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Abstract

The general inverse shortest path problem (ISPP) asks to find a weighted adjacency matrix such

that the corresponding shortest path weight sij (i.e. the sum of the link weights over the shortest

path) between any pair (i, j) of nodes in the graph satisfies sij ≤ dij , for a given demand dij . Many

variants of ISPP with several additional optimization criteria exist. A specific instance of ISPP is

solved here by exploiting the analogy between flow and path networks. In flow networks, such as

electrical networks where current flows over all paths from source to destination, the inversion of the

distance matrix (i.e. effective resistance matrix) directly yields the weighted adjacency matrix by

Fiedler’s famous block-inverse relation. In path networks, where transport follows a single, shortest

path as in e.g. telecommunication networks, the corresponding ISPP, subject to end-to-end delays

as demands, is a difficult problem. Since transport in a tree can only follow one path, the flow

network solution also provides the elegant matrix solution for the corresponding ISPP.

1 Flow and path networks

Design, dimensioning or operation of networks is often constrained by end-to-end limits. For example,

a telephone call requires that the digitalized voice packets travels through in a telecommunication

network fast enough; the delay between a source and a destination is limited to about 150ms. However,

real-time control of systems over the Internet may require a lower end-to-end delay. Thus, different

services (voice, video, ftp, email, etc.) typically require a different end-to-end delay. Usually, a telecom

operator can determine the demand matrix D containing the maximum tolerably end-to-end delays

dij between nodes i and j in his network. However, given the demand matrix D, a telecom operator

is still confronted to dimension his network, both topology and corresponding link weights, so that

transport along the “best” path between any pair (i, j) of nodes consumes less time than the maximum

tolerable end-to-end delay dij . Here, we focus on finding a solution to the operator’s problem, which

we call the “inverse shortest path problem”. The inverse shortest path problem (ISPP) appears in
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more situations: finding the average travel times in transportation networks [1], seismic tomography

(earthquakes) of geologic zones [1], construction of a phylogenetic network (see e.g. [2]), that specifies

evolutionary relationships between biological items (molecules, species,...). We also expect applications

of ISPP to the human brain, where functional brain regions may be “weighted” from EEG and/or

MEG measurements.

Before stating the ISPP in Section 2, we explain the terminology. We consider a graph G that

possesses a set N of N nodes and a set L of L links. The graph G can be represented [3] by an

N ×N adjacency matrix A, with element aij = 1 if there is a link in G between node i ∈ N and node

j ∈ N , otherwise aij = 0. Each link l ∈ L in the graph G has a weight wl > 0, a positive real number

that specifies a property of the link. On the weighted graph G, two different types of transport are

possible that lead to either “path networks” or “flow networks”. In a path network, the transport of

items follows a single path Pij between a node pair (i, j), whereas in a flow network, the transport

propagates over all possible paths from node i to node j. Two typical examples are a communication

network, where packets with digitalized information follow most of the time a single path Pij from

source i to destination j, and a power grid, where electrical current flows over all possible paths.

The weight w (Pij) =
∑

l∈Pij wl of a path Pij between a node pair (i, j) consists of the sum of the

weights over all links that belong to that path Pij . We will denote by P∗ij the shortest path between

a node pair (i, j). The shortest path P∗ij minimizes the path weight over all paths Pij and obeys

w
(
P∗ij
)
≤ w (Pij). Thus, we assume that the link weights are additive. We refer to [4, Chapt. 12]

for a discussion of other types of link weights and to [5] for multiple parameter, constraint routing.

