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Abstract

We review the function theoretical properties of the Mittag-Le✏er function Ea,b (z) in a self-

contained manner, but also add new results; more than half is new!

1 Introduction

We investigate the Mittag-Le✏er function,

Ea,b (z) =
1X

k=0

zk

� (b+ ak)
(1)

introduced by Gösta Mittag-Le✏er [34, 33] in 1903 with b = 1, which he denoted as Ea (z) =
P1

k=0
zk

�(1+ak)
�
= Ea,1 (z).

We consider the broader definition Ea,b (z) and not Ea (z), because the functional relations for

Ea,b (z) are closed and expressed in terms of Ea,b (z), whereas confinement to Ea (z) only, deprives the

analysis from a complete and more elegant picture. There exist generalizations1 of the Mittag-Le✏er

function Ea,b (z), which are beyond the present scope, but discussed by Haubold et al. [25] and also

covered in the recent book by Gorenflo et al. [18] on Mittag-Le✏er functions and their applications.

The Mittag-Le✏er function Ea (z) is treated by Erdelyi et al. [10, Sec. 18.1 on p. 206-211] and by

Sansone and Gerretsen [44, Sec. 6.13 on p. 345-348].

I believe that there are, at least, three compelling reasons that justifies a study of the Mittag-Le✏er

function Ea,b (z). First, the Mittag-Le✏er function Ea,b (z) naturally arises in fractional calculus
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1The generalized Mittag-Le✏er function is defined as Ea,b,c (z) =

P1
k=0

�(c+k)
�(c)

zk

�(b+ak) , where Ea,b,0(z) = Ea,b (z).
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as shown in Appendix D. The analytic solution (202) is undoubtedly the most important driver

towards the increasing appearance of the Mittag-Le✏er function Ea,b (z). The application of the

solution (202) of a fractional order integral or di↵erential equations is illustrated in [25], [18], [30] and

[43]; for example, in the fractional generalization of the heat equation, random walks, Lévy flights,

superdi↵usive transport and viscoelasticity, and fractional Ohm’s Law. Abel’s integral equation, whose

solution involves Ea,b (z), is treated in [17, Chapter 7]. A “fractional” generalization of the Poisson

renewal process, discussed in [17, Sec. 9.4], consists of replacing the exponential interarrival time

between events by a Mittag-Le✏er distribution Ea,1 (�t) with real t � 0 and 0 < a  1. Second, a

Mittag-Le✏er random variable is heavy-tailed and plays a role in so-called stable distributions. Many

observed properties in real-world networks are power-law distributed and the Mittag-Le✏er random

variable may model such power-law like properties, although none of its moments exists, which is a

rather complicating, but at the same time fascinating factor. Third and the main focus here, the

Mittag-Le✏er function Ea,b (z) in (1) is an entire function in the complex variable z in two real

parameters a > 0 and b and constitutes a broad class of entire functions such as the exponential

function E1,1 (z) = ez and many exponential-like functions such as the cosine E2,1
�
�z2

�
= cos z and

E1,2 (z) =
ez�1
z and many more.

Our aim2 here is to deduce the most relevant functional properties of the Mittag-Le✏er function

Ea,b (z) defined in (1). Since about half of the results have been established before, the manuscript in

the form of articles (art.) as in our book [53], is more a review, without detailed historical citations

as in [18], but enriched with new results: art. 5, 8, 9, 12, 13 14, 15, 16, 17, 21, 23, 24, 25, 32, 34, 36,

38, 45, 46, 47, 49, 50, 51, 52, 54, 55, 71, 72 and part of art. 18, 28, 33, 37, 39, 41, 42.

1.1 Outline

Section 2 briefly summarizes the properties of entire functions that are defined for any complex number

z by their Taylor series such as (1) for the Mittag-Le✏er function Ea,b (z). Section 3 starts with the

Taylor series in (1) and deduces unique properties of the Mittag-Le✏er function Ea,b (z) from that

Taylor series (1). We have created a separate Section 4, that only focuses on the logarithm of Mittag-

Le✏er function Ea,b (z). Section 5 explores integrals that contain the Mittag-Le✏er function Ea,b (z)

as integrand and that can be evaluated analytically. One of the most important integrals is the Laplace

transform (54) of the Mittag-Le✏er function Ea,b (z). We continue in Section 6 with complex integrals

for the Mittag-Le✏er function Ea,b (z), some are deduced from the inverse Laplace transform (54) and

others are complex representations of the Taylor series (1). Section 7 is devoted to the Mittag-Le✏er

function Ea,b (z) in probability theory. Art. 39 presents a di↵erent proof of the monotonicity of the

Mittag-Le✏er function Ea,b (z), while art. 41 and art. 42 focus on the Mittag-Le✏er random variable.

Section 8 covers various, unrelated topics such as expansions of the Mittag-Le✏er function Ea,b (z) in

powers of a in art. 45, the deduction of the integral (84) from the Taylor series (1) and the Taylor

series of 1
�(z) in art. 46, a product form for Ea,b (z) in art. 47, Mobius inversion in art. 49, Apelblat

series in art. 51 and the Mittag-Le✏er function Ea,b (z) as a limit in art. 52-55. Section 9 is new and

2During my sabattical at Stanford in 2015, I encountered the rather exotic Mittag-Le✏er distribution, which I

intended to include in my Performance Analysis book [50] as another example of a power law-like distribution. However,

the functional properties of the Mittag-Le✏er function Ea,b (z) require attention first, before one can turn to probability

theory.
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explores the related integral

Ia,b (z) =

Z 1

0

zu

� (b+ au)
du (2)

that naturally appears in the Euler-Maclaurin summation for Ea,b (z) in art. 24. Section 10 con-

cludes this work with some open problems. For self-consistency, we have included an appendix A

on the Gamma function � (z), whose properties are essential for the Mittag-Le✏er function Ea,b (z).

Appendix B evaluates a Cauchy-type integral and Mellin transforms of product of Gamma functions.

Appendix C investigates the inverse Laplace transform, separated in real and imaginary part. The

last Appendix D emphasizes the key role of the Mittag-Le✏er function Ea,b (z) in fractional calculus.

2 Complex function theory: entire functions

Since the Mittag-Le✏er function Ea,b (z) is defined in (1) as a power series in z, a first concern is its

validity range in z. The radius R of convergence of the power series f (z) =
P1

k=0 fk z
k of a function f

satisfies 1
R = lim supk!1 |fk|1/k or 1

R = limk!1

���fk+1

fk

��� when the latter exists [47]. Using �(z+a)
�(z+b) ⇠ za�b

in [1, 6.1.47] when z ! 1, the radius of convergence of the power series in (1) is

1

R
= lim

k!1

����
� (b+ ak)

� (b+ a+ ak)

���� = lim
k!1

|ak|�a = 0

for Re (a) > 0 and all complex b. For Re (a) < 0, the radius of convergence is R = 0 and the

Taylor series (1) of the Mittag-Le✏er function Ea,b (z) does not converge for any b and any complex

number z 6= 0. If a = 0, then the Mittag-Le✏er function E0,b (z) reduces to the geometric series and

E0,b (z) = 1
�(b)

1
1�z for |z| < 1, which is the only case where the radius of convergence is finite, i.e.

R = 1.

An entire function has a power series with infinite radius of convergence and is, thus, analytic in the

entire complex plane with an essential singularity at infinity. Associated to entire complex functions

is the concept of the order ⇢, which is defined [47, p. 248] for any " > 0 as f (z) = O
⇣
e|z|

⇢+"
⌘
when

|z| ! 1. A necessary and su�cient condition [47, p. 253] that f (z) =
P1

k=0 fk z
k should be an entire

function of order ⇢ is that
1

⇢
= lim

k!1

� log |fk|
k log k

Applied to the power series in (1) of the Mittag-Le✏er function Ea,b (z), after invoking Stirling’s

asymptotic formula [1, 6.1.39] that follows from (171) in Appendix A,

� (ak + b) ⇠
p
2⇡e�ak (ak)ak+b� 1

2

yields
1

⇢
= lim

k!1

log |� (b+ ak)|
k log k

= lim
k!1

log
p
2⇡ � ak +

�
ak + b� 1

2

�
log (ak)

k log k
= a

Hence, we find one of the important properties that the Mittag-Le✏er function Ea,b (z) is an entire

complex function in z of order ⇢ = 1
a for Re (a) > 0 and any b. For real a and b, the Mittag-

Le✏er function Ea,b (z) is real on the real axis. Moreover, for real positive a and b, the Mittag-Le✏er

function Ea,b (z) attains its maximum on the real positive axis, because
��Ea,b

�
rei✓

��� 
P1

k=0
rk|eik✓|
|�(b+ak)| =P1

k=0
rk

�(b+ak) = Ea,b (r).
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The number n (r) of zeros z 1, z2, . . . of an entire function f (z) of order ⇢, for which |zn|  r is

non-decreasing in r, is n (r) = O (r⇢+"). Roughly stated [47, p. 249], the higher the order ⇢ of an

entire function, the more zeros it may have in a given region of the complex plane. Moreover, if the

modulus of a zero zn is rn = |zn|, then

1X

n=1

1

(rn)
↵ converges if ↵ > ⇢

and the lower bound of ↵ is the exponent ⇢1 of convergence; thus ⇢1  ⇢. If
P1

n=1

⇣
r
rn

⌘p+1
converges

for an integer p, then p + 1 > ⇢1 and the smallest integer p is called the genus of f (z). In any case,

p  ⇢1  ⇢. We may have ⇢1 < ⇢, for example for f (z) = ez, whose order is ⇢ = 1, but the exponent

of convergence ⇢1 = 0, because ez does not have zeros. Applied to the Mittag-Le✏er function Ea,b (z)

of order ⇢ = 1
a , the theory indicates that more zeros are expected for small a than for large a, which

seems contradictory to the monotonicity of Ea,b (z) for 0 < a < 1 on the negative real axis in art. 39.

The determination of the zeros of Ea,b (z) is generally di�cult [58], [17, Sec. 4.6], [40] and omitted

here.

For some special values of the parameter a, the Taylor series (1) reduces to known functions, such

as E1,1 (z) = ez and E2,1 (z) = cosh (
p
z). From the incomplete Gamma function [1, 6.5.29], we have

E1,b (z) = ez�⇤ (b� 1, z) =
ez

� (b� 1)

1X

k=0

(�z)k

k! (b� 1 + k)

= z1�bez
✓
1� 1

� (b� 1)

Z 1

z
e�ttb�2dt

◆
(3)

which can also be written in terms of Kummer’s confluent hypergeometric function [1, 13.1.2]

M (a, b; z) =
� (b)

� (a)

1X

k=0

� (a+ k)

� (b+ k)

zk

k!

as

E1,b (z) =
1X

k=0

zk

� (b+ k)
=

M (1, b, z)

� (b)

Generalizations of (3) to E 1
n ,b (z) for fractional a = 1

n , where n is an integer, are derived in (23) in art.

7 below. Many analytic functions can be expressed in terms of the hypergeometric function, defined

by Gauss’s series [1, 15.1.1]

F (a, b; c; z) =
�(c)

�(a)�(b)

1X

k=0

�(a+ k)�(b+ k)

�(c+ k)k!
zk convergent for |z| < 1 (4)

where the argument of the Gamma functions is of the form ↵k + � with ↵ = 1, in contrast to the

Mittag-Le✏er function in (1) where ↵ = a is real positive. Just the fact that a is real and not an

integer colors the theory of the Mittag-Le✏er function Ea,b (z) and causes its main challenges.
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3 Deductions from the definition (1) of Ea,b (z)

1. Special values of a and b. If b = 0, then, since limz!0
1

�(z) = 0, we have

Ea,0 (z) =
1X

k=1

zk

� (ak)
=

1X

k=0

zk+1

� (ak + a)

and, hence,

Ea,0 (z) = zEa,a (z) (5)

If a = 0, then

E0,b (z) =
1

� (b)

1

1� z
for |z| < 1

From Ea,b (z) =
1

�(b) +
P1

k=1
zk

�(b+ak) , we observe that lima!1Ea,b (z) =
1

�(b) .

2. After splitting odd and even indices in the k-sum of (1), we obtain

Ea,b (�z) =
1X

k=0

(�1)k zk

� (b+ ak)
=

1X

k=0

z2k

� (b+ 2ak)
�

1X

k=0

z2k+1

� (b+ a+ 2ak)

and

Ea,b (�z) = E2a,b

�
z2
�
� zE2a,b+a

�
z2
�

(6)

Property (6) cannot be expressed for Ea (�z) in terms of itself and motivates our viewpoint that the

complex function theory of the Mittag-Le✏er function should focus on Ea,b (z), rather than on Ea (z).

The di↵erentiation rule in art. 6 below is the more fundamental motivation.

Adding Ea,b (z) = E2a,b

�
z2
�
+ zE2a,b+a

�
z2
�
to (6) leads to

E2a,b

�
z2
�
=

Ea,b (z) + Ea,b (�z)

2
(7)

and, similarly,

E2a,b+a

�
z2
�
=

Ea,b (z)� Ea,b (�z)

2z
(8)

Examples From E1,1 (z) = E1 (z) = ez, the relation (7) indicates that E2 (z) = cosh (
p
z) and

next

E4 (z) =
1

2

n
cosh

⇣
z

1
4

⌘
+ cos

⇣
z

1
4

⌘o

The odd variant (8) gives E2,2
�
z2
�
= sinh z

z .

3. Cyclotomic property. When introducing the identity
Pm�1

r=0 ei
2⇡kr
m = 1�e2⇡ki

1�ei
2⇡k
m

= m1m|k into (1),

m�1X

r=0

Ea,b

⇣
ei

2⇡r
m z

⌘
=

1X

k=0

Pm�1
r=0 ei

2⇡kr
m zk

� (b+ ak)
= m

1X

k=0

1m|kz
k

� (b+ ak)
= m

1X

l=0

zml

� (b+ aml)

we obtain

Eam,b (z
m) =

1

m

m�1X

r=0

Ea,b

⇣
zei

2⇡r
m

⌘
(9)
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For m = 2 in (9),

2E2a,b

�
z2
�
= Ea,b (z) + Ea,b (�z)

we retrieve (7), because (9) essentially follows by multisectioning of a power series [42, Section 4.3] of

which splitting in odd and even terms is the obvious case in m = 2 sections.

Example The case a = b = 1 in (9)

Em,1 (z) = Em (z) =
1

m

m�1X

r=0

ez
1
m ei

2⇡r
m (10)

can be extended to certain integer values of b. Indeed, using

E1,n (z) =
1X

k=0

zk

(k + n� 1)!
=

1X

k=n�1

zk�(n�1)

k!
= z�(n�1)

0

@ez �
n�2X

j=0

zj

j!

1

A

in (9) yields

Em,n (z) =
1

m

m�1X

r=0

E1,n

⇣
z

1
m ei

2⇡r
m

⌘
=

z�
n�1
m

m

m�1X

r=0

e�i 2⇡r
m (n�1)

0

@ez
1
m ei

2⇡r
m �

n�2X

j=0

z
j
m ei

2⇡r
m j

j!

1

A

The last double sum

m�1X

r=0

n�2X

j=0

e�i 2⇡r
m (n�1�j) z

j
m

j!
=

n�1X

q=1

z
n�1�q

m

(n� 1� q)!

m�1X

r=0

e�i 2⇡qr
m =

n�1X

q=1

z
n�1�q

m m1m|q
(n� 1� q)!

vanishes for all integers n  m. Thus, for integer 0  n  m, we arrive at

Em,n (z) =
z�

n�1
m

m

m�1X

r=0

e�i 2⇡r
m (n�1)ez

1
m ei

2⇡r
m (11)

4. Mittag-Le✏er function with b = � + am where m 2 Z. Another rewriting of the definition (1) of

Ea,b (z),

Ea,b (z) =
1X

k=0

zk

� (b+ ak)
=

1X

k=1

zk�1

� (b� a+ ak)
=

1

z

 1X

k=0

zk

� (b� a+ ak)
� 1

� (b� a)

!

leads to “the shift down of b by a” formula

Ea,b (z) =
1

z

✓
Ea,b�a (z)�

1

� (b� a)

◆
(12)

or, similarly after b ! a+ b,

Ea,b (z) =
1

� (b)
+ zEa,b+a (z)

from which, for b = 0, we find again (5). If b = � +ma in (12), then we obtain a recursion in m

Ea,�+ma (z) =
1

z

✓
Ea,�+(m�1)a (z)�

1

� (� + (m� 1) a)

◆
(13)
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After iteration of (13), we find

zmEa,�+ma (z) = Ea,� (z)�
m�1X

l=0

zl

� (� + la)
(14)

The case for m = 1 in (14) is again (12). Relation (14) is directly retrieved from the definition (1) of

Ea,b (z),

Ea,�+ma (z) =
1X

k=0

zk

� (� + a (m+ k))
=

1X

k=m

zk�m

� (� + ak)
= z�m

 1X

k=0

zk

� (� + ak)
�

m�1X

k=0

zk

� (� + ak)

!

Similarly,

Ea,��ma (z) =
1X

k=0

zk

� (� + a (k �m))
=

1X

k=�m

zk+m

� (� + ak)
= zm

 1X

k=0

zk

� (� + ak)
+

mX

k=1

z�k

� (� � ak)

!

and, hence,

z�mEa,��ma (z) = Ea,� (z) +
mX

k=1

�
1
z

�k

� (� � ak)
(15)

Subtracting (15) from (14) yields3

zmEa,�+ma (z)� z�mEa,��ma (z) = �
m�1X

l=�m

zl

� (� + la)

illustrating for real a > 0, x � 0 and positive � > ma that x2mEa,�+ma (x) < Ea,��ma (x).

Example If a = 1 and � = 1 in (15), the 1
�(��ak) =

1
�(1�k) = 0 for k � 1 and, with E1,1 (z) = ez,

we find (also from (3)), for integers m � 0, that

E1,1�m (z) = zmez (16)

5. Di↵erentiation with respect to z. The derivative of the definition (1) with respect to z is

d

dz
Ea,b (z) =

1X

k=1

kzk�1

� (b+ ak)
=

1X

k=0

(k + 1) zk

� (b+ a+ ak)

=
1

a

1X

k=0

(ak + b+ a� 1) zk

� (b+ a+ ak)
� b� 1

a

1X

k=0

zk

� (b+ a+ ak)

=
1

a

1X

k=0

zk

� (b+ a� 1 + ak)
� b� 1

a

1X

k=0

zk

� (b+ a+ ak)

3which we can write as

�
m�1X

l=�m

z
l

� (� + la)
=

Z m

�m

d

du
{zuEa,�+ua (z)} du =

Z m

�m

1X

k=0

d

du

z
k+u

� (� + a (u+ k))
du

= log z

Z m

�m

z
u
Ea,�+ua (z) du� a

Z m

�m

z
u

1X

k=0

z
k
 (� + a (u+ k))
� (� + a (u+ k))

du

where  (z) = d log �(z)
dz is the digamma function [1, 6.3.1].
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and, with the definition (1),

d

dz
Ea,b (z) =

1

a
Ea,b+a�1 (z)�

b� 1

a
Ea,b+a (z)

Using (12), Ea,b+a (z) =
1
z

⇣
Ea,b (z)� 1

�(b)

⌘
, simplifies to

az
d

dz
Ea,b (z) = Ea,b�1 (z)� (b� 1)Ea,b (z) (17)

The m-derivative

a
dm

dzm
Ea,b (z) =

dm�1

dzm�1
Ea,b+a�1 (z)� (b� 1)

dm�1

dzm�1
Ea,b+a (z)

has a recursive structure, when denoting hm (b) = dm

dzmEa,b (z) and h0 (b) = Ea,b (z),

ahm (b) = hm�1 (b+ a� 1)� (b� 1)hm�1 (b+ a)

which can be iterated resulting in

am
dm

dzm
Ea,b (z) =

mX

j=0

qj (a, b,m)Ea,b+ma�j (z)

where the coe�cients qm (a, b,m) = 1, qm�1 (a, b,m) = �
⇣
mb+ m(m�1)

2 a� m(m+1)
2

⌘
and q0 (a, b,m) =

Qm�1
k=0 (b� 1 + ka). In general, qj (a, b,m) are polynomials in a and b of order m� j. Unfortunately4,

it is not easy to write all coe�cients qj (a, b,m) in closed form. With (14), we have

(az)m
dm

dzm
Ea,b (z) =

mX

j=0

qj (a, b,m)

 
Ea,b�j (z)�

m�1X

l=0

zl

� (b� j + la)

!
(18)

For z = 0, we obtain from (18) with dm

dzmEa,b (z)
��
z=0

= 1
�(b+am) ,

1

� (b+ am)
=

1

am

mX

j=0

qj (a, b,m)

� (b� j +ma)

and, with �(b+am)
�(b�j+ma) =

Qj
q=1 (b+ am� q), the polynomial nature of qj (a, b,m) is apparent:

mX

j=1

jY

q=1

(b+ am� q) qj (a, b,m) = am �
m�1Y

k=0

(b� 1 + ka)

4For example,

a
2 d

2
Ea,b (z)
dz2

= Ea,b+2a�2 (z)� (2b+ a� 3)Ea,b+2a�1 (z) + (b� 1) (b+ a� 1)Ea,b+2a (z)

a
3 d

3
Ea,b (z)
dz3

= Ea,b+3a�3 (z)� (3b+ 3a� 6)Ea,b+3a�2 (z)

+ {(2b+ a� 3) (b+ 2a� 2) + (b� 1) (b+ a� 1)}Ea,b+3a�1 (z)� (b� 1) (b� 1 + a) (b� 1 + 2a)Ea,b+3a (z)

a
4 d

4
Ea,b (z)
dz4

= Ea,b+4a�4 (z)� (4b+ 6a� 10)Ea,b+4a�3 (z)

+ {(2b+ a� 3) (b+ 2a� 2) + (b� 1) (b+ a� 1) + 3 (b+ a� 2) (b+ 3a� 3)}Ea,b+4a�2 (z)

� {(b+ 3a� 2) (2b+ a� 3) (b+ 2a� 2) + (b� 1) (b+ a� 1) (b+ 3a� 2) + (b� 1) (b� 1 + a) (b� 1 + 2a)}Ea,b+4a�1 (z)

+ (b� 1) (b� 1 + a) (b� 1 + 2a) (b� 1 + 3a)Ea,b+4a (z)

8



Art. 9 below will present a closed form for dm

dzmEa,b (z).

6. Di↵erentiation recursion. Using the functional equation of the Gamma function, � (z + 1) = z� (z),

we write

Ea,b (xz) =
1X

k=0

xkzk

� (b+ ak)
=

1X

k=0

xkzk

(b� 1 + ak)� (b� 1 + ak)

Thus,

zb�1Ea,b (xz
a) =

1X

k=0

xkzb�1+ak

(b� 1 + ak)� (b� 1 + ak)

Di↵erentiation with respect to z gives us

d

dz

n
zb�1Ea,b (xz

a)
o
=

1X

k=0

xkzb�2+ak

� (b� 1 + ak)
= zb�2

1X

k=0

(xza)k

� (b� 1 + ak)

With the definition (1), we arrive for any x at the di↵erentiation recursion in b,

d

dz

n
zb�1Ea,b (xz

a)
o
= zb�2Ea,b�1 (xz

a) (19)

Di↵erentiating (19) again m-times and using the recursion (19) yields

dm

dzm

n
zb�1Ea,b (xz

a)
o
= zb�1�mEa,b�m (xza) (20)

7. Fractional values of a. Let a = m
n where m  n are integers, then the di↵erentiation formula (20)

becomes, for x = 1,

dm

dzm

n
zb�1Em

n ,b

⇣
z

m
n

⌘o
= zb�1

1X

k=0

z
m
n k�m

�
�
b�m+ m

n k
� = zb�1

1X

k=0

z
m
n (k�n)

�
�
b+ m

n (k � n)
�

= zb�1
1X

k=�n

z
m
n k

�
�
b+ m

n k
� = zb�1

nX

k=1

z�
m
n k

�
�
b� m

n k
� + zb�1

1X

k=0

z
m
n k

�
�
b+ m

n k
�

and we find that

dm

dzm

n
zb�1Em

n ,b

⇣
z

m
n

⌘o
= zb�1

nX

k=1

z�
m
n k

�
�
b� m

n k
� + zb�1Em

n ,b

⇣
z

m
n

⌘
(21)

For n = 1, (21) is

dm

dzm

n
zb�1Em,b (z

m)
o
=

zb�1�m

� (b�m)
+ zb�1Em,b (z

m)

In particular, when b = 1, then it holds for m � 1 that dm

dzmEm (zm) = Em (zm), which illustrates that

y = Em (zm), explicitly given in (10), is a solution of the di↵erential equation dmy
dzm = y.

For m = 1, (21) reduces to

d

dz

n
zb�1E 1

n ,b

⇣
z

1
n

⌘o
=

nX

k=1

zb�1� 1
nk

�
�
b� 1

nk
� + zb�1E 1

n ,b

⇣
z

1
n

⌘

from which
d

dz

n
e�zzb�1E 1

n ,b

⇣
z

1
n

⌘o
= e�z

nX

k=1

zb�1� 1
nk

�
�
b� 1

nk
�

9



Integrating both sides from 0 to z yields, for b � 1,

E 1
n ,b

⇣
z

1
n

⌘
= z1�bez

(
1{b=1} +

nX

k=1

1

�
�
b� 1

nk
�
Z z

0
tb�1� 1

nke�tdt

)
(22)

where the indicator function 1x equals one if the condition x is true, else 1x = 0. After letting x = z
1
n

in (22) and replacing j = n� k in the summation, we obtain5

E 1
n ,b (x) = x(1�b)nex

n

8
<

:1{b=1} +
n�1X

j=0

1

�
⇣
b� 1 + j

n

⌘
Z xn

0
t(b�1+ j

n)�1e�tdt

9
=

; (23)

that reduces, for n = 1, to (3) and for b = 1, to Wiman’s form in [57]

E 1
n
(x) = ex

n

8
<

:1 +

Z xn

0
e�t

n�1X

j=1

t
j
n�1

�
⇣

j
n

⌘dt

9
=

;

For positive real x, it holds that
R xn

0 t(b�1+ j
n)�1e�tdt <

R1
0 t(b�1+ j

n)�1e�tdt = �
⇣
b� 1 + j

n

⌘
and (23)

shows that E 1
n ,b (x) < x(1�b)nex

n �
1{b=1} + n� 1{b=1}

 
. Thus,

E 1
n ,b (x) < nx(1�b)nex

n

illustrates for a = 1
n that the entire function E 1

n ,b (z) has order ⇢ = 1
a = n. This bound also reappears

in art. 31. Moreover, it is interesting to compare (11) formally, written for an integer b < m,

Em,b (z) =
z

1�b
m

m

(
ez

1
m +

m�1X

r=1

e�i 2⇡r
m (b�1)ez

1
m ei

2⇡r
m

)

with Bieberbach’s integral (141) for Ea,b (z) and with the bound, where 1
n is replaced by m,

Em,b (z) <
z

1�b
m

m
ez

1
m

We return to the relation between Ea,b (z) and E 1
a ,b

(z) later in art. 31.

Example If n = 1 in (22), we retrieve (3) and when n = 2 in (22), we find for b = 1

E 1
2

⇣
z

1
2

⌘
= ez

(
1 +

1

�
�
1
2

�
Z z

0
t�

1
2 e�tdt

)
= ez

(
1 +

2p
⇡

Z p
z

0
e�u2

du

)

5Using the recursion P (a, x) = P (a+ 1, x) + xa

�(a+1)e
�x in [1, 6.5.21] for the incomplete Gamma function P (a, x) =

1
�(a)

R x

0
t
a�1

e
�t

dt in (23), E 1
n ,b (x) = x

(1�b)n
e
xn

n
1{b=1} +

Pn�1
j=0 P

�
b� 1 + j

n , x
n
�o

, shows that

E 1
n ,b (x) =

1X

j=0

x
j

�
�
b+ j

n

� = x
(1�b)n

e
xn

(
1{b=1} +

n�1X

j=0

P

✓
b+

j

n
, x

n

◆)
+

n�1X

j=0

x
j

�
�
b+ j

n

�

which agrees with the Wiman-recursion (23) when b ! b+ 1,

1X

j=n

x
j

�
�
b+ j

n

� = x
n
E 1

n ,b+1 (x) = x
n
x
(1�(b+1))n

e
xn

(
1{b=0} +

n�1X

j=0

P

✓
b+

j

n
, x

n

◆)

10



so that, with the definition [1, 7.1.1] of the error function erf (x) = 2p
⇡

R z
0 e�u2

du,

E 1
2
(z) = ez

2

⇢
1 +

2p
⇡

Z z

0
e�u2

du

�
= ez

2 {1 + erf (z)} (24)

8. Hadamard’s series
P1

k=0
zk

(k!)a and Ea (z). Sharp bounds of the Gamma function for ak + b > 0,

that follow from (171) in Appendix A, are

p
2⇡ (ak + b)ak+b� 1

2 e�(ak+b)  � (ak + b) 
p
2⇡ (ak + b)ak+b� 1

2 e�(ak+b)e
1

12(ak+b)

Now,
p
2⇡ (ak + b)ak+b� 1

2 e�(ak+b) =
p
2⇡aa(k+

b
a)�

1
2
�
k + b

a

�a�1
2

✓�
k + b

a

�(k+ b
a�

1
2) e�(k+

b
a)
◆a

and again

using (171),

p
2⇡ (ak + b)ak+b� 1

2 e�(ak+b) 
p
2⇡aa(k+

b
a)�

1
2

✓
k +

b

a

◆a�1
2

 
�
�
k + b

a

�
p
2⇡

!a

and replacing the inequality by an order estimate, we have for large ak + b,

� (ak + b) =

�p
2⇡
�1�a

ab�
1
2

q
k + b

a

 
ak
r
k +

b

a
�

✓
k +

b

a

◆!a✓
1 +O

✓
1

ak + b

◆◆

If b = 1, then for ak + 1 > 0, the above reduces to

� (ak + 1) ⇡
p
a
�p

2⇡
�1�a

q
k + 1

a

 
ak
r

k +
1

a
�

✓
k +

1

a

◆!a

<

p
a
�p

2⇡
�1�a

p
k

✓
ak�

✓
k +

1

a
+ 1

◆◆a

For large a, we approximate as

� (ak + 1) ⇡
p
a
�p

2⇡
�1�a

p
k

⇣
ak� (k + 1)

⌘a
(25)

In art. 66, Gauss’s multiplication formula is written as � (nz + 1) = (2⇡)�
n�1
2 nnz+ 1

2
Qn

j=1 �
⇣
z + j

n

⌘

and indicates, assuming that n = a is an integer, that

� (ak + 1) =
p
a
⇣p

2⇡
⌘1�a

aak
aY

j=1

�

✓
k +

j

a

◆

11



from which, with � (k) < �
⇣
k + j

a

⌘
< � (k + 1), it holds6 for k � 2,

p
a
⇣p

2⇡
⌘1�a ⇣

ak� (k)
⌘a

< � (ak + 1) <
p
a
⇣p

2⇡
⌘1�a ⇣

ak� (k + 1)
⌘a

After introducing (25) in the definition (1) of the Mittag-Le✏er function for real, positive x, we

approximately obtain

Ea (x) =
1X

k=0

xk

� (ak + 1)
⇡
�p

2⇡
�a�1

p
a

1X

k=0

p
k
�
x
a

�k

(k!)a

while Gauss’s multiplication formula produces the bounds

�p
2⇡
�a�1

p
a

x

a

1X

k=1

�
x
a

�k

(k!)a
> Ea (x)� 1� x

� (a+ 1)
>

�p
2⇡
�a�1

p
a

1X

k=2

�
x
a

�k

(k!)a
(26)

About 10 years before Mittag-Le✏er has introduced his function Ea (x), Hadamard [22, p. 180]

suggests in his study of entire functions that Ea (x) =
P1

k=0
xk

�(ak+1) ⇠
(
p
2⇡)a�1

p
a

P1
k=0

(x
a)

k

(k!)a for large x.

Hadamard derives an exact a-fold integral for the last series, from which he deduces that
P1

k=0
xk

(k!)a <

eax
1
a . Art. 7 shows that Ea (x) <

1
ae

x
1
a . Combined with (26) leads to

1X

k=0

xk

(k!)a
<

�p
2⇡
�1�a

p
a

ea
1
a x

1
a

which is considerably sharper for a > 1 than Hadamard’s [22, p. 180] bound.

We also give Hadamard’s [22, p. 180] nice argument, starting from

ex
1
a =

1X

k=0

x
k
a

� (k + 1)

and letting m0 = k
a , which runs over fractions for a > 1, so that ex

1
a =

P1
m0=0

xm0

�(m0a+1) . Comparing

terms with Ea (x) =
P1

m=0
xm

�(am+1) , then shows that Ea (x) < ex
1
a . For a < 1, Hadamard states that

Ea (x) <
⇥
1
a

⇤
x

1
a ex

1
a . However, the bounds presented here based on the theory of the Mittag-Le✏er

function are sharper than Hadamard’s estimates.

