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Abstract

During the outbreak of a virus, perhaps the greatest concern is the future evolution of the epi-

demic: How many people will be infected and which regions will be affected the most? The accurate

prediction of an epidemic enables targeted disease counter-measures (e.g., allocating medical staff

and quarantining). This work considers fundamental limits for the prediction of an epidemic. More

precisely, we demonstrate the ill-conditioning of predicting the logistic function, which is central to

epidemic models. Small modelling and measurement errors tremendously deteriorate the prediction

accuracy. Thus, a real-world epidemic outbreak can be predicted reliably only in the short term.

1 Introduction

The vast majority of epidemic models assumes that every individual is in either one compartment [1].

Every compartment describes another stage of the disease. The two most fundamental compartments

are susceptible (healthy) and infected. Susceptible individuals can get infected by contact with infec-

tious individuals. Conceptually, there are two kinds of compartmental epidemic models. First, the

Susceptible-Infected-Susceptible (SIS) epidemic model assumes that infected individuals can cure and

become infected again.

Definition 1 (Susceptible-Infected-Susceptible (SIS) Epidemic Model). Consider a population with

M individuals, which are either susceptible or infected at every time t ≥ 0. Denote the infection rate

by β > 0 and the curing rate by δ > 0. Then, the number of infected individuals I(t) evolves according

to

dI(t)

dt
=

β

M
S(t)I(t)− δI(t),

and the number of susceptible individuals follows as S(t) = M − I(t).

The Susceptible-Infected-Removed (SIR) model is the second kind of compartmental epidemic

models. The SIR model assumes that cured individuals are immune to the disease, which is modelled

by the removed compartment.
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Definition 2 (Susceptible-Infected-Removed (SIR) Epidemic Model). Consider a population with M

individuals, which are either susceptible or infected or removed at every time t ≥ 0. Denote the

infection rate by β > 0 and the curing rate by δ > 0. Then, the number of infected individuals I(t)

evolves according to

dI(t)

dt
=

β

M
S(t)I(t)− δI(t),

the number of removed individuals R(t) evolves according to

dR(t)

dt
= δI(t), (1)

and the number of susceptible individuals follows as S(t) = M − I(t)−R(t).

There are variations to both the SIS and the SIR model [1]. For instance, the Susceptible-Infected-

Removed-Susceptible (SIRS) model and the Susceptible-Exposed-Infected-Removed (SEIR) model,

which consider time-limited immunity and an incubation period, respectively. In this work, we focus

on the basic SIS and SIR models. For both models, we consider the prediction of the future evolution

of the epidemic at times t ≥ tobs, given observations of the compartments until some observation time

tobs. In this work, we argue that the prediction of an epidemic is ill-conditioned, which is a property

that is independent of the particular prediction algorithm.

2 The Logistic Function in Epidemic Models

At the heart of both the SIS and the SIR epidemic model lies the logistic function f(t), which is given

by

f(t) =
y∞

1 + e−K(t−t0)
. (2)

Here, we denote the steady-state by y∞ > 0, the inflection point by t0 and the logistic growth rate

by K > 0. Furthermore, we denote the scaled inflection point by t̃0 = Kt0. For both the SIS and the

SIR epidemic model, we denote the effective infection rate by τ = β/δ. Proposition 3 states that the

solution of the SIS model is given by a logistic function. Proposition 3 is not a novel contribution but

included for completeness.

Proposition 3. Consider the SIS epidemic model and assume that β > δ and I(0) > 0. Then, the

number of infected individuals I(t) is given by a logistic curve

I(t) =
M

1 + e−K(t−t0)

(
1− 1

τ

)
.

Here, the logistic growth rate equals K = β − δ, and the inflection point equals

t0 =
1

K
log

(
M

I(0)

(
1− 1

τ

)
− 1

)
.

Also for the SIS epidemic model on networks, the logistic curve gives an approximation and bounds

for describing the number of infected individuals [2, 3].

Similarly to Proposition 3, in the SIR epidemic model, the solution for the removed compartment

R(t) can be approximated by a logistic function, as shown in the seminal work of Kermack and

McKendrick [4].
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Proposition 4 ([4]). Consider the SIR epidemic model and assume that R(0) = 0 and I(0) > 0.

Then, if R(t) << δ/β holds true at all times t, the number of removed individuals R(t) can be

approximated by a logistic curve at all times t ≥ 0 as

R(t) ≈Mr1 +M
r2 − r1

1− r2
r1
e−

1
2
τ2(r2−r1)t̃

.