In most real-world networks, there is only one shortest path P∗ij , but, in general, there can be many

shortest paths between the same node pair (i, j), in particular in unweighted graphs, where each link

has the same link weight1, i.e. wij = w for all elements of the N × N link weight matrix W . The

weighted adjacency matrix is Ã = W ◦A, where the Hadamard product ◦ means a direct elementwise

multiplication, ãij = wijaij and we use “tilde” notation for weighted graph matrices. In our setting,

ãij = 0 means that there is no link between node i and j, because we exclude zero link weights, i.e.

wij > 0, as in Dijkstra’s shortest path algorithm [4, p. 151] and in order to avoid the complication

that a zero weight, i.e. wij = 0, would physically mean that node i and j are the same. The separation

between link weights, represented by the link weight matrix W , and underlying graph G, represented

by the adjacency matrix A, is obvious in unweighted graphs, where W = wJ and J is the all-one

matrix. In the unweighted case, the graph is confining. In the other extreme, where link weights are

highly variable and where the minimum link weight wmin > 0 is orders of magnitude smaller than the

maximum link weight wmax, the underlying graph G is less confining than the link weight structure2,

which effectively thins out the graph. Indeed, mainly links with small link weights are relevant in a

shortest path problem and large link weights may be ignored3 from the onset, especially if link weights

are assigned per link independently of the other links (see also [6, Chapter 16], [7, 8, 9]).

Let vk denote the potential or voltage of node k in the graph G. The effective resistance ωij between

1The shortest path does not change if all weights are multiplied by a constant α > 0.
2The link weight structure refers to the entire ensemble {wl}l∈L of all link weights in the graph as one coherent set,

possibly generated by a process that takes correlations of weights over links into account. The matrix W can then be

considered as one particular realization of the link weight structural process.
3If their removal does not disconnect the graph.
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node i and node j equals the voltage difference ωij =
vi−vj
I when a unit current I = 1 Ampere is

injected in node i and leaves the network at node j. The N × N effective resistance matrix Ω with

elements ωij is studied in e.g. [10, 11, 12, 3, 13, 14]. If the graph G is connected4, then the effective

resistance ωij as well as the path weight w (Pij) is finite for any node pair (i, j) and a shortest path

P∗ij exists between each node pair (i, j). We define the N × N matrix S, that contains all shortest

path weights with element sij = w
(
P∗ij
)

. If the weighted adjacency matrix Ã is known, then the

matrix S is readily found via a shortest path algorithm, like Dijkstra’s shortest path algorithm (see

e.g. [15, 4]). Dijkstra’s shortest path computation is very efficient and only requires O (N logN)

elementary operations. Both the effective resistance matrix Ω and the shortest path weight matrix

S are distance matrices5. Moreover, the effective resistance matrix Ω has rank N , implying that

det Ω 6= 0, as demonstrated in Theorem 1 in Appendix A that studies the eigenvalues of the the

effective resistance matrix Ω.

In the sequel, we limit ourselves to connected, undirected, simple6 graphs. Consequently, the

N ×N symmetric matrices A, W , Ã, Ω and S are non-negative with zero diagonal elements.

2 Inverse shortest path problems

After this preparation, we now focus on inverse shortest path problems. The literature abound of

variants on the inverse shortest path problem and we can only mention a few variants.

2.1 Inverse shortest path problem without optimization criterion

Inverse Shortest Path Problem (ISPP) Given an N×N symmetric demand matrix D with zero

diagonal elements, but positive off-diagonal elements. Determine a N ×N weighted adjacency

matrix Ã such that the corresponding shortest path weight matrix S obeys7 S 4 D.

As stated, the ISPP has infinitely many solutions. For example, if dmin = minij D, then Ã =

dmin (J − I), i.e. the complete graph with link weights equal to the minimum element in the demand

matrix, satisfies ISPP. Moreover, suppose that the weighted adjacency matrix Ã is a solution. If

α = min1≤i<j≤N
dij
sij

> 1, then the solution αÃ of ISPP is closest possible to D, because αS 4 D and

at least one element skl in S satisfies the demand αskl = dkl. Hence, any weighted adjacency matrix

tÃ with 0 < t ≤ α is a solution of ISPP.