6Now, (� (k))
a
2 <

Q a
2
j=1 �

�
k + j

a

�
<
�
�
�
k + 1

2

�� a
2 and

�
�
�
k + 1

2

�� a
2 <

Qa
j= a

2
�
�
k + j

a

�
< (� (k + 1))

a
2 and, hence

(� (k))
a
2

✓
�

✓
k +

1
2

◆◆ a
2

<

a
2Y

j=1

�

✓
k +

j

a

◆ aY

j= a
2

�

✓
k +

j

a

◆
<

✓
�

✓
k +

1
2

◆◆ a
2

(� (k + 1))
a
2

The duplication formula of the Gamma function, � (2z) = 1p
⇡
22z�1� (z)�

�
z + 1

2

�
indicates that �

�
k + 1

2

�
=

p
⇡

22k�1
(2k�1)!
(k�1)! so that

p
a

⇣p
2⇡
⌘1�a

a
ak

✓
� (k)�

✓
k +

1
2

◆◆ a
2

< � (ak + 1) <
p
a

⇣p
2⇡
⌘1�a

a
ak

✓
�

✓
k +

1
2

◆
� (k + 1)

◆ a
2

and a sharper upper and lower bound is
p
2⇡a

2ka⇡
a
4
a
ak ((2k � 1)!)

a
2 < � (ak + 1) <

p
2⇡a

2ka⇡
a
4
k

a
2 a

ak ((2k � 1)!)
a
2

12



9. Taylor expansion around z0. Since the Mittag-Le✏er function Ea,b (z) is an entire function, any

Taylor expansion around an arbitrary (finite) point z0 has infinite radius of convergence,

Ea,b (z) =
1X

m=0

1

m!

dmEa,b (z)

dxm

����
x=z0

(z � z0)
m

With the m-th derivative (18), we find

Ea,b (z) =
1X

m=0

8
<

:

mX

j=0

qj (a, b,m)

 
Ea,b�j (z0)�

m�1X

l=0

zl0
� (b� j + la)

!9=

;

⇣
z�z0
az0

⌘m

m!

but, unfortunately (see art. 5), the coe�cients qj (a, b,m) are not available in closed form. However,

the closed form (20), which is a rather fundamental property of Ea,b (z), opens a new avenue. The

Taylor expansion around z0 of

zb�1Ea,b (z
a) =

1X

m=0

1

m!

dm

dxm

n
xb�1Ea,b (x

a)
o����

x=z0

(z � z0)
m

becomes with the di↵erentiation recursion (20)

zb�1Ea,b (z
a) = zb�1

0

1X

m=0

Ea,b�m (za0)

m!
z�m
0 (z � z0)

m

The function zb�1Ea,b (za) has a branch cut at the negative real axis for real a and b, implying that

the radius R of convergence equals |z0|. Using the defining relation of the radius of convergence in

Section 2,

1

R
= lim

m!1

�����
z�m�1
0 Ea,b�m�1 (za0)m!

z�m
0 Ea,b�m (za0) (m+ 1)!

����� = z�1
0 lim

m!1

����
Ea,b�m�1 (za0)

Ea,b�m (za0) (m+ 1)

����

then indicates for any finite z 6= 0, a and b that
����
Ea,b�m�1 (z)

Ea,b�m (z)

���� ⇠ (m+ 1) if m ! 1 (27)

Introducing (33) for z 6= 0 that

1 = lim
m!1

����
Ea,b�m�1 (z)

Ea,b�m (z) (m+ 1)

���� = lim
m!1

����
az

m

d logEa,b�m (z)

dz
�
✓
1� b

m

◆����

shows that

lim
m!1

����
1

m

d logEa,b�m (z)

dz

���� = 0

Thus, for large m, the logarithmic derivative for z 6= 0 and finite a and b is of order
d logEa,b�m(z)

dz =

O
�
m1�"

�
for any positive " > 0.

We proceed by removing real powers of z� = e� log z that destroy analyticity in the complex plane

and introduce formally the Taylor series
⇣

z
z0

⌘1�b
=

⇣
z
z0

� 1 + 1
⌘1�b

=
P1

k=0

�1�b
k

� ⇣
z
z0

� 1
⌘k

, valid

for any b and |z| < |z0|, in

Ea,b (z
a) =

✓
z

z0

◆1�b 1X

m=0

Ea,b�m (za0)

m!

✓
z

z0
� 1

◆m

13



yielding, after executing the Cauchy product,

Ea,b (z
a) =

1X

m=0

(
mX

k=0

✓
1� b

m� k

◆
Ea,b�k (za0)

k!

)✓
z

z0
� 1

◆m

for |z| < |z0|

Next, letting y = za and y0 = za0 , we first expand in a Taylor series around y0

 ✓
y

y0

◆ 1
a

� 1

!m

=
1X

k=0

1

k!

dk

dzk

 ✓
y

y0

◆ 1
a

� 1

!m�����
z=y0

(y � y0)
k

as
 ✓

y

y0

◆ 1
a

� 1

!m

=
mX

q=0

✓
m

q

◆✓
y

y0

◆ q
a

(�1)m�q =
mX

q=0

✓
m

q

◆✓
y � y0
y0

+ 1

◆ q
a

(�1)m�q

=
1X

j=0

8
<

:

mX

q=0

✓
m

q

◆✓ q
a

j

◆
(�1)m�q

9
=

;

✓
y � y0
y0

◆j

Substitution and reversing the m- and k-sum yields

Ea,b (y) =
1X

j=0

2

4
1X

m=0

mX

k=0

✓
1� b

m� k

◆
Ea,b�k (y0)

k!

8
<

:

mX

q=0

✓
m

q

◆✓ q
a

j

◆
(�1)m�q

9
=

;

3

5
✓
y � y0
y0

◆j

=
1X

j=0

2

4
1X

k=0

Ea,b�k (y0)

k!

1X

m=k

✓
1� b

m� k

◆ mX

q=0

✓
m

q

◆✓ q
a

j

◆
(�1)m�q

3

5
✓
y � y0
y0

◆j

The characteristic coe�cients [49, Appendix] of a complex function f (z) with Taylor series f (z) =
P1

k=0 fk (z0) (z � z0)
k, defined by s[k,m]|f (z0) = 1

m!
dm

dzm

⇣
f (z)� f (z0)

k
⌘���

z=z0
, possesses a general

form

s[k,m]|f (z0) =
X

Pk
i=1 ji=m;ji>0

kY

i=1

fji (z0) (28)

and obeys s[k,m]|f (z0) = 0 if k < 0 and k > m. Also, s[1,m]|f (z0) = fm (z0), while (28) indicates

that s[m,m]|f (z0) = fm
1 (z0). We can show [48] that

s[k,m]|(1+z)↵ =
kX

j=1

(�1)j+k

✓
k

j

◆✓
↵j

m

◆
=

k!

m!

mX

j=k

S(j)
m S(k)

j ↵j (29)

where S(k)
m and S(k)

m are the Stirling numbers of the first and second kind [1, Sec. 24.1.3 and 24.1.4],

respectively. We apply these properties to the Taylor series

Ea,b (y) =
1X

j=0

" 1X

k=0

Ea,b�k (y0)

k!

1X

m=k

✓
1� b

m� k

◆
s[m, j]|

(1+z)
1
a

#✓
y � y0
y0

◆j

=
1X

j=0

"
jX

k=0

Ea,b�k (y0)

k!

jX

m=k

✓
1� b

m� k

◆
s[m, j]|

(1+z)
1
a

#✓
y � y0
y0

◆j

14



Finally, we arrive with (29) at the Taylor series of Ea,b (y) around y0,

Ea,b (y) =
1X

j=0

"
y�j
0

j!

jX

k=0

Ea,b�k (y0)
jX

m=k

✓
m

k

◆
� (2� b)

� (2� b�m+ k)

jX

q=m

S(q)
j S(m)

q
1

aq

#
(y � y0)

j (30)

from which the closed form of the j-th derivative of the Mittag-Le✏er function, evaluated at y0 = w,

follows as

djEa,b (z)

dzj

����
z=w

= w�j
jX

k=0

Ea,b�k (w)
jX

m=k

✓
m

k

◆
� (2� b)

� (2� b�m+ k)

jX

q=m

S(q)
j S(m)

q
1

aq
(31)

Since the Mittag-Le✏er function Ea,b (z) is an entire function, the j-th Taylor coe�cient around w

decreases faster than any power of (z � w)j for large j and any z, we deduce that
djEa,b(z)

dzj

���
z=w

=

o
�
j!wj

�
. Thus, the j-th Taylor coe�cient 1

j!
djEa,b(z)

dzj

���
z=w

increases at most as a polynomial in w of

order j. In contrast to the relatively simple Taylor series of Ea,b (z) in (1) around the origin, the

general form (31) emphasizes the complicated nature of the Mittag-Le✏er function Ea,b (z) elsewhere

in the complex plane.

As a check for a = b = 1, the orthogonality condition of the Stirling numbers

mX

k=n

S(n)
k S(k)

m = �nm (32)

shows that (30) simplifies to

Ea,b (y) =
1X

j=0

"
jX

k=0

E1,1�k (y0)
jX

m=k

✓
m

k

◆
� (2� b)

� (2� b�m+ k)
�jm

# ⇣y�y0
y0

⌘j

j!

With (16), we find

E1,1 (y) = ey0
1X

j=0

"
jX

k=0

yk�j
0

�j
k

�

� (1� j + k)

#
(y � y0)

j

j!
= ey0

1X

j=0

(y � y0)
j

j!
= ey0ey�y0 = ey

4 Logarithm of the Mittag-Le✏er function

10. Logarithmic derivative. The logarithmic derivative d
dz logEa,b (z) =

d
dzEa,b(z)
Ea,b(z)

follows directly from

(17) as
d logEa,b (z)

dz
=

1

az

✓
Ea,b�1 (z)

Ea,b (z)
� (b� 1)

◆
(33)

Similarly, invoking (19), we find the companion logarithmic derivative

d

dz
log

⇣
zb�1Ea,b (xz

a)
⌘
=

d
dz

�
zb�1Ea,b (xza)

 

zb�1Ea,b (xza)
=

1

z

Ea,b�1 (xza)

Ea,b (xza)
(34)

Since b� 1 + ak > b� 1 for k � 1 because a > 0, we have for positive real z and b > 1,

Ea,b (z) =
1X

k=0

zk

(b� 1 + ak)� (b� 1 + ak)
<

1

b� 1

1X

k=0

zk

� (b� 1 + ak)
=

Ea,b�1 (z)

b� 1
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and that (b� 1) <
Ea,b�1(z)
Ea,b(z)

. The logarithmic derivative (33) becomes
d logEa,b(z)

dz > 0, illustrating that

logEa,b (z) is increasing for real z � 0 and b > 1. More precisely, with b� 1+ak > b� 1+a for k � 1,

we have for real positive z and for b > 1� a, because then � (b� 1 + ak) > 0 for k � 1,

Ea,b (z) =
1

� (b)
+

1X

k=1

zk

(b� 1 + ak)� (b� 1 + ak)

<
1

� (b)
+

1

b� 1 + a

 1X

k=0

zk

� (b� 1 + ak)
� 1

� (b� 1)

!

and

Ea,b (z) <
1

(b� 1 + a)

✓
a

� (b)
+ Ea,b�1 (z)

◆

Thus, for real positive z and for b > 1� a, the inequality is equivalent to

a

✓
1� 1

� (b)Ea,b (z)

◆
<

Ea,b�1 (z)

Ea,b (z)
� (b� 1)

and the logarithmic derivative (33) is lower bounded by

d logEa,b (z)

dz
>

1

z

✓
1� 1

� (b)Ea,b (z)

◆

Example If b = 1 and a = 1, then E1,1 (z) = ez and the above inequality for real positive z results

in the well-known bound (see e.g. [50, p. 103]) that e�z > 1� z, which holds for all real z.

11. Second-order logarithmic derivative. Similarly as in art. 10, we can directly di↵erentiate (33)

again,
d2 logEa,b (z)

dz2
= � 1

az2

✓
Ea,b�1 (z)

Ea,b (z)
� (b� 1)

◆
+

1

az

d

dz

✓
Ea,b�1 (z)

Ea,b (z)

◆

The derivative at the right-hand side is computed by using (17),

d

dz

✓
Ea,b�1 (z)

Ea,b (z)

◆
=

1

az

(
Ea,b�2 (z)

Ea,b (z)
+

Ea,b�1 (z)

Ea,b (z)
�
✓
Ea,b�1 (z)

Ea,b (z)

◆2
)

(35)

After substitution of the latter into the former, we arrive at the second-order logarithmic derivative

d2 logEa,b (z)

dz2
=

1

(az)2

(
a (b� 1) +

Ea,b�2 (z)

Ea,b (z)
� (a� 1)

Ea,b�1 (z)

Ea,b (z)
�
✓
Ea,b�1 (z)

Ea,b (z)

◆2
)

(36)

As already observed in art. 5, higher-order derivatives will become less wieldy, which suggests us to

consider the companion di↵erential rule (19) in art. 14.

12. The Taylor series of logEa,b (z) around z = 0. From the power series definition (1) of Ea,b (z),

we have

lim
z!0

d logEa,b (z)

dz
= lim

z!0

1
P1

k=0
zk

�(b+ak)

lim
z!0

1

az

 1X

k=0

zk

� (b� 1 + ak)
�

1X

k=0

(b� 1) zk

� (b+ ak)

!

= � (b) lim
z!0

1X

k=1

kzk�1

� (b+ ak)
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and find

lim
z!0

d logEa,b (z)

dz
=

� (b)

� (b+ a)

Proceeding in this way to higher-order derivatives becomes cumbersome. The general theory of

characteristic coe�cients [49, Appendix] provides us with

log f(z) = log f0 (z0) +
1X

m=1

 
mX

k=1

(�1)k�1

k fk
0 (z0)

s[k,m] (z0)

!
(z � z0)

m (37)

Confining to z0 = 0, the characteristic coe�cients (28) of the Mittag-Le✏er function Ea,b (z) are

s[k,m]|Ea,b(z)
=

X

Pk
i=1 ji=m;ji>0

kY

i=1

1

� (b+ jia)

and the Taylor series of logEa,b (z) around z0 = 0 follows as

logEa,b (z) =
1X

m=0

cm zm

where we define c0 = log (�� (b)) and the coe�cients cm for m > 0

cm = �
mX

k=1

(�� (b))k

k
s[k,m]|Ea,b(z)

=
� (b)

� (b+ma)
+

m�1X

k=2

(�1)k�1

k

X

Pk
i=1 ji=m;ji>0

kY

i=1

� (b)

� (b+ jia)
+

(�1)m�1

m

✓
� (b)

� (b+ a)

◆m

The list of the coe�cients cm for m = 1 up to m = 5 is

c1 =
� (b)

� (b+ a)

c2 =
� (b)

� (b+ 2a)
� 1

2

✓
� (b)

� (b+ a)

◆2

c3 =
� (b)

� (b+ 3a)
+

�2 (b)

� (b+ 2a)� (b+ a)
+

1

3

✓
� (b)

� (b+ a)

◆3

c4 =
� (b)

� (b+ 4a)
� �2 (b)

� (b+ 3a)� (b+ a)
� 1

2

✓
� (b)

� (b+ 2a)

◆2

+
�3 (b)

� (b+ 2a)�2 (b+ a)
� 1

4

✓
� (b)

� (b+ a)

◆4

c5 =
� (b)

� (b+ 5a)
� �2 (b)

� (b+ 4a)� (b+ a)
� �2 (b)

� (b+ 3a)� (b+ 2a)
+

�3 (b)

� (b+ 3a)�2 (b+ a)
+

�3 (b)

� (b+ a)�2 (b+ 2a)

� �4 (b)

�3 (b+ a)� (b+ 2a)
+

1

5

✓
� (b)

� (b+ a)

◆5

Unfortunately, it seems di�cult to further sum the terms in cm. The closest zero to z0 = 0 lies at a

distance from z0 equal to the radius R of convergence of logEa,b (z), which is

1

R
= lim

m!1

����
cm+1

cm

���� = lim
m!1

���
Pm+1

k=1
(��(b))k

k s[k,m+ 1]|Ea,b(z)

���
���
Pm

k=1
(��(b))k

k s[k,m]|Ea,b(z)

���
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The generalization towards the closest zero to z0 requires the Taylor coe�cients of (30).

13. An expansion of logEa,b (z) in powers of log z. Integration of (33) leads to

log
Ea,b (z)

Ea,b (z0)
=

(1� b)

a
log

z

z0
+

1

a

Z z

z0

Ea,b�1 (w)

Ea,b (w)

dw

w

Using (35), partial integration shows that

Z z

z0

Ea,b�1 (w)

Ea,b (w)

dw

w
=

Ea,b�1 (w)

Ea,b (w)
logw

����
z

z0

�1

a

Z z

z0

logw

w

(
Ea,b�2 (w)

Ea,b (w)
+

Ea,b�1 (w)

Ea,b (w)
�
✓
Ea,b�1 (w)

Ea,b (w)

◆2
)
dw

and

log
Ea,b (z)

Ea,b (z0)
=

(1� b)

a
log

z

z0
+

1

a

✓
Ea,b�1 (z)

Ea,b (z)
log z �

Ea,b�1 (z0)

Ea,b (z0)
log z0

◆

� 1

a2

Z z

z0

logw

w

(
Ea,b�2 (w)

Ea,b (w)
+

Ea,b�1 (w)

Ea,b (w)
�
✓
Ea,b�1 (w)

Ea,b (w)

◆2
)
dw

Since logw
w dw = 1

2d
�
log2w

�
, again partial integration of the right-hand side integral R leads to

R =

Z z

z0

logw

w

(
Ea,b�2 (w)

Ea,b (w)
+

Ea,b�1 (w)

Ea,b (w)
�
✓
Ea,b�1 (w)

Ea,b (w)

◆2
)
dw

=

(
Ea,b�2 (w)

Ea,b (w)
+

Ea,b�1 (w)

Ea,b (w)
�
✓
Ea,b�1 (w)

Ea,b (w)

◆2
)

log2w

2

�����

z

z0

�
Z z

z0

log2w

2

d

dw

 (
Ea,b�2 (w)

Ea,b (w)
+

Ea,b�1 (w)

Ea,b (w)
�
✓
Ea,b�1 (w)

Ea,b (w)

◆2
)!

dw

Each derivative of a fraction of Mittag-Le✏er functions can be computed with (35), which indicates

that again a factor 1
aw will appear so that log2 w

2w dw = 1
3!d

�
log3w

�
which enables a next integration.

Continuing partial integration and choosing z0 = 1 to simplify the sums will lead to an expansion of

the form

log
Ea,b (z)

Ea,b (1)
=

(1� b)

a
log z +

KX

k=1

logk z

k!
zk (z)�

Z z

z0

logk w

k!

d

dw
zk (w) dw

where K > 1 is an integer and zk (z) consists of sum of fractions of Mittag-Le✏er functions, whose

explicit evaluation is possible, but tedious and omitted. We have computed above,

z1 (z) =
1

a

Ea,b�1 (z)

Ea,b (z)

z2 (z) = � 1

a2

(
Ea,b�2 (w)

Ea,b (w)
+

Ea,b�1 (w)

Ea,b (w)
�
✓
Ea,b�1 (w)

Ea,b (w)

◆2
)

14. Higher-order logarithmic derivatives. The second-order logarithmic derivative of the companion

in (34) is

d2

dz2
log

⇣
zb�1Ea,b (xz

a)
⌘
=

d

dz

✓
1

z

Ea,b�1 (xza)

Ea,b (xza)

◆
=

d

dz

✓
zb�2Ea,b�1 (xza)

zb�1Ea,b (xza)

◆
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Invoking (19) yields

d

dz

✓
zb�2Ea,b�1 (xza)

zb�1Ea,b (xza)

◆
=

zb�3Ea,b�2 (xza)

zb�1Ea,b (xza)
�
✓
zb�2Ea,b�1 (xza)

zb�1Ea,b (xza)

◆2

and
d2

dz2
log

⇣
zb�1Ea,b (xz

a)
⌘
=

1

z2

 
Ea,b�2 (xza)

Ea,b (xza)
�
✓
Ea,b�1 (xza)

Ea,b (xza)

◆2
!

(38)

whose structure is more pleasing than that of (36).

A next di↵erentiation yields

d3

dz3
log

⇣
zb�1Ea,b (xz

a)
⌘
=

d

dz

 
zb�3Ea,b�2 (xza)

zb�1Ea,b (xza)
�
✓
zb�2Ea,b�1 (xza)

zb�1Ea,b (xza)

◆2
!

The first derivative equals

d

dz

✓
zb�3Ea,b�2 (xza)

zb�1Ea,b (xza)

◆
=

1

z3

 
Ea,b�3 (xza)

Ea,b (xza)
�

Ea,b�2 (xza)Ea,b�1 (xza)

(Ea,b (xza))
2

!

The second is

d

dz

✓
zb�2Ea,b�1 (xza)

zb�1Ea,b (xza)

◆2

=
2

z3

 
Ea,b�1 (xza)Ea,b�2 (xza)

(Ea,b (xza))
2 �

✓
Ea,b�1 (xza)

Ea,b (xza)

◆3
!

Combining results in

d3

dz3
log

⇣
zb�1Ea,b (xz

a)
⌘
=

1

z3

 
Ea,b�3 (xza)

Ea,b (xza)
�

3Ea,b�1 (xza)Ea,b�2 (xza)

(Ea,b (xza))
2 + 2

✓
Ea,b�1 (xza)

Ea,b (xza)

◆3
!

(39)

Rather than continuing step-wise di↵erentiation, we consider

dm+1

dzm+1
log

⇣
zb�1Ea,b (xz

a)
⌘
=

dm

dzm

✓
zb�2Ea,b�1 (xza)

zb�1Ea,b (xza)

◆

and invoke Leibniz’ rule

dm

dzm

✓
zb�2Ea,b�1 (xza)

zb�1Ea,b (xza)

◆
=

mX

k=0

✓
m

k

◆
dk

dzk

✓
1

zb�1Ea,b (xza)

◆
dm�k

dzm�k

⇣
zb�2Ea,b�1 (xz

a)
⌘

With (20), we obtain

dm�k

dzm�k

n
zb�2Ea,b�1 (xz

a)
o
= zb�2�m+kEa,b�1�m+k (xz

a) =
dm+1�k

dzm+1�k

n
zb�1Ea,b (xz

a)
o

The Taylor series of 1
f(z) around z0, in terms of our characteristic coe�cients [48],

1

f(z)
=

1

f0 (z0)
+

1X

m=1

"
mX

k=1

(�1)k

fk+1
0 (z0)

s[k,m] (z0)

#
(z � z0)

m (40)

where the characteristic coe�cient s[k,m] (z0) is defined in (28), illustrates for m � 1 that

1

m!

dm

dzm

✓
1

f (z)

◆����
z=z0

=
mX

k=1

(�1)k

fk+1
0 (z0)

s[k,m] (z0)
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Applying (40) and replacing z0 by z specifies, for k � 1,

1

k!

dk

dzk

✓
1

zb�1Ea,b (xza)

◆
=

kX

n=1

(�1)n

(zb�1Ea,b (xza))
n+1 s[n, k]| (z)

where the explicit form (28) of the characteristic coe�cient indicates that

s[n, k]| (z) =
X

Pn
i=1 ji=k;ji>0

nY

i=1

1

ji!

dji

dzji

n
zb�1Ea,b (xz

a)
o
=

X
Pn

i=1 ji=k;ji>0

nY

i=1

zb�1�jiEa,b�ji (xz
a)

ji!

Since
Qn

i=1
zb�1�jiEa,b�ji

(xza)
ji!

= z
Pn

i=1(b�1�ji)
Qn

i=1
Ea,b�ji

(xza)
ji!

= zn(b�1)�
Pn

i=1 ji
Qn

i=1
Ea,b�ji

(xza)
ji!

and
Pn

i=1 ji = k, we find

s[n, k]| (z) = zn(b�1)�k
X

Pn
i=1 ji=k;ji>0

nY

i=1

Ea,b�ji (xz
a)

ji!

so that

1

k!

dk

dzk

✓
1

zb�1Ea,b (xza)

◆
= z�(b�1)�k

kX

n=1

(�1)n

(Ea,b (xza))
n+1

X
Pn

i=1 ji=k;ji>0

nY

i=1

Ea,b�ji (xz
a)

ji!

for k � 1. Substituting these results into Leibniz’s formula yields the logarithmic derivatives lm =
dm

dzm log
�
zb�1Ea,b (xza)

�

lm+1 =
zb�2�mEa,b�1�m (xza)

zb�1Ea,b (xza)
+

mX

k=1

✓
m

k

◆
dk

dzk

✓
1

zb�1Ea,b (xza)

◆
zb�2�m+kEa,b�1�m+k (xz

a)

=
1

zm+1

0

@Ea,b�1�m (xza)

Ea,b (xza)
+m!

mX

k=1

8
<

:

kX

n=1

(�1)n
PPn

i=1 ji=k;ji>0

Qn
i=1

Ea,b�ji
(xza)

ji!

(Ea,b (xza))
n+1

9
=

;
Ea,b�1�m+k (xza)

(m� k)!

1

A

which shows that l0m = zmlm is a sum of m fractions of Mittag-Le✏er functions. In addition to (34),

(38) and (39), we list the scaled logarithmic derivatives l0m = zm dm

dzm log
�
zb�1Ea,b (xza)

�
for m = 4, 5
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and 6,

l04 =
Ea,b�4 (xza)

Ea,b (xza)
�

4Ea,b�3 (xza)Ea,b�1 (xza) + 3 (Ea,b�2 (xza))
2

(Ea,b (xza))
2 +

12Ea,b�2 (xza) (Ea,b�1 (xza))
2

(Ea,b (xza))
3

� 6

✓
Ea,b�1 (xza)

Ea,b (xza)

◆4

l05 =
Ea,b�5 (xza)

Ea,b (xza)
�

10Ea,b�3 (xza)Ea,b�2 (xza) + 5Ea,b�4 (xza)Ea,b�1 (xza)

(Ea,b (xza))
2

+
20Ea,b�3 (xza) (Ea,b�1 (xza))

2 + 30Ea,b�1 (xza) (Ea,b�2 (xza))
2

(Ea,b (xza))
3

�
60Ea,b�2 (xza) (Ea,b�1 (xza))

3

(Ea,b (xza))
4 + 24

✓
Ea,b�1 (xza)

Ea,b (xza)

◆5

l06 =
Ea,b�6 (xza)

Ea,b (xza)
�

10 (Ea,b�3 (xza))
3 + 15Ea,b�4 (xza)Ea,b�2 (xza) + 6Ea,b�5 (xza)Ea,b�1 (xza)

(Ea,b (xza))
2

+
30 (Ea,b�2 (xza))

3 + 30Ea,b�4 (xza) (Ea,b�1 (xza))
2 + 120Ea,b�3 (xza)Ea,b�2 (xza)Ea,b�1 (xza)

(Ea,b (xza))
3

�
120Ea,b�3 (xza) (Ea,b�1 (xza))

3 + 270 (Ea,b�2 (xza))
2 (Ea,b�1 (xza))

2

(Ea,b (xza))
4

+
360Ea,b�2 (xza) (Ea,b�1 (xza))

4

(Ea,b (xza))
5 � 120

✓
Ea,b�1 (xza)

Ea,b (xza)

◆6

The recursion of the characteristic coe�cients [48]

s[1,m] = fm

s[k,m] =
mX

j=k

fm�j+1 s[k � 1, j � 1] (k > 1)

=
m�k+1X

j=1

fj s[k � 1,m� j] (k > 1) (41)

enables exact computation to any desired (finite) m by symbolic software.

In summary, the explicit derivatives of lm = dm

dzm log
�
zb�1Ea,b (xza)

�
for any z, a and b provides

us with the Taylor series around any complex z0

log (Ea,b (xz
a)) = (1� b) log

✓
z

z0

◆
+log (Ea,b (xz

a
0))+

1X

m=1

1

m!

dm

dzm
log

⇣
zb�1Ea,b (xz

a)
⌘����

z=z0

(z � z0)
m

(42)

The Taylor series around z0 = 0 in art. 12 is limited to a region around the origin in the complex

plane. Taylor series (42) possesses a radius R (z0) of convergence around z0 that equals the distance

between z0 and the nearest zero of Ea,b (xza) to z0.

5 Integrals containing Ea,b (z)

15. Integral duplication formula for Ea,b (�z). Using the duplication formula of the Gamma function,

21



� (2z) = 1p
⇡
22z�1� (z)�

�
z + 1

2

�
, the definition (1) is rewritten as

Ea,b (z) =
1X

k=0

zk

� (b+ ak)
=

22b�1

p
⇡

1X

k=0

�
�
1
2 + b+ ak

� �
22az

�k

� (2b+ 2ak)

Invoking the Euler integral � (s) =
R1
0 ts�1e�tdt for Re (s) > 0,

Ea,b (�z) =
22b�1

p
⇡

1X

k=0

�
�22az

�k

� (2b+ 2ak)

Z 1

0
tb�

1
2 take�tdt

=
22b�1

p
⇡

Z 1

0
tb�

1
2 e�t

1X

k=0

(�z (4t)a)k

� (2b+ 2ak)
dt

and the definition (1), we find an integral duplication formula for Re (z) � 0 and Re (b) � �1
2 ,

Ea,b (�z) =
22b�1

p
⇡

Z 1

0
tb�

1
2 e�tE2a,2b (�z (4t)a) dt (43)

After substituting the Gamma duplication formula in the slightly rewritten power series

Ea,b (z) =
1X

k=0

zk

� (b+ ak)
=

1X

k=0

zk

(b� 1 + ak)� (b� 1 + ak)

=
22b�2

p
⇡

1X

k=0

(4az)k

� (2b� 1 + 2ak)
�

✓
b+ ak � 1

2

◆

we find alternatively,

Ea,b (�z) =
22b�2

p
⇡

1X

k=0

(�4az)k

� (2b� 1 + 2ak)

Z 1

0
tb�

3
2 take�tdt

=
22b�2

p
⇡

Z 1

0
tb�

3
2 e�t

1X

k=0

(�z (4t)a)k

� (2b� 1 + 2ak)
dt

for Re (b) � 1
2 and Re (z),

Ea,b (�z) =
22(b�1)

p
⇡

Z 1

0
tb�

3
2 e�tE2a,2b�1 (�z (4t)a) dt (44)

which also applies to Ea (z) = Ea,1 (z) after choosing b = 1.

Let ua = z (4t)a or u = 4z
1
a t, then (44) is, for real, nonnegative z,

Ea,b (�z) =
22b�2

p
⇡

✓
1

4
z�

1
a

◆b� 1
2
Z 1

0
ub�

3
2 e

�
⇣

1
4 z

� 1
a

⌘
u
E2a,2b�1 (�ua) du

Let s = 1
4z

� 1
a or z = (4s)�a, then we arrive at the Laplace transform

Z 1

0
e�suub�

3
2E2a,2b�1 (�ua) du =

p
⇡

22b�2sb�
1
2

Ea,b

�
� (4s)�a� (45)

Example For b = 1 and a = 1
2 , the Laplace transform (45) becomes

p
⇡p
s
E 1

2

✓
� 1

2
p
s

◆
=

Z 1

0
u�

1
2 e�su�

p
udu = 2

Z 1

0
e�st2�tdt
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With st2 + t = s
�
t+ 1

2s

�2 � 1
4s , we have

p
⇡p
s
E 1

2

✓
� 1

2
p
s

◆
= 2e

1
4s

Z 1

0
e�s(t+ 1

2s)
2

dt = 2e
1
4s

Z 1

1
2s

e�su2
du = e

1
4s

2p
s

Z 1

1
2
p
s

e�t2dt

Simplified with erfc(x) = 2p
⇡

R1
x e�u2

du = 1� erf (x) and erf (�x) = 2p
⇡

R �x
0 e�u2

du = � erf (x)

E 1
2
(�x) = ex

2 2p
⇡

Z 1

x
e�t2dt = ex

2
erfc (x)

is again (24), because erf (�x) = 2p
⇡

R �x
0 e�u2

du = � erf (x).