Here, the constants r1 and r2 equal to

rl =


1

s0τ2

(
(s0τ − 1) +

√
(s0τ − 1)2 + 2s0(1− s0)τ2

)
if l = 1,

1
s0τ2

(
(s0τ − 1)−

√
(s0τ − 1)2 + 2s0(1− s0)τ2

)
if l = 2.

More precisely, Proposition 4 states that the removed individualsR(t) is approximated by a logistic

function plus the offset Mr1. By the definition of the SIR model in (1), the number of infection I(t)

is proportional to the derivative of the removed individuals R(t). Thus, Proposition 4 implies that

the cumulative number of infections

Ic(t) =

∫ t

0
I (z) dz (3)

is approximated by a logistic function (plus offset). Then, the peak of the epidemic, i.e., the largest

increase of infections, occurs at the inflection point t0.

3 Prediction of Epidemic Outbreaks

Proposition 3 and Proposition 4, and variations thereof, motivate the application of the logistic func-

tion (2) to the prediction of an epidemic outbreak. In particular, the logistic function has been applied

to forecast the Coronavirus Virus Disease 2019 (Covid-19) outbreak in China [5, 6, 7, 8, 9], The Nether-

lands [10] and Italy [11]. We consider the prediction of the cumulative number of infections Ic(t), as

defined in (3). In a real-world epidemic, the infections Ic(t) does not exactly follow a logistic function

f(t). Instead, the infections Ic(t) satisfy

Ic(t) = f(t) + w(t) (4)

for some logistic function f(t) and the unknown model error w(t). Real-world epidemic data is

collected in a periodic manner. For instance, the RIVM reports the number of Covid-19 infections in

the Netherlands on a daily basis. We assume that the cumulative number of infections Ic(t) has been

observed at the discrete times t = 1, 2, ..., tobs, where tobs ∈ N denotes the observation time.

To predict the number of infections Ic(t) at times t > tobs, we consider a two-step approach.

First, we obtain parameter estimates ŷ∞, t̂0, K̂ of the logistic function f(t) by solving the non-linear

least-squares problem

(ŷ∞, t̂0, K̂) = argmin
y∞,t0,K

tobs∑
t=1

(
Ic(t)−

y∞
1 + e−K(t−t0)

)2

. (5)

Second, we predict the number of infections Ic(t) at times t > tobs by the logistic function (2) as

Îc(t) ≈ f̂(t), where the estimate of the logistic function f(t) equals

f̂(t) =
ŷ∞

1 + e−K̂(t−t̂0)
.
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The remainder of this section consists of two parts. First, we focus on the simplified problem of fitting

the logistic function f(t) to three points in Subsection 3.1. Second, we argue that the prediction of

epidemics is ill-conditioned in Subsection 3.2.

3.1 Fitting the Logistic Function to Three Equidistant Points

The logistic function f(t) can be fitted to three equidistant points in closed-form, as stated by Propo-

sition 5.

Proposition 5. Consider three points y3 > y2 > y1 > 0 and a time spacing ∆t. Define the growth

metric as

Φ (y1, y2, y3) =
y2

y3
− y1

y2
. (6)

Then, there exists a logistic function f(t) with f(0) = y1, f(∆t) = y2 and f(2∆t) = y3 if and only if

Φ (y1, y2, y3) > 0. (7)

Furthermore, the logistic function f(t) is unique, and the steady-state equals

y∞ = y1 +
(y1 − y2)2

y2

1

Φ(y1, y2, y3)
, (8)

the logistic growth rate equals

K = − 1

∆t
log

(
y1

y2
+

y1

y1 − y2
Φ (y1, y2, y3)

)
, (9)

and the inflection point equals

t0 =
1

K
log

(
(y1 − y2)2

y1y2

1

Φ(y1, y2, y3)

)
. (10)

Proof. Appendix B.

To state the closed-form expressions for the parameters y∞, K, t0, we defined the growth metric

Φ (y1, y2, y3) in (6). The growth metric Φ (y1, y2, y3) seems to be a central quantity for fitting the

logistic function f(t). If y1 = g(t), y2 = g(∆t) and y3 = g(2∆t) for some function g(t), then the

growth metric Φ (y1, y2, y3) is related to the second derivative of the function h(t) = − log (g(t)). The

first derivative of h(t) equals h′(t) = −g′(t)/g(t). Applying Euler’s method to h′(t) with sampling

time ∆t gives

h′′(t) ≈ − 1

∆t

(
g′ (t+ ∆t)

g (t+ ∆t)
− g′(t)
g(t)

)
.

Applying Euler’s method to both g′ (t+ ∆t) and g′(t) yields that

h′′(t) ≈ − 1

∆t2

(
g (t+ ∆t)− g (t)

g (t+ ∆t)
− g (t)− g (t−∆t)

g(t)

)
.

