2cos (|z|* u — barctan u) cos (a arctan u) — cos (|2|* u + (a — b) arctan u)
o 1+ )
2 . B
+ O z i el?l |Z’a(1 b) /OO Ccos (|z’au — baictan u) du
21 " 0 (1+wu2)?
With

H = 2cos (|z|" u — barctan u) cos (a arctan u) — cos (|z|* u + (a — b) arctan u)

= cos (|z|* u — (a + b) arctan u)

we simplify to

|2|% | ,ja(1=b) oo . Cu—b t
Fuy (2) = e |z| / cos (|z|“ u — barc anu)du
0

T (1+u2)?
z el |z)a7Y /00 cos (|z|* u — (a + b) arctan u)
0

2 bta
E (1+u2) %

e 2 elzl” ]z\a(l_b) * cos (]z|" u — barctan u)
+0 / . du
m 0 (1+u?)?

du

. . e—'za||z|a(b71) 1 oo cos(]z*|lu—barctanu)
Invoking (73) with ¢ = |2%| shows that T~ IN Y du and leads, for large a

and z > 1, to

2
1 z :
Ea,b(z)zr(b)+F(a+b)+O <|z¢12>

which implies, compared to the Taylor series (1), E,p(z) = ﬁ + Py Taktp): that

k

o0 4 — a2
> k=2 Targp = O (|Z|2 ? )
6.2 Complex integral for F,; (z) deduced from Cauchy’s residue theorem

f(re)

sin wret?

—0

33. Deductions from Cauchy’s residue theorem. If f (z) is an entire function and lim,_, o

in a semicircle with either —5 <0 < 5 or § <0< 377’, then it follows directly from Cauchy’s residue
theorem [47] for 0 < ¢ < 1 that

1 fetio —YR (DR fk) i —T <0<

S (D) f(—k) T << 3m

s

f(w)dw = { (76)

211 Jo—joo SIDTTW

where if —5 < 6 < F, the contour is closed over the positive Re (w)-plane, else over the negative
Re (w)-plane. Equation (76) is similar to Plana’s summation formula [44, p. 438]. The definition (1)

of Eqp (2) = 1oy F(%kak) contains f (w) = F(bszaw), which is an entire function in w. The asymptotic

39



1, .
f ‘F(b+irei9)’ = (a:/);; e~ar(in(ar)=1cosbtbarsing (1 1 O (1)) in art. 69 shows that the

above contour can be closed over the positive Re (w)-plane, resulting in*

behavior (176) o
1

I e N

2 etooe—io sinmw I' (b + aw)

Eqp(2) = dw for —1<ec<0 (78)
where the path above and below the real w-axis follow the lines ¢ 4 re*®, where 0 < 6 < 5. Thus,
the line of integration cannot be parallel with the imaginary axis, unless a < 2. If a = b = 1, the
: D +
reflection formula (161) leads to Mellin’s integral - f;;o ['(w) (—2)" dw = €*.
Let us consider the contour C, consisting of the line ¢ + re® with 0 < r < T, the line parallel to
the real axis from ¢+ Te? to the left at ¢ —m + Te®, the line back to the real axis at ¢ — m (and the

reflection of this parallelogram around the real axis). The path parallel to the real axis

c—m+Te'? (_Z)w c—m T (_Z)x—i-Te’w
/ - dw = / - , —dx
etTe—i0  sinTw T (b+ aw) e sinm(x+Te )T (b+ ax + aTe ")

vanishes by (176) for T' — oo provided 0 < § < §. The contour C encloses the poles " at w = —k

sin Tw

from k = 1 to m with residue (—1)k. Hence, by shifting the lines c+re*? to c—m+re*”, maintaining

the angle 0 < 6 < 7, we deform the integral (78) into

c’—l—ooeie T (—Z)w

E @y-f:'ll_]/
a.b B P [ (b—ka)zk 2w e toe—ie sinTw I' (b + aw)

dw for —1—m<dcd <m

For complex z and for any a, it is generally complicated to bound the integral for large |z| to deduce

an asymptotic expansion.

34. We assume here complex z and b, but a is real and positive. If we choose § = § in (78), then we
1y,

= (a2 " gar (1+0 (%)) in (177). In that case, we evaluate

1
[T(b4air)] — 2r
the contour in (78) along the line w = ¢ + it,

must restrict 0 < a < 2 due to

1 0o 1 Zc+it
Eop(—2)=—= dt for —1<e¢<O0
ab(=2) 2/mmm@+mr®+m+mw or ¢

Since ¢ < 0 and 0 < a < 2, the reflection formula (161) yields

1 . sin7 (al|c| — b — ait)
- T(1-b — ait
I'(b—alc|+ ait) ( +alel —ait) T

and

T (ale| +1—b—ait) 2z~ 1 at

1 * sinw (alc| — b — ait
Buy (—2) / (alc| )

T or oo SInT (—|c| + it)
We change the sign of ¢ and obtain

1 [ si —b—ait)T 1—b—ait
Eop(=2) = -5 Smﬂ.(ac . aif) [lac +1 - b — ait) for 0 <ec<1
’ 21 J_o  sinw (c—it) zeit

" The integral (78) is rewritten with the reflection formula of the Gamma function as a Barnes-Mellin type integral

1o T —w)T (w) ™
Ea7b(_Z)——% iemz dw fOr —1<C<0and0<9<§ (77)

ctooe™
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In order to replace I' (ac + 1 — b — ait) by Euler’s integral (147), we must require that Re (ac + 1 — ) >
0 or ac+1 > Re(b)

Eop(—2) = ! / dt sinm (afc—it) —b) 1 / ule=it)=bg=u gy, forO<ex<1
0

o ) o sin (¢ —it) 2o

. . - . C—Zt o . - _r . .
Since z = re' then 27 = (rew) = peitgif(c—it) — pe—itoifeodt anq the integral becomes

, 1 [ s —it) —b 1 * ;
o (—rele) _ _/ d sin 7T'(Cl (C 3 ) ) — / ua(c—zt)—be—udu for0<ec<1
’ 27 sinm (c—it)  reiteWeedt [

—0o0

We can interchange the integrals by absolute convergence, provided that 0 < a < 1 and that |0| < m,

Eop(—2) = — /OOO ube—tdy (1 /°° sinm (a (¢ — it) — b) <“a>c_it dt) for0<c<1 (79)

21 J_o  sinw(c—it) z
The integral between brackets in (79) can be recasted with y = “7“ as
1 [ si —it)—b) 1 [etieo g —b
Qab (y) _ / Slnﬂ_‘(a (C 1 ) )yc—ltdt — / wywdw for 0 <c< 1
’ 21 J_o  sinm(c —it) 270 J o—ioo sin Tw
(80)
and (79) becomes
o u(l
Fus (-9 = [ e Qs () o (s1)
0 z
In art. 36 below, we prove for complex y with |argy| < 7 and 0 < a < 1 that
1 [ysin7(a —b) — y?sin7b
_ 1 82
Qap (¥) T ( 1 4 2y cos wa + y? (82)

Substitution of (82) into (79) yields, for 0 < a <1, a+1 > Re(b) and complex z with |arg z| < T,

a a2

oo U _ b u- 1 b

Eup(—2) =+ / uten (2T @b+ (5) sinb) (83)
™ Jo 1+2“—cosrra+(“7)

z

We present several reformulations of the integral (83). First, we split (83) into two parts, for
0<a<1,a+1>Re(b) and complex z with |arg z| <,

B,y (—2) —zsinm (@ —b) [ u? e~ du n sinmwh [ u?beUdy,
b(—2) =
“ 7 o 22+ 2zulcosTa + ue T Jo 224 2zutcosma+ u?®

(84)
which equals (69) without residue sum. A second rewriting of (83)

Eap(—2) = 1 /OO §O—be—t ( —zsin 7r2(a —b)+u” sinwb2> du
™ Jo (zsinma)” + (z cosma + u®)

illustrates that the denominator is always positive for real z. Third, let u = 2ot in (83), then we
must additionally require that Re (z%) > 0, thus Re (r%eig) = ra cos (g) > 0. We obtain, for

Re(z%) >0,0<a<1landa+1>Re(b),

1-b

za [, L (—tsin7(a—b)+t**sinwh
Eop(—2) = t=bem2t dt 85
ab (=2) T /0 c < 1+ 2t% cosma + t2@ (85)
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35. The integral Qqp (y). The contour of the integral Q,; (y) in (80) for complex y = |y| e with

|] < 7 can be closed over either half-plane, because

sin7 (aw —b) . a=1)=0}ulsins [yl coseo

lim - — lim 7
W—>00 S1n Tw |w|—o00
vanishes if |y| < 1, cosp >0, a < 1 and |f| < 7. If |y| < 1, then we close the contour in (80) over

Re (w) > 0-plane and obtain

1 [er i —b 1
/ g low—b) ., 1 S (- 1)F sinr (ak — b)
27 Je—ioo sin Tw T

71 ma—b)

im(a—b),, X ) 00
= € 5 Yy Z (_emay)k _ y Z —ma
k=0 k=0

y eiw(a—b) —’LTI' a—b)
- % 1+ eiﬂay 1+ e—lﬂ'a
1 (ysinm(a—b)—y 2sin b
o 1+ 2y cosma + y?

The derivation also shows, for real a and b, that Qup (ly|) = L <%) and [Qqp (y)| <

s
LS Iyl = L4 for [y < 1.
If |y| > 1, then we close the contour over the Re (w) < 0-plane,

3

21 J oo sin Tw

1 [erie si —b 1 o
/ dtM (u)" = = Z Fsinm (—ak —b)y~*

k
1 <ys1n7r(a —b) —y? Sinﬂ'b)

T 1+ 2y cosma + 32

1 [ sinm(a—b)—sin 7Tb) _

Both the case |y| < 1 and |y| > 1 lead to the same result and Qqp (1) = ﬁ( 1tcosma

1 sinﬂ(%fb)

27 cos %a

In summary, for any complex y with |argy| < 7w and for 0 < a < 1, we have proved (82). Moreover,

Qao W) <+ 520 Iyl ™" = 2 imher = Ay for [yl > 1. Hence, for any g, it holds that [Qq (y)] <
1yl
™ |ly[—1]"

36. The integral Qqp (u) for real u. The contour in (80) for real y = u can be rewritten as

a 00 h 0o .t h
Qap (u) = u {sinﬂ' (ﬂ - b) / cosh mat cos (atlogu) dt — cosm (ﬁ - b) / Sln77mtsin (atlogu) dt}
’ s 2 0 2

cosh 7t o coshmt

Since Qq,1 (1) = Qa1 (%), as follows from (82), it holds that

* sinhwat u®—1 wa\ [°° coshmat
———sin (atlogu) dt = tan (—) ——— cos (at log u) dt
o coshwt ut +1 2/ Jy coshmt

so that
2 @1 > cosh mat
Qap (u) = %Sinﬂ' (% - b) {1 - ZG 1 cot <g — b) tan <772a)}/0 C((:)OSS%COS (atlogu) dt
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It follows then from (82) that

) — u®sin wb)

b
b) + L*_ZZ COS T (% - b) tan (%)}

whose right-hand is independent of b, so that b can be chosen at will. The simplest choice'? is b = 5
then

00 h t a . _
/ coshmat (atlog u) dt — uz (sinm (a
0

cosh 7t

(1 + 2u® cos ma + u22) {sinw (4 -

/oo cosh rat ( ‘1 )dt u% (]_—{—ua)cos%a
———— cos (atlogu) dt =
o coshmt & 1+ 2u cos wa + u2®

Suppose that we ignore the restriction that the k-sum in

1 (tesinT (a —b) — t**sin7h 1 ZOO k1 . i
Qap (1) = T < 1+ 2t cos ra + t2@ ) T (=1)"" sinm (ak —b)*
k=1

only converges for t < 1 and that we substitute the series formally back in (85) and change the order

of integration and summation. Then, we find

. :l‘” sinw(ak—b)F(ak—b+l):_oo 1 _ 1 1
Eop(~2) HZI = kZl(_Z)kr(b_ak) 5 E_a,b< Z)

which is precisely equal to (68), in spite of the divergence of the series!

6.3 Integral for £, (z) with0<a <1

If b =1, then the integral (85) simplifies to

1
sinwa [ ta-le==ut
E,(—2) = dt 86
a(=2) /0 1+ 2t% coswa + t2@ (86)

which is listed in [4, eq. (34)] for real z = x and deducible from (70). We present several variations of
the integral (86) for b=1and 0 <a < 1.

37. Deductions from the integral (86). Berberan-Santos [4, eq. (35)] mentions'® that partial integra-

tion of (86) results in

1
1 za [ u® + cos (ma)\ _ i
Eo(-2)=1— — + "= tan | — L) grwaug
(—x) 2 + wa Jo arctan ( sin (ma) ) e u (87)
Indeed, let y = u® in (86), then

B, (—2) sina /°° e
—x) =
“ o 14+2ycosma+y

=

1
—ra

)

5dy

121t is readily verified that

sinm (a — b) — u®sinwb

= cos (E) (1+u%)
sinﬂ(%—b)—l—%cos#(%—b)tan(%) - 2

1 . 1
'*The integral in Berberan-Santos [4, eq. (35)], Ea (—z) = 1 — 3= + £= [ arctan (M) e~ **“du, misses a

P sin(ma)

factor of % before the integral.
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With L = ( 1 1 ),We have
e +y

1+2ycosma+y? ~ 2isinma \ e "oty

1 [ 1 1 oty
Eo (-2) = omia Jo \e a4y e 4y ¢ W (88)

as well as

/ dy 1 1 e~ 4y 1 loe ¥ + cosma — isinTa
= (0] < = 0O,
1+ 2ycosma+y? 2isinma & erme + vy 2isina & Yy + cosma + isinmwa
1 1—34 sin Ta 1 .
~ 2isin7a <1og 1+ Zﬂ = " oinng etan (y j—H;;TsaTra)
1—1

y-+cosmwa
I H; Hence, we find the indefinite integral with a constant K,

utdu 1 sinma
= — t _— K 89
/ 1+ 2u®cos wa + u2® asinma T oon (u“—i—coswa) * (89)

With this preparation, partial integration of (86) yields

1
1 sinwa xa [ sina 1
E, (—x) = — arctan ( ) — / arctan <> e TEUg,,
am 0

cosTa am u® + cos a

1 . L
Ta sinra 1
=1- arctan | ———— | e ¥ %du
am Jo u® + cos wa

After invoking arctanz = § — arctan% for x > 0, we arrive at (87).

dt

1+t2°

because arctan z = 3 log

Further, using the integral for arctan z = foz

sin Ta 1
—rau

l’% o0 u®+cos wa e
am Jo 0

and reverse the integrals, provided that 0 < a < %,

A 1
1 tan wa (Smtm’ —cos ﬂa)a —x%ud
1_Ea(_x):x/ Jo ‘ Lt
am Jo 1+ ¢2
Hence, we obtain, for 0 < a < %,
1 tanwa ef(x(isintm fcosn'a))%
Eo(=2) = — dt 90
a(-2)=— ; — (90)

After letting u® = % —cosma in (90), we retrieve (86) again.