A general solution of ISPP is presented in Fig. 1, based on scaling (step 5). Step 1 generates the

N × N adjacency matrix of an arbitrary connected graph, while step 2 chooses an arbitrary N × N
link weight matrix W . Step 5 of GISPA in Fig. 1 illustrates for a given demand matrix D that there

4The weighted adjacency matrix Ã is called irreducible when the graph G is connected (see [6, p. 183]; [3, art. 167

on p. 235]). For a connected graph, the (weighted) Laplacian only has 1 zero eigenvalue and its rank is N − 1.
5Any element hij of a distance matrix H is non-negative hij ≥ 0, but hii = 0 and hij obeys the triangle inequality:

hij ≤ hik + hkj for any triple of indices (i, j, k).
6A simple graph has no multiple links between a same pair of nodes and also no self-loops, i.e. aii = 0 for each node

i ∈ N .
7We use the notation 4 in [16, p. 32 and 44] for componentwise inequality, i.e. S 4 D means that sij ≤ dij for each

i = 1, 2, . . . , N and each j = 1, 2, . . . , N .
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General Inverse Shortest Path Algorithm (D)

1. create adjacency matrix A of a connected graph on N nodes

2. choose a link weight matrix W

3. compute the weighted adjacency matrix Ã = W ◦A
4. compute the shortest path weight matrix S based upon Ã

5. compute α = min1≤i<j≤N
dij
sij

and return Ã← αÃ

Figure 1: Metacode of the General Inverse Shortest Path Algorithm (GISPA), with the N×N demand

matrix D as input.

are infinitely many weighted adjacency matrices Ã that obey S 4 D and with equality skl = dkl in

one element (k, l).

In general, a demand matrix D can be an arbitrary, symmetric non-negative matrix, which is not

necessarily a distance matrix, such as the shortest path weight matrix S. Hence, equality in S 4 D

may not occur. We denote by D′ a demand matrix that is also a distance matrix. Any demand matrix

D can be transformed into a distance matrix D′ with D′ 4 D. Indeed, (a) we require that dij > 0 for

each pair (i, j) of nodes. (b) if symmetry is violated, dij 6= dji, then assign d′ij = min (dij , dji). (c) if

dik + dkj < dij for at least one node k ∈ N which violates the triangle inequality of a distance matrix,

then we replace d′ij = min1≤k≤N (dik + dkj).

Hakimi and Yau [17] have concentrated on finding a weighted graph realization of a distance matrix

D′, by allowing besides the N nodes (which they call “external” nodes or terminals) also additional

nodes (called “interior” nodes). Thus, they allow as solution a n×n weighted adjacency matrix where

n ≥ N . Their key tool, a triangle-star transform (which they call “elementary reduction cycle”) is

well known in electrical impedance networks. A triangle K3 has weights w12, w13 and w23 and the

3× 3 symmetric weighted adjacency matrix Ã = W ◦ (J − I) is

ÃK3 =

 0 w12 w13

w12 0 w23

w13 w23 0


A star K1,3 with leave nodes 1, 2, 3 and center node 4 has a 4 × 4 symmetric weighted adjacency

matrix

ÃK1,3 =


0 0 0 x1

0 0 0 x2

0 0 0 x3

x1 x2 x3 0


If ÃK3 is a distance matrix, then SK3 = ÃK3 . The star K1,3, with an additional center node, has the

same shortest path weights between its leave nodes if

x1 + x2 = w12 x1 + x3 = w13 x2 + x3 = w23

from which x1 = 1
2 (w12 + w13 − w23) , x2 = 1

2 (w12 + w23 − w13) and x3 = 1
2 (w13 + w23 − w12), where

the minus sign corresponds to the complementary or opposite link in the triangle for a node. The
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triangle-star transform consists of replacing a weighted triangle in the graph by its corresponding

weighted star. The interesting observation of Hakimi and Yau [17] is that the sum of the elements in

ÃK3 is two times that in ÃK1,3 , thus uT ÃK3u = 2uT ÃK1,3u (where the all-one vector u is assumed

to have the correct dimensions). In other words, the sum of the elements in a distance matrix can

be reduced by the triangle-star transform at the expense of added nodes. If a given distance matrix

can be realized by a tree, Hakimi and Yau [17] employ the triangle-star transformation repeatedly to

deduce the weighted adjacency matrix ÃT of that tree T .