Hence, by identifying y1 = g (t−∆t), y2 = g (t) and y3 = g (t+ ∆t), it holds that

Φ (y1, y2, y3) ≈ ∆t2h′′(t).

If the points y1, y2, y3 lie on a logistic function f(t), then we can express the growth metric

Φ (y1, y2, y3) as a power series:
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Proposition 6 (Power Series for the Growth Metric). For some logistic function f(t) and time spacing

∆t, consider three values y1 = f(0), y2 = f(∆t) and y3 = f(2∆t). Furthermore, denote the scaled

time spacing as ∆t̃ = K∆t. Then, for a sufficiently small1 time spacing ∆t̃, the growth metric can be

expressed as

Φ (y1, y2, y3) =
1

1 + et̃0

∞∑
n=2

(
∆t̃
)n((−1)n

n!
−
(

1 + et̃0
)
cn

)
. (11)

Here, the coefficients cn are recursively defined as c0 = 1 and

cn = − 1

et̃0 + 1

n−1∑
l=0

cl
1

(n− l)!
, n ≥ 1.

Proof. Appendix A.

Figure 1 shows that the growth rate Φ(f(0), f(t/2), f(t)) is close to zero for all times t < t0 for an

exemplary logistic function f(t) with parameters K = 0.5, t0 = 10 and y∞ = 1.
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Figure 1: Growth metric for a logistic function. Upper subplot: The logistic function f(t) versus

time t. Lower subplot: The growth metric Φ(y1, y2, y3) for the points y1 = f(0), y2 = f(t/2), y3 = f(t)

versus time t.

1Numerical simulations seem to indicate that the power series (11) converges for all time spacings ∆t̃. The analytical

derivation of the radius of convergence of the power series (11) is an open problem.
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3.2 Ill-Conditioning of Predicting Epidemic Outbreaks

If the model errors w(t) in (4) are sufficiently small, then the solution ŷ∞, t̂0, K̂ to the least-squares

problem (5) approximately equals to the true parameters y∞, t0,K. However, it is not clear what

“sufficiently small” means. Thus, we face the fundamental question: How much do small, but non-

zero, model errors w(t) affect the accuracy of the estimate f̂(t)?

To quantify the deviation of the estimated logistic function f̂(t) to the true function f(t), we apply

Proposition 5, which states that every logistic function can be parameterised by specifying three points

y1, y2 and y3. We choose three points y1, y2 and y3 in the observation time interval [0, tobs]. More

precisely, we set the three points of the true logistic function f(t) in (4) to y1 = f(0), y2 = f(tobs/2)

and y3 = f(tobs). Analogously, we denote the corresponding points of the estimate f̂(t), obtained

by (5), as ŷ1 = f̂(0), ŷ2 = f̂(tobs/2) and ŷ3 = f̂(tobs). The points ŷ1, ŷ2, ŷ3 depend on the unknown

model error w(t). If the model error w(t)→ 0 at every time t ∈ [0, tobs], then it holds that ŷi → yi for

i = 1, 2, 3, which implies that f̂(t)→ f(t) at every time t.

We consider the best-case and assume that, due to non-zero model errors w(t), the estimate f̂(t)

differs from the true function f(t) in only one of the points y1, y2, y3. More precisely, we consider that

ŷ1 = y1, ŷ2 = y2 and ŷ3 = y3 + ε for some small ε > 0. Thus, ε ↓ 0 implies that f̂(t) → f(t) at every

time t. For now, we focus on the sensitivity of estimating the steady state y∞. We define ŷ∞(ε) as the

estimate of the steady state y∞, given the perturbation ŷ3 = y3 + ε. By applying Taylor’s Theorem

to (8), we obtain for a small ε > 0 that

ŷ∞(ε) = y∞ + εκ1(tobs) +O
(
ε2
)
, (12)

where we define2 the condition number κ1(tobs) as

κ1(tobs) =
∂

∂y3

(
y1 +

(y1 − y2)2

y2

1

Φ(y1, y2, y3)

)
. (13)

The condition number κ1(tobs) depends on the observation time tobs, since the three points are given

by y1 = f(0), y2 = f(tobs/2) and y3 = f(tobs). From (12) it follows that the condition number κ1(tobs)

describes the impact, or the amplification, of a small error ε = ŷ3 − y3 on the estimate ŷ∞(ε). The

greater the condition number κ1(tobs), the harder it is to estimate the steady state y∞. Analogously

to the condition number κ1(tobs) for the estimate of the steady state y∞(ε), we define the condition

numbers κ2(tobs) and κ3(tobs) for the growth rate estimate K̂(ε) and the inflection point estimate

t̂0(ε), respectively. (See also Appendix C.)