16. Integral multiplication formula for Ea,b (z). The method of art. 15 is readily generalized.

Invoking Gauss’s multiplication formula (162) into the definition (1) yields

Ea,b (z) =
1X

k=0

zk

� (b+ ak)
= (2⇡)

1
2 (1�n) nnb� 1

2

1X

k=0

n�1Y

j=1

�
⇣
b+ ak + j

n

⌘

� (nb+ nak)
(nnaz)k

We introduce the Mellin transform (184) of a product of Gamma functions for Re (s) > 0,

n�1Y

j=1

�

✓
s+

j

n

◆
=

Z 1

0
us�1hn (u) du

where the inverse function hn (u) is specified in (187) in art. 72 as a Taylor series in u, and we obtain

Ea,b (z) = (2⇡)
1
2 (1�n) nnb� 1

2

Z 1

0
hn (u)u

b�1
1X

k=0

(uannaz)k

� (nb+ nak)
du

Thus, for any integer n, we arrive at an integral multiplication formula for the Mittag-Le✏er functions,

Ea,b (z) = (2⇡)
1
2 (1�n) nnb� 1

2

Z 1

0
hn (u)u

b�1Ena,nb (u
annaz) du (46)

The companion of (46) follows similarly from Ea,b (z) =
P1

k=0
zk

(b�1+ak)�(b�1+ak) as

Ea,b (z) = (2⇡)
1
2 (1�n) nn(b�1)+ 1

2

Z 1

0
hn (u)u

b�2Ena,n(b�1)+1 (u
annaz) du (47)

which directly reduces for b = 1 to the Mittag-Le✏er function Ea (z) = Ea,1 (z),

Ea (z) = (2⇡)
1
2 (1�n) n

1
2

Z 1

0
hn (u)u

�1Ena (u
annaz) du

17. Special cases of the integral multiplication formula for Ea,b (z). The case n = 3 in (46) with h3 (u)

in (191) expressed in terms of the modified Bessel function K⌫ (z), defined in (189), becomes

Ea,b (z) =
33b�

1
2

⇡

Z 1

0
K 1

3

�
2
p
u
�
ub�

1
2E3a,3b

�
33auaz

�
du (48)

The companion of (48) follows from (47) as

Ea,b (z) =
33(b�1)+ 1

2

⇡

Z 1

0
K 1

3

�
2
p
u
�
ub�

3
2E3a,3b�2

�
33auaz

�
du (49)
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In [2, eq. (25), (28) and (31)], Apelblat has recently presented three remarkable integral functional

relations,

Ea (t
a) =

1p
⇡t

Z 1

0
e�

u2

4t E2a
�
u2a

�
du (50)

Ea (t
a) =

1

⇡

Z 1

0

r
u

t
K 1

3

 
2u

3
2

p
27t

!
E3a

�
u3a

�
du (51)

Ea (ta)� 1p
t

=

Z 1

0

J1
�
2
p
tu
�

p
u

Ea (u
a) du (52)

which he has skillfully derived by manipulations of Laplace transforms. Apart from the last relation

(52), where Jp (z) is the Bessel function of order p, the first two are special cases of the multiplication

formula for Ea,b (z) in art. 16. Indeed, after substitution of x = 1
4stu

2 in the first integral (50), we

obtain

Ea,1 (t
a) =

s
1
2

p
⇡

Z 1

0
x�

1
2 e�sxE2a,1 ((4st)

a xa) dx

which is a special case of (45), more easily noticed from its generalization (55) below, for a ! 2a,

b = 1 and x = (4st)a. With z = ta and after substituting x = u3

27t in (49), we obtain

Ea,b (t
a) =

t
1
2�b

⇡

Z 1

0
K 1

3

 
2

r
u3

27t

!
u3b�

5
2E3a,3b�2

�
u3a

�
dx

which leads to (51) by choosing b = 1.

18. Laplace transform of Ea,b

�
xz�

�
. The Laplace transform of t��1Ea,b

�
xt�

�
is

Z 1

0
e�stt��1Ea,b

⇣
xt�

⌘
dt =

Z 1

0
e�st

1X

k=0

xkt��1+�k

� (b+ ak)
dt =

1X

k=0

xk

� (b+ ak)

Z 1

0
e�stt�+�k�1dt

for Re (�) > 0 and Re (�) > 0. Fubini’s theorem7 states that the summation and integration can be

reversed, leading to Z 1

0
e�stt��1Ea,b

⇣
xt�

⌘
dt =

1X

k=0

� (� + �k)

� (b+ ak)

xk

s�+k�
(53)

provided the integrals
R1
0 e�stt��1Ea,b

�
xt�

�
dt and

R1
0 e�stt�+�k�1dt = �(�+�k)

s�+k� exist and the resulting

series at the right-hand side of (53) converges. Stirling’s formula (173) indicates for large k that, to

first order,

� (� + �k)

� (b+ ak)
⇠ k(��a)k

✓
��

aa

◆k

Hence, the series in (53) diverges if � > a and converges for all x
s�

if � < a. However, if � = a,

then ((176) shows, for any complex number z = rei✓ with large modulus r = |z|, that |�(a+z)|
|�(b+z)| =

ra�b
�
1 +O

�
1
r

��
and thus that �(�+ak)

�(b+ak) ⇠ (ak)��b for large k > k0 >> 1. The convergence of the

series 1
s�
P1

k=k0
�(�+ak)
�(b+ak)

�
x
sa
�k ⇠ a��b

s�
P1

k=k0
k��b

�
x
sa
�k

in (53) requires that
�� x
sa

�� < 1, for any finite �

and b.
7Another argument is that a Taylor series can be integrated within its range of convergence.
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A first choice is � = a and � = b in (53), which restricts s so that |sa| > |x|, is, for Re (b) > 0 and

Re (a) > 0, Z 1

0
e�sttb�1Ea,b (xt

a) dt =
1

sb

1X

k=0

⇣ x

sa

⌘k
=

sa�b

sa � x
(54)

The Laplace transform (54) plays a key role in the theory of the Mittag-Le✏er function.

Two other choices in (53) follow after the introduction of the duplication formula of the Gamma

function
� (� + �k)

� (b+ ak)
=

p
⇡

2b�1

� (� + �k)

2ak�
�
b
2 + a

2k
�
�
�
b+1
2 + a

2k
�

as � = b
2 and � = a

2 and � = b+1
2 and � = a

2 , respectively. If � = b
2 and � = a

2 , then we find

Z 1

0
e�stt

b
2�1Ea,b

⇣
xt

a
2

⌘
dt =

p
⇡

2b�1s
b
2

1X

k=0

1

�
�
b+1
2 + a

2k
�
✓

x

2as
a
2

◆k

resulting, with the definition (1), in

Z 1

0
e�stt

b
2�1Ea,b

⇣
xt

a
2

⌘
dt =

p
⇡

2b�1s
b
2

Ea
2 ,

b+1
2

 
x

(4s)
a
2

!
(55)

while the third choice � = b+1
2 and � = a

2 leads to

Z 1

0
e�stt

b+1
2 �1Ea,b

⇣
xt

a
2

⌘
dt =

p
⇡

2b�1s
b+1
2

Ea
2 ,

b
2

 
x

(4s)
a
2

!
(56)

Both (55) and (56) are slightly more general than and reduce to (45) and (43), respectively, for x = �1.

19. Generalized integration. By using a variation of the integral of the Beta-function [1, 6.2],R x
0 uz�1 (x� u)w�1 du = xz+w�1 �(z)�(w)

�(z+w) for real x > 0, Re (z) > 0 and Re (w) > 0, we obtain a

generalized integral variant of the Mittag-Le✏er function Ea,b (z) in (1),

1

� (w)

Z x

0
(x� u)w�1 u��1Ea,b

⇣
�u�

⌘
du =

1

� (w)

1X

k=0

�k

� (b+ ak)

Z x

0
u�k+��1 (x� u)w�1 du

= x�+w�1
1X

k=0

�kx�k

� (b+ ak)

� (� + �k)

� (� + w + �k)

which reduces for � = a and � = b to

1

� (w)

Z x

0
(x� u)w�1 ub�1Ea,b (�u

a) du = xb�1+wEa,b+w (�xa) (57)

The m-fold integral8 (57) for w = m and � = 1 possesses the same form as the m-fold di↵erentiation

in (20)
dm

dxm

n
xb�1Ea,b (x

a)
o
= xb�1�mEa,b�m (xa)

8The n-fold integral is

Fn (x, a) =

Z x

a

du1

Z u1

a

du2 . . .

Z un�1

a

dunf (un) =
1

(n� 1)!

Z x

a

(x� u)n�1
f (u) du

The generalization towards fractional calculus, where the integer n is extended to a real number, is treated in [19].
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that is better recognized with Cauchy’s integral for the m-th derivative of an analytic function,
dmf(z)
dzm

���
z=z0

= m!
2⇡i

R
C(z0)

f(!) d!
(!�z0)m+1 , where C (z0) is a closed contour around z0,

(�1)m+1m!

2⇡i

Z

C(x)
(x� !)�m�1!b�1Ea,b (!

a) d! = xb�1�mEa,b�m (xa)

Hence, (57) written with the reflection formula (161), suggests that

sin⇡w
⇡ � (1� w)

2⇡i

Z

C(x)
(x� !)w�1!b�1Ea,b (!

a) d! = xb�1�wEa,b�w (xa)

holds for any negative real w, leading to fractional derivatives [52]. The Laplace transform (54) easier

connects to fractional derivatives, avoiding the contour integral. Applications of the Mittag-Le✏er

function to fractional calculus are amply illustrated in [17].

Example For a = b = 1 in (57) and, next, x = 1, � = z and w+ 1 ! b, we obtain, for Re (b) > 1,

E1,b (z) =
1

� (b� 1)

Z 1

0
(1� u)b�2 ezudu

Let t = 1� u, then the incomplete Gamma function appears

E1,b (z) =
ez

� (b� 1)

Z 1

0
tb�2e�ztdt =

z1�bez

� (b� 1)

Z z

0
ub�2e�udu

which is again equal to (3).

20. Integration of a product of Mittag-Le✏er functions. We extend the idea in art. 19 and consider,

for x � 0,

L =
1

� (w)

Z x

0
(x� u)w�1 u��1Ea,b (�u

↵)Ec,d (µ (x� u)�) du

=
1

� (w)

1X

k=0

1X

m=0

�k

� (b+ ak)

µm

� (d+ cm)

Z x

0
(x� u)w+m��1 u�+k↵�1du

Introducing the integral of the Beta-function results in

L =
x�+w�1

� (w)

1X

k=0

1X

m=0

(�x↵)k

� (b+ ak)

(µx�)m

� (d+ cm)

� (� + k↵)� (w +m�)

� (� + k↵+ w +m�)

After the choice ↵ = a, � = b, � = c and d = w, the double sum simplifies to

L =
xb+w�1

� (w)

1X

k=0

1X

m=0

(�xa)k (µxc)m

� (b+ w + ka+mc)

Further computations require the choice c = a,

L =
xb+w�1

� (w)

1X

k=0

1X

m=0

(�xa)k (µxa)m

� (b+ w + a (k +m))

Let q = k +m, then 0  q and m = q � k � 0, while k � 0, thus

L =
xb+w�1

� (w)

1X

q=0

qX

k=0

�kµq�kxaq

� (b+ w + aq)
=

xb+w�1

� (w)

1X

q=0

µqxaq

� (b+ w + aq)

qX

k=0

✓
�

µ

◆k
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Executing the finite geometric series
Pq

k=0

⇣
�
µ

⌘k
=

⇣
�
µ

⌘q+1
�1

�
µ�1

leads to

L =
xb+w�1

� (w) (�� µ)

8
<

:�
1X

q=0

(�xa)q

� (b+ w + aq)
� µ

1X

q=0

(µxa)q

� (b+ w + aq)

9
=

;

Finally, we arrive for b > 0 and w > 0 at

Z x

0
(x� u)w�1 ub�1Ea,b (�u

a)Ea,w (µ (x� u)a) du = xb+w�1�Ea,b+w (�xa)� µEa,b+w (µxa)

�� µ
(58)

Clearly9, since limµ!0Ea,w (µ (x� u)a) = 1
�(w) , then (58) reduces to (57).

21. An asymptotic result. We invoke the device10, used by Gauss in his grand treatise [16, p. 146]

on the hypergeometric function [27, p. 74] to deduce the Euler integral for the Gamma function from

the Beta-integral based on

lim
n!1

✓
1� t

n

◆xn

= e�xt

and start from (57)

Z x

0

⇣
1� u

x

⌘w�1
ub�1Ea,b (�u

a) du = � (w)xbEa,b+w (�xa)

Let w = 1 + xs with Re (s) > 0 and x is real, then

Z x

0

⇣
1� u

x

⌘xs
ub�1Ea,b (�u

a) du = � (xs+ 1)xbEa,b+xs+1 (�x
a)

and, after taking the limit for x ! 1
Z 1

0
e�suub�1Ea,b (�u

a) du = lim
x!1

� (xs+ 1)xbEa,b+xs+1 (�x
a)

Comparison with the Laplace transform (54) for |sa| > |�| shows that

lim
x!1

� (xs+ 1)xbEa,b+xs+1 (�x
a) =

sa�b

sa � �

9In case µ ! �, then, after using de l’Hospital’s rule,

lim
µ!�

�Ea,b+w (�xa)� µEa,b+w (µxa)
�� µ

= Ea,b+w (�xa) + �x
a dEa,b+w (z)

dz

����
z=�xa

and the di↵erential rule (17), formula (58) becomes

Z x

0

(x� u)w�1
u
b�1

Ea,b (�u
↵)Ea,w (� (x� u)a) du =

x
b+w�1

a
{Ea,b+w�1 (�x

a) + (a+ 1� (b+ w))Ea,b+w (�xa)}

10Starting from the above Beta-integral, it holds that

� (z) lim
x!1

x
z� (x+ 1)

� (z + x+ 1)
= lim

x!1

Z x

0

u
z�1

⇣
1� u

x

⌘x
du =

Z 1

0

u
z�1

e
�u

du = � (z)

from which
� (z + x)
� (x)

⇠ x
z
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and, for large real x,

Ea,b+xs (�x
a) ⇠ 1

1� �
sa

1

� (xs) (sx)b

Let z = �xa, obeying |xs|a > |z|, then for real r = x |s| ! 1

Ea,b+rei✓ (z) ⇠
r�be�bi✓

1� zr�ae�ai✓

1

� (rei✓)
⇠ 1p

2⇡

r
1
2�be�bi✓

1� zr�ae�ai✓
e�r(ln(r)�1) cos ✓+✓r sin ✓

✓
1 +O

✓
1

r

◆◆

where in the last step (176) is used. Thus for a > 0 and for �⇡
2 < ✓ < ⇡

2 , we evidently find that

Ea,b (z) ! 0 for Re (b) ! 1 and for ⇡
2 < ✓ < 3⇡

2 that Ea,b (z) ! 1 for Re (b) ! �1. For ✓ = ±⇡
2 , it

holds that Ea,b+ir (z) ⇠ 1p
2⇡

r
1
2�be�bi⇡2

1�zr�ae�ai⇡2
e

⇡
2 r, from which |Ea,±ib (z)| ⇠ b

1
2p
2⇡

for real b ! 1.

22. Berberan-Santos’ integral for the double argument. Berberan-Santos [4] applied a simplified form

(195) of the inverse Laplace contour integral (193), which he deduced in [3], to the Mittag-Le✏er

function Ea,b (z). First, let the Laplace transform of a real function g (u) be equal to Ea,b (�z), hence,R1
0 e�sug (u) du = Ea,b (�s). From the Laplace transform with s = � + iT

|Ea,b (�s)| =
����
Z 1

0
e��ue�iTug (u) du

���� 
Z 1

0
e��tg (t) dt

it follows that lims!1
R1
0 e�stg (t) dt = 0 for any direction in which s with Re (s) > 0 tends to

infinity. Since Ea,b (z) is entire function of order 1
a , Ea,b (z) = O

⇣
ez

1
a
⌘
, we have that Ea,b (�z) =

O

✓
er

1
a ei

✓+⇡
a

◆
= O

✓
er

1
a cos ✓+⇡

a

◆
and |Ea,b (�s)| ! 0 provided that cos ✓+⇡

a < 0 or ⇡a
2 � ⇡ < ✓ <

3⇡a
2 � ⇡. With s = rei✓ and �⇡

2  ✓  ⇡
2 because Re (s) > 0, the limit lims!1 |Ea,b (�s)| = 0

requires that 0  a  1. Incidentally, the definition of c in Appendix C indicates that c = 0 and

Berberan-Santos’ inverse Laplace transform (195) then yields

g(t) =
2

⇡

Z 1

0
Re (Ea,b (�iw)) cos twdw for t > 0

Next, Berberan-Santos observed from (6) that Ea,b (�iw) = E2a,b

�
�w2

�
� iwE2a,b+2a

�
�w2

�
so that,

for real w,

Re (Ea,b (�iw)) = E2a,b

�
�w2

�

Hence, the inverse Laplace transform becomes

g(t) =
2

⇡

Z 1

0
E2a,b

�
�w2

�
cos twdw for t > 0

Finally, taking the Laplace transform of both sides and reversing the integrals

Ea,b (�s) =
2

⇡

Z 1

0
E2a,b

�
�w2

�✓Z 1

0
e�st cos twdt

◆
dw

results in Berberan-Santos’ remarkable integral for the double argument in a (not b)

Ea,b (�s) =
2s

⇡

Z 1

0

E2a,b

�
�w2

�

s2 + w2
dw for 0  a  1, Re (s) > 0 (59)
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Example For a = 1
2 , b = 1 and with E1 (z) = ez, Berberan-Santos’ integral (59) yields again (24),

E 1
2
(�x) =

2x

⇡

Z 1

0

e�t2

t2 + x2
dt = ex

2
erfc (x)

23. Another proof of Berberan-Santos’ integral (59). Application of Theorem 1 in Appendix B to

f (z) = Ea,b (s� z), only valid for 0  a  1 because then limr!1
Ea,b(s�ir)

r2 = 0 (see art. 22), yields

Ea,b (�s) =
s

⇡

Z 1

�1

Ea,b(�iw)

s2 + w2
dw

Using (6), Ea,b (�iw) = E2a,b

�
�w2

�
� iwE2a,b+2a

�
�w2

�
and the fact that wE2a,b+2a

�
�w2

�
is odd

and E2a,b

�
�w2

�
is even, again leads to (59).

Using
R1
0 e�t(s2+w2)dt in (59) and reversing the integrals, justified by absolute convergence, gives

Ea,b (�s) =
2s

⇡

Z 1

0
e�ts2

⇢Z 1

0
e�tw2

E2a,b

�
�w2

�
dw

�
dt =

s

⇡

Z 1

0
e�ts2

⇢Z 1

0
e�txx�

1
2E2a,b (�x) dx

�
dt

Thus, Berberan-Santos’ integral (59) is equivalent to the statement that the Laplace transform of the

Laplace transform of x�
1
2E2a,b (�x) equals

⇡Ea,b(�
p
s)p

s
. In fact, the latter property follows from the

Stieltjes transform, which is an iteration of the Laplace transform and which is treated in the book

by Widder [56, Chapter VIII]. Appendix C discusses Gross’ Laplace transform pair [21], in which the

inverse Laplace transform (193) is of the same form as the Laplace transform (192) itself.

24. Euler-Maclaurin summation. The Euler-Maclaurin summation formula [41, p. 14] is

�X

n=↵+1

f(n) =

Z �

↵
f(t) dt+

NX

n=1

(�1)n
Bn

n!

h
f (n�1)(�)� f (n�1)(↵)

i
+RN (60)

with remainder term

RN =
(�1)N�1

N !

Z �

↵
BN (u� [u]) f (N)(u) du

where Bn and Bn(x) are the Bernoulli numbers and the Bernoulli polynomials defined in [1, Chapter

23].

The right-hand side summation in the Euler-Maclaurin summation formula (60) requires higher

order derivatives for the function f (w) = zw

�(b+aw) . We invoke Leibniz’ rule

f (k)(x) =
dk

dwk

zw

� (b+ aw)

����
w=x

=
kX

j=0

✓
k

j

◆
(log z)k�j zx

dj

dwj

1

� (b+ aw)

����
w=x

which simplifies, with dj

dwj
1

�(b+aw) = aj dj

dyj
1

�(y)

���
y=b+ax

, to

f (k)(x)

k!
= zx

kX

j=0

aj

j!

dj

dyj
1

� (y)

����
y=b+ax

(log z)k�j

(k � j)!

Since 1
�(z) is an entire function, the j-sum converges when k ! 1. Applying the Euler-Maclaurin

summation formula (60) to the definition (1) of Ea,b (z) =
P1

k=0
zk

�(b+ak) shows that � ! 1, but that we
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can choose the integer ↵ = m. The asymptotic form (176) indicates that lim�!1
dj

dwj
1

�(b+aw)

���
w=�

= 0

for all j and (60) becomes

1X

k=m+1

zk

� (b+ ak)
=

Z 1

m

zt

� (b+ at)
dt+ zm

N�1X

n=0

(�1)nBn+1

n+ 1

nX

j=0

aj

j!

dj

dyj
1

� (y)

����
y=b+am

(log z)n�j

(n� j)!
+RN

(61)

The integral is written in terms of the integral Ia,b (z), defined in (2), as

Z 1

m

zt

� (b+ at)
dt = zm

Z 1

0

zu

� (b+ am+ au)
du = zmIa,b+ma (z)

In summary, the Euler-Maclaurin expansion (61) is, with
P1

k=m+1
zk

�(b+ak) =
P1

k=0
zk+m+1

�(b+a(m+1)+ak) ,

zm+1Ea,b+(m+1)a (z) = zmIa,b+ma (z) + zmSN +RN (62)

where

SN =
N�1X

n=0

(�1)n
Bn+1

n+ 1

nX

j=0

aj

j!

dj

dyj
1

� (y)

����
y=b+ma

(log z)n�j

(n� j)!

25. Euler-Maclaurin sum SN . We concentrate on SN and reverse the summations,

SN =
N�1X

j=0

aj

j!

dj

dyj
1

� (y)

����
y=b+ma

N�1X

n=j

(�1)n
Bn+1

n+ 1

(log z)n�j

(n� j)!

Let x = log z and use dj

dxj x
n = n!

(n�j)!x
n�j , then

N�1X

n=j

(�1)n
Bn+1

n+ 1

xn�j

(n� j)!
=

N�1X

n=0

(�1)n
Bn+1

n+ 1

1

n!

dj

dxj
xn

and

lim
N!1

N�1X

n=j

(�1)n
Bn+1

n+ 1

xn�j

(n� j)!
=

dj

dxj

1X

n=0

Bn+1

(n+ 1)!
(�x)n

=
dj

dxj
1

x

1X

n=1

Bn

n!
(�x)n =

dj

dxj
1

x

 1X

n=0

Bn

n!
(�x)n � 1

!

The generating function (168) of the Bernoulli numbers Bn,

t

et � 1
=

1X

n=0

Bn
tn

n!
convergent for |t| < 2⇡

leads, for |x| < 2⇡, to

1X

n=j

(�1)n
Bn+1

n+ 1

xn�j

(n� j)!
=

dj

dxj
1

x

✓
�x

e�x � 1
� 1

◆
=

dj

dxj

✓
1

1� e�x
� x�1

◆
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For N ! 1 and |log z| < 2⇡, we obtain

S1 =
1X

j=0

aj

j!

dj

dyj
1

� (y)

����
y=b+ma

1X

n=j

(�1)n
Bn+1

n+ 1

(log z)n�j

(n� j)!

=
1X

j=0

aj

j!

dj

dyj
1

� (y)

����
y=b+ma

dj

dxj

✓
1

1� e�x
� x�1

◆����
x=log z

Using the Fermi-Dirac integrals in art. 45, F�j�1(y) =
dj

dyj

⇣
1

1+e�y

⌘
and dj

dxj x
�1 = (�1)j j!x�1�j , we

have

S1 =
1X

j=0

aj

j!

dj

dyj
1

� (y)

����
y=b+ma

F�j�1(log z + i⇡)� 1

log z

1X

j=0

dj

dyj
1

� (y)

����
y=b+ma

✓
� a

log z

◆j

We recognize from (106) that, for |z| < 1,

Ea,b

�
�zei⇡

�
= Ea,b (z) =

1

� (b)
�

1X

j=0

aj

j!

dj

dyj
1

� (y)

����
y=b

F�j�1(log z + i⇡)

and from the series (143) for Ia,b (z), we obtain, for
��� a
log z

��� < 1,

S1 = �Ea,b+ma (z) +
1

� (b+ma)
+ Ia,b+ma (z) (63)

which is thus valid for |z| < 1 and
��� a
log z

��� < 1.

The Euler-Maclaurin expansion (62) becomes, for N ! 1 and with (63) and assuming that

RN ! 0,

zm+1Ea,b+(m+1)a (z) + zmEa,b+ma (z) = 2zmIa,b+ma (z) +
zm

� (b+ma)

With (14), we arrive, for |z| < 1,
��� a
log z

��� < 1 but all b, at

Ea,b (z) = zmIa,b+ma (z) +
mX

l=0

zl

� (b+ la)
(64)

Numerical computations for m  20 show that (64) is increasingly accurate for increasing m as

long as
��� a
log z

��� < 1, irrespective of b. On the other hand, when
��� a
log z

��� > 1, increasing m (up to 20) show

a decreasing accuracy. Since limm!1 zmIa,b+ma (z) = 0, (64) reduces to an identity when m ! 1.

Anticipating (140), the Euler-Maclaurin sum (61) becomes

1X

k=m+1

zk

� (b+ ak)
=

z
1�b
a

a

8
<

:ez
1
a +

Z 1

0

e�z
1
a x

xb+ma

 
sin(b+ma)⇡

⇡ lnx+ cos (b+ma)⇡

⇡2 + (lnx)2

!
dx

9
=

;

+ zm
N�1X

n=0

(�1)n
Bn+1

n+ 1

nX

j=0

aj

j!

dj

dyj
1

� (y)

����
y=b+am

(log z)n�j

(n� j)!
+RN (65)
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Numerical computations (for m = �1) indicate that the n-summation converges for small a and small

z, with fast convergence when z = 1. For z = 1, (65) simplifies to

1X

k=m+1

1

� (b+ ak)
=

1

a

(
e+

Z 1

0

e�x

xb+ma

 
sin(b+ma)⇡

⇡ lnx+ cos (b+ma)⇡

⇡2 + (lnx)2

!
dx

)

+
1X

n=0

Bn+1(�a)n

(n+ 1)!

dn

dyn
1

� (y)

����
y=b+am

where the latter sum converges for |a| < 1.

6 Complex integrals for Ea,b (z)

Two di↵erent complex integrals for the Mittag-Le✏er function Ea,b (z) are discussed. The first in

Section 6.1, called the basic complex integral (66), follows from the inverse Laplace transform of (54).

The second complex integral (78) in Section 6.2 is an instance of a Plana-like summation formula.

Section 6.3 derives further forms of the integral (86) for Ea (�z), which is the special for b = 1 and

0 < a < 1 of the integral (85).

6.1 Basic complex integral

26. Basic complex integral for Ea,b (z). Inverse Laplace transformation (193) of (54) yields, with

c0 > |x|
1
a for Re (b) > 0,

tb�1Ea,b (xt
a) =

1

2⇡i

Z c0+i1

c0�i1

sa�best

sa � x
ds

where the integrand is analytic for Re (s) > c0. For real t � 0, we can move the line of integration

to c > ta |x| = ta (c0)a and perform an ordinary substitution w = st. Let z = xta, then we arrive, for

Re (b) > 0 and Re (a) > 0, at the basic complex integral

Ea,b (z) =
1

2⇡i

Z c+i1

c�i1

wa�bew

wa � z
dw c > |z| (66)

The basic complex integral (66) of Ea,b (z) can also be deduced from Hankel’s deformed integral

(180) in the power series of the Mittag-Le✏er function (1)

Ea,b (z) =
1X

k=0

zk

� (b+ ak)
=

1

2⇡i

1X

k=0

Z

C�

�
zw�a

�k
w�bewdw =

1

2⇡i

Z

C�

1X

k=0

�
zw�a

�k
w�bewdw

Only if |zw�a| < 1, implying |z| < |wa| for any w along the contour C� described in art. 70, then we

obtain

Ea,b (z) =
1

2⇡i

Z

C�

w�bew

1� zw�a
dw (67)

where the radius ⇢ of the circle at w = 0 in the contour C� (see art. 70) can be appropriately chosen

to satisfy |z| < ⇢Re a or |z|
1

Re a < ⇢ for any z. We obtain again (66) by choosing � = ⇡
2 and c = ⇢.
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27. Mittag-Le✏er function Ea,b (z) for negative real a. Although Ea,b (z), defined by the power series

(1), is not valid for negative Re (a) values, the Taylor series (106) of Ea,b (z) in a around a0 = 0,

Ea,b (�z) =
1

� (b)
�

1X

m=0

1

m!

dm

dum
1

� (u)

����
u=b

F�m�1(log z)a
m

and its companion (108)

Ea,b (�z) =
1X

m=0

1

m!

dm

dum
1

� (u)

����
u=b

F�m�1(� log z) (�a)m

indicate that

Ea,b

✓
�1

z

◆
=

1

� (b)
� E�a,b (�z)

which may be used, by analytic continuation, as a definition of Ea,b (z) for Re (a) < 0. Thus, for

Re (a) < 0, the Mittag-Le✏er function Ea,b (z) possesses an essential singularity at z = 0 and is not

an entire function.

The same result is also deduced in [17, Sec. 4.8, pp. 80-82] from the basic complex integral (67)

in art. 26

Ea,b (z) =
1

2⇡i

Z

C�

wa�bew

wa � z
dw

is valid for any complex a, b and z. Introducing the identity

wa�b

wa � z
=

1

wb � zwb�a
=

1

wb
� 1

wb � 1
zw

a+b

leads to

Ea,b (z) =
1

2⇡i

Z

C�

ew

wb
dw � 1

2⇡i

Z

C�

w�a�bew

w�a � 1
z

dw

Invoking Hankel’s integral (181) to the first integral and the basic complex integral (67) to the last

integral leads again to

Ea,b (z) =
1

� (b)
� E�a,b

✓
1

z

◆
(68)

The Taylor series (1) of Ea,b (z) then shows that

E�a,b (z) =
1

� (b)
� Ea,b

✓
1

z

◆
= �

1X

k=1

z�k

� (b+ ak)

28. Evaluation of the basic complex integral for Ea,b (z). We will now evaluate the integral (66) by

closing the contour over the negative Re (w)-plane. Consider the closed loop integral

1

2⇡i

Z

L

wa�bew

wa � z
dw

where the contour L consists of the vertical line at w = c + it, the circle segment at infinity turning

from ⇡
2 towards ⇡ � ", the line above the negative real axis, the small circle with radius " turning

around the origin from ⇡ � " to �⇡ + ", the line from the origin just below the negative real axis,

over the circle segment with infinite radius from �⇡ + " to �⇡
2 and ending at the negative side of the
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vertical line. The integrand has only singularities of (wa � z)�1, which are simple poles because the

zeros of wa � z = 0 are all simple and lie at wk = |z|
1
a ei

arg z
a ei

2⇡k
a for each k 2 Z. If a is irrational,

there are infinitely many zeros. The contour L only encloses the poles with argument ✓k = arg z
a + 2⇡k

a

between �⇡  ✓k  ⇡. Thus, the integer k ranges from

�
ja
2
+

arg z

2⇡

k
 k 

ja
2
� arg z

2⇡

k

and there are precisely bac enclosed poles, where bvc is the integer smaller than or equal to v. Hence,

a must be at least equal to 1, else no singularities are enclosed. By Cauchy’s residue theorem, we

obtain

1

2⇡i

Z

L

wa�bew

wa � z
dw =

X

k2[�ba
2+

arg z
2⇡ c,ba

2�
arg z
2⇡ c]

lim
w!wk

w � wk

wa � z
wa�bew

=
1

a

X

k2[�ba
2+

arg z
2⇡ c,ba

2�
arg z
2⇡ c]

w1�b
k ewk with wk = |z|

1
a ei

arg z
a ei

2⇡k
a

We can always choose 0 < " < r small enough, provided that Re (a� b) > �1. Evaluation of the

contour L yields

1

2⇡i

Z

L

wa�bew

wa � z
dw =

1

2⇡i

Z c+i1

c�i1

wa�bew

wa � z
dw +

1

2⇡i

(Z 0

1

�
yei⇡

�a�b
e�y

(yei⇡)a � z
d
�
yei⇡

�
+

Z 1

0

�
ye�i⇡

�a�b
e�y

(ye�i⇡)a � z
d
�
ye�i⇡

�
)

= Ea,b (z)�
1

2⇡i

Z 1

0

 
e�i⇡(a�b)

yae�i⇡a � z
dy � ei⇡(a�b)

yaei⇡a � z

!
ya�be�ydy

Hence, for Re (a� b) > �1, we have

Ea,b (z) =
1

2⇡i

Z 1

0

 
e�(a�b)i⇡

e�ai⇡ya � z
� e(a�b)i⇡

eai⇡ya � z

!
ya�be�ydy +

1

a

X

k2[�ba
2+

arg z
2⇡ c,ba

2�
arg z
2⇡ c]

w1�b
k ewk

Finally, with e�(a�b)i⇡

e�ai⇡ya�z � e(a�b)i⇡

eai⇡ya�z = 2i sin⇡bya+z sin⇡(a�b)
y2a�2 cos a⇡zya+z2 , we arrive for Re (a) > Re (b)� 1 at a funda-

mental formula

Ea,b (z) = z
sin (a� b)⇡

⇡

Z 1

0

ya�be�ydy

y2a � 2zya cos a⇡ + z2
+

sin⇡b

⇡

Z 1

0

y2a�be�y

y2a � 2zya cos a⇡ + z2
dy

+
z

1�b
a

a

X

k2[�ba
2+

arg z
2⇡ c,ba

2�
arg z
2⇡ c]

ei
2⇡k
a (1�b)e|z|

1
a ei

arg z
a ei

2⇡k
a (69)

The last residue sum illustrates again that Ea,b (z) is an entire function of order 1
a . The sign of

wk = |z|
1
a ei

arg z
a ei

2⇡k
a is determined by cos

⇣
arg z+2⇡k

a

⌘
. Consequently for large |z|, in the sectors

�⇡a
2 � 2⇡k < arg z < ⇡a

2 � 2⇡k, the function Ea,b (z) tends to infinity, while in the complementary

sectors ⇡a
2 � 2⇡k < arg z < 3⇡a

2 � 2⇡k, Ea,b (z) ! 0.