38. Bounds from the integral (86). We split the integration interval in (86) into two parts,

u

1 1
—x) =
“ T 1+ 2u® cos wa + u2e

First,

o0 a—1,—zauy"! (9] a—1 I%(l—ufl)
u“" e d . u" e d
u=ce u
1 1+ 2u%cosma + u?® 1 1+ 2u%cosma + u?®

du

00 uafl
- 1 1+ 2u%cosma + u2e
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Using (89) and lfélogfm = tan 7, we arrive at the lower bound,

1
1
a

sinta [ wtTleTtw 1 _, ma .
sodu > —e arctan (tan —) =—e
T 1 1+ 2u%cosma 4 u® ma 2 2

Second, after partial integration and again using (89), we obtain

1 1
sinra [ uleTmte du = le_“’% _re - e_”’%” arctan _swmra du
7 J1 14 2u®cosma+ u?® 2 wa Jq u® + cos wa
1 1 x%e*x% > 1 sin ma
=" - — e (=1 aretan | —————— | du
2 Ta 1 u® 4+ coswa
so that

u® 4 cosTa

1 zae 1 sina
By (=) >e™" — / e~ (=1 arctan <> du
1

Further, we may bound the latter integral,

> 1 sinTa e 1 sinma
/ e 2D aretan [ ———— ) du < / e (= aretan [ ———— ) du
1 u® + cosma 1 14 cosma

St
= — e (D gy = ——
1 2z

m™a

which leads to the lower bound, for 0 < a < 1,

E,(—x)

v
a
4

It follows directly from (86) that

E,(—z) =

sinma [ 1 2u? cos Ta + u?® ua_le_’”%“du
T Jo 1+ 2u®cos wa + u?®

_sinmal'(a) sin7a /°° (2cosma + u®)
0

1
2a—1€—;ta Udu

T x T 1 + 2u@ cos ma + u2a

Further, for 0 < a < 1 (because then cosTa > 0),

. . 1 a 1
E, (—z) < sinTal (a) sm7ra/ (2cosma + u®) 201 —ztuy,
T ox 7 Jo 14 2u®cosma+ u®
< sinmal' (a) sinma 2coswa e_ﬁ /1 w291 gy,
- z m 24 2cosma 0
and )
E, (—z) < sinTal (a) e " sin2ma
7 x 4am 14 cosma
which illustrates, for 0 < a < %, that E, (—z) is bounded by
L) e
sinma I" (a e " sin2ma 1 1
— >FE,(—x)> - ** 91
s x dam 14 cosma — a .19)726 (91)
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7 The Mittag-Leffler function in probability theory

39. Monotonicity of Eqp(—x) for 0 < a < 1. Widder [56, Chapter IV] devotes an entire chapter
to absolutely and completely monotone functions. The Hausdorff-Bernstein-Widder!'* theorem [56,
p. 161, Theorem 12a] states that a necessary and sufficient condition that a function ¢ (z) on [0, c0)
should be completely monotonic is that there exists a bounded and non-decreasing function f (u) such
that the integral

o= [ " emudf (u)

converges for all real > 0. In other words, a function ¢ (z) is completely monotonic on [0, 00) if

and only if ¢ (x) is a Laplace transform of a bounded and non-decreasing measure f (u). The fact

that (—1)" %&x) = [y a"e ""df (u) > 0 for all non-negative integers n is a direct consequence of
the Hausdorff-Bernstein-Widder theorem, but the condition (—1)" dr;‘j;ﬁf) > 0 for all non-negative

integers n is also sufficient [6, p. 56-59] and thus an equivalent statement for complete monotonicity
of a function ¢ (z).

Since the integrand in (86) is positive for 0 < a < 1 because
(1 —u?)? <1+ 2ucosma+ u?® < (14 u?)?

86) shows that E,(—x) > 0 for 0 < a < 1. Hence, the integral (86) directly demonstrates that
E,(—z) > 0 for 0 < a <1 is completely monotonic. Also, the case for b = a in (85) reduces to

-1 sinTa [ u® —otu
a —x) = d 92
v aa (=) T /0 1+ 2u®cosma + u2a’ “ (92)

illustrating that also xl_%ana (—z) is complete monotonic. The monotonicity of E,(—z) > 0 for
0 < a <1 was first conjectured by Feller [14, Section 7] and later proved by Pollard [39].
Pollard!® [39] introduces H% = [ e—5(+2) ds in Mittag-Leffler’s integral (71) and obtains a Laplace

transform,
o0 1 _ 1
Eop(—2) = e % : tra e gy | ds
’ 2mia
0 Cad)

from which he proves'® that E, (—z) is completely monotonic for real z > 0 and 0 < a < 1, in the

sense that

By (1) = /0 TR, (1)

where F, (t) is nondecreasing, bounded and a probability distribution. In other words, E, (z) for
0 < a < 1 has no zeros on the negative real axis. Pollard [39] also explicitly determined the non-
negative function F, (t). However, his proof is not easy and, therefore, omitted, but replaced by our

derivation in art. 41.

40. Monotonicity of E,p(—x) for 0 < a <1 and b > a. Schneider [45] extended the range of the
parameter b by proving that E,p(—z) > 0 for 0 < a < 1 and b > a. Schneider’s proof is involved,

MWidder [56, p. 144] mentions that Hausdorff, Bernstein and himself have independently proved the theorem.
15Pollard’s PhD advisor was D. V. Widder.

5Berberan-Santos [4] claims that monotonicity, defined by (—1)" ddz’; E,(—z) > 0 for all n, follows from ¢ (¢) > 0 in

art. 22 for 0 < a < 1, but I find his argument circular.
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based on Fox functions, and Schneider also derives the corresponding probability measure. Miller and
Samko [32] presented a simple proof, which we include here.
The integral (57) with A = —=%, b = a and w = b — a becomes

oo
X

b = i [0 e ()

After substitution ¢t = (E)a or u = a:t%, we find, for b > a > 0,

T

Eup(—2) = ar(bl_a) /O 1 (1 —t%)b_“_lEa,a (—zt)dt (93)

It follows from the differentiation formula (17) for b = 1 that azd%Ea,l (2) = Equ0(z). Since
Eop(2) = 2zE4,4 (2) by (5), it holds that

d
a @Ea,l (u) . =FEuq(2) (94)
With the chain rule, %Ea,l (—zt) = %Ea,l (u) % we ot = —2Bqq (—21), (94) indicates that Eqq (—2) =
—a%Ea’l (—z). Art. 39 shows that E,;(—2) = E,(—z) is completely monotonous for 0 < a <1

satisfying (—1)" %&_'Z) > 0 for all non-negative integers n, so that E,,(—z) > 0 is completely

monotonous as well. Since the integrand in (93) is non-negative, we conclude that E,; (—z) > 0 for
0<a<1landbd>a.

41. E,(—z) with 0 < a < 1 in probability theory. We construct two probability density functions
from the Mittag-Leffler function E, (—x) with 0 < a < 1 and show that E, (—s®) is both a probability
generating function and a probability distribution.

a. After replacing = by s® in (86), the Laplace transform

sinma [ o1
E,(—s") = e Stdt
a (=5%) T /0 1 + 2t% cos ma + 2@

indicates that
sinma o1

t) =
Ja (?) 7 1+ 2t®cosma + t2@

is a probability density function (pdf) for ¢ > 0 and for 0 < a < 1. Indeed, the Laplace transform (192)
72X]

(95)

of the non-negative function f, (¢) is [50] a probability generating function (pgf) ¢x(z) = E [e
of a random variable X, provided ¢x(0) = 1. Moreover, with f, (1) = 5= tan %2, the pdf (95) obeys
the functional equation — recall that Qg1 (u) = Qa1 ( ) in (82) —

1
u

o 1) = - fo (1)

Its companion, that follows similarly from (92) as

sinma [ te
s LB, (—s%) = e Stdt
aa (=5%) 7r /0 1 + 2t% cos wa + 2@

with non-negative function

ga (1) = 22T i — tfa () = gu <1)

T 14 2tecosma + t2@
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is, in contrast to E, (—s%), not!'” a probability generating function, because limg_,o 7B, 4 (—5%) = 00

for a < 1. We verify from Laplace transform theory that

d
—%Ea (—5%) =" E, 4 (—5%) (96)
in agreement with (19) taken into account (5).

b. The Laplace transform (54) with b =1 and z = —1,

oo a—1

/0 e B, (—t%) dt = g

and with b=a and z = —1 ~ )
/0 e ST B, o (—tY) dt = g (97)

8

are only valid for s* > 1. Hence'®, we cannot conclude from limsﬁgﬁ = 1 for @ > 0 that
a—1

(97) is a pgf ¢ar (s), while [ e 5'E, (—t%)dt = 271 is not. However, integration of (96) yields

J3 T Baa (=) dt = By (—p*)~Eq (—¢%). Ifp = 0, then Eq,1 (0) = gy = 1, while limg o0 Eq (—¢%) =

e~ s'dt. Hence, it holds that

ta_l

0, as follows from the integral E, (—s%) = Sinﬂm I TT9% cos i

o0
/ t By (—tY)dt =1
0

illustrating that t“_lana (—t*) can be regarded as a probability density function and that the integral
in (97) exists for Re (s) > 0 and a > 0. Thus, by analytic continuation, the pgf ¢ (s) = E [e™*¥] in
(97) is valid for Re (s) > 0 with corresponding pdf

far () =t LB, 4 (—t%) for0 <a<1 (98)

of a random variable M and (96) demonstrates that the corresponding Mittag-Leffler distribution for
0<a<lis

t
Fur () = Pr[M < 4] = / Far (w) du = 1 — By (—%) (99)

0
with mean E [M] = —¢/); (0) = lim,_ % = 00. In fact, for 0 < a < 1, the pgf (97) is not analytic

at s = 0, implying that the Taylor series around s = 0 does not exist, nor any derivative. Hence, the
Mittag-Leffler random variable M, defined by the pgf (97) and pdf (98) for 0 < a < 1, does not possess
any finite moment E [M k] In the limit a — 1, the Mittag-Lefller random variable M becomes an

exponential random variable with mean 1.

42. Probabilistic properties of the Mittag-Leffler random variable. The sum S,, = Z?Zl M; of niid
Mittag-Leffler random variables My, M, ..., M, each with the same Mittag-Leffler distribution (99),
has the pgf [50, p. 30]

@5, (2) = B [ Xim M| — gy (2) = (14 297"

""However, insertion into (97) below leads, for Re (s) > 0, to

/°° u® du  w 1
0 1+ 2u%cosma +u2® s+u  sinmas® + 1

8This observation was communicated to me by Rui Ferreira.
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If we choose the scaling parameter 3 in pg, (82) = (14 %2%)"" equal to % = %, then

z 20\ T" a
lim pg, ( 1) = lim <1 + ) =e~
n—oo na n— 00 n

Hence, the scaled sum 85, = 27:1 n~a M ; tends for n — oo to a random variable R with pgf equal

to

a

vr(z)=FE [e*ZR] =e *

whose form belongs to the class of stable distributions!?. If a = 1, then R = 1 and not random. Since

(100)

e~*" with 0 < 1 < a is only analytic for Re (z) > 0, inverse Laplace transform (193) provides us with
the pdf

1 et 1
fR(t):/ e % efdz c>0and¢>§
C

278 J o ooe—io

o) k ip

-1 1 ct+ooe

_ ( ') : / Zkaeztdz
prd k! 2mi J,

—ooe~i®
Introducing Hankel’s integral (182)
t ak—1

Z k' T (—ka)

=0

and the reflection formula (161) results in

1 (="' (ka + 1) sinwka _
fr(t) = p Z ( k' ( e, with0<1<a (101)
k=1

which is derived in another, more complicated way by Pollard [38]. Integration leads to the distribution

i DT (ka) sin tka

1—FR() PrR>t +ak

>H>~

k=1

with the interesting result that lim;_,o Pr[R > t] = 1, while lim;_,¢ fr () = 0.
The sum of n i.i.d. random variables Ri, Ra, ..., R, with same distribution fr (¢) in (101) equals
Yo By = na R, because

1 a
E |:€_ZE§L:1 Rj:| = @% (Z) = e—nza = €7<naz> = E |:€_ZT“1ZR:|

1 U . o
Thus, Z?Zl R; = naR expresses self-similarity: a sum of random variables maintains the same

distribution upon scaling, which is an alternative description to a “stable” distribution.

YTet X; and X be i.i.d random variables, similarly distributed as a random variable X. The random variable X is
stable if for any constants a > 0, b > 0, ¢ > 0 and d, the random variable a X1 + bX> has the same distribution as c¢X +d,
denoted as a X1 +bX, < cX +d. Another definition [15, p. 170] states that X is stable if and only if >°7_, X; L X +dn
for any integer n > 1 and where the constant ¢,, > 0 and d,, € R.

Gorenflo and Mainardi [20] discuss fractional diffusion processes and their relation to Levy stable distributions.
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43. The Mittag-Leffler and Weibull random variable. We consider the random variable X = RW,
where W is independent of the stable random variable R and will be chosen later. The pgf of X is
computed by invoking conditional expectations [50, p. 32],

ox(2) = B[] = Bw [Bg [ | W]

With the pgf (100) of the stable random variable R, the inner conditional expectation is a random

variable equal to
ER [e*ZRW‘ W] — e*ZaWa

so that
ox(2) = B [e7"]

Let us now define the random variable Y = W%, then the expectation Eyy [e*ZaWa

] becomes

oy (z) = By 7] = oy (2%

_ZY} = —L__ Hence, choosing

If Y is an exponential random variable with mean 4, then ¢y (z) = E [e p

the mean equal = 1, then shows that

1
2%+ 1

px(2) =

and the pgf (97) demonstrates that X = M has a Mittag-Leffler distribution. The random variable
W = Y has the distribution Pr W <z] =Pr [Y% < x} =Pr[Y <279 = (1—e ") with the pdf

[50, p. 18]

fov () = dPr [ZI; < z] _ gpale—a®
which illustrates that W is a Weibull random variable [50, p. 59] with FE [Wb] =T (% + 1) for any
real b > —a. Hence, all moments F [Wk} for non-negative integer k exist. The Weibull distribution is
one of the three possible limit extremal distributions of a sequence of i.i.d. random variables [5, pp.
65-69] and reduces for a = 1 to the exponential distribution, just like the Mittag-Leffler distribution
(99). Here, we have shown for the parameter 0 < a < 1 that the Weibull random variable W = % is

the quotient of the Mittag-Leffler M and stable R random variable, whose moments do not exist.