Proposition 7 (Condition Numbers of Estimating the Logistic Function Parameters). Consider three

points y1 = f(0), y2 = f(tobs/2) and y3 = f(tobs) on the logistic function f(t). With respect to a small

perturbation ε of the point y3, the condition number of the steady-state estimate ŷ∞(ε) equals

κ1(tobs) =
(y1 − y2)2

y2
3

1

Φ2(y1, y2, y3)
, (14)

2For a matrix A, the most common definition of the condition number is κ(A) = σmax/σmin, where σmax and σmin

denote the greatest and smallest singular value of the matrix A. Analogously to (13), the condition number κ(A) describes

the sensitivity the solution x of the linear system Ax = b, when the vector b is perturbed [12].
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the condition number of the growth-rate estimate K̂(ε) equals

κ2(tobs) =
2

tobs

y2
2

y2
3

1

y1 − y2 + y2Φ (y1, y2, y3)
, (15)

and the condition number of the inflection-point estimate t̂0(ε) equals

κ3(tobs) =
1

K

y2

y2
3

(
1

Φ(y1, y2, y3)
− 2t0y2

tobs

1

y1 − y2 + y2Φ (y1, y2, y3)

)
. (16)

Proof. Appendix C.

Proposition 7 shows that the growth metric Φ (y1, y2, y3) is a central quantity in assessing the

difficulty of estimating the parameters y∞, K, t0. We consider an exemplary logistic function f(t)

with parameters K = 0.5, t0 = 10 and y∞ = 1. Figure 2 shows that the condition numbers κ1(t), κ2(t),

and κ3(t) are very large. For instance at time t = 5 = t0/2, the magnitude of the condition number

|κ1(5)| is greater than 100. Thus, the steady-state estimate ŷ∞(ε) is distorted by the error ε times a

factor of 100. Furthermore, Figure 2 indicates that the estimation of the growth rate parameter K is

most robust against model errors w(t), since the condition number κ2(t) is the smallest.
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Figure 2: Condition numbers of estimating the parameters of a logistic function. Upper

subplot: The logistic function f(t) versus time t. Lower subplot: The absolute value of the condition

numbers κ1(t), κ2(t), and κ3(t) versus time t on a semi-logarithmic plot. The dashed line indicates

the inflection point t0 = 10.
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We emphasise that, for simplicity, Proposition 7 considers the best case: the perturbation of only

one point y3. If the points y1 and y2 are also perturbed, then the condition numbers become even

greater than the expressions in Proposition 7. Nevertheless, the best-case scenario in Proposition 7

suffices to show that the estimation of the logistic function parameters y∞, K, t0 is ill-conditioned for

small observation times tobs:

Proposition 8 (Ill-Conditioning of Estimating the Logistic Function Parameters). Consider three

points y1 = f(0), y2 = f(tobs/2) and y3 = f(tobs) on the logistic function f(t). With respect to a small

perturbation ε of the point y3, it holds that

1

κi(tobs)
= O

(
t2obs

)
as tobs ↓ 0 for all i = 1, 2, 3.

Proof. Appendix D.

Proposition 8 states that, for estimating the logistic function parameters y∞, K, t0, the condition

numbers κi(tobs) are very large for a small observation time tobs. For every real-world epidemic

outbreak, there are significant non-zero model errors w(t). Thus, Proposition 8 implies that an

accurate prediction of the logistic function f(t) is impossible in practice, unless the epidemic has

been observed for a long time tobs.

4 Numerical Simulations

We perform numerical simulations to illustrate the sensitivity of predicting an epidemic outbreak sub-

ject to model errors w(t). We generate the model errors w(t) in (4) as Gaussian random variables with

zero mean and standard deviation σ. The model errors w(t) and w(t̃) are stochastically independent

for all times t 6= t̃. If the cumulative number of infections Ic(t), resulting from (4), is negative,then

we set Ic(t) ← |Ic(t)|. Figure 3 shows the prediction results for three scenarios: small model errors

(σ = 2 · 10−4); large model errors (σ = 10−3); and the number of Covid-19 infections Ic(t) in the

Netherlands. Small model errors w(t) have a great impact on the accuracy of the estimated number of

infections Îc(t) and the inflection-point estimate t̂0. The prediction of the number of infections Ic(t)

is accurate only in the short term.

5 Conclusions

For many epidemic models, the (cumulative) number of infections is given by a logistic function, at

least approximately. In this work, we showed that the prediction of a logistic function is ill-conditioned.