29. Discussion of (69). If a = m and b = n are integers, then sin (a� b)⇡ = sin⇡b = 0, the integrals

in (69) disappear and (69) simplifies to

Em,n (z) =
z

1�n
m

m

X

k2[�bm
2 + arg z

2⇡ c,bm
2 � arg z

2⇡ c]
ei

2⇡k
m (1�n)ez

1
m ei

2⇡k
m
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which equals (11). The contribution of the integrals in (69), studied further in art. 34-36, can be

regarded for a real pair (a, b) as an interpolator between integer pairs (m,n).

For real z = �xa = xaei⇡ in (69) and wk = xei
(2k+1)⇡

a , we find

Ea,b (�xa) = �xa
sin (a� b)⇡

⇡

Z 1

0

ya�be�ydy

y2a + 2xaya cos a⇡ + x2a
+

sin⇡b

⇡

Z 1

0

y2a�be�y

y2a + 2xaya cos a⇡ + z2
dy

+
x1�b

a
e
i
n

⇡(1�b)
a

o bacX

k=0

ex cos (2k�1)⇡
a e

i
n
�x sin (2k�1)⇡

a � 2k⇡(1�b)
a

o

For real x, b = 1 and 0 < a < 1, the condition to enclose a pole is �a⇡  arg z + 2⇡k  a⇡. Since

arg z = ⇡ /2 [�a⇡, a⇡] for 0 < a < 1, the residue sum disappears and we obtain

Ea (�xa) = xa
sin a⇡

⇡

Z 1

0

ya�1e�ydy

y2a + 2xaya cos a⇡ + x2a
for 0 < a < 1 (70)

from which the asymptotic behavior for large x, with y2a + 2xaya cos a⇡ + x2a ⇠ x2a, are

Ea (�xa) ⇠ sin a⇡

⇡

� (a)

xa

Art. 34 presents another derivation in (86) that is equivalent to (70). Art. 46 verifies the integral in

(69), thus only for 0 < a < 1, via a series approach. For small, real x, the series (1) gives

Ea (�xa) =
1X

k=0

(�1)k xak

� (1 + ak)
= 1� xa

� (1 + a)
+O

�
x2a

�
= exp

✓
� xa

� (1 + a)

◆
+O

�
x2a

�

Hence, Ea (�xa) for 0 < a < 1 is said to “interpolate” between an exponential (for small x) and a

power law (for large x). These two regimes have been studied by Mainardi [28], who illustrated their

accuracy with several plots for a = 0.25, 0.5, 0.75, 0.9 and 0.99.

30. Mittag-Le✏er’s contour integral. In a rather long article of 1905, Mittag-Le✏er [35, at p. 133-

135] proceeds one step further and substitutes w = t
1
a in the basic complex integral (66). The map

w ! t
1
a is multi-valued. For w = |w| ei✓w with �⇡  ✓w  ⇡, the inverse map t ! wa shows that

t = |t| ei✓t = |w|a eia✓w+2⇡iak, from which the argument ✓t = a✓w+2⇡ak for any integer k. The contour

C� in the w-plane requires that ⇡
2 < |�| < ⇡, because ew ! 0 for large w at the contour C�. Similarly,

the transformed contour Ca� in the t-plane requires that a⇡
2 < |arg t| < a⇡ in order that et

1
a ! 0

along the straight lines towards infinity. Thus, the map w ! t
1
a changes the angles from � to a� of

the straight lines in the contour (Fig. 43 in Bieberbach’s book [7, p. 273]). Moreover, we must choose

the branch (i.e. the appropriate integer k in ✓t = a✓w + 2⇡ak) of the function t
1
a that is positive for

positive t, i.e. along the positive real t-axis, because the same holds along the positive real w-axis.

Performing the substitution w = t
1
a in (66) leads, for |z| < |t| and |arg z| < a⇡

2 , to Mittag-Le✏er’s

contour integral

Ea,b (z) =
1

2⇡ia

Z

Ca�

t
1�b
a et

1
a

t� z
dt with

⇡

2
< |�| < ⇡ (71)

Mittag-Le✏er’s integral (71) for b = 1 is actually more elegant than the basic complex integral (66)

at the expense of a more complicated contour Ca�.
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31. Deductions from Mittag-Le✏er’s contour integral (71) for Ea,b (z). Based on (71), we follow

Bieberbach [7, p. 273], who deduces two bounds for 0 < a < 2 and b = 1. First, using

1

t� z
= �1

z
+

t

z (t� z)

in (71), we have

Ea,b (z) = �1

z

1

2⇡ia

Z

Ca�

t
1�b
a et

1
a dt+

1

2⇡ia

Z

Ca�

t
1�b+a

a et
1
a

z (t� z)
dt

= �1

z

1

2⇡i

Z

C�

wa�bewdw +
1

2⇡ia

Z

Ca�

t
a�b�1

a et
1
a

z (t� z)
dt

With Hankel’s contour integral (180),

Ea,b (z) = �1

z

1

� (b� a)
+

1

2⇡ia

Z

Ca�

t
a�b+1

a et
1
a

z (t� z)
dt

The remaining integral is upper bounded by

������
1

2⇡ia

Z

Ca�

t
a�b+1

a et
1
a

z (t� z)
dt

������
<

1

2⇡a |z|

Z

Ca�

|t|
a�b+1

a

���et
1
a
���

|z|
��1� t

z

�� |dt| = c

|z|2

because 1
2⇡a

R
Ca�

|t|
a�b�1

a

����e
t
1
a

����

|1� t
z |

|dt| converges for t ! 1 if
���et

1
a
��� = e|t|

1
a cos arg t

a ! 0 for large t, which

requires that arg t
a � ⇡

2 . In addition, we must prevent that t
z for large z can tend arbitrarily close to

1, which is guaranteed if |arg z| /2
�
a⇡
2 , a⇡

�
, because |arg t| 2

�
a⇡
2 , a⇡

�
. Hence, for |arg z| /2

�
a⇡
2 , a⇡

�
,

we arrive at ����Ea,b (z) +
1

z� (b� a)

���� <
c

|z|2

For the second bound, Bieberbach [7, p. 275] cleverly observes that a similar integration path C 0
a�

as in Mittag-Le✏er’s integral (71) can be followed with the only di↵erence that the circular part of

the path now has a radius smaller than |z|. In other words, while |z| < |t| in Mittag-Le✏er’s integral

(71), the path C 0
a� now turns over an angle �a� to a� with the radius smaller than |z|. The closed

contour (see also [44, p. 346, Fig. 6.13-2]), that first follows the Mittag-Le✏er path Ca� and returns

via the path C 0
a�, encloses the point t = z as the only singularity, provided �a� < arg z < a�. Hence,

by Cauchy’s residue theorem, it holds that

1

2⇡ia

Z

Ca�

t
1�b
a et

1
a

t� z
dt� 1

2⇡ia

Z

C0
a�

t
1�b
a et

1
a

t� z
dt =

1

a
z

1�b
a ez

1
a

and

Ea,b (z) =
1

2⇡ia

Z

C0
a�

t
1�b
a et

1
a

t� z
dt+

1

a
z

1�b
a ez

1
a

from which
����Ea,b (z)�

1

a
z

1�b
a ez

1
a

���� 
1

2⇡a |z|

Z

C0
a�

���t
1�b
a

���
���et

1
a
���

�� t
z � 1

�� dt =
c0

|z|
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by the same convergence argument as above, where now on the circular segment |t| < |z| can be chosen

small enough. In summary, the second bound for |arg z| 2
�
a⇡
2 , a⇡

�
is

����Ea,b (z)�
1

a
z

1�b
a ez

1
a

���� <
c0

|z|

The derivation illustrates why Bieberbach considers 0 < a < 2, because |arg z| 2 (0, 2⇡).

The second bound shows that aEa,b (za) ⇡ z1�bez is independent of a so that aEa,b (za) ⇡
1
aE 1

a ,b

⇣
z

1
a

⌘
. Hence, we are led for non-negative real z and |z| > " to

E 1
a ,b

(z) ⇡ a2Ea,b

⇣
za

2
⌘

whose exact corresponding relation (135) for the associated integral Ia,b (z) =
R1
0

zu

�(b+au) du, explored

in Section 9, is I 1
a ,b

(z) = a2Ia,b
⇣
za

2
⌘
.

32. Evaluation of the basic complex integral along the line w = c+ it. The basic complex integral in

(66) is evaluated along the straight line w = c+ it as

Ea,b (z) =
1

2⇡

Z 1

�1

(c+ it)a�b ec+it

(c+ it)a � z
dt c > |z|

Since c+ it =
p
c2 + t2ei arctan

t
c , we have

Ea,b (z) =
1

2⇡

Z 1

�1

�
c2 + t2

�a�b
2 ei(a�b) arctan t

c ec+it

(c2 + t2)
a
2 eia arctan

t
c � |z| ei✓

dt c > |z|

We split the integration interval into two parts

Ea,b (z) =
1

2⇡

Z 0

�1

�
c2 + t2

�a�b
2 ei(a�b) arctan t

c ec+it

(c2 + t2)
a
2 eia arctan

t
c � |z| ei✓

dt+
1

2⇡

Z 1

0

�
c2 + t2

�a�b
2 ei(a�b) arctan t

c ec+it

(c2 + t2)
a
2 eia arctan

t
c � |z| ei✓

dt

and change the integration parameter in the first integral from t to �t,

Ea,b (z) =
1

2⇡

Z 1

0

�
c2 + t2

�a�b
2 e�i(a�b) arctan t

c ec�it

(c2 + t2)
a
2 e�ia arctan t

c � |z| ei✓
dt+

1

2⇡

Z 1

0

�
c2 + t2

�a�b
2 ei(a�b) arctan t

c ec+it

(c2 + t2)
a
2 eia arctan

t
c � |z| ei✓

dt

We simplify the integrand further and we find, for c > |z|,

Ea,b (z) =
ec

⇡

Z 1

0

�
c2 + t2

�a�b
2

 �
c2 + t2

�a
2 cos

�
t� b arctan t

c

�
� z cos

�
t+ (a� b) arctan t

c

�

(c2 + t2)a � 2z (c2 + t2)
a
2 cos

�
a arctan t

c

�
+ z2

!
dt

After substitution u = t
c , we arrive, for Re (b) > 0 and Re (a) > 0 and for c > |z|, at

Ea,b (z) =
ecc1�b

⇡

Z 1

0

�
1 + u2

�a�b
2

 �
1 + u2

�a
2 cos (cu� b arctanu)� z

ca cos (cu+ (a� b) arctanu)

(1 + u2)a � 2 z
ca (1 + u2)

a
2 cos (a arctanu) +

�
z
ca
�2

!
du

(72)

For z = 0 and c > 0, (72) simplifies to

Ea,b (0) =
1

� (b)
=

ecc1�b

⇡

Z 1

0

cos (cu� b arctanu)

(1 + u2)
b
2

du (73)
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After choosing c = 1, we obtain

1

� (b)
=

e

⇡

Z 1

0

cos (t� b arctan t)

(1 + t2)
b
2

dt

The positive real number c > |z|, which is a tuneable parameter, makes the integral (72) interesting.

For z 6= 0, there are several choices for c > |z| in (72). For example, we can choose c = � |z| with real

� > 1 or simply c = |z| + �. The more interesting choice for z 6= 0 is either (1) c = |z|
1
a > |z|, for

0 < a < 1 and |z| > 1 or for a > 1 and |z| < 1 or (2) c = |z|a > |z|, which holds for a > 1 and |z| > 1

or for 0 < a < 1 and |z| < 1.

(1) The choice c = |z|
1
a in (72), valid for {0 < a < 1 and |z| > 1} or {a > 1 and |z| < 1}, becomes

with z = |z| ei✓

Ea,b (z) =
e|z|

1
a |z|

1�b
a

⇡

Z 1

0

�
1 + u2

�a
2 cos

⇣
|z|

1
a u� b arctanu

⌘
� ei✓ cos

⇣
|z|

1
a u+ (a� b) arctanu

⌘

(1 + u2)
b�a
2

⇣
(1 + u2)a � 2ei✓ (1 + u2)

a
2 cos (a arctanu) + (ei✓)2

⌘ du

(74)

The prefactor e|z|
1
a |z|

1�b
a in (74) gives the correct order of magnitude (see Bieberbach’s second bound

in art. 31). A conservative upper bound (74) is

|Ea,b (z)| 
e|z|

1
a |z|

1�b
a

⇡

Z 1

0

�
1 + u2

�a
2 + 1

(1 + u2)
b�a
2

⇣
(1 + u2)

a
2 � 1

⌘2du

But,
R1
0

⇣
(1+u2)

a
2 +1

⌘
du

(1+u2)
b�a
2

⇣
(1+u2)

a
2 �1

⌘2 >
R1
0

(1+u2)
a
2 du

(1+u2)
b�a
2

⇣
(1+u2)

a
2

⌘2 =
R1
0

du

(1+u2)
b
2

=
p
⇡�( b�1

2 )
2�( b

2)
. The last step

follows from the Beta-function integral (157): B (p, q) =
R1
0

tp�1dt
(1+t)p+q = 2

R1
0

u2p�1du
(1+u2)p+q = �(p)�(q)

�(p+q) for

p = 1
2 and q = b�1

2 . Hence, we may approximate |Ea,b (z)| ⇡
�( b�1

2 )
2
p
⇡�( b

2)
e|z|

1
a |z|

1�b
a illustrating that the

integral in (74) is weakly dependent on a and z, agreeing with Bieberbach’s estimate.

(2) The choice c = |z|a in (72), valid for {0 < a < 1 and |z| < 1} or {a > 1 and |z| > 1}, becomes

Ea,b (z) =
e|z|

a |z|a(1�b)

⇡

Z 1

0

�
1 + u2

�a
2 cos (|z|a u� b arctanu)� z

|z|a2
cos (|z|a u+ (a� b) arctanu)

(1 + u2)
b�a
2

 
(1 + u2)a � 2 z

|z|a2
(1 + u2)

a
2 cos (a arctanu) +

✓
z

|z|a2

◆2
!du

(75)

The appearing ratio

����
z

|z|a2

���� is smaller than 1, i.e.

����
z

|z|a2

���� < 1 in both regimes {0 < a < 1 and |z| < 1}

and {a > 1 and |z| > 1}. However, in the regime {0 < a < 1 and |z| < 1}, |z|a
2
! 1 and z

|z|a2
! z

for a ! 0, whereas in the regime {a > 1 and |z| > 1}, |z|a
2
! 1 and z

|z|a2
! 0 for a ! 1. In the

latter regime {a > 1 and |z| > 1} for su�ciently large a, the denominator is expanded with 1
1�x =
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1 + x+O
�
x2
�
and the integral (75) equals

Ea,b (z) =
e|z|

a |z|a(1�b)

⇡

Z 1

0

cos (|z|a u� b arctanu)

(1 + u2)
b
2

du

+
z

|z|a2
e|z|

a |z|a(1�b)

⇡

Z 1

0

2 cos (|z|a u� b arctanu) cos (a arctanu)� cos (|z|a u+ (a� b) arctanu)

(1 + u2)
b+a
2

du

+O

0

@
 

z

|z|a2

!2
e|z|

a |z|a(1�b)

⇡

Z 1

0

cos (|z|a u� b arctanu)

(1 + u2)
b
2

du

1

A

With

H = 2 cos (|z|a u� b arctanu) cos (a arctanu)� cos (|z|a u+ (a� b) arctanu)

= cos (|z|a u� (a+ b) arctanu)

we simplify to

Ea,b (z) =
e|z|

a |z|a(1�b)

⇡

Z 1

0

cos (|z|a u� b arctanu)

(1 + u2)
b
2

du

+
z

|z|a2
e|z|

a |z|a(1�b)

⇡

Z 1

0

cos (|z|a u� (a+ b) arctanu)

(1 + u2)
b+a
2

du

+O

0

@
 

z

|z|a2

!2
e|z|

a |z|a(1�b)

⇡

Z 1

0

cos (|z|a u� b arctanu)

(1 + u2)
b
2

du

1

A

Invoking (73) with c = |za| shows that e�|za||z|a(b�1)

�(b) = 1
⇡

R1
0

cos(|za|u�b arctanu)

(1+u2)
b
2

du and leads, for large a

and z > 1, to

Ea,b (z) =
1

� (b)
+

z

� (a+ b)
+O

0

@
 

z

|z|a2

!2
1

A

which implies, compared to the Taylor series (1), Ea,b (z) = 1
�(b) + z

�(a+b) +
P1

k=2
zk

�(ak+b) , that
P1

k=2
zk

�(ak+b) = O
⇣
|z|2�2a2

⌘
.

6.2 Complex integral for Ea,b (z) deduced from Cauchy’s residue theorem

33. Deductions from Cauchy’s residue theorem. If f (z) is an entire function and limr!1

����
f(rei✓)
sin⇡rei✓

���� ! 0

in a semicircle with either �⇡
2 < ✓ < ⇡

2 or ⇡
2 < ✓ < 3⇡

2 , then it follows directly from Cauchy’s residue

theorem [47] for 0 < c < 1 that

1

2⇡i

Z c+i1

c�i1

⇡

sin⇡w
f (w) dw =

(
�
P1

k=1 (�1)k f (k) if � ⇡
2 < ✓ < ⇡

2P1
k=0 (�1)k f (�k) if ⇡

2 < ✓ < 3⇡
2

(76)

where if �⇡
2 < ✓ < ⇡

2 , the contour is closed over the positive Re (w)-plane, else over the negative

Re (w)-plane. Equation (76) is similar to Plana’s summation formula [44, p. 438]. The definition (1)

of Ea,b (z) =
P1

k=0
zk

�(b+ak) contains f (w) = zw

�(b+aw) , which is an entire function in w. The asymptotic
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behavior (176) of 1
|�(b+arei✓)| =

(ar)
1
2�b

p
2⇡

e�ar(ln(ar)�1) cos ✓+✓ar sin ✓
�
1 +O

�
1
r

��
in art. 69 shows that the

above contour can be closed over the positive Re (w)-plane, resulting in11

Ea,b (z) = � 1

2⇡i

Z c+1ei✓

c+1e�i✓

⇡

sin⇡w

(�z)w

� (b+ aw)
dw for � 1 < c < 0 (78)

where the path above and below the real w-axis follow the lines c + re±i✓, where 0 < ✓ < ⇡
2 . Thus,

the line of integration cannot be parallel with the imaginary axis, unless a < 2. If a = b = 1, the

reflection formula (161) leads to Mellin’s integral 1
2⇡i

R c+1
c+1 � (w) (�z)w dw = ez.

Let us consider the contour C, consisting of the line c + rei✓ with 0  r  T , the line parallel to

the real axis from c+ Tei✓ to the left at c�m+ Tei✓, the line back to the real axis at c�m (and the

reflection of this parallelogram around the real axis). The path parallel to the real axis

Z c�m+Tei✓

c+Te�i✓

⇡

sin⇡w

(�z)w

� (b+ aw)
dw =

Z c�m

c

⇡

sin⇡ (x+ Te�i✓)

(�z)x+Te�i✓

� (b+ ax+ aTe�i✓)
dx

vanishes by (176) for T ! 1 provided 0 < ✓ < ⇡
2 . The contour C encloses the poles ⇡

sin⇡w at w = �k

from k = 1 to m with residue (�1)k. Hence, by shifting the lines c+re±i✓ to c�m+re±i✓, maintaining

the angle 0 < ✓ < ⇡
2 , we deform the integral (78) into

Ea,b (z) =
mX

k=1

1

� (b� ka)

1

zk
� 1

2⇡i

Z c0+1ei✓

c0+1e�i✓

⇡

sin⇡w

(�z)w

� (b+ aw)
dw for � 1�m < c0 < m

For complex z and for any a, it is generally complicated to bound the integral for large |z| to deduce

an asymptotic expansion.

34. We assume here complex z and b, but a is real and positive. If we choose ✓ = ⇡
2 in (78), then we

must restrict 0 < a < 2 due to 1
|�(b+air)| =

(ar)
1
2�b

p
2⇡

e
⇡
2 ar

�
1 +O

�
1
r

��
in (177). In that case, we evaluate

the contour in (78) along the line w = c+ it,

Ea,b (�z) = �1

2

Z 1

�1

1

sin⇡ (c+ it)

zc+it

� (b+ ac+ iat)
dt for � 1 < c < 0

Since c < 0 and 0 < a < 2, the reflection formula (161) yields

1

� (b� a |c|+ ait)
= �� (1� b+ a |c|� ait)

sin⇡ (a |c|� b� ait)

⇡

and

Ea,b (�z) =
1

2⇡

Z 1

�1

sin⇡ (a |c|� b� ait)

sin⇡ (� |c|+ it)
� (a |c|+ 1� b� ait) z�|c|+itdt

We change the sign of c and obtain

Ea,b (�z) = � 1

2⇡

Z 1

�1

sin⇡ (ac� b� ait)

sin⇡ (c� it)

� (ac+ 1� b� ait)

zc�it
dt for 0 < c < 1

11The integral (78) is rewritten with the reflection formula of the Gamma function as a Barnes-Mellin type integral

Ea,b (�z) = � 1
2⇡i

Z c+1ei✓

c+1e�i✓

� (1� w)� (w)
� (b+ aw)

z
w
dw for � 1 < c < 0 and 0 < ✓ <

⇡

2
(77)
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In order to replace � (ac+ 1� b� ait) by Euler’s integral (147), we must require that Re (ac+ 1� b) >

0 or ac+ 1 > Re (b)

Ea,b (�z) = � 1

2⇡

Z 1

�1
dt

sin⇡ (a (c� it)� b)

sin⇡ (c� it)

1

zc�it

Z 1

0
ua(c�it)�be�udu for 0 < c < 1

Since z = rei✓, then zc�it =
�
rei✓

�c�it
= rc�itei✓(c�it) = rc�itei✓ce✓t and the integral becomes

Ea,b

⇣
�rei✓

⌘
= � 1

2⇡

Z 1

�1
dt

sin⇡ (a (c� it)� b)

sin⇡ (c� it)

1

rc�itei✓ce✓t

Z 1

0
ua(c�it)�be�udu for 0 < c < 1

We can interchange the integrals by absolute convergence, provided that 0 < a < 1 and that |✓| < ⇡,

Ea,b (�z) = �
Z 1

0
u�be�udu

 
1

2⇡

Z 1

�1

sin⇡ (a (c� it)� b)

sin⇡ (c� it)

✓
ua

z

◆c�it

dt

!
for 0 < c < 1 (79)

The integral between brackets in (79) can be recasted with y = ua

z as

Qa,b (y) =
1

2⇡

Z 1

�1

sin⇡ (a (c� it)� b)

sin⇡ (c� it)
yc�itdt =

1

2⇡i

Z c+i1

c�i1

sin⇡ (aw � b)

sin⇡w
ywdw for 0 < c < 1

(80)

and (79) becomes

Ea,b (�z) = �
Z 1

0
u�be�uQa,b

✓
ua

z

◆
du (81)

In art. 36 below, we prove for complex y with |arg y| < ⇡ and 0 < a < 1 that

Qa,b (y) =
1

⇡

✓
y sin⇡ (a� b)� y2 sin⇡b

1 + 2y cos⇡a+ y2

◆
(82)

Substitution of (82) into (79) yields, for 0 < a  1, a+ 1 > Re (b) and complex z with |arg z| < ⇡,

Ea,b (�z) =
1

⇡

Z 1

0
u�be�u

 
�ua

z sin⇡ (a� b) +
�
ua

z

�2
sin⇡b

1 + 2ua

z cos⇡a+
�
ua

z

�2

!
du (83)

We present several reformulations of the integral (83). First, we split (83) into two parts, for

0 < a  1, a+ 1 > Re (b) and complex z with |arg z| < ⇡,

Ea,b (�z) =
�z sin⇡ (a� b)

⇡

Z 1

0

ua�be�udu

z2 + 2zua cos⇡a+ u2a
+

sin⇡b

⇡

Z 1

0

u2a�be�udu

z2 + 2zua cos⇡a+ u2a
(84)

which equals (69) without residue sum. A second rewriting of (83)

Ea,b (�z) =
1

⇡

Z 1

0
ua�be�u

✓
�z sin⇡ (a� b) + ua sin⇡b

(z sin⇡a)2 + (z cos⇡a+ ua)2

◆
du

illustrates that the denominator is always positive for real z. Third, let u = z
1
a t in (83), then we

must additionally require that Re
⇣
z

1
a

⌘
> 0, thus Re

⇣
r

1
a ei

✓
a

⌘
= r

1
a cos

�
✓
a

�
> 0. We obtain, for

Re
⇣
z

1
a

⌘
> 0, 0 < a  1 and a+ 1 > Re (b),

Ea,b (�z) =
z

1�b
a

⇡

Z 1

0
t�be�z

1
a t

✓
�ta sin⇡ (a� b) + t2a sin⇡b

1 + 2ta cos⇡a+ t2a

◆
dt (85)
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35. The integral Qa,b (y). The contour of the integral Qa,b (y) in (80) for complex y = |y| ei✓ with

|✓| < ⇡ can be closed over either half-plane, because

lim
w!1

sin⇡ (aw � b)

sin⇡w
yw = lim

|w|!1
e{⇡(a�1)�✓}|w| sin' |y||w| cos'

vanishes if |y| < 1, cos' > 0, a < 1 and |✓| < ⇡. If |y| < 1, then we close the contour in (80) over

Re (w) > 0-plane and obtain

1

2⇡i

Z c+i1

c�i1
dt
sin⇡ (aw � b)

sin⇡w
yw = � 1

⇡

1X

k=1

(�1)k sin⇡ (ak � b) yk

=
ei⇡(a�b)y

2⇡i

1X

k=0

�
�ei⇡ay

�k � e�i(⇡a�b)y

2⇡i

1X

k=0

�
�e�i⇡ay

�k

=
y

2⇡i

 
ei⇡(a�b)

1 + ei⇡ay
� e�i⇡(a�b)

1 + e�i⇡ay

!

=
1

⇡

✓
y sin⇡ (a� b)� y2 sin⇡b

1 + 2y cos⇡a+ y2

◆

The derivation also shows, for real a and b, that Qa,b (|y|) = |y|
⇡ Im

⇣
ei⇡(a�b)

1+ei⇡a|y|

⌘
and |Qa,b (y)| 

1
⇡

P1
k=1 |y|

k = 1
⇡

|y|
1�|y| for |y| < 1.

If |y| > 1, then we close the contour over the Re (w) < 0-plane,

1

2⇡i

Z c+i1

c�i1
dt
sin⇡ (aw � b)

sin⇡w
(ua)w =

1

⇡

1X

k=0

(�1)k sin⇡ (�ak � b) y�k

=
1

⇡

✓
y sin⇡ (a� b)� y2 sin⇡b

1 + 2y cos⇡a+ y2

◆

Both the case |y| < 1 and |y| > 1 lead to the same result and Qa,b (1) = 1
2⇡

⇣
sin⇡(a�b)�sin⇡b

1+cos⇡a

⌘
=

1
2⇡

sin⇡(a
2�b)

cos ⇡a
2

.

In summary, for any complex y with |arg y| < ⇡ and for 0 < a < 1, we have proved (82). Moreover,

|Qa,b (y)|  1
⇡

P1
k=0 |y|

�k = 1
⇡

1
1�|y|�1 = 1

⇡
|y|

|y|�1 for |y| > 1. Hence, for any y, it holds that |Qa,b (y)| 
1
⇡

|y|
||y|�1| .

36. The integral Qa,b (u) for real u. The contour in (80) for real y = u can be rewritten as

Qa,b (u) =
u

a
2

⇡

⇢
sin⇡

⇣a
2
� b

⌘Z 1

0

cosh⇡at

cosh⇡t
cos (at log u) dt� cos⇡

⇣a
2
� b

⌘Z 1

0

sinh⇡at

cosh⇡t
sin (at log u) dt

�

Since Qa,1 (u) = Qa,1
�
1
u

�
, as follows from (82), it holds that

Z 1

0

sinh⇡at

cosh⇡t
sin (at log u) dt =

ua � 1

ua + 1
tan

⇣⇡a
2

⌘Z 1

0

cosh⇡at

cosh⇡t
cos (at log u) dt

so that

Qa,b (u) =
u

a
2

⇡
sin⇡

⇣a
2
� b

⌘⇢
1� ua � 1

ua + 1
cot⇡

⇣a
2
� b

⌘
tan

⇣⇡a
2

⌘�Z 1

0

cosh⇡at

cosh⇡t
cos (at log u) dt
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It follows then from (82) that

Z 1

0

cosh⇡at

cosh⇡t
cos (at log u) dt =

u
a
2 (sin⇡ (a� b)� ua sin⇡b)

(1 + 2ua cos⇡a+ u2a)
n
sin⇡

�
a
2 � b

�
+ 1�ua

1+ua cos⇡
�
a
2 � b

�
tan

�
⇡a
2

�o

whose right-hand is independent of b, so that b can be chosen at will. The simplest choice12 is b = a
2 ,

then Z 1

0

cosh⇡at

cosh⇡t
cos (at log u) dt =

u
a
2 (1 + ua) cos ⇡a

2

1 + 2ua cos⇡a+ u2a

Suppose that we ignore the restriction that the k-sum in

Qa,b (t
a) =

1

⇡

✓
ta sin⇡ (a� b)� t2a sin⇡b

1 + 2ta cos⇡a+ t2a

◆
=

1

⇡

1X

k=1

(�1)k�1 sin⇡ (ak � b) tak

only converges for t < 1 and that we substitute the series formally back in (85) and change the order

of integration and summation. Then, we find

Ea,b (�z) =
1

⇡

1X

k=1

sin⇡ (ak � b)� (ak � b+ 1)

(�z)k
= �

1X

k=1

1

(�z)k � (b� ak)
=

1

� (b)
� E�a,b

✓
�1

z

◆

which is precisely equal to (68), in spite of the divergence of the series!

6.3 Integral for Ea (z) with 0 < a < 1

If b = 1, then the integral (85) simplifies to

Ea (�z) =
sin⇡a

⇡

Z 1

0

ta�1e�z
1
a t

1 + 2ta cos⇡a+ t2a
dt (86)

which is listed in [4, eq. (34)] for real z = x and deducible from (70). We present several variations of

the integral (86) for b = 1 and 0 < a < 1.