44. The scaled random variable za R. Based on Laplace transforms, Feller [15, p. 453] shows that the

distribution Pr [R > = /a} 1-Fp ( ) has a Laplace transform equal to B, (—st?) = Zk e 1+ ]:aak
xa
We present a direct computation. Partial integration of the pgf ¢x( fooo e fx (t) dt,
o0
1 —
/ —zt(l_F (t))dt:ﬂ
0 z

is transformed, after letting z — Sz for S > 0, and substituting u = S, into

[ (@)oo

Applied to the stable random variable R with pgf pr(z) =e ",

[ (1 m(2)au= L (1)
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and choosing z = 5% > 0 yields

/ e v <1—FR (%))duzl(l_e—xza)
0 €Ta z

Taking the Laplace transform of both sides with respect to z,

e} o0 U 1 o o
/ dxesm/ due™** <1 — Fr <1>) = / dre " (1 — e ")
0 0 To = Jo
11 1\ 1/t
oz \s s+2¢)  s\s+2z0

Introducing the Laplace transform (54) with b =1 and = = —s

Zafl

2%+ s

/ e B, (—st") dt =
0

and interchanging the integrals on the left-hand side, allowed by absolute convergence,

/ dteZt/ dxe %" (1 — Fp <1)> = / e *'E, (—st®)dt
0 0 T sJo
e t 1
/ e %" (1 — Fp <1>> dx = —FE, (—st?)
0 Ta s

which is, however, a factor % different from Feller’s [15, p. 453] result above?.

finally leads to

8 Miscellanea

45. A Taylor series approach with Fermi-Dirac integrals. We introduce the Taylor series of the entire

function m around ¢ into the definition (1) of E, (2),

(ak+b—q)™

= 1 = o= 1 a1
E, = = k - =
»(2) F(b)+ZF(b+ak) T () +kzzlz n;)m! dum T (u) |, _,

and
x

E = m! dum T (u)
ab (2) r(b)+F(Q)1—Z+Zlm! dum T'(u)

m i k < pa 2T Q>m
m= u=q ! k=1 ’ a
The reversal in the k- and m-sum leads to a confinement of |z| < 1. We will now choose ¢ = b and
evaluate the series > 7o, k™2*, that converges for |z| < 1.
The Fermi-Dirac integral of order p is defined as

Fyly) = — /OO AN (102)
PITTo+ ) Jy ey ™

The value of the zero argument in y is immediately written in terms of the Eta function,

F,(0) =n(p+1) (103)

*In the limit s — 0, the right-hand side diverges and the left-hand side is [* <17FR (%))dm =

at® [[° (1 — Fr () u" " tdu = at® IS Pr[R > ] u”* 'du illustrating that the integrand at the origin is O (u™*7"),
leading to a diverging integral. Hence, the factor % is essential.
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where the Eta function 7 (s) is related to the Riemann Zeta function ((s) as

n(s) = (1-27)¢(s) (104)
By expanding 1+elwfy = e

== = S0 (—=1)Ftemk@=Y) for Re (y) < 0 in (102), the Dirichlet series

for all complex p is readily deduced as

S (@)
Fyly) =Y (-0 (105)
k=1
In particular, F_; (y) = H% Hence, we can write Y oo | k™ (=2)¥ = —F_,,_1(log 2) for |z| < 1 and

F_—1(logz)a™ (106)

u=>b

1 — 1 dm 1
B (~2) = 557 = 2o i dn T )

m=0

For integer negative order and k > 0, it can be shown [48] that

L - (_pymoigm (L "
Pl = st (1 ) = = D0 (1

m=1

where S,gm) is the Stirling Number of the Second Kind [1, 24.1.4]. Since 14—% =1- ﬁ, which is
equivalent to F_1 (y) = 1 — F_1 (—y), the k-th derivative shows that, for k > 1,
Foi(y) = (=) Fp(—y) (107)
and, thus extending the above for |z| < 1 to,
1 a1
E,p(—2) = — — F (=1 —a)™ 108
a:b< Z) Zom' dumf(u) b m 1( ng)( a’) ( )

Stretching the convergence constraint in (108) to z = 1 and using (103) results in

Further by (104), it holds that n(—m) = (1 —2"+™)¢(—m) = (1 -2 B, because ((—n) =
(-1

71 Bn+1 and ¢(—2n) = 0 for n > 0. Taking into account that the odd Bernoulli numbers By, +1 =0
for m > 0, we find

1 () Bog d2k—1 1 ok 2k—1
Eop(—1) = — v — ot
a,b ( ) T (b) ; (Qk;)! dz?k=1T (Z) 2=b ( )a

which converges fast for small a. Since Eqp (—1) in (1) is an alternating series with decreasing coeffi-
cients for @ > 0 and b > 1.462, it holds that ﬁ <E.p(-1) < ﬁ.
The major interest of the expansion (108) lies in its fast convergence for small a, whereas the

definition (1) is converging slower for small a. Moreover, rewriting (9) as

1 n—1 1o
Eop(2) = - ZE%J, <2ne n )
r=0
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illustrates that any real a can be transformed to a value smaller than 1 by choosing n = [a] + 1, where

[a] is the largest integer smaller or equal to a. Indeed, for |z| < 1, (108) becomes

00 [a] log z . r
e | [Ere ()| e
ab T L= m! dum T (W) |y [a] +1 [a] + 1

46. A Taylor series approach based on the inverse of the Gamma function. We present a related
approach as in art. 45 based on the modified Taylor series, tuneable in the complex parameter p and
derived in [48],

1 e Pt X ok

e kzzo k'/o e~ {(p—log (u) + im)" — (p — log (u) — im)* } du (109)

where the Taylor coefficient ¢ (p) = 7 JaF T(w) of the Taylor series of the entire function % =

S0k (p) 2F around zp = 0 is

I T T A .k Nk
¢k (p) = ol ; e {(p log (u) 4 i) (p — log (u) — i) } du (110)
We apply (109) to the Mittag-Leffler function Eqp (2) = Y .2 F(#ib),
Eap(2) =3 2" Y (an+b)F e ey (p) = 32" (- e (p)
n=0 k=0 n=0 k=0 t=p
We assume that a reversal of the summations is allowed,
Eup(2) = S (-1F L (S ametonin)|
a dtF g
k=0 n=0 t=p
1 X (—1)F gk et © ok ok
= — — u —1 —(p—1 —
o kZ::O Hoodk \1—ze ) |_ /O e {(p og (u) +im)" — (p — log (u) — i) } du

(111)

where |ze™ | < 1 or p > IO%JZ'. First, a verification is given. Thereafter, we proceed with the above
series (111).

Verification: Assuming that the k-sum and integral in (111) can be reversed, yields

(—1) ko Kk —tb ok
I Sito S (éﬁ)(_ (p —log (u) + i)
Eap (2) = 2/ e ) g o t=p S pdu
T Jo — Y 0 EH 4 (1_%%@) ‘t:p (p — log (u) — im)
where the Taylor series
> ko gk —tb —tb —b,—bim
"4 € k € u-e
2R dk (1 S ) . (p—log (u) —im)" = T——— I e

1 9] ebi7r e—bi7r
Eop(2) = ety 0 — — — 5 du
27i 0 1—zu=%e®™ 1—zu % ®7
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ebim . e—bim — 9 sin tb+zu~® sin w(a—b) we arrive at
1—zu—aexm 1—zu—ae—aim — 1—2zu—%cos am+z2u—2e )’

1 [ i —-b ¢ sin b
Fuy (2) = / p—tiga—b zs;nﬂ (a—b)+u s1n72r du
T Jo u“® — 2zul cosam + z

Since

which equals (84), but, as shown in art. 29, which is only correct if 0 < a <1 and a —b > —1. In
other words, the reversal of operators has limited the scope of the parameters a€(0,1]and b <a—+1.
Returning to the series (111). We invoke Leibniz’ rule to dtk ( e_tim) —1d (ﬁ),

1—ze z dtk \ eta—logz_1

dk et(a—b) k E\ dk—n . dn 1
S o= )= (a=b)y & (__ -
dtk (etalogz -1 nz:;) (n) dtk—n (6 ) dtn (etalogz _ 1>

The last derivative can be exactly executed [48] as

" 1 L 1
% eta—logz _ 1 —p =a duwn \ ew—logz _

dk ([ etla=b) placb "L (=1) jleder
2= - ) — b gn A )
dtk (em -z Z ( ) “ . (e — z)I T S
t=p Jj=0
Introducing the k-th derivative into the series (111) leads to

0 k n i 1 jap '
Bun() =00 () a3 () -nt e ST

ap
k=0 n=0 j=0 (e

For 2 = 0, (112) simplifies to . (0) = e 3332 (=1) ex () Sk (}) (a = 0)F " a" g (=1)7 s,
With a generating function [37, 26.8.10] of the Stirling numbers of the second kind, 2™ = 377 ;! s (i)’
and (—]z) _ (_1)j (z—jl+j) so that (_31) = (—1)]'7 we obtain

o9 k
0= I () b o

e (—1) jled(ap—logz2)
=a

w=ap =0

T(Lj )

(eap—log z _ 1)j+1

so that

n=0
—eprck a—b—a —eprck bk
Since If— Sl ock (p) 2*, we arrive indeed at E,jp (0) = e pblf(pz) = ﬁ. If p = 0, then (112)

reduces, for |z] < 1, to

Z k‘! dukl“( )

=0

k n i
Z <k> (a—b)F"a" %ST(ZJ')
u=0 0 n j=0 (1 - Z)j+

loi‘z|, we choose p = % + ¢ with ¢ > 0 and (112) becomes

n

Eup(2) = ’a i <1Og|z| +t> zk: <:> (a—b)F™ G"Z (—Uj—j!ejfagqgj)

J+1
k=0 n=0 =0 <€ta _ é)

Unfortunately, the series (112) and its modification above are found to be numerically very inaccurate.
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Figure 1: The coefficients —b,, versus m up to m = 25 on a log-log plot (ignoring the only positive

coefficient b; = %) for various values of a = a with b = 1 of the Mittag-Leffler function E,j (2).

The thick line represents the exponential function e®.

47. A product form for E,; (z). Inspired by Euler’s recipe [12, art. 283, p. 237-238] that led him
to the generating function of the prime numbers, the famous Euler product ¢ (z) = [[,(1 — p?)~!
of the Riemann Zeta function ( (z) for Re(z) > 1, we have applied Euler’s idea to the Taylor series
F(2) =300 fr (20) (= — 20)" of a complex function, which results into the product form [48]

fo

T = 00 G G20 i
The coefficients by, (20) satisfy a recursion,
20) = 3 7(_1)k_ls m] (20) — L 20)) "
b an) = 32 st o) = 3 ) (114

nlm;n<m

with starting value by (zo) = %. The first sum in the recursion (114) is precisely equal to the Taylor

coefficient of the Taylor series of log f (z) in (37). Fig. 1 shows the computation of the coefficients
b, = b, (0), via the recursion (114), for Taylor coefficients fi, = m of the Mittag-Leffler function
Eqp (2) around zp = 0. Fig. 1 suggests that (bm)Ea(z) ~ m~® for sufficiently large m. Since the
computation of the recursion (114) is expensive for FE, (z), only the first 25 coefficients have been
computed. However, for the exponential function e?, drawn in black thick line in Fig. 1, the recursion
(114) considerably simplifies as the first sum with characteristic coefficients vanishes as follows from
log f (2) in (37), because loge* = z. This observation demonstrates that the coefficients (by,), . are
rational numbers that do not dependent upon the Taylor coefficients of e*, apart from f; = fo = 1,

leading to (b1),. = 1. The recursion (114) simplifies to

n|lm;n<m nlm;l<n<m



and contains the sum of the divisors of m scaled by integer powers of previous divisor sums (by),.. In

particular, if m = p is a prime p, then (by),. = —%b’f‘ = —% and only primes satisfy (by,).. = —%,
1

although, for large m, all (b;).. ~ ;. as shown in Fig. 2. Hence, apart from relatively small

1 . =
. ]
g 2r
©
-
.§ 0.1 E =
= 6F
=
(]
o)
@]

exponential (o= 1)
— I/m

0.01

2 3 45678 2 3 45678 2
1 10 100
integer m

Figure 2: The coefficients (by,),.- on a log-log plot.

fluctuations around the asymptotic (by,),. ~ m~! due to the irregular behavior of the number of
divisors [24] of an integer m, the scaling law (b,,) Eu(z ~ M @ is numerically demonstrated for a = 1.

The convergence of the product (113) around zq is rather difficult to determine in general. For
the exponential function e®, the product (113) around zp = 0 converges for |z — z9| = |2| < 1. For
the Mittag-Leffler function E, (z), the product (113) around zy = 0 converge for |z| around 1; slightly
larger than one for a > 1 and slightly smaller than one for a < 1. The small convergence radius

clearly limits the practical use of the product (113).

48. Deriwation of E,p (z) with respect to the parameters a and b. From the definition (1), partial
differentiating yields

B 0 (1 & 2
%Ea,b (Z) = % <P (b) + l; T (b + ak))
> d 1 dy . — ¥ (y) K
_ e = — B kz
; dy L' (Y) | y=pyar da ; D) | ympsak

0 — ¥ (y) k
p(2)==> z
ob @ P L) y=ptak
Hence, we observe that
0 0?
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Partial differentiating m-times gives

om i am 1 X
—FE.(2) = _— K™z
dam " — dy™ ' (Y) | y=p+ak
which suggest to let z = ye” so that
om o dm 1 Im o= d™ 1
E b (yew) _ kmykekw _ ykekw
dam " kzzo dy™ T () |y—prak Ow™ = dy™ T (y) |~ ak

leading to the partial differentiation equation for any integer m > 0 and any y (independent of a,b

and w),
om 82m

WEa,b (ye ) = WEa,b (ye ) (115)

49. Mobius inversion. The first M6bius inversion pair is
o oo
= f(nx) — fle) =Y pn)g(nz) (116)
n=1 n=1
where p(n) is the Mobius function. The Mébius function satisfies the functional equation
> n(k) =6n1 (117)
k|n
and shows that 1 (1) = 1. Since k =1 is always a divisor, we obtain from (117) the recursion
p(m)=—1—>" pu(k)
klm;l<k<m

from which £ (2) = -1, p(3) = =1, u(4) =0, u(5) = =1, u(6) = 1 and so on. The Mé&bius function
is an important function in number theory and in the theory of the Riemann Zeta function [24], where
it is shown that u(n) = (—1)k if the prime factorization of n contains k different primes, else p(n) = 0.
Hence, |pu(n)| = 1.