More specifically, a good fit of a logistic function f̂(t) to the epidemic data until some observation

time tobs does not imply that the function f̂(t) yields accurate predictions at times t > tobs. Hence,

even under idealised conditions, the prediction of an epidemic is inherently difficult, regardless of the

particular prediction algorithm.
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Figure 3: Sensitivity of predicting an epidemic outbreak. The first and second column cor-

respond to the logistic function (4) plus Gaussian model errors w(t) with a standard deviation

of σ = 2 · 10−4 and σ = 10−3, respectively. The parameters of the logistic function f(t) are

t0 = 20.5,K = 0.31 and y∞ = 0.43. The third column shows the cumulative number of Covid-19

infections in the Netherlands (up to March 29). The first row shows the (non-cumulative) number

of infections I(t) versus time t, and the vertical line indicates the observation time tobs. The second

row shows the cumulative number of infections Ic(t) and the predicted value Îc(t). The third row

depicts the histograms of the inflection-point estimate t̂0, which has been obtained by repeating the

simulations in the top two rows for 10,000 times. The real inflection point t0 is shown by a dashed

line.

References

[1] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani, “Epidemic processes in

complex networks,” Reviews of Modern Physics, vol. 87, no. 3, p. 925, 2015.

[2] P. Van Mieghem, “Universality of the SIS prevalence in networks,” arXiv preprint

arXiv:1612.01386, 2016.

9



[3] B. Prasse and P. Van Mieghem, “Time-dependent solution of the NIMFA equations around the

epidemic threshold,” Submitted, 2019.

[4] W. O. Kermack and A. G. McKendrick, “A contribution to the mathematical theory of epi-

demics,” Proceedings of the Royal Society of London. Series A, Containing papers of a mathe-

matical and physical character, vol. 115, no. 772, pp. 700–721, 1927.

[5] K. Biswas, A. Khaleque, and P. Sen, “Covid-19 spread: Reproduction of data and prediction

using a SIR model on euclidean network,” arXiv preprint arXiv:2003.07063, 2020.

[6] T.-H. Liu, “A time-dependent SIR model for COVID-19 with undetectable infected persons.”

[7] B. F. Maier and D. Brockmann, “Effective containment explains sub-exponential growth in con-

firmed cases of recent COVID-19 outbreak in Mainland China,” arXiv preprint arXiv:2002.07572,

2020.

[8] J. Kumar and K. Hembram, “Epidemiological study of novel coronavirus (COVID-19),” arXiv

preprint arXiv:2003.11376, 2020.

[9] B. Prasse, M. A. Achterberg, L. Ma, and P. Van Mieghem, “Network-based prediction of the

2019-nCoV epidemic outbreak in the Chinese province Hubei,” arXiv preprint arXiv:2002.04482,

2020.

[10] E. van den Heuvel, M. Regis, I. Johnstone, and Z. Zhan, “Statistical approach for making pre-

dictions of confirmed infection and deaths on corona virus.”

[11] G. Vattay, “Predicting the ultimate outcome of the COVID-19 outbreak in Italy,” arXiv preprint

arXiv:2003.07912, 2020.

[12] G. H. Golub and C. F. Van Loan, Matrix computations. JHU Press, 2012, vol. 3.

A Proof of Proposition 6

Since y1 = f(0), y2 = f(∆t) and y3 = f(2∆t), we obtain from the definition of the logistic function

f(t) in (2) that

y1

y2
=

y∞
1 + eKt0

1 + eK(t0−∆t)

y∞
.

Thus, it holds with t̃0 = Kt0 and ∆t̃ = K∆t that

y1

y2
=

1 + et̃0−∆t̃

1 + et̃0
,

which is equivalent to

y1

y2
=

1 + et̃0 − et̃0 + et̃0−∆t̃

1 + et̃0

= 1 + et̃0
e−∆t̃ − 1

1 + et̃0
.
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Similarly, we obtain that

y2

y3
=

1 + et̃0−2∆t̃

1 + et̃0−∆t̃

=
1 + et̃0−∆t̃ − et̃0−∆t̃ + et̃0−2∆t̃

1 + et̃0−∆t̃

=
1 + et̃0−∆t̃

1 + et̃0−∆t̃
+
−et̃0−∆t̃ + et̃0−2∆t̃

1 + et̃0−∆t̃

= 1 + et̃0−∆t̃ e
−∆t̃ − 1

1 + et̃0−∆t̃
.

Hence, the growth metric Φ(y1, y2, y3) defined in (6) becomes

Φ(y1, y2, y3) =
(
e−∆t̃ − 1

)( et̃0−∆t̃

1 + et̃0−∆t̃
− et̃0

1 + et̃0

)

=
(
e−∆t̃ − 1

)(
1− 1

1 + et̃0−∆t̃
− 1 +

1

1 + et̃0

)
.