37. Deductions from the integral (86). Berberan-Santos [4, eq. (35)] mentions13 that partial integra-

tion of (86) results in

Ea (�x) = 1� 1

2a
+

x
1
a

⇡a

Z 1

0
arctan

✓
ua + cos (⇡a)

sin (⇡a)

◆
e�x

1
a udu (87)

Indeed, let y = ua in (86), then

Ea (�x) =
sin⇡a

⇡a

Z 1

0

e�x
1
a y

1
a

1 + 2y cos⇡a+ y2
dy

12It is readily verified that

sin⇡ (a� b)� u
a sin⇡b

sin⇡
�
a
2 � b

�
+ 1�ua

1+ua cos⇡
�
a
2 � b

�
tan

�
⇡a
2

� = cos
⇣
⇡a

2

⌘
(1 + u

a)

13The integral in Berberan-Santos [4, eq. (35)], Ea (�x) = 1 � 1
2a + x

1
a

⇡

R1
0

arctan
⇣

ua+cos(⇡a)
sin(⇡a)

⌘
e
�x

1
a u

du, misses a

factor of 1
a before the integral.
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With 1
1+2y cos⇡a+y2 = 1

2i sin⇡a

⇣
1

e�i⇡a+y � 1
ei⇡a+y

⌘
, we have

Ea (�x) =
1

2⇡ia

Z 1

0

✓
1

e�i⇡a + y
� 1

ei⇡a + y

◆
e�x

1
a y

1
a dy (88)

as well as
Z

dy

1 + 2y cos⇡a+ y2
=

1

2i sin⇡a

✓
log

e�i⇡a + y

ei⇡a + y

◆
=

1

2i sin⇡a

✓
log

y + cos⇡a� i sin⇡a

y + cos⇡a+ i sin⇡a

◆

=
1

2i sin⇡a

 
log

1� i sin⇡a
y+cos⇡a

1 + i sin⇡a
y+cos⇡a

!
= � 1

sin⇡a
arctan

✓
sin⇡a

y + cos⇡a

◆

because arctan z = i
2 log

1�iz
1+iz . Hence, we find the indefinite integral with a constant K,

Z
ua�1du

1 + 2ua cos⇡a+ u2a
= � 1

a sin⇡a
arctan

✓
sin⇡a

ua + cos⇡a

◆
+K (89)

With this preparation, partial integration of (86) yields

Ea (�x) =
1

a⇡
arctan

✓
sin⇡a

cos⇡a

◆
� x

1
a

a⇡

Z 1

0
arctan

✓
sin⇡a

ua + cos⇡a

◆
e�x

1
a udu

= 1� x
1
a

a⇡

Z 1

0
arctan

✓
sin⇡a

ua + cos⇡a

◆
e�x

1
a udu

After invoking arctanx = ⇡
2 � arctan 1

x for x > 0, we arrive at (87).

Further, using the integral for arctan z =
R z
0

dt
1+t2 ,

1� Ea (�x) =
x

1
a

a⇡

Z 1

0
du

Z sin⇡a
ua+cos⇡a

0
dt
e�x

1
a u

1 + t2

and reverse the integrals, provided that 0 < a  1
2 ,

1� Ea (�x) =
x

1
a

a⇡

Z tan⇡a

0

R ( sin⇡a
t �cos⇡a)

1
a

0 e�x
1
a udu

1 + t2
dt

Hence, we obtain, for 0 < a  1
2 ,

Ea (�x) =
1

a⇡

Z tan⇡a

0

e�(x(
sin⇡a

t �cos⇡a))
1
a

1 + t2
dt (90)

After letting ua = sin⇡a
t � cos⇡a in (90), we retrieve (86) again.

38. Bounds from the integral (86). We split the integration interval in (86) into two parts,

Ea (�x) =
sin⇡a

⇡

Z 1

1

ua�1
⇣
e�x

1
a u�1

+ e�x
1
a u
⌘

1 + 2ua cos⇡a+ u2a
du

First,

Z 1

1

ua�1e�x
1
a u�1

1 + 2ua cos⇡a+ u2a
du = e�x

1
a

Z 1

1

ua�1ex
1
a (1�u�1)

1 + 2ua cos⇡a+ u2a
du

� e�x
1
a

Z 1

1

ua�1

1 + 2ua cos⇡a+ u2a
du
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Using (89) and sin⇡a
1+cos⇡a = tan ⇡a

2 , we arrive at the lower bound,

sin⇡a

⇡

Z 1

1

ua�1e�x
1
a u�1

1 + 2ua cos⇡a+ u2a
du � 1

⇡a
e�x

1
a arctan

⇣
tan

⇡a

2

⌘
=

1

2
e�x

1
a

Second, after partial integration and again using (89), we obtain

sin⇡a

⇡

Z 1

1

ua�1e�x
1
a u

1 + 2ua cos⇡a+ u2a
du =

1

2
e�x

1
a � x

1
a

⇡a

Z 1

1
e�x

1
a u arctan

✓
sin⇡a

ua + cos⇡a

◆
du

=
1

2
e�x

1
a � x

1
a e�x

1
a

⇡a

Z 1

1
e�x

1
a (u�1) arctan

✓
sin⇡a

ua + cos⇡a

◆
du

so that

Ea (�x) � e�x
1
a � x

1
a e�x

1
a

⇡a

Z 1

1
e�x

1
a (u�1) arctan

✓
sin⇡a

ua + cos⇡a

◆
du

Further, we may bound the latter integral,

Z 1

1
e�x

1
a (u�1) arctan

✓
sin⇡a

ua + cos⇡a

◆
du <

Z 1

1
e�x

1
a (u�1) arctan

✓
sin⇡a

1 + cos⇡a

◆
du

=
⇡a

2

Z 1

1
e�x

1
a (u�1)du =

⇡a

2x
1
a

which leads to the lower bound, for 0 < a < 1,

Ea (�x) � 1

2
e�x

1
a

It follows directly from (86) that

Ea (�x) =
sin⇡a

⇡

Z 1

0

✓
1� 2ua cos⇡a+ u2a

1 + 2ua cos⇡a+ u2a

◆
ua�1e�x

1
a udu

=
sin⇡a

⇡

� (a)

x
� sin⇡a

⇡

Z 1

0

(2 cos⇡a+ ua)

1 + 2ua cos⇡a+ u2a
u2a�1e�x

1
a udu

Further, for 0 < a < 1
2 (because then cos⇡a � 0),

Ea (�x)  sin⇡a

⇡

� (a)

x
� sin⇡a

⇡

Z 1

0

(2 cos⇡a+ ua)

1 + 2ua cos⇡a+ u2a
u2a�1e�x

1
a udu

 sin⇡a

⇡

� (a)

x
� sin⇡a

⇡

2 cos⇡a

2 + 2 cos⇡a
e�x

1
a

Z 1

0
u2a�1du

and

Ea (�x)  sin⇡a

⇡

� (a)

x
� e�x

1
a

4a⇡

sin 2⇡a

1 + cos⇡a

which illustrates, for 0 < a < 1
2 , that Ea (�x) is bounded by

sin⇡a

⇡

� (a)

x
� e�x

1
a

4a⇡

sin 2⇡a

1 + cos⇡a
� Ea (�x) � 1

2
e�x

1
a (91)
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7 The Mittag-Le✏er function in probability theory

39. Monotonicity of Ea,b (�x) for 0  a  1. Widder [56, Chapter IV] devotes an entire chapter

to absolutely and completely monotone functions. The Hausdor↵–Bernstein–Widder14 theorem [56,

p. 161, Theorem 12a] states that a necessary and su�cient condition that a function ' (x) on [0,1)

should be completely monotonic is that there exists a bounded and non-decreasing function f (u) such

that the integral

' (x) =

Z 1

0
e�xudf (u)

converges for all real x � 0. In other words, a function ' (x) is completely monotonic on [0,1) if

and only if ' (x) is a Laplace transform of a bounded and non-decreasing measure f (u). The fact

that (�1)n dn'(x)
dxn =

R1
0 xne�xudf (u) � 0 for all non-negative integers n is a direct consequence of

the Hausdor↵–Bernstein–Widder theorem, but the condition (�1)n dn'(x)
dxn � 0 for all non-negative

integers n is also su�cient [6, p. 56-59] and thus an equivalent statement for complete monotonicity

of a function ' (x).

Since the integrand in (86) is positive for 0  a  1 because

(1� ua)2  1 + 2ua cos⇡a+ u2a  (1 + ua)2

(86) shows that Ea (�x) > 0 for 0 < a  1. Hence, the integral (86) directly demonstrates that

Ea (�x) > 0 for 0 < a  1 is completely monotonic. Also, the case for b = a in (85) reduces to

x1�
1
aEa,a (�x) =

sin⇡a

⇡

Z 1

0

ua

1 + 2ua cos⇡a+ u2a
e�x

1
a udu (92)

illustrating that also x1�
1
aEa,a (�x) is complete monotonic. The monotonicity of Ea (�x) > 0 for

0 < a  1 was first conjectured by Feller [14, Section 7] and later proved by Pollard [39].

Pollard15 [39] introduces 1
t+z =

R1
0 e�s(t+z)ds in Mittag-Le✏er’s integral (71) and obtains a Laplace

transform,

Ea,b (�z) =

Z 1

0
e�sz

 
1

2⇡ia

Z

Ca�

t
1�b
a e�st+t

1
a dt

!
ds

from which he proves16 that Ea (�x) is completely monotonic for real x � 0 and 0  a  1, in the

sense that

Ea (�x) =

Z 1

0
e�xtdFa (t)

where Fa (t) is nondecreasing, bounded and a probability distribution. In other words, Ea (z) for

0  a  1 has no zeros on the negative real axis. Pollard [39] also explicitly determined the non-

negative function F 0
a (t). However, his proof is not easy and, therefore, omitted, but replaced by our

derivation in art. 41.

40. Monotonicity of Ea,b (�x) for 0 < a  1 and b � a. Schneider [45] extended the range of the

parameter b by proving that Ea,b (�x) > 0 for 0  a  1 and b > a. Schneider’s proof is involved,

14Widder [56, p. 144] mentions that Hausdor↵, Bernstein and himself have independently proved the theorem.
15Pollard’s PhD advisor was D. V. Widder.
16Berberan-Santos [4] claims that monotonicity, defined by (�1)n dn

dxnEa (�x) � 0 for all n, follows from g (t) > 0 in

art. 22 for 0  a  1, but I find his argument circular.
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based on Fox functions, and Schneider also derives the corresponding probability measure. Miller and

Samko [32] presented a simple proof, which we include here.

The integral (57) with � = � z
xa , b = a and w = b� a becomes

Ea,b (�z) =
x�a

� (b� a)

Z x

0

⇣
1� u

x

⌘b�a�1
ua�1Ea,a

⇣
�z

⇣u
x

⌘a⌘
du

After substitution t =
�
u
x

�a
or u = xt

1
a , we find, for b > a > 0,

Ea,b (�z) =
1

a� (b� a)

Z 1

0

⇣
1� t

1
a

⌘b�a�1
Ea,a (�zt) dt (93)

It follows from the di↵erentiation formula (17) for b = 1 that az d
dzEa,1 (z) = Ea,0 (z). Since

Ea,0 (z) = zEa,a (z) by (5), it holds that

a
d

du
Ea,1 (u)

����
u=z

= Ea,a (z) (94)

With the chain rule, d
dtEa,1 (�zt) = d

duEa,1 (u)
du
dt

��
u=�zt

= � z
aEa,a (�zt), (94) indicates that Ea,a (�z) =

�a d
dzEa,1 (�z). Art. 39 shows that Ea,1 (�z) = Ea (�z) is completely monotonous for 0 < a  1

satisfying (�1)n dnEa(�z)
dzn � 0 for all non-negative integers n, so that Ea,a (�z) > 0 is completely

monotonous as well. Since the integrand in (93) is non-negative, we conclude that Ea,b (�z) > 0 for

0 < a  1 and b � a.

41. Ea (�x) with 0 < a < 1 in probability theory. We construct two probability density functions

from the Mittag-Le✏er function Ea (�x) with 0 < a < 1 and show that Ea (�sa) is both a probability

generating function and a probability distribution.

a. After replacing x by sa in (86), the Laplace transform

Ea (�sa) =
sin⇡a

⇡

Z 1

0

ta�1

1 + 2ta cos⇡a+ t2a
e�stdt

indicates that

fa (t) =
sin⇡a

⇡

ta�1

1 + 2ta cos⇡a+ t2a
(95)

is a probability density function (pdf) for t > 0 and for 0 < a  1. Indeed, the Laplace transform (192)

of the non-negative function fa (t) is [50] a probability generating function (pgf) 'X(z) = E
⇥
e�zX

⇤

of a random variable X, provided 'X(0) = 1. Moreover, with fa (1) =
1
2⇡ tan ⇡a

2 , the pdf (95) obeys

the functional equation – recall that Qa,1 (u) = Qa,1
�
1
u

�
in (82) –

tfa (t) =
1

t
fa

✓
1

t

◆

Its companion, that follows similarly from (92) as

sa�1Ea,a (�sa) =
sin⇡a

⇡

Z 1

0

ta

1 + 2ta cos⇡a+ t2a
e�stdt

with non-negative function

ga (t) =
sin⇡a

⇡

ta

1 + 2ta cos⇡a+ t2a
= tfa (t) = ga

✓
1

t

◆
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is, in contrast to Ea (�sa), not17 a probability generating function, because lims!0 sa�1Ea,a (�sa) = 1
for a < 1. We verify from Laplace transform theory that

� d

ds
Ea (�sa) = sa�1Ea,a (�sa) (96)

in agreement with (19) taken into account (5).

b. The Laplace transform (54) with b = 1 and x = �1,

Z 1

0
e�stEa (�ta) dt =

sa�1

sa + 1

and with b = a and x = �1 Z 1

0
e�stta�1Ea,a (�ta) dt =

1

sa + 1
(97)

are only valid for sa > 1. Hence18, we cannot conclude from lims!0
1

sa+1 = 1 for a > 0 that

(97) is a pgf 'M (s), while
R1
0 e�stEa (�ta) dt = sa�1

sa+1 is not. However, integration of (96) yieldsR q
p ta�1Ea,a (�ta) dt = Ea (�pa)�Ea (�qa). If p = 0, then Ea,1 (0) =

1
�(1) = 1, while limq!1Ea (�qa) =

0, as follows from the integral Ea (�sa) = sin⇡a
⇡

R1
0

ta�1

1+2ta cos⇡a+t2a e
�stdt. Hence, it holds that

Z 1

0
ta�1Ea,a (�ta) dt = 1

illustrating that ta�1Ea,a (�ta) can be regarded as a probability density function and that the integral

in (97) exists for Re (s) � 0 and a > 0. Thus, by analytic continuation, the pgf 'M (s) = E
⇥
e�sM

⇤
in

(97) is valid for Re (s) � 0 with corresponding pdf

fM (t) = ta�1Ea,a (�ta) for 0 < a < 1 (98)

of a random variable M and (96) demonstrates that the corresponding Mittag-Le✏er distribution for

0 < a < 1 is

FM (t) = Pr [M  t] =

Z t

0
fM (u) du = 1� Ea (�ta) (99)

with mean E [M ] = �'0
M (0) = lims!0

asa�1

(sa+1)2
= 1. In fact, for 0 < a < 1, the pgf (97) is not analytic

at s = 0, implying that the Taylor series around s = 0 does not exist, nor any derivative. Hence, the

Mittag-Le✏er random variable M , defined by the pgf (97) and pdf (98) for 0 < a < 1, does not possess

any finite moment E
⇥
Mk

⇤
. In the limit a ! 1, the Mittag-Le✏er random variable M becomes an

exponential random variable with mean 1.

42. Probabilistic properties of the Mittag-Le✏er random variable. The sum Sn =
Pn

j=1Mj of n i.i.d

Mittag-Le✏er random variables M1,M2, . . . ,Mn, each with the same Mittag-Le✏er distribution (99),

has the pgf [50, p. 30]

'Sn (z) = E
h
e�z

Pn
j=1 Mj

i
= 'n

M (z) = (1 + za)�n

17However, insertion into (97) below leads, for Re (s) > 0, to
Z 1

0

u
a

1 + 2ua cos⇡a+ u2a

du

s+ u
=

⇡

sin⇡a
1

sa + 1

18This observation was communicated to me by Rui Ferreira.
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If we choose the scaling parameter � in 'Sn (�z) = (1 + �aza)�n equal to �a = 1
n , then

lim
n!1

'Sn

✓
z

n
1
a

◆
= lim

n!1

✓
1 +

za

n

◆�n

= e�za

Hence, the scaled sum �Sn =
Pn

j=1 n
� 1

aMj tends for n ! 1 to a random variable R with pgf equal

to

'R(z) = E
⇥
e�zR

⇤
= e�za (100)

whose form belongs to the class of stable distributions19. If a = 1, then R = 1 and not random. Since

e�za with 0 < 1 < a is only analytic for Re (z) > 0, inverse Laplace transform (193) provides us with

the pdf

fR (t) =
1

2⇡i

Z c+1ei�

c�1e�i�
e�zaeztdz c > 0 and � >

⇡

2

=
1X

k=0

(�1)k

k!

1

2⇡i

Z c+1ei�

c�1e�i�
zkaeztdz

Introducing Hankel’s integral (182)

fR (t) =
1X

k=0

(�1)k

k!

t�ak�1

� (�ka)

and the reflection formula (161) results in

fR (t) =
1

⇡

1X

k=1

(�1)k�1

k!

� (ka+ 1) sin⇡ka

tak+1
with 0 < 1 < a (101)

which is derived in another, more complicated way by Pollard [38]. Integration leads to the distribution

1� FR (t) = Pr [R > t] =
1

⇡

1X

k=1

(�1)k�1

k!

� (ka) sin⇡ka

tak

with the interesting result that limt!0 Pr [R � t] = 1, while limt!0 fR (t) = 1.

The sum of n i.i.d. random variables R1, R2, . . . , Rn with same distribution fR (t) in (101) equals
Pn

j=1Rj = n
1
aR, because

E
h
e�z

Pn
j=1 Rj

i
= 'n

R (z) = e�nza = e
�
⇣
n

1
a z

⌘a

= E


e�zn

1
aR

�

Thus,
Pn

j=1Rj = n
1
aR expresses self-similarity: a sum of random variables maintains the same

distribution upon scaling, which is an alternative description to a “stable” distribution.

19Let X1 and X2 be i.i.d random variables, similarly distributed as a random variable X. The random variable X is

stable if for any constants a > 0, b > 0, c > 0 and d, the random variable aX1+ bX2 has the same distribution as cX+d,

denoted as aX1+bX2
d
= cX+d. Another definition [15, p. 170] states that X is stable if and only if

Pn
j=1 Xj

d
= cnX+dn

for any integer n > 1 and where the constant cn > 0 and dn 2 R.
Gorenflo and Mainardi [20] discuss fractional di↵usion processes and their relation to Levy stable distributions.

49



43. The Mittag-Le✏er and Weibull random variable. We consider the random variable X = RW ,

where W is independent of the stable random variable R and will be chosen later. The pgf of X is

computed by invoking conditional expectations [50, p. 32],

'X(z) = E
⇥
e�zRW

⇤
= EW

⇥
ER

⇥
e�zRW

��W
⇤⇤

With the pgf (100) of the stable random variable R, the inner conditional expectation is a random

variable equal to

ER
⇥
e�zRW

��W
⇤
= e�zaWa

so that

'X(z) = EW
⇥
e�zaWa⇤

Let us now define the random variable Y = W a, then the expectation EW
⇥
e�zaWa⇤

becomes

'Y (z) = EY
⇥
e�zaY

⇤
= 'Y (z

a)

If Y is an exponential random variable with mean µ, then 'Y (z) = E
⇥
e�zY

⇤
= 1

z+µ . Hence, choosing

the mean equal µ = 1, then shows that

'X(z) =
1

za + 1

and the pgf (97) demonstrates that X = M has a Mittag-Le✏er distribution. The random variable

W = Y
1
a has the distribution Pr [W  x] = Pr

h
Y

1
a  x

i
= Pr [Y  xa] =

�
1� e�xa�

with the pdf

[50, p. 18]

fW (x) =
dPr [W  x]

dx
= axa�1e�xa

which illustrates that W is a Weibull random variable [50, p. 59] with E
⇥
W b

⇤
= �

�
b
a + 1

�
for any

real b > �a. Hence, all moments E
⇥
W k

⇤
for non-negative integer k exist. The Weibull distribution is

one of the three possible limit extremal distributions of a sequence of i.i.d. random variables [5, pp.

65-69] and reduces for a = 1 to the exponential distribution, just like the Mittag-Le✏er distribution

(99). Here, we have shown for the parameter 0 < a < 1 that the Weibull random variable W = M
R is

the quotient of the Mittag-Le✏er M and stable R random variable, whose moments do not exist.

44. The scaled random variable x
1
aR. Based on Laplace transforms, Feller [15, p. 453] shows that the

distribution Pr
h
R > t

x1/a

i
= 1�FR

⇣
t

x
1
↵

⌘
has a Laplace transform equal to Ea (�sta) =

P1
k=0

(�s)ktak

�(1+ka) .

We present a direct computation. Partial integration of the pgf 'X(z) =
R1
0 e�ztfX (t) dt,

Z 1

0
e�zt (1� FX (t)) dt =

1� 'X(z)

z

is transformed, after letting z ! �z for � > 0, and substituting u = �t, into
Z 1

0
e�zu

✓
1� FX

✓
u

�

◆◆
du =

1

z
(1� 'X(�z))

Applied to the stable random variable R with pgf 'R(z) = e�za ,

Z 1

0
e�zu

✓
1� FR

✓
u

�

◆◆
du =

1

z

⇣
1� e��aza

⌘
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and choosing x = �a > 0 yields
Z 1

0
e�zu

✓
1� FR

✓
u

x
1
↵

◆◆
du =

1

z

�
1� e�xza

�

Taking the Laplace transform of both sides with respect to x,
Z 1

0
dxe�sx

Z 1

0
due�zu

✓
1� FR

✓
u

x
1
↵

◆◆
=

1

z

Z 1

0
dxe�sx

�
1� e�xza

�

=
1

z

✓
1

s
� 1

s+ za

◆
=

1

s

✓
za�1

s+ za

◆

Introducing the Laplace transform (54) with b = 1 and x = �s
Z 1

0
e�ztEa (�sta) dt =

za�1

za + s

and interchanging the integrals on the left-hand side, allowed by absolute convergence,
Z 1

0
dte�zt

Z 1

0
dxe�sx

✓
1� FR

✓
t

x
1
↵

◆◆
=

1

s

Z 1

0
e�ztEa (�sta) dt

finally leads to Z 1

0
e�sx

✓
1� FR

✓
t

x
1
↵

◆◆
dx =

1

s
Ea (�sta)

which is, however, a factor 1
s di↵erent from Feller’s [15, p. 453] result above20.

8 Miscellanea

45. A Taylor series approach with Fermi-Dirac integrals. We introduce the Taylor series of the entire

function 1
�(b+ak) around q into the definition (1) of Ea,b (z),

Ea,b (z) =
1

� (b)
+

1X

k=1

zk

� (b+ ak)
=

1

� (b)
+

1X

k=1

zk
1X

m=0

1

m!

dm

dum
1

� (u)

����
u=q

(ak + b� q)m

and

Ea,b (z) =
1

� (b)
+

1

� (q)

z

1� z
+

1X

m=1

1

m!

dm

dum
1

� (u)

����
u=q

am
1X

k=1

zk
✓
k +

b� q

a

◆m

The reversal in the k- and m-sum leads to a confinement of |z| < 1. We will now choose q = b and

evaluate the series
P1

k=1 k
mzk, that converges for |z| < 1.

The Fermi-Dirac integral of order p is defined as

Fp(y) =
1

�(p+ 1)

Z 1

0

xp

1 + ex�y
dx (102)

The value of the zero argument in y is immediately written in terms of the Eta function,

Fp(0) = ⌘(p+ 1) (103)

20In the limit s ! 0, the right-hand side diverges and the left-hand side is
R1
0

✓
1� FR

✓
t

x
1
↵

◆◆
dx =

at
a
R1
0

(1� FR (u))u�a�1
du = at

a
R1
0

Pr [R > u]u�a�1
du illustrating that the integrand at the origin is O

�
u
�a�1

�
,

leading to a diverging integral. Hence, the factor 1
s is essential.
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where the Eta function ⌘ (s) is related to the Riemann Zeta function ⇣(s) as

⌘(s) = (1� 21�s)⇣(s) (104)

By expanding 1
1+ex�y = e�x+y

1+e�x+y =
P1

k=1(�1)k�1e�k(x�y) for Re (y) < 0 in (102), the Dirichlet series

for all complex p is readily deduced as

Fp(y) =
1X

k=1

(�1)k�1 (e
y)k

kp+1
(105)

In particular, F�1 (y) =
1

1+e�y . Hence, we can write
P1

k=1 k
m (�z)k = �F�m�1(log z) for |z| < 1 and

Ea,b (�z) =
1

� (b)
�

1X

m=0

1

m!

dm

dum
1

� (u)

����
u=b

F�m�1(log z)a
m (106)

For integer negative order and k > 0, it can be shown [48] that

F�k(y) =
dk�1

dyk�1

✓
1

1 + e�y

◆
=

kX

m=1

(m� 1)!(�1)m�1S(m)
k

✓
1

1 + e�y

◆m

where S(m)
k is the Stirling Number of the Second Kind [1, 24.1.4]. Since 1

1+e�y = 1 � 1
1+ey , which is

equivalent to F�1 (y) = 1� F�1 (�y), the k-th derivative shows that, for k > 1,

F�k(y) = (�1)k F�k(�y) (107)

and, thus extending the above for |z| < 1 to,

Ea,b (�z) =
1X

m=0

1

m!

dm

dum
1

� (u)

����
u=b

F�m�1(� log z) (�a)m (108)

Stretching the convergence constraint in (108) to z = 1 and using (103) results in

Ea,b (�1) =
1X

m=0

1

m!

dm

dzm
1

� (z)

����
z=b

⌘ (�m) (�a)m

Further by (104), it holds that ⌘(�m) = (1� 21+m)⇣(�m) = (1� 21+m) (�1)m

m+1 Bm+1, because ⇣(�n) =
(�1)n

n+1 Bn+1 and ⇣(�2n) = 0 for n > 0. Taking into account that the odd Bernoulli numbers B2m+1 = 0

for m > 0, we find

Ea,b (�1) = � 1

2� (b)
�

1X

k=1

B2k

(2k)!

d2k�1

dz2k�1

1

� (z)

����
z=b

(22k � 1)a2k�1

which converges fast for small a. Since Ea,b (�1) in (1) is an alternating series with decreasing coe�-

cients for a > 0 and b > 1.462, it holds that 1
�(b) < Ea,b (�1) < 1

�(a+b) .

The major interest of the expansion (108) lies in its fast convergence for small a, whereas the

definition (1) is converging slower for small a. Moreover, rewriting (9) as

Ea,b (z) =
1

n

n�1X

r=0

E a
n ,b

⇣
z

1
n ei

2⇡r
n

⌘
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illustrates that any real a can be transformed to a value smaller than 1 by choosing n = [a]+1, where

[a] is the largest integer smaller or equal to a. Indeed, for |z| < 1, (108) becomes

Ea,b (z) =
1X

m=0

1

m!

dm

dum
1

� (u)

����
u=b

8
<

:

P[a]
r=0 F�m�1

⇣
� log z

[a]+1 � i⇡
⇣

2r
[a]+1 + 1

⌘⌘

[a] + 1

9
=

;

✓
� a

[a] + 1

◆m

46. A Taylor series approach based on the inverse of the Gamma function. We present a related

approach as in art. 45 based on the modified Taylor series, tuneable in the complex parameter p and

derived in [48],

1

� (z)
=

e�pz

2⇡i

1X

k=0

zk

k!

Z 1

0
e�u

n
(p� log (u) + i⇡)k � (p� log (u)� i⇡)k

o
du (109)

where the Taylor coe�cient ck (p) =
1
k!

dk

duk
epu

�(u)

���
u=0

of the Taylor series of the entire function epz

�(z) =
P1

k=0 ck (p) z
k around z0 = 0 is

ck (p) =
1

2⇡i

1

k!

Z 1

0
e�u

n
(p� log (u) + i⇡)k � (p� log (u)� i⇡)k

o
du (110)

We apply (109) to the Mittag-Le✏er function Ea,b (z) =
P1

n=0
zn

�(an+b) ,

Ea,b (z) =
1X

n=0

zn
1X

k=0

(an+ b)k e�p(an+b)ck (p) =
1X

n=0

zn
1X

k=0

(�1)k
dke�t(an+b)

dtk

�����
t=p

ck (p)

We assume that a reversal of the summations is allowed,

Ea,b (z) =
1X

k=0

(�1)k
dk

dtk

 1X

n=0

zne�t(an+b)

!�����
t=p

ck (p)

=
1

2⇡i

1X

k=0

(�1)k

k!

dk

dtk

✓
e�tb

1� ze�ta

◆����
t=p

Z 1

0
e�u

n
(p� log (u) + i⇡)k � (p� log (u)� i⇡)k

o
du

(111)

where |ze�ap| < 1 or p > log|z|
a . First, a verification is given. Thereafter, we proceed with the above

series (111).

Verification: Assuming that the k-sum and integral in (111) can be reversed, yields

Ea,b (z) =
1

2⇡i

Z 1

0
e�u

8
><

>:

P1
k=0

(�1)k

k!
dk

dtk

⇣
e�tb

1�ze�ta

⌘���
t=p

(p� log (u) + i⇡)k

�
P1

k=0
(�1)k

k!
dk

dtk

⇣
e�tb

1�ze�ta

⌘���
t=p

(p� log (u)� i⇡)k

9
>=

>;
du

where the Taylor series

1X

k=0

(�1)k

k!

dk

dtk

✓
e�tb

1� ze�ta

◆����
t=p

(p� log (u)� i⇡)k =
e�tb

1� ze�ta

����
t=log u+i⇡

=
u�be�bi⇡

1� zu�ae�ai⇡

leads to

Ea,b (z) =
1

2⇡i

Z 1

0
e�uu�b

⇢
ebi⇡

1� zu�aeai⇡
� e�bi⇡

1� zu�ae�ai⇡

�
du
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Since ebi⇡

1�zu�aeai⇡ � e�bi⇡

1�zu�ae�ai⇡ = 2i
⇣

sin⇡b+zu�a sin⇡(a�b)
1�2zu�a cos a⇡+z2u�2a

⌘
, we arrive at

Ea,b (z) =
1

⇡

Z 1

0
e�uua�b

⇢
z sin⇡ (a� b) + ua sin⇡b

u2a � 2zua cos a⇡ + z2

�
du

which equals (84), but, as shown in art. 29, which is only correct if 0 < a  1 and a � b > �1. In

other words, the reversal of operators has limited the scope of the parameters a 2 (0, 1] and b < a+1.

Returning to the series (111). We invoke Leibniz’ rule to dk

dtk

⇣
e�tb

1�ze�ta

⌘
= 1

z
dk

dtk

⇣
et(a�b)

eta�log z�1

⌘
,

dk

dtk

 
et(a�b)

eta�log z � 1

!
=

kX

n=0

✓
k

n

◆
dk�n

dtk�n

⇣
et(a�b)

⌘ dn

dtn

✓
1

eta�log z � 1

◆

The last derivative can be exactly executed [48] as

dn

dtn

✓
1

eta�log z � 1

◆����
t=p

= an
dn

dwn

✓
1

ew�log z � 1

◆����
w=ap

= an
nX

j=0

(�1)j j!ej(ap�log z)

(eap�log z � 1)j+1 S(j)
n

so that
dk

dtk

 
et(a�b)

eta � z

!�����
t=p

= ep(a�b)
kX

n=0

✓
k

n

◆
(a� b)k�n an

nX

j=0

(�1)j j!ejap

(eap � z)j+1S
(j)
n

Introducing the k-th derivative into the series (111) leads to

Ea,b (z) = ep(a�b)
1X

k=0

(�1)k ck (p)
kX

n=0

✓
k

n

◆
(a� b)k�n an

nX

j=0

(�1)j j!ejap

(eap � z)j+1S
(j)
n (112)

For z = 0, (112) simplifies to Ea,b (0) = e�pbP1
k=0 (�1)k ck (p)

Pk
n=0

�k
n

�
(a� b)k�n an

Pn
j=0 (�1)j j!S(j)

n .

With a generating function [37, 26.8.10] of the Stirling numbers of the second kind, xn =
Pn

j=0 j!S
(j)
n

�x
j

�
,

and
��z

j

�
= (�1)j

�z�1+j
j

�
so that

��1
j

�
=(�1)j , we obtain

Ea,b (0) = e�pb
1X

k=0

(�1)k ck (p)
kX

n=0

✓
k

n

◆
(a� b)k�n (�a)n

= e�pb
1X

k=0

ck (p) (�1)k (a� b� a)k = e�pb
1X

k=0

ck (p) b
k

Since epz

�(z) =
P1

k=0 ck (p) z
k, we arrive indeed at Ea,b (0) = e�pb epb

�(b) = 1
�(b) . If p = 0, then (112)

reduces, for |z| < 1, to

Ea,b (z) =
1X

k=0

(�1)k

k!

dk

duk
1

� (u)

����
u=0

kX

n=0

✓
k

n

◆
(a� b)k�n an

nX

j=0

(�1)j j!