Let f (z) = (b+ y i n (116), then

s 0 an 1
9(0) = 2100 =) F gy~ B ) Ep

and Mobius inversion f(z) =Y 7 u(n)g(nx) in (116) yields, for z # 0,

n—=

I I, s

With y = 2%, (118) simplifies to F(b-‘,—a:) =2 w(n) (Em;,b (y™) — (b)) After multiplying both sides
in (118) by 2!, differentiating with respect to z and invoking (19) again leads to (118) with b replaced
by b — 1.
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Invoking Faq (22) = w in art. 2 in (118)

o0

R (28 () = Evea )~ )

_ 22“ (EMb (2270) — F}b)) = iu(n) (Em,b (=2") = rtb))

and using (118) leads to

2221‘

SN 1 _ zZ
ZM ( nab ( )_F(b)>_f‘(b+2x)_r(b+x) (119)

which is an instance of the general Mobius function identity, proved in [48],

D #G) D_(=1)'f (ag) = 2f (2) = F (1) (120)

holds for any function f and any n > 1.

50. Mertens function. Applying Abel summation using the Mertens?! function v_; (k) = Zle wu(l),

we obtain

27 1 (k) (g(ka) =g ((k+ 1)) + lim g(Na)y-1 (N)

Hence,

b ) Z’Y 1 (Ek:c7b (Zm) — Eyatap (kaﬂ)) + A}gﬂoo <EN:c7b (2N — I‘Eb)) v-1(N)

and the limit vanishes if > 0, resulting in

b ) Z’Y 1 (Ekx,b (ka) — Ergyap (zkm'm)) for x > 0 (121)

With f(kH v d = FEa b (2% da = Epgiap (zkm“”) — B p (zkx), the corresponding integral representation
of (121) is

2® i (k+D)z g .
M=—;71 (k) /kx <o Ba (2%) da
0 a(k+1)z an d )
=3 [T () e
and
X o0 d
tirm =) 7 ([G]) feFeyda toraso (122)

21A sufficient condition to prove the Riemann Hypothesis is to demonstate that the Mertens function behaves as
v-1(z) =0 (x%“) for large x.
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Similarly for (119), it holds that

22’21 x

F(b+2z) T(b+2)

_ /:O e ([%D C%Emb (—2%da  forz >0 (123)

Although (122) and (123) are remarkable, further progress to estimate the order of y_; ([z]) requires
a study of d%Ea,b (yz*).

51. Apelblat series. Inspired by series in [2], we call

oo
ap (1) = Z fet™ T By (%)
k=0

an Apelblat series, where the Taylor series of the function f (z) =Y 2, frz* around zy = 0 converges
for |z|] < R. Evidently, if fr = 0 for k& > n, then f(z) is a polynomial of order n in z and f(z) is
an entire function. We generalize the method of Apelblat [2]. We take the Laplace transform L£[.] of
both sides and use (54),

ga—b+8 2
Ll 0 = A [P B t] = 3G = S S
k=0
and obtain a product of Laplace transformed functions
b—p—1 a 1 1
Llgap ()] =L [t Eqpp (xt )] A (124)

The convolution theorem for the Laplace transform suggests us to find the inverse Laplace transform
L1 [815 f (7)] of Slﬂ f ( ) Apelblat [2] observes and demonstrates that elegant series follow if a closed
form for £71 [sﬁf (1)] exist, else we can proceed with (193) and Hankel’s integral (182)

NERa! 1 ferioo U~y [ ks w
S (2)] = — == —h=Besty
O [ () wmgmn [

k

_ ¢
- ;f’“r(ﬁm)

After taking the inverse Laplace transform of both sides in (124), we formally arrive at the Apelblat
series, for the free parameter Re (3) > 0,

uk

00 t
> fet T Bk () = /O (t—w)’ " Bpp (x(t —u)") uf ! Z e N k:)d (125)
k=0

which directly follows from (57) for w = § + k and b — b — 3. Hence, the property (125) of the
Apelblat series is a consequence of the generalized integration property in art. 19.

Examples a. The Taylor series of (1 +cz)’ =3 72, ( ) 2F converges for all complex p provided

2| < 1. The right-hand series in (125) becomes with f, = (§)c* = k,rég +k14)rl) k= I;C(!F(j]f)) (—c)k

u® p+k) k
Zf’“ T(B+k T(- Zk'PBJrk —eu)
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which reduces if we choose § = —p to > ;2 fkr(giik) = F(ip) e~ . The Apelblat series (125) then
becomes, for ¢ = —p and 0 < Re (¢) < Re (b),

Z( q)"’“tb*‘“‘lEaM @) = iy [ T B ) (¢ = ) e
=0 k I'(q) Jo

For ¢ =1,b =2, c =2z = 1, we retrieve the series [2, eq. (64)] and for ¢ =2, b =2, ¢ =z =1, the
series [2, eq. (68)].

— k
b. The Taylor series of the Bessel function (2) " J, () = 302, m (g)% in [1, 9.1.10] has
1\k

m and the odd j2k+1 =0. If f2k+1 = 0, then

only even Taylor coefficients jor =

k
u2k (%)

k
ka T3+ k) Zf% T (3 + 2k) 2/312f2 <§+k)r(%+k:)

where the duplication formula of Gamma function is used. If for, = (i) 2k = %;?jg) (—02)1C then

Uk ) \/77_ 00 F(_p—|—k’) (_ )k %)yf
kzofkl—\(ﬁ+k) 251F(—P)kzok!l“( 3+ R)T (54 k)

Choosing —p = 5 ylelds

S N o o ) R ) M
kzofkr(ﬂ+k) YR <§> kzo k'F( +21+l<:) 2ﬁ*121“ <g> J = (cu)

and

00 T (2) 2 t —1
z;) < ) PRI (g0 = %/0 (t—u)’ P By (@t —u))u 2 Ja (cu)du

—p= ﬁ+1

while choosing yields

ViSOt R T
ka 54—14: 25_1F<’6)J2r1>kzz()k!F<g-|2-k) _25—113<,6’;r1)J22(CU)

and the Apelblat series (125) then becomes

@

x© s p+1 \/77- c\1=3 t 5

S (T )ty o) = YT [ B -y (e
k=0 20-1T (%) 0

For 8 =0,b=1, ¢ =x =1, we retrieve the series [2, eq. (74)],

0 1
Z<k>t Eoyson (t /E 9 Jy (t — u) du

k=0
c. Let us now consider the hypergeometric function [1, 15.1] with Taylor series around the origin,

o)

I'( p+l<: (g +k
F(p,g;r;2) E NCEWAY ) (126)
k::O
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With (126), the Apelblat series (125) at the right-hand side becomes

T(r) ~~T@+kT(qg+k)cFur
Zf’“ 6+k T () &~Tr+kTB+k) K

k=0

and, if we choose ¢ equal to 3, then

sz S
5+k r T (r Kor(E)

k::O

where M (a,b,z) = F((b§ Pl IF“((ZLI:;)) %1 is Kummer’s confluent hypergeometric function [1, 13.1.2].
The Apelblat series (125) thus becomes

o

I (p) T—i—k: k!

t
) ktb+k lEa btk (xta) — / (t _ u)b*ﬁfl Ea,b—ﬁ (LE (t _ U)a) uﬁ—lM (p7 T, CU) du
= 0

In order to use the property [1, 13.3.2] of the Kummer function,

lim M (a,b, —2) =T (b)27 Jp1 (2V2)

a— 00

we first choose ¢ = —]15 and then take the limit p — oo of both sides becomes, with lim,,_, % =1

(see [1, 6.1.47]),

e}

INGESS

t
a —B— a 1-r_
NCEOL (—1)F goth= "Eapin (2t ):/O (t—u)’" lEa,b_ﬁ (z(t—uw))u’T7 71 (2v/u) du

k=0

Let 8 =1, then r =b— 1, we have

> 1

k=0

tb-‘rk: 1

Eapyk ( /E (t—w)Mu'z Jy 2 (2v/u) du

which simplified for b = 2 to

o ()"
)

k=1

Eq 1 (2t?) = /Ot E, (xu®) Jo (2\/t — u) du

52. First limit for Eqyp (z). The Gauss product II (n, z) in (150) indicates that

H(?i,z) = (1+2) <1+§) (1+§>...(1+%>€—Zlogn

and defines the Gamma function I' (z + 1) = lim, o0 II (n, 2) as alimit. Thus, I’ (2) = 1 limy, 00 I (n, 2)

and

> 2" = (b+ ak) 2*
D=2 T rak) 2 (b b ok

b+ak:
k —(b+ak)logn
—Eiingob+akz||< )
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With the generating function [37, Chapter 26] of the Stirling Numbers of the First Kind for k£ > 0,

n n

z\ _ 1 J+1) n—j _j
[1(15) =Tl s o
j= j=

we obtain . .
1 : . )
Ea,b (Z) = Z nhﬁnolo E Sr(L]«kJrll) (-1)”7] Zk (b 4 ak)]+1 6f(b+ak) logn
k=0 T j=0

and arrive at the first limit

N nei o= 2F (b4 ak) !
Bap(2) = lim — > 5310 (1) (Z(,ﬁ) (127)
' k=0

53. We will derive a finite series for the infinite series in brackets in (127), which we define as

2\ 28 (b + ak)’

Tj (z5n) = T pbtak (128)
k=0
Since n in (127) grows unboundedly,
o0
1 neb
T[)(Z;TL) an+ak:nb <na) =% _%:na_z
k=0 n
Let n = €%, then
oo
sz b—l—ak (b+ak)x
k=0
Lomy . elabz e b er) = . 5T
and Ty (2;€%) = S5, = {—fezz—az- Differentiation shows that T] 1(z;€%) = =Tj(z;€") and

iteration leads us to

@ @i [ elabe
Ty (2:6%) = (1) T (236%) = (1) ( )

j . m
_ J _\j—m (afb)xdi 1
Z <m> (a=9) ¢ dz™ <e‘m —z

dm 1 _dam 1 d"y o an 1
dzm \ e —z ) dym™ \e¥—z /) dzm  dy™ \ eV —z
(k)

Provided that b # 0 and recalling that S O mo for the Stirling Numbers of the Second Kind Sy,
the Taylor series, derived in [48],

1 00 m 1 | m
peran DD (E:édkjly#lsﬁ”> — (129)




indicates that

m kkj‘ekb m kk'e (b+2)

Z (eb —1)F+1 St Z eb+z 1) T

z=0 k:O k=0 z2=0

dm 1
dzm \ extb — 1
)kk|ek(b+z)

am (k) : 1 _ 1 1
r:[‘hllS7 dam ( =Fb 1) Zk‘ =0 Wsm and Wlth —z — zev-Togz_1’ we ﬁnd

dm (1 _1d" 1 _ 12"‘: (=DM klet w8 gy
dy™ \ eV — z zdy™ \ ev—logz — 1 z (ey—logz — 1)k+1 =

and

dm 1 g dm 1 _ ﬂ i (_1)kk!6k(a:v—logz)8(k)
dx™ \ ear — 5 dym ey — » P (eax—logz _ 1)k+1 m

J . m M k kax
a—b)x ( ) kle k
=(a—b) el Z ( ) <a—b> (eam_z)k+187(n)

m=0

In summary, provided that e” > |z|, we arrive at

x = k i _—(b+ak)z i (a—b)x d J a " (_1)kk!ekax (k)
T () =3 A ok ok O = (o map ey (L) (025) 2 G oS

k=0 m=0 k=0
(130)
54. Second limit for E,} (2). We transform n = e back in (130),
> (b+ak) o (= [ m I (—1)kklnke
- i EPAVENCED) Sk
(z:m) _ZZ p(btak) =(b—a)yn (Z <m> <a—b> Z _Zk+1 S
=0 m=0 k::o
Substitution into the first limit (127) yields
. 1 — (+1) i 2k (b+ ak)jJrl
Eop(2) = nl;rrgo ] Z S (=) <Z e
=0 k=0
n— (a=b) ™ 1 J m m k ka
I G 1) nlh & (a—b) kI o)
= Jim = 25n+1 > () (a5 Z TS
m=0 0

0)

After using S}n = 6om to produce the same zero lower bound?? in the summations, we arrive at the

second limit
(- >" D& ) N~ [
Fus (2) = Jim = DS (-0 3 () (2
m=0

2 Expression (131) also holds for all lower bounds equal to 1 instead of 0.

m m kk.|nka
;) S CEES® sy
k:0
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We concentrate on the finite triple sum in (131)

_ n+159) (] a \" <~ (=1)Fklnka Sk
Un Z w1 (07 Z_ m/) \a—>b Z:(na—z)k‘*‘l m

]
m=0 k=0

and will present several alternatives for U,, and thus slightly different limits of (131). We reverse the

m-sum and k-sum,

= 0 i . ’“’f'n’““ S AV
=0 prdl m=k

Reversing additionally the j-sum and k-sum,

1 n+1 k na k n+1 ( i . m (k)
— _ J AV
Un—na_ZZ( 1) (na_z) ZSn+1 a b Z( )(a—b) Sm

k=0 m=k
Finally, we reverse the j- and m-sum,
n= e S () S () s i() (@b
" nt —z “\no® -z — a—b Snt1

The sum
n+1 . n+1 .‘ ( )
Q Z < ) n+1 CL m' Z ] . |Snj+1 ( b)j

is computed from ﬁ =S OS k) ok and 2" M _ dr Zn:_ol(x_k) S8 (k) d

(+1 m) dz™ I'(z+1—m) ~— dz" m ggn®

L j_@=b" G ) j-m
Q:ﬁ. (j_m)!Sn-i-l(a_b) = m! Z(j_m)!sn—i—l(a_b)
J=m j=m
(a—=b)" d™ T(z+1) (a—b)" d™ {~
_ . S ey (PR
m!  dae™T(x—n)|,_,, m!  dx
r=a k=0 r=a—b

We return to the sum,

n+1 k n+1 m m
1 i n® a (a—0b)" d™ I'(x+1)
= — ! - (k)
Un na_ZZ( 1) k! <na_z) Z <a_b> Sm dxml“(x_

m! n)

k=0 m=k r=a—b
n+1 a k n+1 k m
nt -z~ ‘\n®—z — m! dem \I'(x = n) ) | yeusp

Reversing the k- and m-sum yields
oo 1 ”E*:lam ™ (T(z+1)
Tope— m! dz™ \T'(x —n)
m=0

55. From the limit (131) back to the Taylor series (1). From the variants of U,, in art. 54, we now
verify the correctness of (131). A simplification of Tj (z;€”) in (130)

) PJ k
Sk (e_b) 1 —1)FRS®) <1_1€b) (132)
k=1

k:l

m k
> (=1)F ks _
mo\1—-—n-9z

r=a—b |_q
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shows, with n=% = e ?, that

Then,

g "ilam dam (T(z+1)
" e — m! dz™ \I'(x —n)

n® — 2\ o= kMzk
—1\)™
:L"ab( ) < z >Znak

m=0 """ =a— k=1
1 n+1 )mdm (I’(a: + 1)) Ny U
z = m' da™ \T'(x —n) /) [,_qp i3 nak
B ( ) Ti:l (—ak)™ d™ (T(m+1))
z = \nt/) e~ m! de™ \I'(x —n) /) |,_a_yp

If n is large, then general Taylor expansion demonstrates that

n+1 m 0 m

, (—ak)™ d™ (T(z+1) s (—ak)™ d™ (T(z+1)

JL”&% m! da™ (r(x - n)> B nlg{,lon; m!  dz™ <F(:v - n))
iy Datk=1) b+ 1)
~iwT(—a(k—1) —b—n)

r=a—b r=a—b

(=)™ *nle=?)