We further simplify the growth metric Φ(y1, y2, y3) as

Φ(y1, y2, y3) =
(
e−∆t̃ − 1

)( 1

1 + et̃0
− 1

1 + et̃0−∆t̃

)
=
(
e−∆t̃ − 1

)( 1

1 + et̃0
− e∆t̃ 1

et̃0 + e∆t̃

)
.

Thus, we obtain that

Φ(y1, y2, y3) =
e−∆t̃ − 1

1 + et̃0
− 1− e−∆t̃

et̃0 + e∆t̃

=
e−∆t̃ − 1

1 + et̃0
−

(
−1 +

1 + et̃0

et̃0 + e∆t̃

)
,

which finally simplifies to

Φ(y1, y2, y3) = 1− 1− e−∆t̃

1 + et̃0
− 1 + et̃0

et̃0 + e∆t̃
(17)

=
et̃0

1 + et̃0
+

1

1 + et̃0
e−∆t̃ −

(
1 + et̃0

) 1

et̃0 + e∆t̃
.

To express the growth metric Φ(y1, y2, y3) as a power series around ∆t̃ = 0, we write the second

addend in (17) as power series

e−∆t̃ =

∞∑
n=0

(
∆t̃
)n (−1)n

n!
. (18)

To express the third addend in (17) as power series, we first note that

et̃0 + e∆t̃ = et̃0 +
∞∑
n=0

(
∆t̃
)n 1

n!

= et̃0 + 1 +

∞∑
n=1

(
∆t̃
)n 1

n!
.

11



We normalise the first coefficient, corresponding to
(
∆t̃
)0

= 1, in the power series and obtain that

et̃0 + e∆t̃ =
(
et̃0 + 1

) ∞∑
n=0

(
∆t̃
)n
bn,

where the power series coefficients bn equal

bn =

1 if n = 0,

1
n!

1

et̃0+1
if n ≥ 1.

Thus, it holds that

1

et̃0 + e∆t̃
=

1

1 + et̃0

1∑∞
n=0

(
∆t̃
)n
bn

(19)

=
1

1 + et̃0

∞∑
n=0

(
∆t̃
)n
cn.

Here, the coefficient c0 equals c0 = 1 and, for n ≥ 1, the coefficients cn are given recursively by

cn = −
n−1∑
l=0

clbn−l.

In particular, it holds that

c1 = −c0b1 (20)

= − 1

et̃0 + 1
.

With the two power series (18) and (19), we can express the growth metric Φ(y1, y2, y3) in (17) as

Φ(y1, y2, y3) =
et̃0

1 + et̃0
+

1

1 + et̃0

∞∑
n=0

(
∆t̃
)n (−1)n

n!
−
∞∑
n=0

(
∆t̃
)n
cn.

Further simplification yields that

Φ(y1, y2, y3) =
1

1 + et̃0

(
et̃0 +

∞∑
n=0

(
∆t̃
)n((−1)n

n!
−
(

1 + et̃0
)
cn

))
. (21)

We explicitly write out the first two addends in the sum in (21) and obtain that

∞∑
n=0

(
∆t̃
)n((−1)n

n!
−
(

1 + et̃0
)
cn

)
=1−

(
1 + et̃0

)
c0

+ ∆t̃
(

(−1)−
(

1 + et̃0
)
c1

)
+

∞∑
n=2

(
∆t̃
)n((−1)n

n!
−
(

1 + et̃0
)
cn

)
.

With c0 = 1 and (20), we obtain that

∞∑
n=0

(
∆t̃
)n((−1)n

n!
−
(

1 + et̃0
)
cn

)
=− et̃0 +

∞∑
n=2

(
∆t̃
)n((−1)n

n!
−
(

1 + et̃0
)
cn

)
.

Thus, (21) simplifies to

Φ(y1, y2, y3) =
1

1 + et̃0

∞∑
n=2

(
∆t̃
)n((−1)n

n!
−
(

1 + et̃0
)
cn

)
.
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B Proof of Proposition 5

At any time ti, where i = 1, 2, 3, the point yi is on the hyperbolic tangent (2) if and only if

yi + yie
−K(ti−t0) − y∞ = 0.

Dividing by yi yields that

e−K(ti−t0) − 1

yi
y∞ + 1 = 0.

Thus, we arrive at a set of three non-linear equations

eKt0e−Kti − 1

yi
y∞ + 1 = 0, i = 1, 2, 3. (22)

To solve (22), we define two scalar unknowns as

a = eKt0 (23)

and

b = e−Kt2 . (24)

Since t2 = ∆t and t3 = 2∆t, it holds that t3 = 2t2. Thus, we can express the second exponential in

(22) as

e−Kti =


1 if i = 1,

b if i = 2,

b2 if i = 3.