(1� z)j+1S
(j)
n

Further, since p > log|z|
a , we choose p = log|z|

a + t with t > 0 and (112) becomes

Ea,b (z) = |z|�
b
a et(a�b)

1X

k=0

(�1)k ck

✓
log |z|
a

+ t

◆ kX

n=0

✓
k

n

◆
(a� b)k�n an

nX

j=0

(�1)j j!ejta
⇣
eta � z

|z|

⌘j+1S
(j)
n

Unfortunately, the series (112) and its modification above are found to be numerically very inaccurate.
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Figure 1: The coe�cients �bm versus m up to m = 25 on a log-log plot (ignoring the only positive

coe�cient b1 = �(b)
�(a+b)) for various values of a = ↵ with b = 1 of the Mittag-Le✏er function Ea,b (z).

The thick line represents the exponential function ez.

47. A product form for Ea,b (z). Inspired by Euler’s recipe [12, art. 283, p. 237-238] that led him

to the generating function of the prime numbers, the famous Euler product ⇣ (z) =
Q

p(1 � p�z)�1

of the Riemann Zeta function ⇣ (z) for Re (z) > 1, we have applied Euler’s idea to the Taylor series

f (z) =
P1

k=0 fk (z0) (z � z0)
k of a complex function, which results into the product form [48]

f (z) =
f0Q1

m=1 (1� bm (z0) (z � z0)
m)

(113)

The coe�cients bm (z0) satisfy a recursion,

bm (z0) =
mX

k=1

(�1)k�1

k fk
0 (z0)

s[k,m] (z0)�
X

n|m;n<m

n

m
(bn (z0))

m
n (114)

with starting value b1 (z0) =
f1(z0)
f0(z0)

. The first sum in the recursion (114) is precisely equal to the Taylor

coe�cient of the Taylor series of log f (z) in (37). Fig. 1 shows the computation of the coe�cients

bm = bm (0), via the recursion (114), for Taylor coe�cients fk = 1
�(ak+b) of the Mittag-Le✏er function

Ea,b (z) around z0 = 0. Fig. 1 suggests that (bm)E↵(z) ⇠ m�↵ for su�ciently large m. Since the

computation of the recursion (114) is expensive for E↵ (z), only the first 25 coe�cients have been

computed. However, for the exponential function ez, drawn in black thick line in Fig. 1, the recursion

(114) considerably simplifies as the first sum with characteristic coe�cients vanishes as follows from

log f (z) in (37), because log ez = z. This observation demonstrates that the coe�cients (bm)ez are

rational numbers that do not dependent upon the Taylor coe�cients of ez, apart from f1 = f0 = 1,

leading to (b1)ez = 1. The recursion (114) simplifies to

(bm)ez = � 1

m

X

n|m;n<m

n ((bn)ez)
m
n = � 1

m

0

@1 +
X

n|m;1<n<m

n ((bn)ez)
m
n

1

A
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and contains the sum of the divisors of m scaled by integer powers of previous divisor sums (bn)ez . In

particular, if m = p is a prime p, then (bp)ez = �1
pb

m
1 = �1

p and only primes satisfy (bm)ez = � 1
m ,

although, for large m, all (bm)ez ⇠ 1
m as shown in Fig. 2. Hence, apart from relatively small

Figure 2: The coe�cients (bm)ez on a log-log plot.

fluctuations around the asymptotic (bm)ez ⇠ m�1 due to the irregular behavior of the number of

divisors [24] of an integer m, the scaling law (bm)E↵(z) ⇠ m�↵ is numerically demonstrated for ↵ = 1.

The convergence of the product (113) around z0 is rather di�cult to determine in general. For

the exponential function ez, the product (113) around z0 = 0 converges for |z � z0| = |z| < 1. For

the Mittag-Le✏er function E↵ (z), the product (113) around z0 = 0 converge for |z| around 1; slightly

larger than one for ↵ > 1 and slightly smaller than one for ↵ < 1. The small convergence radius

clearly limits the practical use of the product (113).

48. Derivation of Ea,b (z) with respect to the parameters a and b. From the definition (1), partial

di↵erentiating yields

@

@a
Ea,b (z) =

@

@a

 
1

� (b)
+

1X

k=1

zk

� (b+ ak)

!

=
1X

k=1

d

dy

1

� (y)

����
y=b+ak

dy

da
zk = �

1X

k=1

 (y)

� (y)

����
y=b+ak

kzk

while, similarly but containing index k = 0,

@

@b
Ea,b (z) = �

1X

k=0

 (y)

� (y)

����
y=b+ak

zk

Hence, we observe that
@

@a
Ea,b (z) = z

@2

@z@b
Ea,b (z)
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Partial di↵erentiating m-times gives

@m

@am
Ea,b (z) =

1X

k=0

dm

dym
1

� (y)

����
y=b+ak

kmzk

which suggest to let z = yew so that

@m

@am
Ea,b (ye

w) =
1X

k=0

dm

dym
1

� (y)

����
y=b+ak

kmykekw =
@m

@wm

1X

k=0

dm

dym
1

� (y)

����
y=b+ak

ykekw

leading to the partial di↵erentiation equation for any integer m � 0 and any y (independent of a, b

and w),
@m

@am
Ea,b (ye

w) =
@2m

@wm@bm
Ea,b (ye

w) (115)

49. Möbius inversion. The first Möbius inversion pair is

g(x) =
1X

n=1

f(nx) () f(x) =
1X

n=1

µ(n)g(nx) (116)

where µ(n) is the Möbius function. The Möbius function satisfies the functional equation

X

k|n

µ (k) = �n,1 (117)

and shows that µ (1) = 1. Since k = 1 is always a divisor, we obtain from (117) the recursion

µ (m) = �1�
X

k|m;1<k<m

µ (k)

from which µ (2) = �1, µ (3) = �1, µ (4) = 0, µ (5) = �1, µ (6) = 1 and so on. The Möbius function

is an important function in number theory and in the theory of the Riemann Zeta function [24], where

it is shown that µ(n) = (�1)k if the prime factorization of n contains k di↵erent primes, else µ(n) = 0.

Hence, |µ(n)| = 1.

Let f (x) = zx

�(b+x) in (116), then

g (x) =
1X

n=1

f(nx) =
1X

n=1

znx

� (b+ nx)
= Ex,b (z

x)� 1

� (b)

and Möbius inversion f(x) =
P1

n=1 µ(n)g(nx) in (116) yields, for x 6= 0,

zx

� (b+ x)
=

1X

n=1

µ(n)

✓
Enx,b (z

nx)� 1

� (b)

◆
(118)

With y = zx, (118) simplifies to y
�(b+x) =

P1
n=1 µ(n)

⇣
Enx,b (yn)� 1

�(b)

⌘
. After multiplying both sides

in (118) by zb�1, di↵erentiating with respect to z and invoking (19) again leads to (118) with b replaced

by b� 1.
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Invoking E2a,b

�
z2
�
=

Ea,b(z)+Ea,b(�z)
2 in art. 2 in (118)

zx

� (b+ x)
=

1X

n=1

µ(n)

✓
2E2nx,b

�
z2nx

�
� Enx,b (�znx)� 1

� (b)

◆

= 2
1X

n=1

µ(n)

✓
E2nx,b

�
z2nx

�
� 1

� (b)

◆
�

1X

n=1

µ(n)

✓
Enx,b (�znx)� 1

� (b)

◆

and using (118) leads to

1X

n=1

µ(n)

✓
Enx,b (�znx)� 1

� (b)

◆
=

2z2x

� (b+ 2x)
� zx

� (b+ x)
(119)

which is an instance of the general Möbius function identity, proved in [48],

nX

j=1

µ(j)

h
n
j

i

X

q=1

(�1)qf (qj) = 2f (2)� f (1) (120)

holds for any function f and any n > 1.

50. Mertens function. Applying Abel summation using the Mertens21 function ��1 (k) =
Pk

l=1 µ(l),

we obtain

f(x) =
1X

k=1

��1 (k) (g(kx)� g ((k + 1)x))) + lim
N!1

g(Nx)��1 (N)

Hence,

zx

� (b+ x)
=

1X

k=1

��1 (k)
⇣
Ekx,b

⇣
zkx

⌘
� Ekx+x,b

⇣
zkx+x

⌘⌘
+ lim

N!1

✓
ENx,b

�
zNx

�
� 1

� (b)

◆
��1 (N)

and the limit vanishes if x > 0, resulting in

zx

� (b+ x)
=

1X

k=1

��1 (k)
⇣
Ekx,b

⇣
zkx

⌘
� Ekx+x,b

⇣
zkx+x

⌘⌘
for x > 0 (121)

With
R (k+1)x
kx

d
daEa,b (za) da = Ekx+x,b

�
zkx+x

�
�Ekx,b

�
zkx

�
, the corresponding integral representation

of (121) is

zx

� (b+ x)
= �

1X

k=1

��1 (k)

Z (k+1)x

kx

d

da
Ea,b (z

a) da

= �
1X

k=1

Z (k+1)x

kx
��1

⇣ha
x

i⌘ d

da
Ea,b (z

a) da

and
zx

� (b+ x)
= �

Z 1

x
��1

⇣ha
x

i⌘ d

da
Ea,b (z

a) da for x > 0 (122)

21A su�cient condition to prove the Riemann Hypothesis is to demonstate that the Mertens function behaves as

��1 (x) = O

⇣
x

1
2+"

⌘
for large x.
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Similarly for (119), it holds that

2z2x

� (b+ 2x)
� zx

� (b+ x)
= �

Z 1

x
��1

⇣ha
x

i⌘ d

da
Ea,b (�za) da for x > 0 (123)

Although (122) and (123) are remarkable, further progress to estimate the order of ��1 ([x]) requires

a study of d
daEa,b (yza).

51. Apelblat series. Inspired by series in [2], we call

ga,b (t) =
1X

k=0

fkt
b+k�1Ea,b+k (xt

a)

an Apelblat series, where the Taylor series of the function f (z) =
P1

k=0 fkz
k around z0 = 0 converges

for |z|  R. Evidently, if fk = 0 for k > n, then f (z) is a polynomial of order n in z and f (z) is

an entire function. We generalize the method of Apelblat [2]. We take the Laplace transform L [.] of

both sides and use (54),

L [ga,b (t)] =
1X

k=0

fkL
h
tb+k�1Ea,b+k (xt

a)
i
=

1X

k=0

fk
sa�b�k

sa � x
=

sa�b+�

sa � x

1X

k=0

fks
�k��

and obtain a product of Laplace transformed functions

L [ga,b (t)] = L
h
tb���1Ea,b�� (xt

a)
i 1

s�
f

✓
1

s

◆
(124)

The convolution theorem for the Laplace transform suggests us to find the inverse Laplace transform

L�1
⇥

1
s�
f
�
1
s

�⇤
of 1

s�
f
�
1
s

�
. Apelblat [2] observes and demonstrates that elegant series follow if a closed

form for L�1
⇥

1
s�
f
�
1
s

�⇤
exist, else we can proceed with (193) and Hankel’s integral (182)

L�1


1

s�
f

✓
1

s

◆�
=

1

2⇡i

Z c+i1

c�i1

1

s�
f

✓
1

s

◆
estds =

1

2⇡i

1X

k=0

fk

Z c+i1

c�i1
s�k��estds

= t��1
1X

k=0

fk
tk

� (� + k)

After taking the inverse Laplace transform of both sides in (124), we formally arrive at the Apelblat

series, for the free parameter Re (�) > 0,

1X

k=0

fkt
b+k�1Ea,b+k (xt

a) =

Z t

0
(t� u)b���1Ea,b�� (x (t� u)a)u��1

1X

k=0

fk
uk

� (� + k)
du (125)

which directly follows from (57) for w = � + k and b ! b � �. Hence, the property (125) of the

Apelblat series is a consequence of the generalized integration property in art. 19.

Examples a. The Taylor series of (1 + cz)p =
P1

k=0

�p
k

�
ckzk converges for all complex p provided

|z| < 1. The right-hand series in (125) becomes with fk =
�p
k

�
ck = �(p+1)

k!�(p�k+1)c
k = �(�p+k)

k!�(�p) (�c)k

1X

k=0

fk
uk

� (� + k)
=

1

� (�p)

1X

k=0

� (�p+ k)

k!� (� + k)
(�cu)k
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which reduces if we choose � = �p to
P1

k=0 fk
uk

�(�+k) = 1
�(�p)e

�cu. The Apelblat series (125) then

becomes, for q = �p and 0 < Re (q) < Re (b),

1X

k=0

✓
�q

k

◆
cktb+k�1Ea,b+k (xt

a) =
1

� (q)

Z t

0
ub�q�1Ea,b�q (xu

a) (t� u)q�1 e�c(t�u)du

For q = 1, b = 2, c = x = 1, we retrieve the series [2, eq. (64)] and for q = 2, b = 2, c = x = 1, the

series [2, eq. (68)].

b. The Taylor series of the Bessel function
�
z
2

��p
Jp (z) =

P1
k=0

(�1)k

k!�(p+1+k)

�
z
2

�2k
in [1, 9.1.10] has

only even Taylor coe�cients j2k =
(� 1

4)
k

k!�(p+1+k) and the odd j2k+1 = 0. If f2k+1 = 0, then

1X

k=0

fk
uk

� (� + k)
=

1X

k=0

f2k
u2k

� (� + 2k)
=

p
⇡

2��1

1X

k=0

f2k

�
u
2

�2k

�
⇣
�
2 + k

⌘
�
⇣
�+1
2 + k

⌘

where the duplication formula of Gamma function is used. If f2k =
�p
k

�
c2k = �(�p+k)

k!�(�p)

�
�c2

�k
then

1X

k=0

fk
uk

� (� + k)
=

p
⇡

2��1� (�p)

1X

k=0

� (�p+ k) (�1)k
�
cu
2

�2k

k!�
⇣
�
2 + k

⌘
�
⇣
�+1
2 + k

⌘

Choosing �p = �
2 yields

1X

k=0

fk
uk

� (� + k)
=

p
⇡

2��1�
⇣
�
2

⌘
1X

k=0

(�1)k
�
cu
2

�2k

k!�
⇣
��1
2 + 1 + k

⌘ =

p
⇡
�
cu
2

����1
2

2��1�
⇣
�
2

⌘ J��1
2

(cu)

and

1X

k=0

✓
��

2

k

◆
c2ktb+2k�1Ea,b+2k (xt

a) =

p
⇡
�
2
c

���1
2

2��1�
⇣
�
2

⌘
Z t

0
(t� u)b���1Ea,b�� (x (t� u)a)u

��1
2 J��1

2
(cu) du

while choosing �p = �+1
2 yields

1X

k=0

fk
uk

� (� + k)
=

p
⇡

2��1�
⇣
�+1
2

⌘
1X

k=0

(�1)k
�
cu
2

�2k

k!�
⇣
�
2 + k

⌘ =

p
⇡
�
cu
2

����2
2

2��1�
⇣
�+1
2

⌘J��2
2

(cu)

and the Apelblat series (125) then becomes

1X

k=0

✓
��+1

2

k

◆
c2ktb+2k�1Ea,b+2k (xt

a) =

p
⇡
�
c
2

�1��
2

2��1�
⇣
�+1
2

⌘
Z t

0
(t� u)b���1Ea,b�� (x (t� u)a)u

�
2 J�

2�1 (cu) du

For � = 0, b = 1, c = x = 1, we retrieve the series [2, eq. (74)],

1X

k=0

✓
�1

2

k

◆
t2kEa,1+2k (t

a) = �
Z t

0
Ea (u

a) J1 (t� u) du

c. Let us now consider the hypergeometric function [1, 15.1] with Taylor series around the origin,

F (p, q; r; z) =
� (r)

� (p)� (q)

1X

k=0

� (p+ k)� (q + k)

� (r + k) k!
zk (126)
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With (126), the Apelblat series (125) at the right-hand side becomes

1X

k=0

fk
ckuk

� (� + k)
=

� (r)

� (p)� (q)

1X

k=0

� (p+ k)� (q + k)

� (r + k)� (� + k)

ckuk

k!

and, if we choose q equal to �, then

1X

k=0

fk
ckuk

� (� + k)
=

� (r)

� (p)� (�)

1X

k=0

� (p+ k)

� (r + k)

(cu)k

k!
=

1

� (�)
M (p, r, cu)

where M (a, b, z) = �(b)
�(a)

P1
k=0

�(a+k)
�(b+k)

uk

k! is Kummer’s confluent hypergeometric function [1, 13.1.2].

The Apelblat series (125) thus becomes

� (r)

� (p)

1X

k=0

� (p+ k)� (� + k)

� (r + k) k!
cktb+k�1Ea,b+k (xt

a) =

Z t

0
(t� u)b���1Ea,b�� (x (t� u)a)u��1M (p, r, cu) du

In order to use the property [1, 13.3.2] of the Kummer function,

lim
a!1

M
⇣
a, b,�z

a

⌘
= � (b) z

1�b
2 Jb�1

�
2
p
z
�

we first choose c = �1
p and then take the limit p ! 1 of both sides becomes, with limp!1

�(p+k)
�(p)pk

= 1

(see [1, 6.1.47]),

1X

k=0

� (� + k)

� (r + k) k!
(�1)k tb+k�1Ea,b+k (xt

a) =

Z t

0
(t� u)b���1Ea,b�� (x (t� u)a)u�+

1�r
2 �1Jr�1

�
2
p
u
�
du

Let � = r, then r = b� 1, we have

1X

k=0

(�1)k
tb+k�1

k!
Ea,b+k (xt

a) =

Z t

0
Ea (x (t� u)a)u

b�2
2 Jb�2

�
2
p
u
�
du

which simplified for b = 2 to

1X

k=1

(�1)k�1 tk

(k � 1)!
Ea,k+1 (xt

a) =

Z t

0
Ea (xu

a) J0
�
2
p
t� u

�
du

52. First limit for Ea,b (z). The Gauss product ⇧ (n, z) in (150) indicates that

1

⇧ (n, z)
= (1 + z)

⇣
1 +

z

2

⌘⇣
1 +

z

3

⌘
. . .

⇣
1 +

z

n

⌘
e�z logn

and defines the Gamma function � (z + 1) = limn!1⇧ (n, z) as a limit. Thus, � (z) = 1
z limn!1⇧ (n, z)

and

Ea,b (z) =
1X

k=0

zk

� (b+ ak)
=

1X

k=0

lim
n!1

(b+ ak) zk

⇧ (n, b+ ak)

=
1X

k=0

lim
n!1

(b+ ak) zk
nY

j=1

✓
1 +

b+ ak

j

◆
e�(b+ak) logn
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With the generating function [37, Chapter 26] of the Stirling Numbers of the First Kind for k > 0,

nY

j=1

✓
1 +

z

j

◆
=

1

n!

nY

j=1

(z + j) =
1

n!

nX

j=0

S(j+1)
n+1 (�1)n�j zj

we obtain

Ea,b (z) =
1X

k=0

lim
n!1

1

n!

nX

j=0

S(j+1)
n+1 (�1)n�j zk (b+ ak)j+1 e�(b+ak) logn

and arrive at the first limit

Ea,b (z) = lim
n!1

1

n!

nX

j=0

S(j+1)
n+1 (�1)n�j

 1X

k=0

zk (b+ ak)j+1

nb+ak

!
(127)

53. We will derive a finite series for the infinite series in brackets in (127), which we define as

Tj (z;n) =
1X

k=0

zk (b+ ak)j

nb+ak
(128)

Since n in (127) grows unboundedly, we may assume that
�� z
na

�� < 1 and we find

T0 (z;n) =
1X

k=0

zk

nb+ak
=

1

nb

1X

k=0

⇣ z

na

⌘k
=

1

nb

1

1� z
na

=
na�b

na � z

Let n = ex, then

Tj (z; e
x) =

1X

k=0

zk (b+ ak)j e�(b+ak)x

and T0 (z; ex) = e(a�b)x

eax�z = e�bx

1�elog z�ax . Di↵erentiation shows that d
dxTj�1 (z; ex) = �Tj (z; ex) and

iteration leads us to

Tj (z; e
x) = (�1)j

dj

dxj
T0 (z; e

x) = (�1)j
dj

dxj

 
e(a�b)x

eax � z

!

Invoking Leibniz’ rule,

(�1)j Tj (z; e
x) =

jX

m=0

✓
j

m

◆
dj�m

dxj�m
e(a�b)x dm

dxm

✓
1

eax � z

◆

=
jX

m=0

✓
j

m

◆
(a� b)j�m e(a�b)x dm

dxm

✓
1

eax � z

◆

Now,
dm

dxm

✓
1

eax � z

◆
=

dm

dym

✓
1

ey � z

◆
dmy

dxm
= am

dm

dym

✓
1

ey � z

◆

Provided that b 6= 0 and recalling that S(0)
m = �m0 for the Stirling Numbers of the Second Kind S(k)

m ,

the Taylor series, derived in [48],

1

ez+b � 1
=

1X

m=0

 
mX

k=0

(�1)kk!ekb

(eb � 1)k+1
S(k)
m

!
zm

m!
(129)
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indicates that

dm

dzm

✓
1

ez+b � 1

◆����
z=0

=
mX

k=0

(�1)kk!ekb

(eb � 1)k+1
S(k)
m =

mX

k=0

(�1)kk!ek(b+z)

(eb+z � 1)k+1
S(k)
m

�����
z=0

Thus, dm

dzm

⇣
1

ez+b�1

⌘
=
Pm

k=0
(�1)kk!ek(b+z)

(eb+z�1)k+1 S(k)
m and with 1

ey�z = 1
z

1
ey�log z�1

, we find

dm

dym

✓
1

ey � z

◆
=

1

z

dm

dym

✓
1

ey�log z � 1

◆
=

1

z

mX

k=1

(�1)kk!ek(y�log z)

(ey�log z � 1)k+1
S(k)
m

and

dm

dxm

✓
1

eax � z

◆
= am

dm

dym

✓
1

ey � z

◆
=

am

z

mX

k=1

(�1)kk!ek(ax�log z)

(eax�log z � 1)k+1
S(k)
m

= am
mX

k=1

(�1)kk!ekax

(eax � z)k+1
S(k)
m

Combining all,

(�1)j Tj (z; e
x) =

jX

m=0

✓
j

m

◆
(a� b)j�m e(a�b)x dm

dxm

✓
1

eax � z

◆

= (a� b)j e(a�b)x
jX

m=0

✓
j

m

◆✓
a

a� b

◆m mX

k=0

(�1)kk!ekax

(eax � z)k+1
S(k)
m

In summary, provided that ex > |z|, we arrive at

Tj (z; e
x) =

1X

k=0

zk (b+ ak)j e�(b+ak)x = (b� a)j e(a�b)x
jX

m=0

✓
j

m

◆✓
a

a� b

◆m mX

k=0

(�1)kk!ekax

(eax � z)k+1
S(k)
m

(130)

54. Second limit for Ea,b (z). We transform n = ex back in (130),

Tj (z;n) =
1X

k=0

zk
(b+ ak)j

n(b+ak)
= (b� a)j n(a�b)

 
jX

m=0

✓
j

m

◆✓
a

a� b

◆m mX

k=0

(�1)kk!nka

(na � z)k+1
S(k)
m

!

Substitution into the first limit (127) yields

Ea,b (z) = lim
n!1

1

n!

nX

j=0

S(j+1)
n+1 (�1)n�j

 1X

k=0

zk (b+ ak)j+1

nb+ak

!

= lim
n!1

(�1)n�1 n(a�b)

n!

n+1X

j=1

S(j)
n+1 (a� b)j n(a�b)

 
jX

m=0

✓
j

m

◆✓
a

a� b

◆m mX

k=0

(�1)kk!nka

(na � z)k+1
S(k)
m

!

After using S(0)
m = �0m to produce the same zero lower bound22 in the summations, we arrive at the

second limit

Ea,b (z) = lim
n!1

(�1)n�1 n(a�b)

n!

n+1X

j=0

S(j)
n+1 (a� b)j

jX

m=0

✓
j

m

◆✓
a

a� b

◆m mX

k=0

(�1)kk!nka

(na � z)k+1
S(k)
m (131)

22Expression (131) also holds for all lower bounds equal to 1 instead of 0.
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We concentrate on the finite triple sum in (131)

Un =
n+1X

j=0

S(j)
n+1 (a� b)j

jX

m=0

✓
j

m

◆✓
a

a� b

◆m mX

k=0

(�1)kk!nka

(na � z)k+1
S(k)
m

and will present several alternatives for Un and thus slightly di↵erent limits of (131). We reverse the

m-sum and k-sum,

Un =
n+1X

j=0

S(j)
n+1 (a� b)j

jX

k=0

(�1)kk!nka

(na � z)k+1

jX

m=k

✓
j

m

◆✓
a

a� b

◆m

S(k)
m

Reversing additionally the j-sum and k-sum,

Un =
1

na � z

n+1X

k=0

(�1)kk!

✓
na

na � z

◆k n+1X

j=k

S(j)
n+1 (a� b)j

jX

m=k

✓
j

m

◆✓
a

a� b

◆m

S(k)
m

Finally, we reverse the j- and m-sum,

Un =
1

na � z

n+1X

k=0

(�1)kk!

✓
na

na � z

◆k n+1X

m=k

✓
a

a� b

◆m

S(k)
m

n+1X

j=m

✓
j

m

◆
S(j)
n+1 (a� b)j

The sum

Q =
n+1X

j=m

✓
j

m

◆
S(j)
n+1 (a� b)j =

1

m!

n+1X

j=m

j!

(j �m)!
S(j)
n+1 (a� b)j

is computed from �(x+1)
�(x+1�m) =

Pm
k=0 S

(k)
m xk and dn

dxn
�(x+1)

�(x+1�m) =
dn

dxn

Qm�1
k=0 (x�k) =

Pm
k=0 S

(k)
m

dn

dxnxk =
Pm

j=0 S
(j)
m

j!
(j�n)!x

j�n. Hence,

Q =
1

m!

n+1X

j=m

j!

(j �m)!
S(j)
n+1 (a� b)j =

(a� b)m

m!

n+1X

j=m

j!

(j �m)!
S(j)
n+1 (a� b)j�m

=
(a� b)m

m!

dm

dxm
�(x+ 1)

�(x� n)

����
x=a�b

=
(a� b)m

m!

dm

dxm

nY

k=0

(x� k)

�����
x=a�b

We return to the sum,

Un =
1

na � z

n+1X

k=0

(�1)kk!

✓
na

na � z

◆k n+1X

m=k

✓
a

a� b

◆m

S(k)
m

(a� b)m

m!

dm

dxm
�(x+ 1)

�(x� n)

����
x=a�b

=
1

na � z

n+1X

k=0

(�1)kk!

✓
na

na � z

◆k n+1X

m=k

am
S(k)
m

m!

dm

dxm

✓
�(x+ 1)

�(x� n)

◆����
x=a�b

Reversing the k- and m-sum yields

Un =
1

na � z

n+1X

m=0

am

m!

dm

dxm

✓
�(x+ 1)

�(x� n)

◆����
x=a�b

mX

k=0

(�1)k k!S(k)
m

✓
1

1� n�az

◆k

55. From the limit (131) back to the Taylor series (1). From the variants of Un in art. 54, we now

verify the correctness of (131). A simplification of Tj (z; ex) in (130)

1X

k=1

kj
⇣
e�b

⌘k
=

(�1)j

eb � 1

jX

k=1

(�1)kk!S(k)
j

✓
1

1� e�b

◆k

(132)
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shows, with n�az = e�b, that

mX

k=1

(�1)k k!S(k)
m

✓
1

1� n�az

◆k

= (�1)m
✓
na � z

z

◆ 1X

k=1

km
�
n�az

�k

Then,

Un =
1

na � z

n+1X

m=0

am

m!

dm

dxm

✓
�(x+ 1)

�(x� n)

◆����
x=a�b

(�1)m
✓
na � z

z

◆ 1X

k=1

kmzk

nak

=
1

z

n+1X

m=0

(�a)m

m!

dm

dxm

✓
�(x+ 1)

�(x� n)

◆����
x=a�b

1X

k=1

kmzk

nak

=
1

z

1X

k=1

⇣ z

na

⌘k n+1X

m=0

(�ak)m

m!

dm

dxm

✓
�(x+ 1)

�(x� n)

◆����
x=a�b

If n is large, then general Taylor expansion demonstrates that

lim
n!1

n+1X

m=0

(�ak)m

m!

dm

dxm

✓
�(x+ 1)

�(x� n)

◆����
x=a�b

= lim
n!1

1X

m=0

(�ak)m

m!

dm

dxm

✓
�(x+ 1)

�(x� n)

◆����
x=a�b

= lim
n!1

�(�a(k � 1)� b+ 1)

�(�a(k � 1)� b� n)

Since Ea,b (z) = limn!1
(�1)n�1n(a�b)

n! Un, we obtain

Ea,b (z) = lim
n!1

(�1)n�1 n(a�b)

n!

1

z

1X

k=1

⇣ z

na

⌘k �(�a(k � 1)� b+ 1)

�(�a(k � 1)� b� n)

The reflection formula (161) indicates that �(�a(k�1)�b+1)
�(�a(k�1)�b�n) = (�1)n�1 �(1+a(k�1)+b+n)

�(a(k�1)+b) and

Ea,b (z) = lim
n!1

n(a�b)

n!

1

z

1X

k=1

⇣ z

na

⌘k � (1 + a(k � 1) + b+ n)

�(a(k � 1) + b)

= lim
n!1

n(a�b) 1

z

1X

k=0

⇣ z

na

⌘k+1 � (n+ 1 + ak + b)

� (n+ 1)�(ak + b)
=

1X

k=0

zk

�(ak + b)
lim
n!1

n(a�b)� (n+ 1 + ak + b)

na(k+1)� (n+ 1)

Finally, limn!1
n(a�b)�(n+1+ak+b)

na(k+1)�(n+1)
= limn!1

n(a�b)

na(k+1)n
ak+b = 1 and we arrive again at the defining

infinite series (1).

9 The integral Ia,b (z)

We will study properties of the integral Ia,b (z) =
R1
0

zu

�(b+au) du in (2), which is the “continuous-sum”

variant of the Mittag-Le✏er function Ea,b (z) =
P1

k=0
zk

�(b+ak) .

56. Complex argument z. For z = rei✓, the integral in (2),

Ia,b
⇣
rei✓

⌘
=

Z 1

0

ruei✓u

� (b+ au)
du
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is split up in a real and imaginary part, assuming that a and b are real, as

Ia,b
⇣
rei✓

⌘
=

Z 1

0

ru cos ✓u

� (b+ au)
du+ i

Z 1

0

ru sin ✓u

� (b+ au)
du

which illustrates that Ia,b
�
rei✓

�
is only real if ✓ = 0, i.e. only when z is a real non-negative number.

In contrast, the definition (1) of the Mittag-Le✏er function Ea,b (z),

Ea,b

⇣
rei✓

⌘
=

1X

k=0

rkeik✓

� (b+ ak)
=

1X

k=0

rk cos k✓

� (b+ ak)
+ i

1X

k=0

rk sin k✓

� (b+ ak)

demonstrates that Ea,b

�
rei✓

�
is real along the entire real axis, because sin ✓ = 0 for ✓ = m⇡ for m 2 Z.

The point z = 0 is a singularity as shown in art. 62 below. For r > 0, both integrals exists and Ia,b (z)

is thus defined along the negative real z-axis, where zu has a branch cut. Both integrals decrease in

✓ for positive a and b and demonstrate that
��Ia,b

�
rei✓

��� decreases with ✓ � 0. Hence, we find that��Ia,b
�
rei✓

���  Ia,b (r) and that lim✓!1 Ia,b
�
rei✓

�
= 0, and that Ia.b (z) is multi-valued function, which

necessitates, just as for the logarithm, to limit the argument ✓ of z to the usual range [0, 2⇡] or [�⇡,⇡].
Moreover, after substitution of t = ✓u for ✓ 6= 0,

Ia,b
⇣
rei✓

⌘
=

1

✓

Z 1

0

⇣
r

1
✓

⌘t
eit

�
�
b+ a

✓ t
� dt

shows that

Ia,b
⇣
rei✓

⌘
=

1

✓
Ia

✓ ,b

⇣
r

1
✓ ei

⌘

Thus, the integral at any complex number z = rei✓ with for ✓ 6= 0 can be mapped to an evaluation

along the straight line with angle equal to 1 radius.