Since Ea,b (Z) = limy, 00 n!

U,, we obtain

kT(—a(k—1)—b+1)
I'(—a(k—-1)—b—n)

The reflection formula (161) indicates that w = (—1)n_1 % and

(a=b) 1 & kT (1+alk—1)+b+n)
n z a n
£t - i 5 ()
+(2) nooo nl 2 ne I(a(k—1)+0b)
1 E+1 T 1 e ok (a=b)T 1
= lim n(“—b),z(i) (n+14ak+0b) Z .n (n+ 14 ak +b)
n—o0 2 na I'(n+1)T(ak+b) 4= T(ak+0) A nak+DT (n 4 1)

Finally, lim,, s n<a;<>kr Jr(g‘ltz:flf; b — lim,, o0 % ak+b — 1 and we arrive again at the defining
infinite series (1).
9 The integral I,;(z)
We will study properties of the integral I, ( fo NG +au) du in (2), which is the “continuous-sum”

Sk

variant of the Mittag-Leffler function E, (2 ) = 1o F(b+ak).

56. Complex argument z. For z = re', the integral in (2),
o) u ,10u
Iop (7“619> —/ LA
’ 0 (b + au)
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is split up in a real and imaginary part, assuming that a and b are real, as

- b cosOu o r*sinfu
Las (Tew) - /0 b+ au) du+ 1/0 b+ au) du
which illustrates that I, (rew) is only real if # = 0, i.e. only when z is a real non-negative number.
In contrast, the definition (1) of the Mittag-Leffler function E,j (2),
: > eth0 = rkcos kO 2. rksin k6
Eap (Tew) - kz T (b+ ak) z;) T (b+ ak) “z;) T (b+ ak)
demonstrates that (reie) is real along the entire real axis, because sin 6§ = 0 for § = mx for m € Z.
The point z = 0 is a singularity as shown in art. 62 below. For » > 0, both integrals exists and I, (2)
is thus defined along the negative real z-axis, where z" has a branch cut. Both integrals decrease in
0 for positive ¢ and b and demonstrate that ‘Ia,b (rewﬂ decreases with 6 > 0. Hence, we find that
‘Ia,b (rew)‘ < Iqp (r) and that limg_,o L4 p (rew) = 0, and that I, (2) is multi-valued function, which
necessitates, just as for the logarithm, to limit the argument 6 of z to the usual range [0, 27| or [—7, 7].
Moreover, after substitution of ¢ = Qu for 6 £ 0,

shows that

. 1 .
Ioy (7"6’0) = EI%’b (r%ez)

Thus, the integral at any complex number z = re? with for § # 0 can be mapped to an evaluation

along the straight line with angle equal to 1 radius.

57. Functional relations of the integral I, (z). In contrast to the Mittag-Leffler function E,j (2), we
can scale the integral I, (z) easily by considering various (real) substitutions in (2). We consider a
linear transformation b+ au = 8+ av with a > 0 and o > 0. Thus, let u = ﬁ bia Svin (2), then

& z¥ a b [ za?
1, = ——du=—2 @ —d
»(2) /0 I'(b+ au) vms /b—aﬁ '8+ av) v

= gzH /OO 7(ZE) dv — /T 7Z%U dv
Ca o L'(B+av) o I (B+av)

Using the definition (2) leads to??

b=8 o,
a p=b a a Za
lop(2) = =21 (Ia’g (Z) _ /0 de) (133)

The simplest form of (133) arises for « =1 and 8 =0,
b—p

1\ vV
,—b oo <25>
@)= %

, . _B-b o L% . ) b8 = L
*Differentiating 2~ @ Iy (2) = < [oos T(3tan) dv with respect to b yields 4 (z a Iop (z)) = _%W’ which is

dv (134)

independent of o and leads to the linear differential equation in b, 4o,5(2) + "’%Llyb () = —

_1
db al'(b) *
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which, similarly to the Mittag-Leffler function E,} (2) and exhibited in the differential recursion (19)
in art. 6, illustrates the appearance of the natural w = 2% map, suggesting to consider I, (z*) rather

than I, (2). Indeed, the integral in (134) further looses the parameter a,

0o aud, Z—ab [e'S) evlogz
oy (2%) = = d
» () /0 T(b+tau a /,, T(v) "

If b > >0 and z = x is real and positive, then the integral in (133) is non-negative and

Inp (2) < %x$la,5 (x%>

el

1-b
Z7;” e*™ shown in art. 7. The situation

which bears resemblance to the last expression for £, (2) <

simplifies considerably when we choose 5 = b in (133),

(07 a
Ia,b (Z) = g a,b (Z“>

In particular, for ¢ > 0 and o = é, the map

I%vb (2) = a*I,, (za2> (135)

suggests a similar relation between E1 , () and Eqp () based on (64) and Bieberbach’s deductions

in art. 31.

58. Bounding I, (x) for positive real a,b and x. The integral in (134)
asza,b (Z) _ /00 e(logZ)y logT'(v) do — /00 e(logr)v log I'(v) igvdv
b b

can be bounded for real z = x using (172), resulting in

1
e 12b 1 log _
U26(7a +1)U vlogwv dv < CL.TbI

ﬁb N b \/%/

If a function f (x) is positive and increasing for all x € [a, b], the integral is bounded by the lower

1 logz
+1 v vlogv dv

and upper Riemann sum,
k+1
7 (k) </ f(@)de < f(k+1)
k

such that for integers n, N € [a,b], we obtain the inequalities

N N+1 N+1

Siw< [ fwde< 3 5w (136)
k=n n k=n+1

with the opposite inequality signs if f () is positive and decreasing. The integrand f (u) = F(%uau)
1

of Inp ( fo N b TOran) du attains a maximum around Upax & aa_b for b > 0. Indeed, the derivative

1 (u ) = b+au) (log z — at) (b + au)) vanishes when log z = at (b + au) and the expression (175) for
the digamma function indicates, for large z, that 1 (2) ~ log z. For negative real b, on the other hand,

there may exist more than one extremum. Applying (136) with N = |umax] yields, for positive a,b

and x L | L |
Umax k Lumaxj‘i‘l u Umax | +1 k
P / LA . i
e~ T (b+ ak) 0 I'(b+ au) — T (b+ ak)
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and

AN / ——du > v
e L (b+ak) ™ Jjupee 41 L' (0+ au) bl |42 T (b+ ak)

We rewrite the latter inequalities as,

Lumaxj k \_umaxj +1
x T
Eop(x) > Iop (z) + Z T(b+ ak) —/0 F(idu

— b+ ak b+ au)
lumax ] +1 g lumax]+1 pltmax ] +1
=1.p (.%') + T N / du —
’ — T(b+ak) Jo I'(b+ au) ' (b+ a(|tumax] +1))

and use the former inequalities,
x\_umaxj‘i’l

(b+ a([umax] + 1))

Ea,b (:B) > Ia,b ($) - T

Analogously, we find
T Lumaxj +1

(0 +a(|umax] + 1))

Ea,b ($) < Ia,b (.1') + T

59. Differential recursion. Differentiating the integral I, (z) in (2) and using the functional equation
(146) of the Gamma function,

o) -1 au+b—2 o0 au+b—2
de—IIab(Za):/ (au+b )Z dU:/ z—du
dz ’ 0 I'(b+ au) o I'(b—1+au)

leads to a recursion equation in

d

el b—1 a _ b2 a
A M ap ()] = PP () (137)

which is precisely the same as for E, (.) in (19).

60. A complex integral representation for I,y (z). We start by concentrating on the integral

- 0o Zb—1+au
-1, 49 = —d
2 ap (%) /0 T(b+au) "

whose Laplace transform is

00 b1 o) oo Zb—1+au
L,y (s :/ {z I (2 }e_zsdz :/ e_zs/ ——dudz
b(8) ; b (z%) 0 o T (b+ au)

The reversal of the integrals is justified by absolute convergence,

< du o0 1 - ©  du T'(b+au)
La — o bt+au—1 28 > — /
b (s) /0 T 0+ an) /0 z edz= | Fhren s

00 Sib
— S_b e—aulog Sdu =
0 alogs

The inverse Laplace transform (193) returns a complex integral,

b1 1 c+1i00 e?s
-1 4 = —d 138
@ ap (1) 2mia /C_ioo stlog s ° (138)
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where ¢ > 1 because L, (s) is only analytic for Re (s) > 1 due to the pole at s = 1. After replacing
2% by z in (138) and combining with the definition (2), we obtain

00 gulogz L2t petico eus
Iy (2) = /0 Tt an) du = mia ). mds c>1 (139)

a. For Re (z%) < 0, the contour in (139) can be closed over the positive Re (s)-plane, in which the
integrand is analytic and®* I, () = 0. Let z = re? with @ = arg z € [—, ] and recalling that a > 0,
then Re (Zé> =ra cosg and Re <z5> < 0 requires that cosg < 0, which is equivalent to § < %9 <m
or It < |arg z| < ma. The latter condition, combined with 0 < |arg z| < 7 is only possible if 0 < a < 2.
If 1 <a < 2, then the combined condition means that § < |argz| < 7 or that Re(z) < 0. Only if
0 < a < 3, then the combined condition means that Z < |argz| < Z% or that Re(z) > 0, while for
3 <a <1, Re(z) can be either sign.

b. For Re <z%> > 0, we close the contour in (139) over the negative Re (s)-plane around the
branch cut of s®In (s), which is the negative real axis. Thus, we consider the contour C' that consists
of the line at ¢ > 1, the quarter of a circle with infinite radius from § to 7 — ¢, the line segment above
the real negative axis from minus infinity to s = 0, the circle around the origin s = 0 from m — ¢
back to —m — & with radius J, the line segment below the real negative axis from s = 0 towards minus
infinity, the quarter circle with infinite r?dius back to close the contour C. This contour encloses the

ezas(sfl)

sblns

1
1 e**® L
5= | Gioods=¢e"
2mi Jo s°lns

while the evaluation of the contour C' yields

1
pole at s = 1, whose residue is lim,_,q = ¢*“. Cauchy’s Residue Theorem [47] results in

1

zas 0 g i(m—e) 0o —zz i(—m—¢)
1/ e ds:azballa’b(z)—kl,/ e d(e x) n 1 / e d(e a:)
0

270 Jo sPIns 270 Joo abet(m=€) In (zei(m—e)) 2mi abet(=7=¢) In (zet-7

_5))
since the parts of C' along the circles vanish for Re (z) > 0, but for 6 — 0 only provided Re (b) < 1.

Hence, we obtain

1
1 1 1 o] e—zEa7 6ib7r e—ibw
az o Iop(2) =€ + — — — — | dz
ab (2) 2mi Jo  ab (1113: —ir Inz+ir
. . ibm —ibm  sinbm b " .
Finally, with % - % = 2%1% and the definition (2), we arrive, for Re (b) <1 and

Re <z%> >0, at

1
[e'e) u % 1 o0 —zagxg sinb7r1 + b
Ia,b(z):/ F T gu=2 ) +/ ¢ ( n DT TR ”) dz (140)
0 0

b+ au) a b 72 4 (Inz)?