Given an N ×N distance matrix D = D′, Culberson and Rudnicki [18] construct a fast algorithm

that returns a weighted adjacency matrix of a graph, also possibly with n > N nodes, by neighbor-

joining, a similar idea as the triangle-star transform, while our exact, matrix solution, presented in

Section 3 below, computes the tree on N nodes.

2.2 Optimized inverse shortest path problem

There are numerous variants of the ISPP that ask for a solution that is optimal in some way. A first

variant is

Optimized Inverse Shortest Path Problem (OISPP) Given an N ×N symmetric demand ma-

trix D with zero diagonal elements, but positive off-diagonal elements. Determine a N × N

weighted adjacency matrix Ã such that the corresponding shortest path weight matrix S obeys

S 4 D and minimizes a norm ‖D − S‖.

The requirement S 4 D implies that D − S is a non-negative matrix. The norm ‖D − S‖ can be

chosen as the sum of the elements uT (D − S)u, where u is the all-one vector.

If the demand matrix D is a distance matrix D′, then S = D′ is a solution of OISPP with the

complete graph KN as underlying graph. Indeed, if the shortest path between node i and j is the

direct link between node i and j, then sij = wij and wij ≤ wik+wkj for any other node k. By choosing

wij = dij , where D = D′ is a distance matrix, we find that the shortest path weight sij = dij for any

pair (i, j) of nodes. In conclusion, when we allow the complete graph as underlying graph, then there

is always at least one solution of OISPP. However, Hakimi and Yau [17, Theorem 2] prove that, if the

weighted graph G is a realization of the distance matrix D′, then G is unique. Their theorem thus

implies that, if there is only one solution of OISPP, then it must be a weighted complete graph. If

there are more solutions of OISPP, one mostly chooses the solution with minimum norm ‖S‖, e.g. the

minimum sum uTSu of elements in S.

For a distance matrix D = D′ and a given real number r, Winkler [19] has proved that OISPP

complemented with the condition that uTSu < r is NP-hard. Winkler [19] also summarizes the main

results up to 1988:

(1) Optimal realizations (with minimum total link weight uTSu) always exist (Hakimi and Yau

[17]).

(2) A distance matrix D′ is realizable by a weighted tree if and only if every four-tuple (p, q, r, s) of

indices satisfies the “four-point condition”: namely, the two largest of the three sums d′pq+d′rs, d
′
pr+d′qs

and d′ps + d′qr must be equal (Buneman [20]).

(3) If a tree realization exists, then there is only one such realization; it is optimal among all

realizations and obtainable in polynomial time.
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(4) Several reduction methods (such as the triangle-star transform and compaction explained in

[21]) exist to construct an optimal realization in the general case, but none works all the time.

2.3 OISPP subject to constraints on the adjacency matrix A

A second class of variants asks to find the weighted adjacency matrix Ã that minimizes a norm

‖D − S‖, confined to a certain class of graphs (i.e. constraints on the adjacency matrix A) and/or

to a certain link weight structure (i.e. constraints on the link weight matrix W ). Suppose that the

adjacency matrix A is given, then we can compute each possible path Pij between a node pair (i, j)

and require that its corresponding weight obeys

w (Pij) =
∑
l∈Pij

wl ≤ dij

This procedure will lead to huge set of linear inequalities in L unknowns {w1, w2, . . . , wL} for each

pair (i, j), that surely can be reduced because of the massive overlap in links of the set Pij of all pos-

sible paths Pij between the node pair (i, j). By choosing the Euclidean (or least mean squares) norm

‖D − S‖22 =
∑N

i=1

∑N
j=1 (dij − sij)2, Burton and Toint [1] have proposed a quadratic linear program-

ming algorithm to solve OISPP, given the adjacency matrix A. They have applied and fine-tuned the

Goldfarb-Idnani method for convex quadratic programming, which has a polynomial computational

complexity.