57. Functional relations of the integral Ia,b (z). In contrast to the Mittag-Le✏er function Ea,b (z), we

can scale the integral Ia,b (z) easily by considering various (real) substitutions in (2). We consider a

linear transformation b+ au = � + ↵v with a > 0 and ↵ > 0. Thus, let u = ��b
a + ↵

a v in (2), then

Ia,b (z) =

Z 1

0

zu

� (b+ au)
du =

↵

a
z

��b
a

Z 1

b��
↵

z
↵
a v

� (� + ↵v)
dv

=
↵

a
z

��b
a

0

@
Z 1

0

⇣
z

↵
a

⌘v

� (� + ↵v)
dv �

Z b��
↵

0

z
↵
a v

� (� + ↵v)
dv

1

A

Using the definition (2) leads to23

Ia,b (z) =
↵

a
z

��b
a

 
I↵,�

⇣
z

↵
a

⌘
�
Z b��

↵

0

z
↵
a v

� (� + ↵v)
dv

!
(133)

The simplest form of (133) arises for ↵ = 1 and � = 0,

Ia,b (z) =
z�b

a

Z 1

b

⇣
z

1
a

⌘v

� (v)
dv (134)

23Di↵erentiating z
� ��b

a Ia,b (z) = ↵
a

R1
b��
↵

z
↵
a

v

�(�+↵v) dv with respect to b yields d
db

⇣
z

b��
a Ia,b (z)

⌘
= � 1

a
z

b��
a

�(b) , which is

independent of ↵ and leads to the linear di↵erential equation in b,
dIa,b(z)

db + log z
a Ia,b (z) = � 1

a�(b) .
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which, similarly to the Mittag-Le✏er function Ea,b (z) and exhibited in the di↵erential recursion (19)

in art. 6, illustrates the appearance of the natural w = za map, suggesting to consider Ia,b (za) rather

than Ia,b (z). Indeed, the integral in (134) further looses the parameter a,

Ia,b (z
a) =

Z 1

0

zaudu

� (b+ au)
=

z�ab

a

Z 1

b

ev log z

� (v)
dv

If b > � > 0 and z = x is real and positive, then the integral in (133) is non-negative and

Ia,b (x) <
↵

a
x

��b
a I↵,�

⇣
x

↵
a

⌘

which bears resemblance to the last expression for Em,b (z) <
z
1�b
m

m ez
1
m shown in art. 7. The situation

simplifies considerably when we choose � = b in (133),

Ia,b (z) =
↵

a
I↵,b

⇣
z

↵
a

⌘

In particular, for a > 0 and ↵ = 1
a , the map

I 1
a ,b

(z) = a2Ia,b
⇣
za

2
⌘

(135)

suggests a similar relation between E 1
a ,b

(z) and Ea,b (z) based on (64) and Bieberbach’s deductions

in art. 31.

58. Bounding Ia,b (x) for positive real a, b and x. The integral in (134)

azbIa,b (z) =

Z 1

b
e(

log z
a )v�log�(v) dv =

Z 1

b
e(

log r
a )v�log�(v) ei

✓
avdv

can be bounded for real z = x using (172), resulting in

e�
1

12b

p
2⇡

Z 1

b
v

1
2 e(

log x
a +1)v�v log v dv  axbIa,b (x) 

1p
2⇡

Z 1

b
v

1
2 e(

log x
a +1)v�v log v dv

If a function f (x) is positive and increasing for all x 2 [a, b], the integral is bounded by the lower

and upper Riemann sum,

f (k) <

Z k+1

k
f (x) dx < f(k + 1)

such that for integers n,N 2 [a, b], we obtain the inequalities

NX

k=n

f (k) <

Z N+1

n
f (x) dx <

N+1X

k=n+1

f(k) (136)

with the opposite inequality signs if f (x) is positive and decreasing. The integrand f (u) = zu

�(b+au)

of Ia,b (z) =
R1
0

zu

�(b+au) du attains a maximum around umax ⇡ z
1
a�b
a for b > 0. Indeed, the derivative

f 0 (u) = zu

�(b+au) (log z � a (b+ au)) vanishes when log z = a (b+ au) and the expression (175) for

the digamma function indicates, for large z, that  (z) ⇡ log z. For negative real b, on the other hand,

there may exist more than one extremum. Applying (136) with N = bumaxc yields, for positive a, b

and x
bumaxcX

k=0

xk

� (b+ ak)
<

Z bumaxc+1

0

xu

� (b+ au)
du <

bumaxc+1X

k=1

xk

� (b+ ak)
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and
1X

k=bumaxc+1

xk

� (b+ ak)
>

Z 1

bumaxc+1

xu

� (b+ au)
du >

1X

k=bumaxc+2

xk

� (b+ ak)

We rewrite the latter inequalities as,

Ea,b (x) > Ia,b (x) +

bumaxcX

k=0

xk

� (b+ ak)
�
Z bumaxc+1

0

xu

� (b+ au)
du

= Ia,b (x) +

bumaxc+1X

k=0

xk

� (b+ ak)
�
Z bumaxc+1

0

xu

� (b+ au)
du� xbumaxc+1

� (b+ a (bumaxc+ 1))

and use the former inequalities,

Ea,b (x) > Ia,b (x)�
xbumaxc+1

� (b+ a (bumaxc+ 1))

Analogously, we find

Ea,b (x) < Ia,b (x) +
xbumaxc+1

� (b+ a (bumaxc+ 1))

59. Di↵erential recursion. Di↵erentiating the integral Ia,b (z) in (2) and using the functional equation

(146) of the Gamma function,

d

dz
zb�1Ia,b (z

a) =

Z 1

0

(au+ b� 1) zau+b�2

� (b+ au)
du =

Z 1

0

zau+b�2

� (b� 1 + au)
du

leads to a recursion equation in

d

dz

n
zb�1Ia,b (z

a)
o
= zb�2Ia,b�1 (z

a) (137)

which is precisely the same as for Ea,b (.) in (19).

60. A complex integral representation for Ia,b (z). We start by concentrating on the integral

zb�1Ia,b (z
a) =

Z 1

0

zb�1+au

� (b+ au)
du

whose Laplace transform is

La,b (s) =

Z 1

0

n
zb�1Ia,b (z

a)
o
e�zsdz =

Z 1

0
e�zs

Z 1

0

zb�1+au

� (b+ au)
du dz

The reversal of the integrals is justified by absolute convergence,

La,b (s) =

Z 1

0

du

� (b+ au)

Z 1

0
zb+au�1e�zsdz =

Z 1

0

du

� (b+ au)

� (b+ au)

sb+au

= s�b
Z 1

0
e�au log sdu =

s�b

a log s

The inverse Laplace transform (193) returns a complex integral,

zb�1Ia,b (z
a) =

1

2⇡ia

Z c+i1

c�i1

ezs

sb log s
ds (138)
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where c > 1 because La,b (s) is only analytic for Re (s) > 1 due to the pole at s = 1. After replacing

za by z in (138) and combining with the definition (2), we obtain

Ia,b (z) =

Z 1

0

eu log z

� (b+ au)
du =

z
1�b
a

2⇡ia

Z c+i1

c�i1

ez
1
a s

sb log s
ds c > 1 (139)

a. For Re
⇣
z

1
a

⌘
< 0, the contour in (139) can be closed over the positive Re (s)-plane, in which the

integrand is analytic and24 Ia,b (z) = 0. Let z = rei✓ with ✓ = arg z 2 [�⇡,⇡] and recalling that a > 0,

then Re
⇣
z

1
a

⌘
= r

1
a cos ✓

a and Re
⇣
z

1
a

⌘
< 0 requires that cos ✓

a < 0, which is equivalent to ⇡
2 < ±✓

a < ⇡

or ⇡a
2 < |arg z| < ⇡a. The latter condition, combined with 0 < |arg z| < ⇡ is only possible if 0 < a < 2.

If 1  a < 2, then the combined condition means that ⇡
2 < |arg z| < ⇡ or that Re (z) < 0. Only if

0 < a < 1
2 , then the combined condition means that ⇡

2 < |arg z| < ⇡a
2 or that Re (z) > 0, while for

1
2  a  1, Re (z) can be either sign.

b. For Re
⇣
z

1
a

⌘
> 0, we close the contour in (139) over the negative Re (s)-plane around the

branch cut of sb ln (s), which is the negative real axis. Thus, we consider the contour C that consists

of the line at c > 1, the quarter of a circle with infinite radius from ⇡
2 to ⇡� ", the line segment above

the real negative axis from minus infinity to s = 0, the circle around the origin s = 0 from ⇡ � "

back to �⇡� " with radius �, the line segment below the real negative axis from s = 0 towards minus

infinity, the quarter circle with infinite radius back to close the contour C. This contour encloses the

pole at s = 1, whose residue is lims!1
ez

1
a s(s�1)
sb ln s

= ez
1
a . Cauchy’s Residue Theorem [47] results in

1

2⇡i

Z

C

ez
1
a s

sb ln s
ds = ez

1
a

while the evaluation of the contour C yields

1

2⇡i

Z

C

ez
1
a s

sb ln s
ds = az

b�1
a Ia,b (z) +

1

2⇡i

Z 0

1

e�z
1
a xd

�
ei(⇡�")x

�

xbeib(⇡�") ln
�
xei(⇡�")

� +
1

2⇡i

Z 1

0

e�z
1
a xd

�
ei(�⇡�")x

�

xbeib(�⇡�") ln
�
xei(�⇡�")

�

since the parts of C along the circles vanish for Re (z) > 0, but for � ! 0 only provided Re (b)  1.

Hence, we obtain

az
b�1
a Ia,b (z) = ez

1
a +

1

2⇡i

Z 1

0

e�z
1
a x

xb

✓
eib⇡

lnx� i⇡
� e�ib⇡

lnx+ i⇡

◆
dx

Finally, with eib⇡

lnx�i⇡ � e�ib⇡

lnx+i⇡ = 2⇡i
sin b⇡

⇡ lnx+cos b⇡

(⇡2+(lnx)2)
and the definition (2), we arrive, for Re (b)  1 and

Re
⇣
z

1
a

⌘
> 0, at

Ia,b (z) =

Z 1

0

zu

� (b+ au)
du =

z
1�b
a

a

8
<

:ez
1
a +

Z 1

0

e�z
1
a x

xb

 
sin b⇡
⇡ lnx+ cos b⇡

⇡2 + (lnx)2

!
dx

9
=

; (140)

24Hence, for Re
⇣
z

1
a

⌘
= Re

⇣
e

1
a log z

⌘
< 0, it holds that

0 =

Z 1

0

e
u log r

e
iu✓

� (b+ au)
du =

r
� b

a

a

Z 1

b

e
w log r

a e
i(w�b) ✓

a

� (w)
dw =

r
� b

a

a

Z 1

b

e
w log r

a
�
cos

�
✓
a (w � b)

�
+ i sin

�
✓
a (w � b)

� 

� (w)
dw

implying that
Z 1

b

e
w log r

a cos
�
✓
a (w � b)

�

� (w)
dw =

Z 1

b

e
w log r

a sin
�
✓
a (w � b)

�

� (w)
dw = 0
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while, for Re
⇣
z

1
a

⌘
< 0, it holds that Ia,b (z) = 0. Expression (140) is obviously related to Bierberbach’s

integral in art. 31, written as

Ea,b (z) =
z

1�b
a

a

8
<

:ez
1
a +

1

2⇡i

1

z

Z

C0
a�

�
t
z

� 1�b
a et

1
a

�
t
z

�
� 1

dt

9
=

; (141)

For b = 1, (140) simplifies to

Ia,1 (z) =
1

a

8
<

:ez
1
a �

Z 1

0

e�z
1
a x

x
⇣
⇡2 + (lnx)2

⌘dx

9
=

;

where
R1
0

e��x

x(⇡2+(lnx)2)
dx is increasing25 in Re (�) > 0 from 0 to 1. Hence, for Re

⇣
z

1
a

⌘
> 0, the

following lower and upper bound hold,

1

a
ez

1
a � 1

a
< Ia,1 (z) <

1

a
ez

1
a

With ↵ = � = 1 in (133) and I1,1
⇣
z

1
a

⌘
from (140), we find for Re

⇣
z

1
a

⌘
> 0,

Ia,b (z) =
z

1�b
a

a

0

@ez
1
a �

Z 1

0

e�z
1
a x

x
⇣
⇡2 + (lnx)2

⌘dx�
Z b�1

0
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z

1
a

⌘x

x� (v)
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1

A

Comparison with (140) indicates, for b  1 and Re (z) > 0, that26

Z 1

0

e�zx

xb

 
sin b⇡
⇡ lnx+ cos b⇡

⇡2 + (lnx)2

!
dx = �

Z 1

0

e�zx

x
⇣
⇡2 + (lnx)2

⌘dx�
Z b�1

0

zv

� (v + 1)
dv

61. Another complex integral representation for Ia,b (z). Another complex integral follows directly

from Hankel’s contour (178) as

Ia,b (z) =
1

2⇡i

Z

C
w�bewdw

Z 1

0
e�u(a logw�log z)du

Only if Re (a logw � log z) > 0, which is equivalent to Re
�
log wa

z

�
= log

��wa

z

�� > 0 and
��wa

z

�� > 1, then

Ia,b (z) =
1

2⇡i

Z

C

w�bew

a logw � log z
dw with |w| > |z|

1
a (142)

where the constraint |w| > |z|
1
a requires to deform the contour C (as explained in art. 30). The

contour integral (142) bears a resemblance to the basic complex integral (67) for Ea,b (z), whereas the

25Indeed (see [50, p.73]),

Z 1

0

e
��x

x
�
⇡2 + (lnx)2

�dx =

Z 1

�1

e
��et

⇡2 + t2
dt 

Z 1

�1

dt

⇡2 + t2
= 1

26Di↵erentiating with respect to b, � zb�1

�(b) =
R1
0

e�zx

⇡2+(ln x)2
d
db

�
x
�b

�
sin b⇡

⇡ lnx+ cos b⇡
��

dx leads, using the reflection

formula (161), to an identity zb�1

�(b) = sin b⇡
⇡

R1
0

e
�zx

x
�b

dx = sin b⇡
⇡

�(1�b)
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above integral (139) is closer to the Mittag-Le✏er integral (71), although a formal substitution s = wa

z

in (142) leads to

Ia,b (z) =
z

1�b
a

2⇡ia

Z

C0

s
1�b
a �1e(zs)

1
a

log s
ds

62. A series for Ia,b (z). The Taylor series of Ia,b (z) around z = ⇣ equals

Ia,b (z) = Ia,b (⇣) +
1X

k=0

1

k!

dkIa,b (z)

dzk

����
z=⇣

(z � ⇣)k

where the derivative for real a > 0

dkIa,b (z)

dzk

����
z=⇣

=

Z 1

0

dk

dzk
zu
���
z=⇣

� (b+ au)
du =

1

⇣k

Z 1

0

u (u� 1) . . . (u� k + 1) ⇣u

� (b+ au)
du

=
1

⇣k

Z 1

0

� (u+ 1) ⇣u

� (u� k + 1)� (b+ au)
du

converges for all k, except when ⇣ = 0. Hence, in contrast to Ea,b (z), the function Ia,b (z) is not entire

and has an essential singularity at z = 0, where none of the derivatives exists. Since
dIa,b(z)

dz

���
z=x

> 0

for positive real x and a, b, the function Ia,b (x) increases for all x > 0.

We expand the integrand of the integral Ia,b (z), defined in (2), in a Taylor series around b,

1

� (b+ au)
=

1X

j=0

1

j!

dj

dyj
1

� (y)

����
y=b

(au)j

which converges for all u and b, and obtain

Ia,b (z) =

Z 1
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zu
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du =
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j=0
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dj

dyj
1

� (y)

����
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Z 1
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uje�u(� log z)du

Only if Re (log z) < 0 or 0  |z| < 1, then we arrive at

Ia,b (z) = � 1

log z

1X

j=0

dj

dyj
1

� (y)

����
y=b

✓
� a

log z

◆j

(143)

but this series only converges when
��� a
log z

��� < 1. Indeed, alternatively, after p-times repeated partial

integration, we obtain

Ia,b (z) = � 1

log z

p�1X

j=0

dj

dyj
1

� (y)

����
y=b

✓
� a

log z

◆j

+

✓
� a

log z

◆p Z 1

0

dp

dyp
1

� (y)

����
y=b+au

zu du

where the last integral exists for all p and z. Thus, if p ! 1 and
��� a
log z

��� < 1, then repeated partial

integration again produces (143). The series (143) indicates that Ia,b (0) = 0.
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10 Epilogue

Driven by the surge in fractional analysis [30], the Mittag-Le✏er function Ea,b (z), called by Mainardi

[29] the “Queen Function of the Fractional Calculus”, gains increasing interest. I will end this work

by enumerating some open problems. Although results [58] exist, the determination of the zeros of

Ea,b (z) in the complex plane still stands on the agenda. Indeed, Weierstrass’s entire function theory

[47] shows that any entire function can be represented as a product form that contains all the zeros

and such a product form for Ea,b (z) has not been found yet. A general Lagrange series for G
�
f�1 (z)

�
,

thus a function G (z) of the inverse function f�1 (z) of the function f (z), in terms of characteristic

coe�cients (art. 9), is available (see e.g. [53, art. 342], [49, Appendix A]). Thus, the zero most close

to a point z0 in the complex plane can be approximated accurately, if the Taylor coe�cients of f (z)

around z0 are known or easily computable. Related to this root-locus problem is the study of the

inverse function, which is the solution z = E�1
a,b (w) of w = Ea,b (z). Mainly numerical computations

of the inverse Mittag-Le✏er function exist (see e.g. [26]), but few analytic results.

63. The Garrappa-Popolizio conjecture
27. For any complex number z, the Garrappa-Popolizio con-

jecture claims the truth of the two inequalities

|Ea,b (z)|  Ea,b (Re z) for 0 < a < 1 and a  b (144)

and

|Ea,b (z)| � Ea,b (Re z) for a � 1 and a � b (145)

The inequality (145) is true for a = b = 1, namely equality in (145) holds because |ez| =
��ex+iy

�� =
ex = eRe z. Roberto Garrappa has informed28 me that inequalities (144) and (145) were verified by a

huge number of computations for a wide range of the parameters a and b, but a proof of (144) and

(145) is still missing.
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A The Gamma function � (z)

We review properties of the Gamma function. Besides the basic functions [23, Chapter IX and X]

like the exponential, logarithm, circular or trigonometric functions (as sinus, cosinus, tangens, etc.),

the Gamma function is the next important complex function. Nearly all books on complex function

theory [11, 13, 31, 44, 47, 55] treat the Gamma function.

The Gamma function � (z) is an extension of the factorial n! = 1.2.3 . . . n in the integers n � 1 to

complex numbers z. The factorial obeys

n! = n(n� 1)!

which directly generalizes to the functional equation ⇧ (z) = z⇧ (z � 1) with n! = ⇧ (n) and ⇧ (0) = 1,

in the notation of Gauss in his truly impressive manuscript [16, p. 146]. Later in 1814, Legendre

defined the Gamma function by its current notation � (z) = ⇧ (z � 1), with � (1) = 1, and the

functional equation ⇧ (z) = z⇧ (z � 1) translates to the Gamma function � (z) as

� (z + 1) = z� (z) (146)

The first step in the theory of the Gamma function consists of finding a solution of the functional

equation (146). Euler has proposed his famous integral

� (z) =

Z 1

0
e�ttz�1dt for Re (z) > 0 (147)

Partial integration of (147) shows that Euler’s integral (147) obeys the functional equation (146) and

� (1) =
R1
0 e�tdt = 1. However, since Euler’s integral is only valid for Re (z) > 0, other ingenious

methods have been devised that are valid for all complex numbers z.

In his beautiful book on the Gamma function [36], Nielsen cites the historic achievements and

reviews most contributions before 1906. Nielsen [36] starts his book with the functional equation

(146) of the Gamma function and immediately remarks that any solution can be multiplied by a

periodic function ! (z) = ! (z + 1) with period 1. Next, Nielsen [36] concentrates on the digamma

function, which is the logarithmic derivative  (z) = d
dz log� (z) and the functional equation (146)

tells us that

 (z + 1) =  (z) +
1

z
(148)

After n iterations,

 (z) =  (z + n)�
n�1X

k=0

1

z + k
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and taking the limit n ! 1, we formally obtain  (z) = limn!1  (z + n) � limn!1
Pn

k=0
1

z+k .

However, the latter series does not converge29, implying that limn!1  (z + n) = 1. Nielsen then

applies Weierstrass’s factorization theory for entire functions [47] and deduces Weierstrass’s product,

1

�(z + 1)
= e� z

1Y

n=1

⇣
1 +

z

n

⌘
e�z/n (149)

which we will derive from Gauss’s product (156) in art. 64. Weierstrass created his magnificent

theory for entire functions, a pearl of complex function theory, inspired by Gauss’s product (156) and

Gauss’s remark on factorization in [16, p. 146].

A.1 Gauss’s approach

Iterating the functional equation (146) n-times gives � (z) = �(z+n)
z(z+1)...(z+n�1) , but purely iterating (146)

for non-integer values is not successful. Therefore, Gauss [16, p. 144] proposes to consider the more

general form

⇧ (k, z) =
⇧ (k)⇧ (z)

⇧ (k + z)
kz =

1

(z + 1)

2

(z + 2)

3

(z + 3)
. . .

k

(z + k)
kz (150)

which satisfies

⇧ (k, z + 1) = ⇧ (k, z)
(z + 1)�
1 + z+1

k

� (151)

as well as

⇧ (k + 1, z) = ⇧ (k, z)

�
1 + 1

k

�z+1

�
1 + z+1

k

� (152)

Iterating (152), with ⇧ (1, z) = 1
z+1 , results in

⇧ (k, z) =
1

z + 1

2z+1

(2 + z)

3z+1

2z (3 + z)
. . .

kz+1

(k � 1)z (k + z)
=

1

z + 1

kY

n=2

nz+1

(n� 1)z (n+ z)
(153)

The interesting observation from limk!1
(1+ 1

k )
z+1

(1+ z+1
k )

= 1 in (152) is that limk!1⇧ (k, z) exist for

all z, which Gauss demonstrates after taking the logarithm of both sides, while the first functional

equation (151) indicates that limk!1⇧ (k, z) satisfies the functional equation ⇧ (z + 1) = (z+1)⇧ (z).

Combining both, Gauss is led to

⇧ (z) = lim
k!1

⇧ (k, z) = lim
k!1

⇧ (k)⇧ (z)

⇧ (k + z)
kz (154)

which is equivalent with � (z + 1) = ⇧ (z) to

� (z) = lim
k!1

k!� (z)

� (k + 1 + z)
kz = lim

k!1

kzk!

z (z + 1) . . . (z + k)

29Indeed,
nX

k=0

1
z + k

=
1
z
+

n0X

k=1

1

k
�
1 + z

k

� +
nX

k=1+n0

1

k
�
1 + z

k

�

We can choose n0 > |z|, so that 0 <
��1 + z

k

�� < 2 and

����
Pn

k=1+n0

1

k(1+ z
k )

���� >
1
2

Pn
k=1+n0

1
k ! 1, because the harmonic

series
Pn

k=1
1
k diverges for n ! 1.
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Rewriting Gauss’s definition in (154) as � (z) = limk!1⇧ (k, z � 1) and introducing (153) yields

� (z) = lim
k!1

1

z

kY

n=2

nz

(n� 1)z�1 (n+ z � 1)
= lim

k!1

1

z

k�1Y

n=1

(n+ 1)z

nz�1 (n+ z)

Finally30, we arrive at Gauss’s infinite product31 for the Gamma function

� (z) =
1

z

1Y

n=1

✓
1 +

1

n

◆z ⇣
1 +

z

n

⌘�1
(156)

which converges for all complex z, except for the integers at z = 0,�1,�2, . . ., at which � (z) has

simples poles. The inverse of the product (156) shows that 1
�(z) is an entire function and that � (z)

has no zeros in the finite complex plane.

Of course, the proposal of (150) by Gauss was crucial towards his elegant product (156). Gauss

posited (150) without providing intuition. Perhaps the most convincing argument for Gauss’s starting

point (150) is given by Klein [27, p. 71], who gives three definitions of the Gamma function, of which

the third is also discussed by Gauss himself [16, p. 151]. Klein [27, p. 74] starts from the Beta-integral,

studied by Euler and valid for Re (z) > 0 and Re (q) > 0,

B (z, q) =
� (z)� (q)

� (z + q)
=

Z 1

0
uz�1 (1� u)q�1 du (157)

for q = k + 1 and makes the substitution u = v
k ,

B (z, k + 1) =

Z 1

0
uz�1 (1� u)k du = k�z

Z k

0
vz�1

⇣
1� v

k

⌘k
dv

Using limk!1
�
1� v

k

�k
= e�v and Euler’s integral (147), Klein [27, p. 74] arrives for Re (z) > 0 at

� (z) =

Z 1

0
vz�1e�vdv = lim

k!1
(kzB (z, k + 1)) = lim

k!1

✓
kz

� (z)� (k + 1)

� (z + k + 1)

◆

which is Gauss’s definition (154). In contrast to Euler’s integral (147) for Re (z) > 0, the functional

equation (152) is valid for all z and so is Gauss’s product (156).

30Gauss proceeds further in [16, p. 148] and derives the reflection formula from his classical result [1, 15.1.20] for the

hypergeometric series at z = 1, for c 6= �k (k integer) and Re(c� a� b) > 0,

F (a, b; c; 1) =
�(c)�(c� a� b)
�(c� a)�(c� b)

=
�(c)

�(a)�(b)

1X

n=0

�(a+ n)�(b+ n)
�(c+ n)n!

(155)

He also deduces his multiplication formula, compares his theory with Stirling and Euler’s logarithmic expansion in

terms of Bernoulli numbers, studies the digamma function, derives his fractional argument digamma function, deduces an

integral for the digamma function and complements Euler’s computations. In short, an amazing sequence of beautifully

derived deep results that constitute our current basis of the Gamma function. In line with his genius, Gauss even laid

the basis of prime factors of an entire function of which Weierstass has given the functional theory [47, Chapter VIII].
31Both Klein [27, p. 74] and Whittaker and Watson [55, p. 237] mention that Euler has given (156) in a letter to

Goldbach in 1729, but that Gauss has provided the first rigorous analysis in [16].
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A.2 Deductions from Gauss’s product (156) for � (z)

64. Weierstrass’s product. Weierstrass’s product (149) can be obtained from Gauss’s definition

� (z + 1) = limk!1⇧ (k, z). Following Erdélyi et al. [11, p. 2], Gauss’s definition of the Gamma

function can be written, with (150), as

1

� (z + 1)
= lim

k!1
(1 + z)

⇣
1 +

z

2

⌘⇣
1 +

z

3

⌘
. . .

⇣
1 +

z

k

⌘
e�z log k

= lim
k!1

(1 + z) e�z
⇣
1 +

z

2

⌘
e�

z
2

⇣
1 +

z

3

⌘
e�

z
3 . . .

⇣
1 +

z

k

⌘
e�

z
k ez(

Pk
n=1

1
n�log k)

= lim
k!1

kY

n=1

⇣
1 +

z

n

⌘
e�

z
n lim

k!1
ez(

Pk
n=1

1
n�log k)

Introducing32 Euler’s constant [1, 6.1.3]

� = lim
k!1

 
kX

n=1

1

n
� log k

!
= 0.57721 . . . (158)

leads to Weierstrass’s product (149) which illustrates that Euler’s constant � plays a fundamental role

in the theory of the Gamma function.

Whittacker and Watson [55, p. 235] elegantly demonstrate that the limit in (158) exists. They

define

un =

Z 1

0

t

n (n+ t)
dt =

1

n
� log

n+ 1

n

With
Pk�1

n=1 log
n+1
n =

Pk�1
n=1 log (n+ 1)�

Pk�1
n=1 log n = log (k) and

kX

n=1

1

n
� log k =

kX

n=1

✓
1

n
� log

n+ 1

n

◆
+ log

k + 1

k
(159)

=
kX

n=1

un + log

✓
1 +

1

k

◆

an alternative representation of Euler’s constant (158) is obtained as � =
P1

n=1 un. Since 0 < un =R 1
0

t
n(n+t)dt <

R 1
0

1
n2dt =

1
n2 and

P1
n=1

1
n2 = ⇣ (2) = ⇡2

6 = 1.64493, it holds that 0 < � < ⇡2

6 .

The bounds can be sharpened by the inequality 1
n+1 <

R n+1
n

dx
x = log n+1

n < 1
n for any n > 0.

Indeed, since 1
n � log n+1

n > 0, the identity (159) provides the lower bound

kX

n=1

1

n
� log k = 1� log 2 +

kX

n=2

✓
1

n
� log

n+ 1

n

◆
+ log

k + 1

k
> 1� log 2 = 0.30683

Similarly, rewriting the identity (159) and using log n+1
n � 1

n+1 > 0 gives us the upper bound

kX

n=1

1

n
� log k = 1 +

kX

n=2

1

n
�

k�1X

n=1

log
n+ 1

n
= 1�

k�1X

n=1

✓
log

n+ 1

n
� 1

n+ 1

◆

< 1�
✓
log 2� 1

2

◆
= 0.80683

32Gauss [16, 154, footnote] gives the Euler-Mascheroni constant � up to 40 decimals accurate. Gauss provided the

method (i.e. the power series of the digamma function  (z)) and Fredericus Bernhardus Gothofredus Nicolai has

performed the computation. Whittaker and Watson [55, p. 235] mention that J. C. Adams computed � up to 260

decimals accurate.
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In summary, we find 1 � log 2 < � < 3
2 � log 2. Sharper bounds follows from Poisson’s integral (175)

in art. 68.

65. Reflection formula. Gauss [16, p. 148] derives the reflection formula for the Gamma function via

his contiguous relations of the hypergeometric function, that, for specific parameters, reduce to the

sinus function. Gauss then finds the infinite product of the sinus function [1, 4.3.89]

sin (⇡x) = ⇡x
1Y

k=1

✓
1� x2

k2

◆
(160)

Reversely, if we consider the infinite product (160) as known33, then it follows from Gauss’s infinite

product (156) for � (z) that

1

� (z)� (�z)
= �z2

1Y

n=1

✓
1� z2

n2

◆
= �sin⇡z

⇡z

which establishes the reflection formula [1, 6.1.17] of the Gamma function, valid for all z,

� (z)� (1� z) =
⇡

sin⇡z
(161)

For example, if z = 1
2 , then the reflection formula (161) shows that �

�
1
2

�
=

p
⇡.

66. Multiplication formula. Gauss [16, p. 149] derives his elegant34 multiplication formula [1, 6.1.20]

� (nz) = (2⇡)
1
2 (1�n) nnz� 1

2

n�1Y

k=0

�

✓
z +

k

n

◆
(162)

as follows. Gauss observes that

nnz Qn�1
j=0 ⇧

⇣
k, z � j

n

⌘

⇧ (nk, nz)
=

(� (k + 1))n

� (nk + 1) k
(n�1)

2

(163)

does not depend on z. However, he does not give the derivation of (163), but we do. Multiplying the

Gauss factors (150),

n�1Y

j=0

⇧

✓
k, z � j

n

◆
=

n�1Y

j=0

⇧ (k)⇧
⇣
z � j

n

⌘

⇧
⇣
k + z � j

n

⌘ kz�
j
n

= (⇧ (k))n knzk�
1
n

Pn�1
j=1 j

n�1Y

j=0

⇧
⇣
z � j

n

⌘

⇧
⇣
z + k � j

n

⌘

33After integration of the Taylor series of ⇡ cot (⇡x) = 1
x�2

P1
n=1 ⇣ (2n) x

2n�1, valid for |x| < 1, leading to log ⇡x
sin(⇡x) =

2
P1

n=1
⇣(2n)
2n x

2n, in which the Zeta functions ⇣ (2n) =
P1

k=1
1

k2n , one deduces that

log
⇡x

sin (⇡x)
=

1X

k=1

1X

n=1

1
n

⇣
x

k

⌘2n
= �

1X

k=1

log

✓
1� x

2

k2

◆

from which (160) follows. Although derived under the restriction |x| < 1, (160) can be shown to hold for any complex x.
34Gauss writes “Unde habemus theorema elegans”.
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and, changing the notation ⇧ (z) = � (z + 1) and with
Pn�1

j=1 j =
n(n�1)

2 , we have

n�1Y

j=0

⇧

✓
k, z � j

n

◆
= (� (k + 1))n knzk�

(n�1)
2

n�1Y

j=0

�
⇣
z + 1� j

n

⌘

�
⇣
z + k + 1� j

n

⌘

Introducing Gauss’s infinite product (156) yields

n�1Y

j=0

�
⇣
z + 1� j

n

⌘

�
⇣
z + k + 1� j

n

⌘ =
n�1Y

j=0

1Y

m=1

mk

(m+ 1)k

1Y

m=0

(nm+ nz + nk + n� j)

(nm+ nz + n� j)

=
1Y

m=1

mnk

(m+ 1)nk

1Y

m=0

nY

l=1

(nm+ nz + nk + l)

(nm+ nz + l)

=
1Y

m=1

mnk

(m+ 1)nk

1Y

m=0

nY

l=1

✓
1 +

nk

nm+ nz + l

◆

Because r = nm+ l runs over all integers, we observe that

1Y

m=0

nY

l=1

✓
1 +

nk

nm+ l + nz

◆
=

1Y

r=1

✓
1 +

nk

r + nz

◆

and we arrive at

n�1Y

j=0

⇧

✓
k, z � j

n

◆
= (� (k + 1))n knzk�

(n�1)
2

1Y

m=1

mnk

(m+ 1)nk

1Y

r=1

✓
1 +

nk

r + nz

◆

Gauss divides
Qn�1

j=0 ⇧
⇣
k, z � j

n

⌘
by ⇧ (nk, nz), which equals

⇧ (nk, nz) =
⇧ (nk)⇧ (nz)

⇧ (nk + nz)
nnzknz =

� (nk + 1)� (nz + 1)

� (nk + nz + 1)
nnzknz

= nnzknz� (nk + 1)
1Y

m=1

mnk

(m+ 1)nk

1Y

m=1

m+ nz + nk

m+ nz

= nnzknz� (nk + 1)
1Y

m=1

mnk

(m+ 1)nk

1Y

r=1

✓
1 +

nk

r + nz

◆

resulting in (163) and demonstrating that the left-hand side of (163) is independent of z. As follows

from the Gauss factors (150), ⇧ (k, 0) = ⇧ (nk, 0) = 1 and the choice of z = 0 in the left-hand side of

(163) is

nnz Qn�1
j=0 ⇧

⇣
k, z � j

n

⌘

⇧ (nk, nz)
=

n�1Y

j=0

⇧

✓
k,� j

n

◆

After taking the limit of k ! 1 of both sides, the definition ⇧ (z) = � (z + 1) = limk!1⇧ (k, z) leads

to
nnz Qn�1

j=0 �
⇣
z + 1� j

n

⌘

� (nz + 1)
=

n�1Y

j=1

�

✓
1� j

n

◆
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Let l = n� j, then
Qn�1

j=1 �
⇣
1� j

n

⌘
=
Qn�1

j=1 �
⇣
n�j
n

⌘
=
Qn�1

l=1 �
�
l
n

�
so that

0

@
n�1Y

j=1

�

✓
1� j

n

◆1

A
2

=
n�1Y

j=1

�

✓
1� j

n

◆
�

✓
j

n

◆
=

n�1Y

j=1

⇡

sin⇡ j
n

=
⇡n�1

Qn�1
j=1 sin

⇡j
n

where the reflection formula (161) has been invoked. Using Euler’s formula35

sinx = 2n�1
n�1Y

k=0

sin
(⇡k + x)

n
(164)

for x ! 0 gives
Qn�1

k=1 sin
⇡k
n = n

2n�1 and finally leads to

� (nz + 1) = (2⇡)�
n�1
2 nnz+ 1

2

nY

k=1

�

✓
z +

k

n

◆

that equals (162), because
Qn

k=1 �
�
z + k

n

�
= � (z + 1)

Qn�1
k=1 �

�
z + k

n

�
= z

Qn�1
k=0 �

�
z + k

n

�
.