24Hence, for Re (z%) = Re (e% logz) < 0, it holds that

oo gulogrgiuf P8 [0 ewiET ilw=b§ rh et {cos (§ (w—1b)) +isin (7 (w—1))}
0= - du= — —_—aun = — dw
o T (b+au) a J, I (w) a J, I (w)
implying that

0 5 sin (£ (w-1))

L echorSég)(w_b)) w=[" — T (w) dw=0
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while, for Re (:ﬁ) < 0, it holds that I, (2) = 0. Expression (140) is obviously related to Bierberbach’s

integral in art. 31, written as

= 1 11 ¢ te
Ea,b (Z) = Za e*t + 27”,2:// (Z()t)edt (141)
z

For b = 1, (140) simplifies to

1

1 o —zax
Ini(z)=—-<€e" — / c dx
a 0 x <7r2 + (In x)Q)

Q=

where [ w(?(ﬁ))dm is increasing?® in Re()\) > 0 from 0 to 1. Hence, for Re (z%) > 0, the

following lower and upper bound hold,

1
_5<I“’1(z)<

Q=

z

o e

SHE

1
a
1 1
With « = 8 =11in (133) and I ; <23> from (140), we find for Re <25> > 0,

1=b 0o s b1 (24 !
= % zax (Z )
Iy (2) = /0 x )2> dx — /0 T () dz

+ (Inz

Comparison with (140) indicates, for b < 1 and Re (z) > 0, that?¢
00 ,—zx [ sinbm | + b ) —zT b—1 v
/ eb “lnx COQSﬂ' d:z:—/ e dx—/ z do
o 72 + (Inx) 0 (7?2 + (In :17)2> o T'((v+1)

61. Another complex integral representation for I,p(z). Another complex integral follows directly

from Hankel’s contour (178) as

1 (9]
Ia b ( ) T / w—bewdw / e—u(alog w—log z)du
™ Jo 0

Only if Re (alogw — log z) > 0, which is equivalent to Re (log %a) = log ‘w?a‘ > 0 and ‘”“"7“} > 1, then

1 ! wte d ith « 142
= — _— > a
wb (2) 2mi /C alogw —log z v with Jw] >z (142)

1
where the constraint |w| > |z|« requires to deform the contour C' (as explained in art. 30). The

contour integral (142) bears a resemblance to the basic complex integral (67) for £, (2), whereas the

#Indeed (see [50, p.73]),

oo — Az oo — et oo
/ e—2dx = / %dt = / % =1
0 :c(7r2+(lnnc)) oo T2 F oo T2

—zx

26Differentiating with respect to b, F(b = fo W jb (:c_b (% Inz + cos bﬂ')) dx leads, using the reflection

b—1
__ sinbw oo —zz —b sinbr I'(1-b)
e dr = 4

formula (161), to an identity 2 RO P s
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above integral (139) is closer to the Mittag-LefHler integral (71), although a formal substitution s = “-

n (142) leads to

1—b 1—b 1
e s a lelzs)a

I d
ab(2) = 2mia Jor log s y

62. A series for 1, (z). The Taylor series of I, (2) around z = ¢ equals

(z—¢)"

1 dki,
Lop (2) +Z e lap (2)
2=¢

where the derivative for real a > 0

e 1 (Cu(u—1). . (u— k1)
I A A A

1/00 ( T (u+1)¢"

dkfa’b (Z)
dzk

- ¢k Jo T(u—k+1)T(b+ au)
converges for all k, except when ¢ = 0. Hence, in contrast to Eq (z), the function I, (2) is not entire
and has an essential singularity at z = 0, where none of the derivatives exists. Since dI“C’l’;(Z) >0
zZ=T

for positive real  and a,b, the function I, (z) increases for all z > 0.

We expand the integrand of the integral I, (2), defined in (2), in a Taylor series around b,

which converges for all 4 and b, and obtain

o Z¥ “a A1 o
Iop (2) = = du= - T w e HU=182) gy
»(2) /0 I'(b+ au) ]Z:O jl dy? F(y)‘y:b/o

Only if Re (logz) < 0 or 0 < |z| < 1, then we arrive at

. <_loz,z)j (143)

< 1. Indeed, alternatively, after p-times repeated partial

1 a1
Lipy(2)=—— ) ———
»(2) 1ogz]z%dyﬂr<y)

a
log =z

a j+ a P/oodp 1
y=b log z log z o dyPT (y)

< 1, then repeated partial

but this series only converges when

integration, we obtain

1 2w

gz 2 4T

2% du
y=b+au

Ia,b (Z) ==

where the last integral exists for all p and z. Thus, if p — oo and ‘10 =

integration again produces (143). The series (143) indicates that I, (0) = 0.
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10 Epilogue

Driven by the surge in fractional analysis [30], the Mittag-Leffler function E,; (2), called by Mainardi
[29] the “Queen Function of the Fractional Calculus”, gains increasing interest. I will end this work
by enumerating some open problems. Although results [58] exist, the determination of the zeros of
Eqp (2) in the complex plane still stands on the agenda. Indeed, Weierstrass’s entire function theory
[47] shows that any entire function can be represented as a product form that contains all the zeros
and such a product form for £, ; (z) has not been found yet. A general Lagrange series for G ( 1 (z)),
thus a function G (z) of the inverse function f~!(z) of the function f (z), in terms of characteristic
coefficients (art. 9), is available (see e.g. [53, art. 342], [49, Appendix A]). Thus, the zero most close
to a point zp in the complex plane can be approximated accurately, if the Taylor coefficients of f (z)
around zg are known or easily computable. Related to this root-locus problem is the study of the
inverse function, which is the solution z = Ea_; (w) of w = E, 4 (2). Mainly numerical computations

of the inverse Mittag-Leffler function exist (see e.g. [26]), but few analytic results.

63. The Garrappa-Popolizio conjecture®”. For any complex number z, the Garrappa-Popolizio con-

jecture claims the truth of the two inequalities
|Eap (2)] < Eqp (Rez) for0<a<landa<b (144)

and
|Eap (2)] > Eqp (Rez) fora>1anda>b (145)

The inequality (145) is true for a = b = 1, namely equality in (145) holds because |e*| = ’e””y‘ =
e® = eRe?. Roberto Garrappa has informed?® me that inequalities (144) and (145) were verified by a
huge number of computations for a wide range of the parameters a and b, but a proof of (144) and

(145) is still missing.
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very stimulating discussions. After the submission of the first version on arXiv:2005.13330, they have
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A The Gamma function I'(z)

We review properties of the Gamma function. Besides the basic functions [23, Chapter IX and X]
like the exponential, logarithm, circular or trigonometric functions (as sinus, cosinus, tangens, etc.),
the Gamma function is the next important complex function. Nearly all books on complex function
theory [11, 13, 31, 44, 47, 55] treat the Gamma function.

The Gamma function I' (z) is an extension of the factorial n! = 1.2.3...n in the integers n > 1 to

complex numbers z. The factorial obeys
n!=n(n—1)!

which directly generalizes to the functional equation Il (z) = 2II (z — 1) with n! = II (n) and I (0) = 1,
in the notation of Gauss in his truly impressive manuscript [16, p. 146]. Later in 1814, Legendre
defined the Gamma function by its current notation I' (z) = II(z — 1), with I'(1) = 1, and the

functional equation I (z) = 2II (z — 1) translates to the Gamma function I" (z) as
I'(z+1)=2I(2) (146)

The first step in the theory of the Gamma function consists of finding a solution of the functional

equation (146). Euler has proposed his famous integral
I'(z) = / et at for Re(z) > 0 (147)
0

Partial integration of (147) shows that Euler’s integral (147) obeys the functional equation (146) and
(1) = [;°e 'dt = 1. However, since Euler’s integral is only valid for Re (z) > 0, other ingenious
methods have been devised that are valid for all complex numbers z.

In his beautiful book on the Gamma function [36], Nielsen cites the historic achievements and
reviews most contributions before 1906. Nielsen [36] starts his book with the functional equation
(146) of the Gamma function and immediately remarks that any solution can be multiplied by a
periodic function w(z) = w(z+ 1) with period 1. Next, Nielsen [36] concentrates on the digamma
function, which is the logarithmic derivative ¢ (z) = di logT'(z) and the functional equation (146)

v4
tells us that

1
11)(7:—1-1):1[1(2)—1—; (148)
After n iterations,
n—1 1
Vv -3
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_1
z+k*

However, the latter series does not converge??, implying that lim, ,o % (2 +n) = oco. Nielsen then

and taking the limit n — oo, we formally obtain ¢ (z) = lim, 0¥ (z + 1) — liMy 0 D g

applies Weierstrass’s factorization theory for entire functions [47] and deduces Weierstrass’s product,

1 = z

= [ (1 ) e 149

I(z+1) ¢ H ( + n) ° (149)
n=1

which we will derive from Gauss’s product (156) in art. 64. Weierstrass created his magnificent

theory for entire functions, a pearl of complex function theory, inspired by Gauss’s product (156) and

Gauss’s remark on factorization in [16, p. 146].

A.1 Gauss’s approach

Iterating the functional equation (146) n-times gives I' (2) = %, but purely iterating (146)

for non-integer values is not successful. Therefore, Gauss [16, p. 144] proposes to consider the more

general form

I (k) I (2) 1 2 3 k
I (k,2) = ke = K 150
e T G+ (z+2) (z+3) " (z+ k) (150)
which satisfies (41)
z
(k,z4+1) =11(k, 2) ——F~ 151
(k=) =11 2) o ey (151)
as well as "
()
H(k+1,2)=1(kz)~—F* 152
(o 1,2) =T ) o (152)
Iterating (152), with I1(1,2) = lerl’ results in
- (k Z) - 1 2z+1 334—1 kz+1 _ 1 ﬁ nz+1 (153)
T2 H12+2)22°B+2) (k-1 (ktz) 24110 (n-1)7(n+2)
1 z+1
The interesting observation from limy_, ., % = 1 in (152) is that limg_,oo I (k,z) exist for
k

all z, which Gauss demonstrates after taking the logarithm of both sides, while the first functional
equation (151) indicates that limg_,, IT (k, z) satisfies the functional equation IT (z 4+ 1) = (2 +1)II ().
Combining both, Gauss is led to

0 (k) I1(2)

II = lim Il (k,2) = 1i k* 154
B = B ) = I ) (154
which is equivalent with ' (z + 1) =TI (2) to
KO(2) . Kkl

T =lim ———k* =1
R (T W Lty oo s ey popry

29Tndeed,

no n

~ 1 1 1 1
kzzoz+k_2+zk:(1+§)+ 2 k(1+%)

k=1 k=1+ng

1

We can choose ng > ||, so that 0 < |1+ £| < 2 and > k=1tno Y
7

1 n 1 .
> 52 h—1ing k — 0O, because the harmonic

series _)'_, ¢ diverges for n — oo.
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Rewriting Gauss’s definition in (154) as I' (z) = limg_, o IT (k, 2 — 1) and introducing (153) yields

k—1
1 n .1 (n+1)*
(2) hvoo 2 r:!:l (n—1)""1¢( —1) froo 2 };Il n*~1(n+ z2)

Finally?°, we arrive at Gauss’s infinite product3! for the Gamma function

F(z)_iﬁ<1+i>z<1+2)_l (156)

which converges for all complex z, except for the integers at z = 0,—1,—2,..., at which I'(z) has
simples poles. The inverse of the product (156) shows that ﬁ is an entire function and that I"(z)
has no zeros in the finite complex plane.

Of course, the proposal of (150) by Gauss was crucial towards his elegant product (156). Gauss
posited (150) without providing intuition. Perhaps the most convincing argument for Gauss’s starting
point (150) is given by Klein [27, p. 71], who gives three definitions of the Gamma function, of which
the third is also discussed by Gauss himself [16, p. 151]. Klein [27, p. 74] starts from the Beta-integral,
studied by Euler and valid for Re (2) > 0 and Re (¢g) > 0,

Py 1
B(zq) = w _ /0 w1 (1 u)? dy (157)

v

for ¢ = k + 1 and makes the substitution u = ,

B(z,k—i—l):/o 11w du=k" / 1—3) dv

Using limy_,0 (1 — %)’“ = ¢~ and Euler’s integral (147), Klein [27, p. 74] arrives for Re (2) > 0 at

© . . F'z)r'(k+1)
T — z=1,-v =1 B 1)) = lim e
(Z) /0 v e "dv kgl;o <k (Z, k+ )) klﬁoo (k T (Z + k+ 1)

which is Gauss’s definition (154). In contrast to Euler’s integral (147) for Re(z) > 0, the functional
equation (152) is valid for all z and so is Gauss’s product (156).

30Gauss proceeds further in [16, p. 148] and derives the reflection formula from his classical result [1, 15.1.20] for the

hypergeometric series at z = 1, for ¢ # —k (k integer) and Re(c — a — b) > 0,

T'(e)l'(c—a—1b) T'(b+n)
F(a,b;c;1) = 155
( ) I'(c—a)l'(c—b) F(a F (b) 4 Z c+n n! (155)

He also deduces his multiplication formula, compares his theory with Stirling and Euler’s logarithmic expansion in
terms of Bernoulli numbers, studies the digamma function, derives his fractional argument digamma function, deduces an
integral for the digamma function and complements Euler’s computations. In short, an amazing sequence of beautifully
derived deep results that constitute our current basis of the Gamma function. In line with his genius, Gauss even laid

the basis of prime factors of an entire function of which Weierstass has given the functional theory [47, Chapter VIII].
31Both Klein [27, p. 74] and Whittaker and Watson [55, p. 237] mention that Euler has given (156) in a letter to
Goldbach in 1729, but that Gauss has provided the first rigorous analysis in [16].
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A.2 Deductions from Gauss’s product (156) for I'(z)

64. Weierstrass’s product. Weierstrass’s product (149) can be obtained from Gauss’s definition
I'(z4+1) = limg00 I (k, z). Following Erdélyi et al. [11, p. 2], Gauss’s definition of the Gamma
function can be written, with (150), as
1 z z z
= dim (12) (14 2) (14 2) (14 2 ) emtow
Tern  am ) (I+3)(1+3 TE)e
= lim (14 2)e”? (1 + i) e 3 (1 + g) 3., (1 + %) et er(Xna w-logk)

k—o00

k
H (1 + )e n hm * (X1 7 —logk)

k—o0

Introducing®? Euler’s constant [1, 6.1.3]

k
1
v = lim ( g — —log k) =0.57721... (158)
n

k—
o n=1

leads to Weierstrass’s product (149) which illustrates that Euler’s constant - plays a fundamental role
in the theory of the Gamma function.
Whittacker and Watson [55, p. 235] elegantly demonstrate that the limit in (158) exists. They

define .
t 1 1
un:/ 7dt:——logn+
o n(n+t) n n
Withz Tlog ”+1—Zﬁ;lllog(n—i—l)—Zfl;lllogn:log(k:) and
k k
1 1 n+1 k41
— —logk = — -1 1 159
S lomk= 7 (1 —tos™ ) s (159)
i 1
= n+1 14+ —
nZ::lu +og< —i—k)

an alternative representation of Euler’s constant (158) is obtained as v = > | u,. Since 0 < u,, =

Jo aebrdt < fy dt = & and 02, & = ¢ (2 ):”—2:164493 it holds that 0 < v < =

n+1 d:): n+1

The bounds can be sharpened by the inequality - +1 < f = log ™ % for any n > 0.

Indeed, since 1 —log 21 > 0, the identity (159) provides the lower bound
n ?’L

k k
1 1 n+1 k+1

E — —logk=1-1og2 E ——1 log—— > 1 —log2 = 0.30683
- og og +n2(n og o >+ A og

n=1
Similarly, rewriting the identity (159) and using log ™I ntl _ 1 7471 > 0 gives us the upper bound

k

k k— -1
Zi—logkzl%—nz:: zzl n+1 <lognzl—n}r1>

n=1 1

N

3
Il

<1- <10g2 - > = (0.80683

32Gauss [16, 154, footnote] gives the Euler-Mascheroni constant v up to 40 decimals accurate. Gauss provided the
method (i.e. the power series of the digamma function ¥ (z)) and Fredericus Bernhardus Gothofredus Nicolai has
performed the computation. Whittaker and Watson [55, p. 235] mention that J. C. Adams computed v up to 260

decimals accurate.