Then, we obtain from (22) a set of non-linear equations for the three unknowns a, b and y∞ as

a− 1

y1
y∞ + 1 = 0, (25)

ab− 1

y2
y∞ + 1 = 0, (26)

ab2 − 1

y3
y∞ + 1 = 0. (27)

The first equation (25) yields that

y∞ = y1 (a+ 1) . (28)

Combining (28) with the second equation (26) gives that

ab− y1

y2
(a+ 1) + 1 = 0,

from which we obtain that

b =
1

a

(
y1

y2
(a+ 1)− 1

)
.

13



Hence, it holds that

b =
1

a

(
y1

y2
− 1

)
+
y1

y2
. (29)

Combining the expressions for y∞ and b in (28) and (29), respectively, with the third equation (27)

yields that

a

(
1

a

(
y1

y2
− 1

)
+
y1

y2

)2

− y1

y3
(a+ 1) + 1 = 0,

which is equivalent to

1

a

(
y1

y2
− 1

)2

+ 2

(
y1

y2
− 1

)
y1

y2
+ a

y2
1

y2
2

− y1

y3
(a+ 1) + 1 = 0.

Multiplication with a and rearranging gives that

a2

(
y2

1

y2
2

− y1

y3

)
+ a

(
2
y1

y2

(
y1

y2
− 1

)
− y1

y3
+ 1

)
+

(
y1

y2
− 1

)2

= 0. (30)

The quadratic equation (30) has two solutions. The first solution is a = −1 leads to a contradiction,

since a, defined in (23), is positive. The second solution of (30) is

a = −

(
1
y2
− 1

y1

)2

1
y22
− 1

y1y3

,

which is equivalent to

a =
(y1 − y2)2

y1y2

1
y2
y3
− y1

y2

.

Thus, we obtain with the definition of the growth metric Φ(y1, y2, y3) in (6)that

a =
(y1 − y2)2

y1y2

1

Φ(y1, y2, y3)
. (31)

Since y1 > 0 and y2 > 0, the expression (31) for a is positive only if

Φ(y1, y2, y3) > 0.

Hence, if and only if (7) holds true, there is a solution for the unknown a, and, hence, for the logistic

growth rate K and the inflection point t0. From (31) and (28), we obtain the steady-state y∞ as

y∞ = y1 +
(y1 − y2)2

y2

1

Φ(y1, y2, y3)
.

From (29) and (31), it follows that the unknown b equals

b =
y1

y2
+

(
y1

y2
− 1

)
y1y2

(y1 − y2)2 Φ (y1, y2, y3) ,

14



which simplifies to

b =
y1

y2
+

y1

y1 − y2
Φ (y1, y2, y3) . (32)

The definition of b in (24) implies that

K = − 1

t2
log (b) ,

which yields with (32) and t2 = ∆t that

K = − 1

∆t
log

(
y1

y2
+

y1

y1 − y2
Φ (y1, y2, y3)

)
.

Finally, we obtain the inflection point t0 from (23) as

t0 =
1

K
log(a)

=
1

K
log

(
(y1 − y2)2

y1y2

1

Φ(y1, y2, y3)

)
,

where the last equality follows from (31).

C Proof of Proposition 7

C.1 Condition Number of Estimating the Steady State

From the definition of the condition number κ1(tobs) in (13), we obtain that

κ1(tobs) = −(y1 − y2)2

y2

1

Φ2(y1, y2, y3)

∂Φ(y1, y2, y3)

∂y3
.

The definition of the growth metric Φ(y1, y2, y3) in (6) yields that

∂Φ(y1, y2, y3)

∂y3
= −y2

y2
3

. (33)

Thus, the condition number κ1(tobs) follows as

κ1(tobs) =
(y1 − y2)2

y2
3

1

Φ2(y1, y2, y3)
.

C.2 Condition Number of Estimating the Logistic Growth Rate

With (9), we define the condition number κ2(tobs) with respect to the growth rate estimate K̂(tobs) as

κ2(tobs) =
∂

∂y3

(
− 1

∆t
log

(
y1

y2
+

y1

y1 − y2
Φ (y1, y2, y3)

))
,

where ∆t = tobs/2. Hence, it holds that

κ2(tobs) = − 1

∆t

1
y1
y2

+ y1
y1−y2 Φ (y1, y2, y3)

y1

y1 − y2

∂

∂y3
Φ (y1, y2, y3) .
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Thus, we obtain with (33) that

κ2(tobs) =
1

∆t

1
y1
y2
− 1 + Φ (y1, y2, y3)

y2

y2
3

,

which simplifies to

κ2(tobs) =
1

∆t

y2
2

y2
3

1

y1 − y2 + y2Φ (y1, y2, y3)
. (34)

The expression (15) for the condition number κ2(tobs) follows from ∆t = tobs/2.