67. Gauss’s integral for the digamma function. We will demonstrate Gauss’s integral [?, p. 160,

formula [78]Gauss1813

 (z) =
d

dz
log� (z) =

Z 1

0

✓
e�t

t
� e�zt

1� e�t

◆
dt (165)

Instead of following Gauss’s deduction, a more elegant derivation [55, p. 247] is obtained from Weier-

strass’s infinite product (149). The logarithm of Weierstrass’s infinite product (149) is

� log�(z + 1) = � z +
1X

n=1

⇣
log

⇣
1 +

z

n

⌘
� z

n

⌘

and di↵erentiation yields

 (z + 1) =
d

dz
log� (z + 1) = �� �

1X

n=1

✓
1

z + n
� 1

n

◆
= �� + z

1X

n=1

1

(z + n)n

from which  (1) = ��. The functional equation (148) of  (z) then shows that

 (z) = �� � 1

z
� lim

k!1

kX

n=1

✓
1

z + n
� 1

n

◆
(166)

The polygamma functions, defined as  (n)(z) = dn+1 ln�(z)
dzn+1 with  (0)(z) =  (z), follow immediately

from (166) as [1, 6.4.10]

 (n)(z) = (�1)n+1n!
1X

k=0

1

(z + k)n+1
(167)

Substituting
R1
0 e�t(z+n)dt = 1

z+n , valid for Re (t) > 0, into (166) yields

 (z) = �� �
Z 1

0
e�tzdt� lim

k!1

Z 1

0

�
e�tz � 1

� kX

n=1

e�tndt

35The polynomial zn�1 has as zeros the n-th roots of unity, zn�1 = (z � 1)
Qn�1

k=1

⇣
1� z e

� 2⇡ik
n

⌘
. Choosing z = e

2ix
n

leads, after some manipulations, to (164).
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With
Pk

n=1 e
�tn = e�t 1�e�kt

1�e�t , we have

 (z) = �� �
Z 1

0
e�tzdt+ lim

k!1

Z 1

0

�
e�t � e�t(z+1)

� �
1� e�kt

�

1� e�t
dt

= �� �
Z 1

0
e�tzdt+

Z 1

0

e�t � e�t(z+1)

1� e�t
dt� lim

k!1

Z 1

0

�
1� e�tz

�

1� e�t
e�(k+1)tdt

and

 (z) = �� +

Z 1

0

e�t � e�tz

1� e�t
dt+ lim

k!1

Z 1

0

�
1� e�tz

�

1� e�t
e�(k+1)tdt

Since

����
R1
0

(1�e�tz)
1�e�t e�(k+1)tdt

���� 
R1
0

����
(1�e�tz)
1�e�t

���� e
�(k+1)tdt  maxt�0

����
(1�e�tz)
1�e�t

����
1

k+1 ! 0 for large k,

because the function
(1�e�tz)
1�e�t is bounded for t � 0, we arrive at

 (z) = �� +

Z 1

0

e�t � e�tz

1� e�t
dt

Similarly as above, we rewrite Euler’s constant � in (158) by invoking again 1
s =

R1
0 e�stdt for

Re (t) > 0 and by using log x =
R x
1

1
sds =

R x
1

R1
0 e�stdtds =

R1
0

e�t�e�xt

t dt,

kX

n=1

1

n
� log k =

Z 1

0
e�t 1� e�kt

1� e�t
dt�

Z 1

0

e�t � e�kt

t
dt

=

Z 1

0

✓
1

1� e�t
� 1

t

◆
e�tdt�

Z 1

0

✓
e�t

1� e�t
� 1

t

◆
e�ktdt

The generating function of the Bernoulli numbers, written as

1

et � 1
=

1

t
� 1

2
+

1X

n=1

B2n
t2n�1

(2n)!
for |t|  2⇡ (168)

shows that e�t

1�e�t � 1
t is continuous at t = 0 and bounded for t � 0, leading for k ! 1 to

� =

Z 1

0

✓
1

1� e�t
� 1

t

◆
e�tdt (169)

and to Gauss’s integral (165).

68. Stirling’s asymptotic formula. Inspired by the Bernoulli generating function (168), we rewrite

Gauss’s integral (165) for z ! z + 1,

d

dz
log� (z + 1) =

Z 1

0

✓
e�t

t
� e�zt

et � 1

◆
dt

=

Z 1

0

✓
e�t � e�zt

t
+

e�zt

2
� e�zt

✓
1

et � 1
� 1

t
+

1

2

◆◆
dt

= log z +
1

2z
�
Z 1

0
e�zt

✓
1

et � 1
� 1

t
+

1

2

◆
dt

Since 0  1
et�1 � 1

t + 1
2  1

2 is bounded for t � 0 and continuous at t = 0, the last integral is

uniformly convergent for Re (z) > 0 and, hence, can be integrated from 1 to z,

log� (z + 1) = z log z � z + 1 +
1

2
log z +

Z 1

0

e�zt � e�t

t

✓
1

et � 1
� 1

t
+

1

2

◆
dt
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With the functional equation (146), we find

log� (z) =

✓
z � 1

2

◆
log z � z + 1 +

Z 1

0

e�zt

t

✓
1

et � 1
� 1

t
+

1

2

◆
dt�

Z 1

0

e�t

t

✓
1

et � 1
� 1

t
+

1

2

◆
dt

The last integral can be evaluated [55, p. 249] as 1� 1
2 log (2⇡) and we arrive at Binet’s first integral

for Re (z) > 0,

log� (z) =

✓
z � 1

2

◆
log z � z +

1

2
log (2⇡) +

Z 1

0

e�zt

t

✓
1

et � 1
� 1

t
+

1

2

◆
dt (170)

We observe from (170) that
����
Z 1

0

e�zt

t

✓
1

et � 1
� 1

t
+

1

2

◆
dt

����  max
t�0

����
1

t

✓
1

et � 1
� 1

t
+

1

2

◆����
1

z
=

B2

2z
=

1

12z

so that, for any Re (z) > 0, a sharp upper bound is found,

|log� (z)| 
����

✓
z � 1

2

◆
log z � z

����+
1

2
log (2⇡) +

1

12z
(171)

In particular, the integral in (170) is positive for positive real x > 0, leading to the bounds
✓
x� 1

2

◆
log x� x+

1

2
log (2⇡)  log� (x) 

✓
x� 1

2

◆
log x� x+

1

2
log (2⇡) +

1

12x
(172)

Invoking the generating function of the Bernoulli numbers (168) in (170), ignoring the restriction

|t| < 2⇡, yields Stirling’s approximation [1, 6.1.40],

log� (z) =

✓
z � 1

2

◆
log z � z +

1

2
log (2⇡) +

1X

n=1

B2n

2n (2n� 1) z2n�1
(173)

=

✓
z � 1

2

◆
log z � z +

1

2
log (2⇡) +

1

12z
� 1

360z3
+O

✓
1

z5

◆

By substituting the partial fraction expansion 1
t

⇣
1

et�1 � 1
t +

1
2

⌘
=
P1

n=1
2

t2+4⇡2n2 in (170),

log� (z) =

✓
z � 1

2

◆
log z � z +

1

2
log (2⇡) + 2

Z 1

0
e�zt

1X

n=1

1

t2 + 4⇡2n2
dt

and changing the integration variable,

Z 1

0
e�zt

1X

n=1

1

t2 + 4⇡2n2
dt =

Z 1

0

1X

n=1

e�zt
⇣
1 +

�
t

2⇡n

�2⌘
(2⇡n)2

dt =
1

2⇡

Z 1

0

du

1 + u2

1X

n=1

e�2⇡nzu

n

= � 1

2⇡

Z 1

0

du

1 + u2
log

�
1� e�2⇡zu

�

we find, after partial integration, Binet’s second form [55, p. 251],[44, p. 217],

log� (z) =

✓
z � 1

2

◆
log z � z +

1

2
log (2⇡) + 2z

Z 1

0

arctan t

e2⇡tz � 1
dt (174)

Substituting in Binet’s second form (174), the Taylor series arctan t =
P1

n=0
(�1)n

2n+1 t
2n+1 around t = 0,

valid for |t| < 1, reversing the integral and summation while ignoring the restriction |t| < 1, leads,

with B2n = (�1)n�14n
R1
0

t2n�1

e2⇡t�1dt for n � 1, again to Stirling’s approximation (173).
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Titchmarsh [47, p. 151] gives a third form

log� (z) =

✓
z � 1

2

◆
log z � z +

1

2
log (2⇡) +

Z 1

0

[t]� t+ 1
2

t+ z
dt

where [t] is the nearest integer smaller than or equal to t. Blagouchine [8] gives seven series for

log� (z). Edwards [9, p. 106-114] derives the Stirling approximation (173) for log⇧ (z) = log� (z + 1)

by Euler-Maclaurin summation (60).

Di↵erentiating Binet’s second form (174) results in a companion of Gauss’s integral (165) for the

digamma function,

 (z) = log z � 1

2z
� 2

Z 1

0

t

e2⇡tz � 1

dt

1 + t2
= log z � 1

2z
� 2

Z 1

0

t

e2⇡t � 1

dt

z2 + t2
(175)

from which we find that Euler’s constant � = � (1) = 1
2+2

R1
0

t
e2⇡t�1

dt
1+t2 > 1

2 . Since
R1
0

t
e2⇡t�1

dt
1+t2 <R1

0
tdt

e2⇡t�1 and � (s) ⇣ (s) =
R1
0

ts�1dt
et�1 , an upper bound follows as � < 1

2 + 2
(2⇡)2

⇣ (2) = 0.5833.

69. Asymptotic behavior of log� (z). For large r and ✓ 6= ⇡, Stirling’s formula (173) shows that

log�
⇣
b+ rei✓

⌘
=

✓
b+ rei✓ � 1

2

◆
log

⇣
b+ rei✓

⌘
� b� rei✓ +

1

2
log (2⇡) +O

✓
1

r

◆

With

log
⇣
b+ rei✓

⌘
= log

⇣
rei✓

⇣
1 + r�1e�i✓b

⌘⌘
= log rei✓ + log

⇣
1 + r�1e�i✓b

⌘

= log r + i✓ + r�1e�i✓b+O

✓
1

r2

◆

we have

log�
⇣
b+ rei✓

⌘
=

✓
b+ rei✓ � 1

2

◆
log r + i✓

✓
b+ rei✓ � 1

2

◆
+

✓
br�1 + ei✓ � 1

2
r�1

◆
e�i✓b

� b� rei✓ +
1

2
log (2⇡) +O

✓
1

r

◆

=

✓
b� 1

2
+ r cos ✓

◆
log r � ✓ (r sin ✓)� r cos ✓ +

1

2
log (2⇡)

+ i

⇢
r ln r sin ✓ +

✓
b� 1

2
+ r cos ✓

◆
✓ � r sin ✓

�
+O

✓
1

r

◆

Thus,

�
⇣
b+ rei✓

⌘
=

p
2⇡er(log(r)�1) cos ✓�✓r sin ✓+(b� 1

2) log(r)ei(r(log(r)�1) sin ✓+r✓ cos ✓+(b� 1
2)✓)

✓
1 +O

✓
1

r

◆◆

from which ����
⇣
b+ rei✓

⌘��� = rb�
1
2 er(log(r)�1) cos ✓�✓r sin ✓

✓
1 +O

✓
1

r

◆◆

Hence, it holds that

1

|� (b+ rei✓)| =
r

1
2�b

p
2⇡

e�r(ln(r)�1) cos ✓+✓r sin ✓

✓
1 +O

✓
1

r

◆◆
(176)

illustrating that limr!1
1

|�(b+rei✓)| = 0 for �⇡
2 < ✓ < ⇡

2 . However, if ✓ = ⇡
2 , then in contrast an

exponential increase in r is witnessed,

1

|� (b+ ir)| =
r

1
2�b

p
2⇡

e
⇡
2 r

✓
1 +O

✓
1

r

◆◆
. (177)
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A.3 Complex integrals for the Gamma function

70. Hankel’s integral. We derive Hankel’s integral

1

� (z)
=

1

2⇡i

Z

C
w�zewdw (178)

where the contour C starts at �1 below the real axis, encircles the origin at z = 0 and returns above

the negative real axis again to �1. Such a contour around the branch-cut (here the negative real

axis) is “classical” in integrals containing w↵ such as Mellin transforms [46]. If " is the radius of a

circle at the origin, then evaluation of the integral along the contour C yields
Z

C
w�zewdw = �

Z "

1

�
xe�i⇡

��z
e�xdx+ i

Z ⇡

�⇡

⇣
"ei✓

⌘�z
e"e

i✓
"ei✓d✓ �

Z 1

"

�
xei⇡

��z
e�xdx

=
�
ei⇡z � e�i⇡z

� Z 1

"
x�ze�xdx+ i"1�z

Z ⇡

�⇡
ei✓(1�z)e"e

i✓
d✓

If Re (1� z) > 0, then we take the limit "! 0 and find with Euler’s integral (147)
Z

C
w�zewdw = 2i sin⇡z

Z 1

0
x1�z�1e�xdx = 2i sin⇡z� (1� z)

After replacing z by 1� z, we obtain a contour integral for the Gamma function,

� (z) =
⇡

sin⇡z

1

2⇡i

Z

C
wz�1ewdw (179)

The reflection formula (161), � (z)� (1� z) = ⇡
sin⇡z , of the Gamma function leads to Hankel’s contour

integral (178). Although the derivation was restricted to Re (z) > 0 in (179), by analytic continuation

(see e.g. [47, Chapter IV],[13, Chapter III]), (178) as well as (179) hold for all z 2 C. The contour

integral (179) for the Gamma function demonstrates that � (z) has simple poles at z = �n for each

integer n (due to sin⇡z), in agreement with Gauss’s product (156).

We can deform36 the contour C into C� by tilting the straight line above the negative real axis

over an angle � and the straight line below the negative real axis over an angle ��. Indeed, consider
the contour L consisting of the contour C, the circle segment at infinity from the angle ⇡ to the angle

�, followed by the line w = rei�, where r ranges from infinity towards ⇢, the circle centered at w = 0

with radius ⇢ turning from angle � towards �� and complemented by the line w = re�i� and infinite

circle segment towards the begin of the contour C. The integral
R
Lw�zewdw = 0, because the contour

L encloses an analytic region of the function w�zew. If � > ⇡
2 , then the part of L along the circle

segment at infinity, limr!1 i
R �
⇡ r1�ze(1�z)i✓ere

i✓
d✓ = 0. Hence, combining all contributions results in

1

� (z)
=

1

2⇡i

Z

C�

w�zewdw (180)

where the contour C� starts at infinity on the straight line at the angle �⇡
2 > � > �⇡ below the real

axis until the circle at the origin with radius ⇢ that turns over the angle �� to � until hitting the

line w = rei� along which it passes towards infinity again. The contour in (178) is the particular case

where C = C⇡ and ⇢ = ". Hankel’s integral in (180) can be written as

1

� (z)
=

1

2⇡i

Z c+1ei�

c�1e�i�
w�zewdw with c > 0 and

⇡

2
< � < ⇡ (181)

36The same deformation holds for the contour integral (179) as well.
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Since multiplying c0 = ac > 0 provided a > 0, the map w ! aw for any real, positive number a yields

az�1

� (z)
=

1

2⇡i

Z c0+1ei�

c0�1e�i�
w�zeawdw with c0 > 0 and

⇡

2
< � < ⇡ (182)

B Complex integrals due to Cauchy and Mellin

We evaluate integrals of a general kind.

71. A Cauchy-type integral.

Theorem 1 Let f (z) be an entire function, that is real on the real axis and limr!1
f(rei✓)

r2 = 0 for

✓ = 0 and ✓ = ⇡
2 . If � is a positive real number, then it holds that

Z 1

�1

f(� + it)

|� + it|2 dt =
⇡

�
f(2�) (183)

Proof : Consider the integral I = 1
2⇡i

R
L

f(z)
z(2��z)dz where the contour L is taken counter-clockwise

round the rectangle formed by the lines Im(z) = �T , Re(z) = a > 2�, Im(z) = T and Re(z) = � > 0.

The contour L encloses the pole on the real axis at x = 2�. Since the entire function f(z) is analytic

inside and on L, the integral equals I = �f(2�)
2� . On the other hand, evaluating the integral I along

the contour L yields,

I =
1

2⇡i

Z a

�

f(x� iT )

(x� iT )(2� � x+ iT )
dx+

1

2⇡

Z T

�T

f(a+ it)

(a+ it)(2� � a� it)
dt

� 1

2⇡i

Z a

�

f(x+ iT )

(x+ iT )(2� � x� iT )
dx� 1

2⇡

Z T

�T

f(� + it)

|� + it|2 dt

Combined and rewritten leads to

f(2�) =
�

⇡

Z T

�T

f(� + it)

�2 + t2
dt� �

⇡

Z T

�T

f(a+ it)

(a+ it)(2� � a� it)
dt

+
�

⇡i

Z a

�
Im


f(x+ iT )

(x+ iT )(2� � x� iT )

�
dx

Since limz!1
f(z)
z2 = 0 for z = rei✓ with ✓ = 0 and ✓ = ⇡

2 , the second and third integral vanish,

demonstrating the Theorem. ⇤

72. Mellin transform of a product of Gamma functions. Let p1, p2, . . . , pn be di↵erent real, positive

numbers, then the Mellin transform

nY

j=1

� (s+ pj) =

Z 1

0
us�1g

⇣
u; {pj}1jn

⌘
du (184)

has an inverse

g
⇣
u; {pj}1jn

⌘
=

1

2⇡i

Z c+i1

c�i1

nY

j=1

� (s+ pj)u
�sds with c > 0 (185)
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which can be evaluated. The contour in (185) can be closed over the negative Re (s)-plane and encloses

the simple poles at s = �qj � pj for integers qj � 0 for 1  j  n on the negative real axis. Cauchy’s

residue theorem [47] leads to

g
⇣
u; {pj}1jn

⌘
=

nX

j=1

1X

qj=0

lim
s!�qj�pj

(s+ qj + pj)� (s+ pj)
nY

m=1;m 6=j

� (s+ pm)u�s

Iterating the functional equation (146) of the Gamma function (qj + 1)-times gives

lim
s!�qj�pj

(s+ qj + pj)� (s+ pj) = lim
s!�qj�pj

� (s+ pj + qj + 1) (s+ pj + qj)

(s+ pj) (s+ pj + 1) . . . (s+ pj + qj � 1) (s+ pj + qj)

=
� (1)

(�qj) (�qj + 1) . . . (�1)
=

(�1)qj

(qj)!

Hence, we obtain

g
⇣
u; {pj}1jn

⌘
=

nX

j=1

1X

qj=0

(�1)qj uqj+pj

(qj)!

nY

m=1;m 6=j

� (�qj + pm � pj)

With the reflection formula (161)

� (�qj + pm � pj) =
⇡ (�1)qj

sin⇡ (pm � pj)� (1 + qj + pj � pm)

we have

nY

m=1;m 6=j

� (�qj + pm � pj) =
nY

m=1;m 6=j

⇡ (�1)qj

sin⇡ (pm � pj)� (1 + qj + pj � pm)

=
⇡n�1 (�1)(n�1)qj

j�1Y

m=1

sin⇡ (pm � pj)
nY

m=j+1

sin⇡ (pm � pj)

⇥ 1
j�1Y

m=1

� (1 + qj + pj � pm)
nY

m=j+1

� (1 + qj + pj � pm)

we arrive at the series

g
⇣
u; {pj}1jn

⌘
=

nX

j=1

(�1)j�1 ⇡n�1upj

j�1Y

m=1

sin⇡ (pj � pm)
nY

m=j+1

sin⇡ (pm � pj)

1X

qj=0

(�1)nqj uqj

(qj)!
nY

m=1;m 6=j

� (1 + qj + pj � pm)

(186)

with the convention that
bY

m=a

fm = 1 if b < a.

Examples If n = 1, then we retrieve the classical Mellin transform of the pair e�u and � (s),

g (u; p1) = up1
1X

q1=0

(�1)q1 uq1

(q1)!
= up1e�u
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If pj =
j
n for 1  j  n� 1 as in Gauss’s multiplication formula (162) without j = 0 factor, then

(186), denoted as g

✓
u;
n

j
n

o

1jn�1

◆
= hn (u) reduces to

hn (u) = ⇡n�2
n�1X

j=1

(�1)j�1 u
j
n

j�1Y

k=1

sin
�
⇡k
n

� n�j�1Y

k=1

sin
�
⇡k
n

�

1X

qj=0

⇣
(�1)n�1

⌘qj
uqj

(qj)!
j�1Y

k=1

�
�
1 + qj +

k
n

� n�j�1Y

m=1

�
�
1 + qj � m

n

�
(187)

In particular for n = 3, then

h3 (u) = ⇡
u

1
3

sin
�
⇡
3

�
1X

q1=0

uq1

(qj)!�
�
1 + q1 � 1

3

� � ⇡
u

2
3

sin
�
⇡
3

�
1X

q2=0

uq2

(qj)!�
�
1 + q2 +

1
3

�

We briefly summarize the theory of the modified Bessel function K⌫(z), but strongly advise to

consult the monumental treatise of Watson [54]. The modified Bessel functions I⌫ (z) and K⌫(z) are

defined [54, p. 77-78] as the two independent solutions of the modified Bessel di↵erential equation

z2
d2y

dz2
+ z

dy

dz
�
�
z2 + ⌫2

�
y = 0

Both I⌫ (z) and K⌫(z) are entire functions in v for z 6= 0 and analytic in z, except for a cut along the

negative real axis. The function I⌫ (z) in z possesses the Taylor series

I⌫ (z) =
1X

k=0

�
1
2z
�⌫+2k

k!�(⌫ + k + 1)
(188)

The modified Bessel functions K⌫(z) is defined as

K⌫(z) =
⇡

2 sin⇡⌫
(I�⌫ (z)� I⌫ (z)) (189)

clearly even in the order ⌫, K⌫(z) = K�⌫(z) for all z 6= 0, with Taylor series

K⌫(z) =
⇡

2 sin⇡⌫

 ✓
1

2
z

◆�⌫ 1X

k=0

�
1
4z

2
�k

k!�(1� ⌫ + k)
�
✓
1

2
z

◆⌫ 1X

k=0

�
1
4z

2
�k

k!�(1 + ⌫ + k)

!
(190)

The Taylor series (190) shows that

h3 (u) = 2u
1
2K 1

3
(2
p
u) (191)

On the other hand, the integral [41, eq. (28.73), p. 55], valid for Re (s) > 0 and Re (p) > 0,

� (s)� (s+ p) = 2

Z 1

0
Kp

�
2
p
x
�
x

p
2+s�1dx

is a special case of (184) and corresponds to h3 (u) in (191) with p = 1
3 and s ! s+ 1

3 .

C Inverse Laplace transform

The Laplace transform for complex z is defined (see e.g. [46], [13, Chapter VII], [56]) as

'(z) =

Z 1

0
e�ztf(t)dt (192)
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with the inverse transform,

f(t) =
1

2⇡i

Z c+i1

c�i1
'(z)eztdz (193)

where c is the smallest real value of Re(z) for which the integral in (192) converges.

We evaluate the integral in (193) along the line z = c+ iw,

f(t) =
etc

2⇡

Z 1

�1
'(c+ iw)eitwdw

After writing the integrand in a real and an imaginary part,

f(t) =
etc

2⇡

Z 1

�1
{Re'(c+ iw) cos tw � Im ('(c+ iw)) sin tw} dw

+ i
etc

2⇡

Z 1

�1
{Re ('(c+ iw)) sin tw + Im ('(c+ iw)) cos tw} dw

we find, after separating the real and imaginary part, that

(
f(t) = etc

2⇡

R1
�1 {Re'(c+ iw) cos tw � Im'(c+ iw) sin tw} dw

0 =
R1
�1 {Re'(c+ iw) sin tw + Im'(c+ iw) cos tw} dw

On the other hand, it follows from (192) that

(
Re'(c+ iw) =

R1
0 e�ctf(t) coswtdt

Im'(c+ iw) = �
R1
0 e�ctf(t) sinwtdt

and that Re'(c+ iw) cos tw and Im'(c+ iw) sin tw are even in w. Likewise, Re'(c+ iw) sin tw and

Im'(c+ iw) cos tw are odd in w. Hence, we arrive at

(
f(t) = etc

⇡

R1
0 {Re'(c+ iw) cos tw � Im'(c+ iw) sin tw} dwR1

�1Re'(c+ iw) sin twdw =
R1
�1 Im'(c+ iw) cos twdw = 0

(194)

The derivation is a corrected version of [3].

Berberan-Santos37 suggests to proceed a step further by defining f (t) = 0 for t < 0. In that case,

it follows from (194) that

0 =

Z 1

0
{Re'(c+ iw) cos tw � Im'(c+ iw) sin tw} dw for t < 0

which leads, after replacing t ! �t, to
Z 1

0
Re'(c+ iw) cos twdw = �

Z 1

0
Im'(c+ iw) sin twdw for t > 0

The final resulting set of integral equations, subject to “f (t) = 0 for t < 0”, simplifies to

8
><

>:

f(t) = 2etc

⇡

R1
0 Re'(c+ iw) cos twdw for t > 0

f(t) = �2etc

⇡

R1
0 Im'(c+ iw) sin twdw for t > 0R1

�1Re'(c+ iw) sin twdw =
R1
�1 Im'(c+ iw) cos twdw = 0

(195)

37Private communication.
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The general form (193) does not impose the restriction “f (t) = 0 for t < 0” and is continuous38 at t =

0. The restriction “f (t) = 0 for t < 0” is only continuous at t = 0 if f (0) = 0. In spite of this concern,

Berberan-Santos [3] evaluates various Laplace inverses via f(t) = 2etc

⇡

R1
0 Re'(c+ iw) cos twdw.

In Fourier transforms, the inverse has a similar form as the transform itself and tables of Fourier

transforms can thus be used in two directions. Gross [21] has written39 a note on the question when

the inverse Laplace transform (193) is of the same form as the Laplace transform (192) itself. In

particular, if '(z) =
R1
0 e�ztf(t)dt = L [f(t)], then Gross [21] asks when the inverse is of the form

f (z) =

Z 1

0
e�ztg(t)dt = L [g(t)]

for real f and g. Formal substitution of the latter into the former and reversing the integrals yields a

Stieltjes transform [56, Chapter VIII],[46, 9.15, p. 269]

'(z) =

Z 1

0

✓Z 1

0
e�(z+s)tdt

◆
g(s)ds =

Z 1

0

g(s)

z + s
ds

which is inverted as g (s) = 1
⇡ Im

�
'(se�i⇡)

�
= � 1

⇡ Im
�
'(sei⇡)

�
for real s. Hence, if the Laplace

transform and its inverse are of the same form, then it holds that

'(z) = L [f(t)] () f (z) = L
⇥
1
⇡ Im

�
'(te�i⇡)

�⇤
(196)

and Gross [21] briefly states conditions on the validity of (196), which essentially relate to Theorem 1.

Berberan-Santos’ set (195) of equations is thus a further development of Gross’s Laplace pair (196).

D Mittag-Le✏er function and fractional calculus

The k-th order derivative of a complex function can be deduced from Cauchy’s integral as

dkf(z)

dzk

����
z=z0

=
� (1 + k)

2⇡i

Z

C(z0)

f(!) d!

(! � z0)k+1
(197)

where C(z0) is a contour around the point z0 in a region of the complex plane where the function

f (z) is analytic. The integer number k at the right-hand side in (197) can be formally extended to a

complex number ↵, which then defines the left-hand side as a complex fractional derivative,

D↵f (z0) ⌘
d↵f(z)

dz↵

����
z=z0

=
� (1 + ↵)

2⇡i

Z

C(z0)

f(!) d!

(! � z0)↵+1
(198)

38Indeed,

|f(")� f(�")|  1
2⇡

Z 1

�1
|'(c+ iw)|

���e"(c+iw) � e
�"(c+iw)

��� dw

=
1
⇡

lim
T!1

Z T

�T

|'(c+ iw)| |sinh (" (c+ iw))| dw

Since |sinh (" (c+ iw))| = |sinh "c cos "w + sin "w cosh "c| < |sinh "c|+ |sin "w|+O
�
"
2
�
and choosing " = T

�2��,

Z T

�T

|'(c+ iw)| |sinh (" (c+ iw))| dw  cT
�2��

Z T

�T

|'(c+ iw)| dw + T
�2��

Z T

�T

|w'(c+ iw)| dw

 2cT�1�� max |'(c+ iw)|+ T
�� max |'(c+ iw)|  AT

��

which can be made arbitrarily small for large T so that |f(")� f(�")| ! 0 when "! 0.
39Professor Apelblat has informed me about this note.
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By choosing or deforming the contour C (z0) in an appropriate manner (which is one of the core

ingenuities in complex integration), we can transform (198) to

D↵
mf (t) =

d↵f(z)

dz↵

����
z=t

=
1

� (m� ↵)

Z t

p

f (m)(x)

(t� x)↵+1�mdx for Re (↵) < m (199)

which is known as the Caputo fractional derivative. As explained in [52], the integral in (199) is a

convolution of the function g (x) = f (m)(x), the m-th derivative of f (x) and the function x�↵�1+m,

which is a power law.

After the extension of “classical” derivative (197) to a “fractional” derivative (199), we replace or

extend the derivative in the linear matrix di↵erential equation

ds (t)

dt
= Qs (t) (200)

where Q is an N ⇥N matrix and s (t) is an N ⇥ 1 vector, to a Caputo fractional derivative (199)

D↵
ms↵ (t) = �Qs↵ (t) (201)

The classical solution of (200) for any N ⇥N matrix Q is

s (t) = e�Qts (0)

while, for 0 < ↵ < 1 and40 m = 0, the “fractional ↵ process” is described by

s↵ (t) = E↵ (�Qt↵) s↵ (0) (202)

where the matrix E↵ (�Qt↵) =
P1

k=0
Qk(�ta)k

�(1+ak) is also defined for any matrix Q. This exact analytic

result (202) generalizes a large number of physical processes that are described by a linear di↵erential

equation of order N .

40The more general form for m > 0 is also analytically known (see [52, Appendix C])
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