78



In summary, we find 1 —log2 < v < % —log 2. Sharper bounds follows from Poisson’s integral (175)
in art. 68.

65. Reflection formula. Gauss [16, p. 148] derives the reflection formula for the Gamma function via
his contiguous relations of the hypergeometric function, that, for specific parameters, reduce to the

sinus function. Gauss then finds the infinite product of the sinus function [1, 4.3.89]

sin (7z) = mH <1 - ) (160)

Reversely, if we consider the infinite product (160) as known33, then it follows from Gauss’s infinite
product (156) for I' (z) that

ot - l(-3)--4

which establishes the reflection formula [1, 6.1.17] of the Gamma function, valid for all z,

™

[(z)0(1-2)= (161)

sin Tz
For example, if z = %, then the reflection formula (161) shows that T' (%) = /7.

66. Multiplication formula. Gauss [16, p. 149] derives his elegant®* multiplication formula [1, 6.1.20]

n—1
T (nz) = (2m)207) a3 HI‘ <z + i) (162)

k=0
as follows. Gauss observes that
nz Tn—1 j
n Hj:o II (k:,z - %) B (TC'(k+1)" (163)
II (nk,nz) B (n1)
’ F'(nk+1)k 2

does not depend on z. However, he does not give the derivation of (163), but we do. Multiplying the
Gauss factors (150),

=0 H(k—i—z—%)

R G
= (IL(k))" K"k ZJ”HH< Py
j=0 L\ # ~n

%3 After integration of the Taylor series of 7 cot (rz) = L —23"°° | ¢ (2n) 2>, valid for |z| < 1, leading to log =

sm(ﬂ'z)
23, 6(22:) 2®", in which the Zeta functions ¢ (2n) = 372, =, one deduces that
™ = 1 fz\2m = z?
I = — (—) - 1 11— =—
o8 sin (7x) Zzn k ; 0g< k2>

from which (160) follows. Although derived under the restriction |z| < 1, (160) can be shown to hold for any complex x.
34Gauss writes “Unde habemus theorema elegans”.
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and, changing the notation Il (z) =I'(z + 1) and with Z;L;llj = @, we have

,y ol I’(z—i—l—%)
jﬂf(z+k+1—%)

H 1 < z— > = (I'(k+ 1))nk,nzk_<ng

Introducing Gauss’s infinite product (156) yields

ﬁ (nm +nz+nk+n —j)
(nm+nz+n—j)

ﬁﬁ (nm +nz+nk+1)
m1m+1nkm 0l=1 nm—l—nz+l)

I T (1)

(m+1)"™ 520

Because » = nm + [ runs over all integers, we observe that

ﬁn<k’,2_i) = (T (k1) ko ﬁ ”kH( T+”2>

7=0 m= 1
Gauss divides H;:ol II (k z— 7> by II (nk,nz), which equals

I (nk + nz) (nk‘+nz+ 1)

a m +nz +nk
=n"?k™T (nk+1
n (nk + )Hl(m+1nkH m 4+ nz

nZ LA (nk+ 1) H nk’ H ( r+nz>

resulting in (163) and demonstrating that the left-hand side of (163) is independent of z. As follows
from the Gauss factors (150), II (k,0) = II (nk,0) = 1 and the choice of z = 0 in the left-hand side of

(163) is
nh? H;l:—& 11 (k’, 2 — %) n—1 e ]
II (nk, nz) N H ( ’_n>

After taking the limit of & — oo of both sides, the definition I (2) =T (2 + 1) = limy_, o, I1 (k, 2) leads

to
nan 11’*(z+1_%> n—1 .
=TIr (-2
I'(nz+1) i n
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Letlzn—j,thenH?ZfF(l—%):H" 1F( ) [ llF( ) so that

n—1 ] 2 n—1 ] ] n—1 . ﬂ_nfl
jl:Il < n> H ( n> (n) ;l:[ sind T2 ! sin m

1 Jj=1

where the reflection formula (161) has been invoked. Using Euler’s formula3®

n—1

k
sing = 271 H sin (rk +z) (164)
n
k=0

for x — 0 gives [[;_; sm”—k

L
T(nz+1)=(2r) "7 "Z+2Hr<z+>

that equals (162), because [[f_;I' (2 + £) =T' (2 + 1) | =gy (z4+5) ==z [T (z+ &),

67. Gauss’s integral for the digamma function. We will demonstrate Gauss’s integral [?, p. 160,

formula [78]Gauss1813
¥ (2) = L 10gT (2) = / R P (165)
T4 B —Jo t 1—et

Instead of following Gauss’s deduction, a more elegant derivation [55, p. 247] is obtained from Weier-

strass’s infinite product (149). The logarithm of Weierstrass’s infinite product (149) is

o0
z z
—logT(z+1) =yz+ (1 (1+f)—f)
ogT(z+1) =72z 3:1 og )=

and differentiation yields

d > 1 1 > 1
1)=—logl 1)=—v— —-—)=- ——
Bl = el G == 3 () = v Y

from which v (1) = —y. The functional equation (148) of ¥ (z) then shows that

e Loy (] (166)
z)=—y——— lim - =
7 Z koo s\ Z +n n
The polygamma functions, defined as ¢ (z) = % with 49 (2) = (2), follow immediately
from (166) as [1, 6.4.10]
- 1
() = (1SS L )
¥ (=) = (-1) nkzo@”f)"“ (167)
Substituting [ e —ttn) gt — H%, valid for Re (t) > 0, into (166) yields
R ot - t
1/}(2):y/ e *dt — lim e -1 e ""dt
0 k—o00 0 ( );

35The polynomial z™ — 1 has as zeros the n-th roots of unity, z* —1 = (z — 1) Z;ll (1 —z efy) Choosing z = e

leads, after some manipulations, to (164).
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With ZI:L:1 et = e7tl=¢ " we have

1 e*t M

oo (p,—t _ ,—t(z+1) _ —kt
/ tar s tm [ 2(1 )
k—o0 0 1—e¢ t

—t _ —t(z+1 _ -t
_tzdt + /OO L(Z)dt — lim = ue—(lﬁ-l)tdt
1—et k—oo Jo 1—et

and t t ( t2)
00 o=t _ otz 00 (1 — ¢ t?
— _ vz li A= " —(k+1)t
v () 7+/0 1—et dt+kfolo o 1—et c dt
z _eftz _eftz
Since fo 1 - t) _(k“)tdt‘ < I (11_6_)' ~(HDt gt < maxyso (11 e—t) ﬁ — 0 for large k,

(l—e_tz)

1—et

is bounded for ¢ > 0, we arrive at

[ee) eft _ eftz
¥ (2) = —’Y+/O = #

because the function

Similarly as above, we rewrite Euler’s constant 7 in (158) by invoking again % = fooo e stdt for

Re (t) > 0 and by using logz = [’ %ds = [7 [T e tdtds = [;° e gt
k
1 00 1 —kt oo ,—t _ ,—kt
S = —logh = / e‘tdt/ €T
—t n 0 1—e 0 t

0 1 1 00 —t 1
:/ iy e tdt —/ € — 2 e Mat
0 1—e t 0 1-— €7t t

The generating function of the Bernoulli numbers, written as

1 1 1 0 t2n71
— - -4 232” o for |t| <2m (168)

shows that 13;; — % is continuous at ¢t = 0 and bounded for ¢ > 0, leading for £ — oo to
o 1 1 ‘
= ——|etdt 169
gl /0 (1 — = t) e (169)

68. Stirling’s asymptotic formula. Inspired by the Bernoulli generating function (168), we rewrite

and to Gauss’s integral (165).

Gauss’s integral (165) for z — z + 1,
di;logl"(z—i- 1) = /OOO <ett - efi) dt
_ /0°° <e—t_te—zt N 6—2zt e <6t11 _1_{_;)) dt
logz—i-;Z—/Oooe_Zt ((3'51—1_14_;) dt

Since 0 < ﬁ - % + % < % is bounded for ¢ > 0 and continuous at ¢ = 0, the last integral is

uniformly convergent for Re (z) > 0 and, hence, can be integrated from 1 to z,

1 0 et et 1 1 1
logF(z+1):zlogz—z+1+210gz+/ ¢ ¢ (t —+>dt
0 (&
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With the functional equation (146), we find

1 00 o=zt /] 1 1 0ot /] 11
logT (2) = (2—=)logz—2+1 S I P A dt
og () (z >0gz “t +/0 : (et—l t+2> /0 ¢ <et—1 i )

The last integral can be evaluated [55, p. 249] as 1 — %log (27) and we arrive at Binet’s first integral
for Re(z) > 0,

1 1 o0 gt 1 1 1
logT' (2) = (z — 2) logz — z+ B log (27) +/O ; <et — 3 2) dt (170)
We observe from (170) that
00 g7t 1 1 1 1 1 1 1\|1 By 1
-+ )dt| <max|- (| —— -+ )| - =" = 5=
0 t ete—1 ¢t 2 >0 [t \et—=1 ¢t 2/)|z 2z 12z
so that, for any Re (z) > 0, a sharp upper bound is found,
log T ()] < L), + Liog (21) 4+ (171)
ogl'(2)] < ||z =5 ) logz — 2| + 5 log (27) + 15—

In particular, the integral in (170) is positive for positive real = > 0, leading to the bounds

1 1 1 1
(:c - 2> logz —x + ilog (2m) <logT (z) < (x - 2> logz —z + — 10g(27r) + 92 (172)

Invoking the generating function of the Bernoulli numbers (168) in (170), ignoring the restriction

|t| < 2m, yields Stirling’s approximation [1, 6.1.40],

1 1 = B2n
logT' (2) = (z— 2) logz — 2+ Qlog (2m) +nz: (173)

— 2n(2n —1) 2?1

1 1 1 1 |
—(2—-)logz— log (21) + — — ——+ 0 [ =
('Z )ng 2 glosm+ s — gt <z5>

By substituting the partial fraction expansion % (et%l — % + %) =3, t2+47r2n2 in (170),

1 > —zt = 1
10gr(z):<z>logzz+ log(27r)+2/0 e ;Wdt

and changing the integration variable,

[eS) —zt 1 © g © —2wnzu
/ ‘“th ot / o a= [T e
0 + 47m2n +(55) ) (27n) TJo 1+u n

n=1

C>Odu

- log (1 —
27r0 1+u20g( c

—27rzu)

we find, after partial integration, Binet’s second form [55, p. 251],[44, p. 217],

1 1 °° arctant
logl(z) = (z - 2> logz — 2z + 3 log (27) + 22/0 mdt (174)

&9 ( n" t2n+1
n=0 2n+1

valid for \t\ <1, reversing the integral and summation while ignoring the restriction [¢| < 1, leads,
with B, = )" [ t;:t 11 dt for n > 1, again to Stirling’s approximation (173).

Substituting in Binet’s second form (174), the Taylor series arctant = around t = 0,
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Titchmarsh [47, p. 151] gives a third form
oo 1
logT' (2) = (z — ;) logz — z + %bg (2m) + /0 [t]t__z:th
where [t] is the nearest integer smaller than or equal to t. Blagouchine [8] gives seven series for
logT" (z). Edwards [9, p. 106-114] derives the Stirling approximation (173) for logII (z) = logI' (z + 1)
by Euler-Maclaurin summation (60).
Differentiating Binet’s second form (174) results in a companion of Gauss’s integral (165) for the

digamma function,

1 o t dt 1 o t dt
=1 - — =2 —_— =1 - — =2 - 175
1/}(2) ogz 22 /0 627rtz_11+t2 08 % 2z /0 e2m 1 22 442 ( )
from which we find that Euler’s Conlstant vy=—-1¢(1) = %—1—2 I ezﬂ’i il th > 2 Since [ ezwﬁ 1 1%2 <
I 76233131 and T (s) ¢ (s) = [° cd ‘ft, an upper bound follows as v < 5 + @ 2C( ) = 0.5833.

69. Asymptotic behavior of logI' (z). For large r and 6 # , Stirling’s formula (173) shows that
log I’ (b + rei9> = (b + ret? — ;) log (b + rei9> —b—re + %log (2m) + O <i>
With
log (b + rew) = log (rew (1 + r_le_wb)) = logre? + log <1 + r_le_i0b>

=logr +i6 + r~ ey 4+ 0 (;)

we have

logT’ (b + rew) = (b +ret? — ;) logr + 16 (b + re'? — ;) + (br‘l + e — ;r_1> e

—b—re? + %log (2m)+ O <i>

= (b — % + rcos@) logr — 6 (rsinf) — rcosf + %log (2m)
+i{rlnrsin9+ <b — % +rcos«9> 0— rsin@} +0 (i)
Thus,
r (b n rew) /e 108(r)—1) cos 0—6r sin 6+ (-1 ) 1og(r) i (r (log(r)— 1) sin 6-+70 cos 6+ (b— 5 )6) (1 L0 (i))

from which
’F <b + rew)’ — T,bféer(log(r)fl) cos0—0rsin 6 <1 +0 <1>
r

1 b
1 - _ T2 e—r(ln(r)—l)c059+9rsin9 < ( )> (176)
3

Hence, it holds that

T (b+re?)| +/2r

illustrating that lim, . ereie)’ =0 for =5 < 0 < 5. However, if § = 7, then in contrast an
exponential increase in r is witnessed,
1 rzb 1
= m(1+40(=)). 177
rose = v (1o (7)) 1o
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A.3 Complex integrals for the Gamma function

70. Hankel’s integral. We derive Hankel’s integral

1 1
—z_w 1
) =95 Z,/Cw e"dw (178)

where the contour C' starts at —oo below the real axis, encircles the origin at z = 0 and returns above

the negative real axis again to —oo. Such a contour around the branch-cut (here the negative real
axis) is “classical” in integrals containing w® such as Mellin transforms [46]. If ¢ is the radius of a
circle at the origin, then evaluation of the integral along the contour C' yields

/ wFe¥dw = —/ (:ce_”)iz e *dx + 7,/ (66”) - = ce®do — / (xe”)fz e *dx
C e

_ (eirrz o 677;772) / e Tdxr + iElZ/ eiﬁ(lfz)eseiedg
3 —T
If Re (1 — z) > 0, then we take the limit ¢ — 0 and find with Euler’s integral (147)

o0
/ w™*e"’dw = 2isin 71'2/ ' e e = 2isin w2l (1 — 2)
C 0

After replacing z by 1 — z, we obtain a contour integral for the Gamma function,

T 1

r _ - z—1 w 179
(2) sinmz 2w Jo woeaw (179)
The reflection formula (161), I (2) I' (1 — 2) = —, of the Gamma function leads to Hankel’s contour

integral (178). Although the derivation was restricted to Re (z) > 0 in (179), by analytic continuation
(see e.g. [47, Chapter IV],[13, Chapter III]), (178) as well as (179) hold for all z € C. The contour
integral (179) for the Gamma function demonstrates that I' (z) has simple poles at z = —n for each
integer n (due to sinmz), in agreement with Gauss’s product (156).