Finally, Fortz and Thorup [22] have investigated a related problem, where the demand dij is the

traffic from node i to node j, i.e. the amount of packets that are injected in node i, follow the shortest

path P∗ij and leave the network at node j. The objective of Fortz and Thorup [22] is to minimize the

maximum link utilization or traffic by optimizing the assignment of link weights. The difference with

the ISPP lies in the additivity of the w (Pij) =
∑

l∈Pij wl of a path Pij : the traffic does not increase

over each link of the path Pij and is independent of the number of links in path Pij . The current in

flow networks, which is the analogon of traffic in [22], also does not change, but the voltage difference

vi − vj and the effective resistance ωij do increase by adding a link weight in a single path (e.g. on a

tree).

3 Exact solution of the flow analogon of ISPP

Although many problems rely on shortest paths in a path network, there does not exist a clear relation

between the shortest path weight matrix S and the underlying weighted adjacency matrix Ã. The

shortest path computation is beyond the realm of linear algebra: entirely algorithmic and non-linear,

in the sense that min-max operations appear [15, Chap. 26].

In undirected flow networks, on the other hand, Fiedler [23, 24] has derived a remarkable block

matrix relation, from which we can deduce [13, 25, 14],(
0 uT

u Ω

)−1

=

(
−2σ2 pT

p −1
2Q̃

)
with Ωp = 2σ2u (1)

where Q̃ = ∆̃F−ÃF is the weighted Laplacian and the variance σ2 = ζT Q̃ζ
4 +RG, where RG = 1

2u
TΩu =

1
2

∑N
i=1

∑N
j=1 ωij is the effective graph resistance [12]. The diagonal matrix is ∆̃F = diag

(
ÃFu

)
,
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where u is the all-one vector. The vector ζ contains the diagonal elements of pseudoinverse Q† of

the Laplacian Q̃ and is equally important as the weighted degree vector d̃ = ÃFu, whose components

are the diagonal elements of the weighted Laplacian Q̃. We emphasize the subscript F for a flow

network in ÃF , which is different from the weighted adjacency matrix Ã of the path network. Indeed,

if we use the resistance (in Ohm) rl = wl as the weight of link l between node i and j implying that

aij = 1, then the weighted Laplacian Q̃ in the flow network has elements q̃ij = − 1
rij

for i 6= j (see

[13]) and (ãF )ij = 1
rij

, whereas ãij = wij ◦ aij = rij in the path network. In both path and flow

network, the entries are zero if there is no link link between node i and node j, i.e. (ãF )ij = aij = 0;

in particular, there are no self-loops, i.e. (ãF )ii = aii = 0. Fiedler’s block matrix (1) indicates the

one-to-one relation between the effective resistance matrix Ω and the weighted Laplacian Q̃, and thus,

the weighted adjacency matrix ÃF (whose non-zero elements are the inverse of those of Ã). Applying

block inverse formulae to Fiedler’s block matrix identity (1), as demonstrated in the second proof of

Theorem 1 in Appendix A, indicates that 2σ2 = 1
uTΩ−1u

and the vector p = 1
uTΩ−1u

Ω−1u, while the

inverse of the effective resistance matrix is

Ω−1 =
1

2σ2
p.pT − 1

2
Q̃ (2)

Hence, the weighted adjacency matrix follows from (2) and Q̃ = ∆̃F − ÃF as

ÃF = ∆̃F + 2Ω−1 − 1

σ2
p.pT (3)

Fiedler’s powerful block matrix inverse (1) does not only hold for the effective resistance matrix