C.3 Condition Number of Estimating the Inflection Point

With (10), we define the condition number κ3(tobs) with respect to the inflection point estimate t̂0(tobs)

as

κ3(tobs) =
∂

∂y3

(
1

K
log

(
(y1 − y2)2

y1y2

1

Φ(y1, y2, y3)

))
,

which becomes

κ3(tobs) =− 1

K2
log

(
(y1 − y2)2

y1y2

1

Φ(y1, y2, y3)

)
∂K

∂y3

− 1

K

1
(y1−y2)2

y1y2
1

Φ(y1,y2,y3)

(y1 − y2)2

y1y2

1

Φ2(y1, y2, y3)

∂

∂y3
Φ(y1, y2, y3).

Thus, it holds that

κ3(tobs) =− 1

K2
log

(
(y1 − y2)2

y1y2

1

Φ(y1, y2, y3)

)
∂K

∂y3

− 1

K

1

Φ(y1, y2, y3)

∂

∂y3
Φ(y1, y2, y3).

With (10), (33) and (34), we obtain that

κ3(tobs) =− 1

K
t0

1

∆t

y2
2

y2
3

1

y1 − y2 + y2Φ (y1, y2, y3)

+
1

K

1

Φ(y1, y2, y3)

y2

y2
3

,

which simplifies to

κ3(tobs) =
1

K

y2

y2
3

(
1

Φ(y1, y2, y3)
− t0y2

∆t

1

y1 − y2 + y2Φ (y1, y2, y3)

)
.

The expression (16) for the condition number κ3(tobs) follows from ∆t = tobs/2.
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D Proof of Proposition 8

D.1 Condition Number of Estimating the Steady State

From (14), we obtain that

1

κ1(tobs)
=

y2
3

(y1 − y2)2 Φ2(y1, y2, y3). (35)

We consider the terms in (35) separately. The logistic function f(t) is differentiable. Thus, it holds

that

f(tobs) = f(0) + tobsf
′(0) +O

(
t2obs

)
as tobs ↓ 0. Since y1 = f(0) and y2 = f(tobs/2), we obtain that

y1 − y2 = O (tobs) . (36)

Furthermore, it holds that y3 = f(tobs) → f(0) > 0 as tobs ↓ 0, which implies that y3 = O (1).

Proposition 6 states that Φ2(y1, y2, y3) = O
(
t4obs

)
when tobs ↓ 0. Thus, obtain from (35) that

1

κ1(tobs)
= O

(
t2obs

)
as tobs ↓ 0.

D.2 Condition Number of Estimating the Logistic Growth Rate

From (15), we obtain that

1

κ2(tobs)
=

y2
3

2y2
2

tobs (y1 − y2 + y2Φ (y1, y2, y3)) .

From (36), we obtain that tobs(y1−y2) = O
(
t2obs

)
as tobs ↓ 0. Furthermore, Proposition 6 implies that

tobsΦ(y1, y2, y3) = O
(
t3obs

)
. Thus, we obtain that 1/κ2(tobs) = O

(
t2obs

)
as tobs ↓ 0.

D.3 Condition Number of Estimating the Inflection Point

From (16), we obtain that

1

κ3(tobs)
=

(
1

K

y2

y2
3

tobs (y1 − y2 + y2Φ (y1, y2, y3))− 2t0y2Φ (y1, y2, y3)

tobsΦ(y1, y2, y3) (y1 − y2 + y2Φ (y1, y2, y3))

)−1

,

which is equivalent to

1

κ3(tobs)
= K

y2
3

y2

tobsΦ(y1, y2, y3) (y1 − y2) + y2tobsΦ
2(y1, y2, y3)

tobs (y1 − y2 + y2Φ (y1, y2, y3))− 2t0y2Φ (y1, y2, y3)
. (37)

From Proposition 6 and (36), we obtain that the numerator in (37) satisfies

tobsΦ(y1, y2, y3) (y1 − y2) + y2tobsΦ
2(y1, y2, y3) = O

(
t4obs

)
as tobs ↓ 0. Similarly, we obtain that, when tobs ↓ 0, the denominator in (37) satisfies

tobs (y1 − y2) + tobsy2Φ (y1, y2, y3)− 2t0y2Φ (y1, y2, y3) = O
(
t2obs

)
.

Hence, we obtain from (37) that 1/κ3(tobs) = O
(
t2obs

)
as tobs ↓ 0.

17