We can deform3% the contour C' into Cy by tilting the straight line above the negative real axis
over an angle ¢ and the straight line below the negative real axis over an angle —¢. Indeed, consider
the contour L consisting of the contour C, the circle segment at infinity from the angle 7 to the angle
®, followed by the line w = re’®, where r ranges from infinity towards p, the circle centered at w = 0
with radius p turning from angle ¢ towards —¢ and complemented by the line w = re~* and infinite
circle segment towards the begin of the contour C. The integral |’  w*edw = 0, because the contour
L encloses an analytic region of the function w™?e”. If ¢ > 7, then the part of L along the circle
1-2)if jre'

segment at infinity, lim, 4 ff r1=Zel df = 0. Hence, combining all contributions results in

1 1
— —ZeW 180
['(z) 2mi /c¢w o (180)

where the contour Cy starts at infinity on the straight line at the angle —% > ¢ > —7 below the real

axis until the circle at the origin with radius p that turns over the angle —¢ to ¢ until hitting the
line w = re’® along which it passes towards infinity again. The contour in (178) is the particular case

where C' = C and p = . Hankel’s integral in (180) can be written as

11
I'(z) 2mi

ctooet?® T
/ w e’ dw with ¢ > 0 and 5 < p<T (181)
C

—ooe~ 9

36The same deformation holds for the contour integral (179) as well.
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Since multiplying ¢’ = ac > 0 provided a > 0, the map w — aw for any real, positive number a yields

a1 1 ¢/ +ooet? T
= / w e dw with ¢ >0and - <o < (182)
['(z) 27 Jo_ooe—io 2

B Complex integrals due to Cauchy and Mellin

We evaluate integrals of a general kind.
71. A Cauchy-type integral.

f(rem)

Theorem 1 Let f(z) be an entire function, that is real on the real axis and lim,_, —=z+=0 for
0 =0 and 0 = 5. If o is a positive real number, then it holds that
Mdt =T f20) (183)
oo o F it o

Z(ggi)z) dz where the contour L is taken counter-clockwise

round the rectangle formed by the lines Im(z) = —T, Re(z) = a > 20, Im(z) = T and Re(z) = 0 > 0.

The contour L encloses the pole on the real axis at © = 20. Since the entire function f(z) is analytic
f(20)
20

Proof: Consider the integral I = ﬁ fL

inside and on L, the integral equals I = — . On the other hand, evaluating the integral I along

the contour L yields,

a o T .
[:i f(a: iT) | dac—l—i ‘f(a—f—zt) _
210 )y (x—iT)(20 —x +iT) 2 J_r (a+1it)(20 —a —it)
1 f(z +4T) g L T flo+it) ”
2mi ), (x+4T)(20 — x —iT) 2 J_p |o+it]?

Combined and rewritten leads to

o T fo+it) o (T fla+it)
sen =7 [ w2 | e aat
o a f(.T+ZT)
+E " Im [(eriT)(aniT)] de

Since lim,_, fz(f) =0 for 2 = re? with § = 0 and 0 = 5, the second and third integral vanish,

demonstrating the Theorem. O

72. Mellin transform of a product of Gamma functions. Let p1,po, ..., p, be different real, positive

numbers, then the Mellin transform

n

[IrG+m = [ w o (wlohez,) do (184)

j=1

has an inverse

1 ct+ioco T
g (u; {pj}1§j§n> = 27m/ 4 HF (s +pj)u’ds with ¢ >0 (185)
c—ico Sy
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which can be evaluated. The contour in (185) can be closed over the negative Re (s)-plane and encloses
the simple poles at s = —q; — p; for integers g; > 0 for 1 < j < n on the negative real axis. Cauchy’s

residue theorem [47] leads to

g(“?{pj}1§j§n> ZZ lim s+q]+p;)1“(8+pj) IT TG+pmu?

S—r— q] .
Jj=1¢;=0 m=1;m7#j

Iterating the functional equation (146) of the Gamma function (g; + 1)-times gives

: . U'(s+pj+q +1)(s+p;+q)
lim s+q;+pi)T'(s+p;)= lim J 1) J T4
o, BTG ) = G+ p F G- D T+ 0)
I'(1) _ (=¥
(=) (=g; +1) ... (1)  (q))!

Hence, we obtain

n > q] u‘]]+pj
g (U; {pj}lgjgn) > H I'(=gj + pm — pj)
Jj=1¢;=0 m=Lm#j
With the reflection formula (161)
m(—1)%

T (—a. ) —
(=4 +pm =) sinm (pm —pj) ' (1 4+ ¢ +pj — Pm)

we have

I r = ] (LY
U(=¢j +pm —pj) = .
ST (om = p) T (14 4+ pj — Pm)

an—1 (_1)(n—1)Qj

j—1 n
HsinW(pm—pj) H sin (pm — pj)
m=1 m=j+1
1
X )
HF (14 g +pj —pm) H I'1+q;+pj —pm)
m=1 m=j+1

we arrive at the series

n i—1 1 . 00 ng; X
(1)) w b (=) 4%
g (U; {pj}1<j<n) = Z Z n
o j=1 %5=0 (g;)! H T(14q;+pj — pm)
H sinm (pj — pm) H sinm (pm — py) q;): q; +Pj — Pm
m=j+1 m=1;m#j

(186)

b
with the convention that H fm=1lifb<a.
m=a

Examples If n = 1, then we retrieve the classical Mellin transform of the pair e and I (s),

o0
(_1)(]1 ult —u
g (u;p1) = ul -\
Z (q1)!

q1=0

=uPle
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If p; = % for 1 < j <n—1 as in Gauss’s multiplication formula (162) without j = 0 factor, then

(186), denoted as g <u; {%}K g 1> = hy, (u) reduces to
<j<n—

: (187)
j—1 n—j—1 Jj—1 —j—1
T Tsin (5 T sin(55) " (@0 (1 + g5+ H L(1+q— )
k=1 k=1 k=1 m=1

We briefly summarize the theory of the modified Bessel function K,(z), but strongly advise to
consult the monumental treatise of Watson [54]. The modified Bessel functions I, (2) and K, (z) are
defined [54, p. 77-78] as the two independent solutions of the modified Bessel differential equation

d?y dy
2 2, 2
=0
a2 g — (4
Both I, (z) and K, (z) are entire functions in v for z # 0 and analytic in z, except for a cut along the

negative real axis. The function I, (z) in z possesses the Taylor series

(1Z)V+2k
L 188
k'F (v+k+1) (188)
The modified Bessel functions K, (z) is defined as
v
Ku(2) = 5 (I ()~ 1 (2) (159)

clearly even in the order v, K, (z) = K_,(z) for all z # 0, with Taylor series

__ LY () LYV~ (7))
Ku(2) = 2sin7v ((22> kZ:O k!F(l4— v+Ek) (22> kZ:O k:!F(14—|— v+k) (190)

The Taylor series (190) shows that

hs (u) = QU%K%@\/@ (191)
On the other hand, the integral [41, eq. (28.73), p. 55], valid for Re(s) > 0 and Re (p) > 0,

L(s)T(s+p)=2 /OOO K, (2v7) 2575 da

is a special case of (184) and corresponds to kg (u) in (191) with p =1 and s — s + 3.

C Inverse Laplace transform

The Laplace transform for complex z is defined (see e.g. [46], [13, Chapter VII], [56]) as
o) = [ e (192)
0
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with the inverse transform,

c+i00
f(t) = — / p(2)etdz (193)

B Tm —100
where ¢ is the smallest real value of Re(z) for which the integral in (192) converges.

We evaluate the integral in (193) along the line z = ¢ + iw,

ft) = 1: /oo o(c+iw)e™ dw

—00

After writing the integrand in a real and an imaginary part,

ft) = ;: /00 {Re p(c+ iw) costw — Im (p(c + iw)) sintw} dw

tc 0

+ Z? {Re (¢(c + iw)) sintw + Im (¢(c + iw)) cos tw} dw
™ —0oQ

we find, after separating the real and imaginary part, that

f(t) = % ffooo {Re p(c + iw) costw — Im (¢ + iw) sin tw} dw
0= [ {Reyp(c+ iw)sintw + Im ¢(c + iw) cos tw} dw

On the other hand, it follows from (192) that

Rep(c+iw) = [ e f(t) coswtdt
Im (e +iw) = — [;% e~ f(t) sin wtdt

and that Re p(c + iw) costw and Im ¢(c + iw) sin tw are even in w. Likewise, Re (¢ + iw) sin tw and

Im (¢ + iw) costw are odd in w. Hence, we arrive at

(194)

f(t) = 67” JoT {Re ¢(c + iw) cos tw — Im (¢ + iw) sin tw} dw
7 Rep(c+ iw) sintwdw = [ Imp(c + iw) cos twdw = 0

The derivation is a corrected version of [3].
Berberan-Santos®” suggests to proceed a step further by defining f (t) = 0 for ¢ < 0. In that case,
it follows from (194) that

[e.9]
0= / {Re p(c+ iw) costw — Im ¢(c + iw) sin tw } dw fort <0
0
which leads, after replacing t — —t, to
oo o0
/ Re p(c + iw) cos twdw = —/ Im ¢(c + tw) sin twdw fort >0
0 0

The final resulting set of integral equations, subject to “f (¢) = 0 for ¢ < 0”, simplifies to

flt) = 22 Jo" Re(c + iw) cos twdw fort >0

™

flt)=— 2e'c fooo Im ¢(c + iw) sin twdw fort >0 (195)

™

75 Rep(c+ iw) sintwdw = [ Im(c + iw) cos twdw = 0

37Private communication.
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The general form (193) does not impose the restriction “f (t) = 0 for t < 0” and is continuous®® at ¢ =
0. The restriction “f (t) = 0 for ¢ < 0” is only continuous at ¢t = 0 if f (0) = 0. In spite of this concern,

Berberan-Santos [3] evaluates various Laplace inverses via f(t) = Qf:C 5" Rep(c + iw) cos twdw.

In Fourier transforms, the inverse has a similar form as the transform itself and tables of Fourier
transforms can thus be used in two directions. Gross [21] has written®® a note on the question when
the inverse Laplace transform (193) is of the same form as the Laplace transform (192) itself. In
particular, if p(z) = [;~ e f(t)dt = L[f(t)], then Gross [21] asks when the inverse is of the form

f(2) = /0 e gty = £ [g(0)]

for real f and g. Formal substitution of the latter into the former and reversing the integrals yields a
Stieltjes transform [56, Chapter VIII],[46, 9.15, p. 269]

o(z) = /Ooo </OOO e_(z+5)tdt> g(s)ds = /000 Zg(f)sds

which is inverted as g(s) = 1Im (p(se”™)) = —1Im (p(se™)) for real s. Hence, if the Laplace

S

transform and its inverse are of the same form, then it holds that

p(z) = LIf()] <= [(2) =L[;Im(p(teT))] (196)

and Gross [21] briefly states conditions on the validity of (196), which essentially relate to Theorem 1.

Berberan-Santos’ set (195) of equations is thus a further development of Gross’s Laplace pair (196).

D Mittag-Leffler function and fractional calculus

The k-th order derivative of a complex function can be deduced from Cauchy’s integral as

d* f(z) :F(1+k)/ f(w) dw
C(z0) (

—_ 1
d=r |,_., 2mi w — zg)kt1 (197)

where C(zg) is a contour around the point 2y in a region of the complex plane where the function
f (2) is analytic. The integer number k at the right-hand side in (197) can be formally extended to a

complex number «, which then defines the left-hand side as a complex fractional derivative,

d*f(z 'l+a w) dw
dZa 2=20 27TZ C(ZU) (OJ — ZO)OC"F
38Tndeed,
1 o0 . g(ctiw —e(ct+iw
7@ =l < 5 [ lole+ au)l e — 4] gy

1 T

= — lim lp(c+ iw)| |sinh (& (¢ + iw))| dw
T T—o0 _r

Since [sinh (¢ (¢ 4 iw))| = |sinheccosew + sinew coshec| < [sinhec| 4 [sinew| 4+ O (¢*) and choosing & = 77279,

T T T
/ o (c + iw)| [sinh (2 (c+iw))|dw§cT_2_5/ |go(c—|—iw)|dw+T_2_‘s/ (e + iw)| dw

-T -T -T

< 2¢T 0 max |p(c + iw)| + T~° max |p(c + iw)| < AT°

which can be made arbitrarily small for large T so that |f(¢) — f(—¢)| — 0 when € — 0.
39Professor Apelblat has informed me about this note.
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By choosing or deforming the contour C'(zp) in an appropriate manner (which is one of the core

ingenuities in complex integration), we can transform (198) to

af(y t (m) T
Dy f(t) = *f(z) = 1_ a)/ 7 () dx  for Re(a) <m (199)

dze ey T (m _ x)a—&-l—m

which is known as the Caputo fractional derivative. As explained in [52], the integral in (199) is a
convolution of the function g () = f(™(z), the m-th derivative of f (x) and the function z—®~+m
which is a power law.

After the extension of “classical” derivative (197) to a “fractional” derivative (199), we replace or

extend the derivative in the linear matrix differential equation

ds (t)
dt

— Qs (1) (200)
where @ is an N x N matrix and s (¢) is an N x 1 vector, to a Caputo fractional derivative (199)
Dy sa (t) = —Qsq (1) (201)
The classical solution of (200) for any N x N matrix @ is
s5(t) = e %5 (0)

while, for 0 < a < 1 and* m = 0, the “fractional a process” is described by

S0 (1) = B (~Q1) 5, (0) (202)
a\k
where the matrix E, (—Qt%) =Y 72, % is also defined for any matrix ). This exact analytic

result (202) generalizes a large number of physical processes that are described by a linear differential

equation of order NNV.

4°The more general form for m > 0 is also analytically known (see [52, Appendix C])
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