Ω, but (1) also holds for squared Euclidean distance matrices H for which hij = ‖ri − rj‖2 for some

set of points {r1, r2, . . . , rn} in the Euclidean space, which are the vertices of a simplex [26]. As

demonstrated in [26], any undirected, weighted graph can be uniquely represented by a simplex in

the (N − 1) dimensional Euclidean space. Assuming that the given demand matrix D is a distance

matrix of the inverse simplex [26] (i.e. conform to an effective resistance matrix), we can replace Ω

by D in (3). In summary, for flow networks, we find the weighted adjacency matrix ÃF in (3) such

that the corresponding effective resistance matrix Ω obeys Ω = D, which is the flow analogon of ISSP

with minimization of ‖D − Ω‖.
A constrained system can never reach a lower global minimum of the system dynamics than a

system without constraints. Hence, transport restricted to a single path is never more efficient than

unrestricted transports over all possible paths, which implies that the weight of the shortest path

w
(
P∗ij
)

is lower bounded by the effective resistance ωij ≤ sij = w
(
P∗ij
)

and, thus, Ω 4 S. Only if

G is a tree, then S = Ω, because transport in trees follows a single path. Incidentally, we have found

for any tree the exact solution of the OISPP : If the demand matrix D = D′ is a distance matrix on a

tree, then the weighted adjacency matrix Ã is deduced from (3) with Ω = D, after transforming ÃF

to Ã.

In contrast to the available algorithms, our solution via (3) provides a closed form matrix solution

for the OISPP on underlying trees, in which the properties of effective resistance matrix play a crucial

role. Extending the flow analogon towards path networks and the ISPP for other graphs than trees or

the complete graph seems difficult and stands on the agenda of future research. If the demand matrix

D is not a proper distance matrix of the inverse simplex, then matrix elements of ÃF in (3) can be

negative.
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A Eigenvalues of the effective resistance matrix Ω

The effective resistance matrix Ω is defined [3, p. 206] by

Ω = ζ.uT + u.ζT − 2Q† (4)

where Q† is the pseudoinverse of the Laplacian [13] and the vector ζ =
(
Q†11, Q

†
22, . . . , Q

†
NN

)
with

non-negative components Q†jj ≥ 0. All diagonal elements of Ω are zero and all other elements of Ω

are non-negative. We further assume that the graph G is connected so that all elements of effective

resistance matrix Ω are finite. The explicit form of the matrix ζ.uT + u.ζT is

ζ.uT + uζT =



2ζ1 ζ1 + ζ2 ζ1 + ζ3 · · · ζ1 + ζN

ζ1 + ζ2 2ζ2 ζ2 + ζ3 · · · ζ2 + ζN

ζ1 + ζ3 ζ2 + ζ3 2ζ3 · · · ζ3 + ζN
...

...
...

. . .
...

ζ1 + ζN ζ2 + ζN ζ3 + ζN · · · 2ζN


Let us denote the eigenvalue equation of the N ×N symmetric, non-negative matrix Ω by

Ωvk = ρkvk

where ρk is the k-th eigenvalue belonging to the normalized eigenvector vk, i.e. vTk vk = 1. The real

eigenvalues are ordered as usual, ρ1 ≥ ρ2 ≥ · · · ≥ ρN . The eigenvalue decomposition in matrix form is

Ω = V RV T (5)

where V is an orthogonal matrix, R = diag (ρ) and the N × 1 vector ρ = (ρ1, ρ2, · · · , ρN )T with

eigenvalues of Ω. Invoking the definition (4) leads to

ζ.uT vk + u.ζT vk − 2Q†vk = ρkvk

Taking into account that uTQ† = 0, we obtain

uT ζ.uT vk + uTu.ζT vk = ρku
T vk

The definition of the effective graph resistance RG = 1
2u

TΩu, complemented by uT ζ = RG
N , shows that

ρk =
RG
N

+N
ζT vk
uT vk

(6)
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Theorem 1 In a connected graph, the effective resistance matrix Ω has full rank, i.e. det Ω 6= 0.

We give two proofs.

Proof 1: Consider the vector z = αu+ βy, where the vector y is orthogonal to the all-one vector

u, i.e. yTu = 0, and where α and β are real numbers. The definition (4) of Ω and uT ζ = RG
N show

that

Ωz = αNζ +

(
α
RG
N

+ βζT y

)
u− 2βQ†y

We compute two quadratic forms,

uTΩz = 2αRG + βNζT y

and, using yTu = 0,

yTΩz = αNyT ζ − 2βyTQ†y

which we write in matrix form,[
2RG NζT y

NζT y −2yTQ†y

][
α

β

]
=

[
uTΩz

yTΩz

]

Since the determinant

det

[
2RG NζT y

NζT y −2yTQ†y

]
= −4RGy

TQ†y −
(
NζT y

)2
< 0

is never zero because Q† is positive semidefinite, the inverse matrix exists and there is a unique solution

of the vector [
α

β

]
=

[
2RG NζT y

NζT y −2yTQ†y

]−1 [
uTΩz

yTΩz

]
If Ωz = 0, then α = β = 0 and, consequently, z = 0. In other words, there does not exist a non-zero

vector z for which Ωz = 0, implying that ρ = 0 is not an eigenvalue of Ω. Equivalently, Ω is of full

rank. �

Proof 2: Another proof of Theorem 1 relies on the Merger matrix and Fiedler’s block matrix

relation (1), that only holds if Ω−1 exists. Applying the block inverse [3][
A B

C D

]−1

=

[ (
A−BD−1C

)−1 −
(
A−BD−1C

)−1
BD−1

−D−1C
(
A−BD−1C

)−1
D−1 +D−1C

(
A−BD−1C

)−1
BD−1

]
(7)

yields [
0 uT

u Ω

]−1

=

[
−
(
uTΩ−1u

)−1 (
uTΩ−1u

)−1
uTΩ−1

Ω−1u
(
uTΩ−1u

)−1
Ω−1 − Ω−1u

(
uTΩ−1u

)−1
uTΩ−1

]
and comparison with the right-hand side of Fiedler’s block matrix relation (1) indicates that 2σ2 =

1
uTΩ−1u

, p = 1
uTΩ−1u

Ω−1u, while

−1

2
Q̃ = Ω−1 − Ω−1u

(
uTΩ−1u

)−1
uTΩ−1 = Ω−1 − 1

2σ2
p.pT

10



The latter, rewritten as (2), illustrates that Ω−1 exists. Using the definition of weighted Laplacian

Q̃ = ∆̃− Ã in terms of the weighted adjacency matrix Ã in (2) yields

∆̃− Ã =
1

σ2
p.pT − 2Ω−1

from which the weighted degree at node m follows as d̃m = p2m
σ2 − 2

(
Ω−1

)
mm
≥ 0. �

We rewrite Fiedler’s block matrix relation (1) as(
1 0

0 I

)
=

(
−2σ2 pT

p −1
2Q̃

)(
0 uT

u Ω

)
=

(
pTu −2σ2uT + pTΩ

0 puT − 1
2Q̃Ω

)

Using Ωp = 2σ2u and p = 1
uTΩ−1u

Ω−1u, we arrive at

puT − 1

2
Q̃Ω = I

This matrix relation was earlier deduced in a different way in [13, eq. (20)].

Theorem 2 In a connected graph, the effective resistance matrix Ω has only one positive eigenvalue.

Proof8: For any vector z, definition (4) of Ω indicates that

zTΩz = 2
(
zT ζ

) (
zTu

)
− 2zTQ†z (8)

If zTu = 0 or zT ζ = 0, then zTΩz ≤ 0, because Q† is positive semidefinite. In other words, for any

vector z orthogonal to the all-one vector u or to the vector ζ, the quadratic form zTΩz is negative,

but 1
2u

TΩu = 2RN > 0 and ζTΩζ > 0. Theorem 1 states that Ω is of full rank N and has no zero

eigenvalue, which implies that there are (N − 1) negative eigenvalues and one positive eigenvalue. �

A consequence of Theorem 2 and the zero diagonal in Ω lead to

ρ1 = −
N∑
k=2

ρk and ρ1 =
N∑
k=2

|ρk|

while the Perron-Frobenius theorem (see e.g. [3]) tells us that |ρN | < ρ1. Hence, apart from the

largest, positive eigenvalue ρ1, all other eigenvalues ρk in Ω with 2 ≤ k ≤ N lie in the interval

(−ρ1, 0), excluding both end points. Since (N − 1) |ρ2| ≤
∑N

k=2 |ρk| ≤ (N − 1) |ρN |, we have that

− ρ1
(N−1) ≤ ρ2 < 0 and −ρ1 < ρN ≤ − ρ1

(N−1) .

In addition, (6) implies for k > 1 that

− 1

N

(
|ρk|+

RG
N

)
=
ζT vk
uT vk

Since ζT vk
uT vk

=
‖ζ‖2‖vk‖2 cos(θζ,vk)
‖u‖2‖vk‖2 cos(θu,vk)

=

√
ζT ζ cos(θζ,vk)√
N cos(θu,vk)

, where θa,b is the angle between vector a and b, we

have

−
|ρk|+ RG

N√
NζT ζ

=
cos (θζ,vk)

cos (θu,vk)

8This proof is due to Karel Devriendt.
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indicating that either θζ,vk or θu,vk ∈
(
−π

2 ,
π
2

)
, but not both! Since NVar[ζ] =

∑N
j=1

(
Q†jj −

RG
N2

)2
=

ζT ζ − R2
G

N3 ≥ 0 as shown in [13, Section V.A],

−
cos (θζ,vk)

cos (θu,vk)
≤ 1 +

|ρk|√
NζT ζ

If θζ,vk ∈
(
−π

2 ,
π
2

)
, then − cos (θu,vk) = cos (π − θu,vk) and π − θu,vk ≥ θζ,vk . If θζ,vk ∈

(
π
2 ,

3π
2

)
, then

π − θζ,vk ≤ θu,vk . In words, the angle θζ,vk is smaller than the angle θu,vk .

Gerschgoring’s theorem [3, p. 212] states that each eigenvalue ρk lies in circle around the origin

(because each diagonal element of Ω is zero) with radius (Ωu)i for 1 ≤ i ≤ N . It follows from the

definition (4) and ζTu = RG
N that

Ωu = ζN + u
RG
N

and Gerschgoring’s theorem becomes, for a certain k and i,

|ρk| ≤
RG
N

+Nζi

while (6) indicates that ρk = RG
N +N ζT vk

uT vk
. In particular, Gerschgoring’s theorem [3, p. 212] provides

the upper bound

ρ1 ≤
RG
N

+N max
i
ζi (9)

while the Rayleigh inequality ρ1 ≥ zTΩz
zT z

for any vector z shows that, for z = u,

ρ1 ≥
uTΩu

uTu
=

2RG
N

(10)

Since RG
N = uT ζ =

∑N
j=1 ζj = NE [ζ], the lower and upper bound are written as

2E [ζ] ≤ ρ1

N
≤ E [ζ] + ζmax

Combining both and Theorem 2 implies that there exists a component i in ζ so that, for k > 1,∣∣ζT vk∣∣
|uT vk|

≤ 2RG
N2

+ ζi

Since the principal eigenvector components are non-negative, the corresponding inequality for v1 also

follows from a general inequality

ζT v1

uT v1
=

∑N
j=1 ζjvj∑N
j=1 vj

≤ max
i
ζi

where equality only holds if ζ = αu; thus, with ζTu = RG
N , if ζ = RG

N2 u. If ζ = RG
N2 u, then we also find

that ρ1 = 2RG
N and v1 = u√

N
and that vTk u = 0 for k > 1 (which perhaps only holds for the complete

graph KN ).

In summary, we can bound three eigenvalues of the effective resistance matrix Ω: the largest

eigenvalue and only positive one, the second largest eigenvalue and the smallest eigenvalue,
2RG
N ≤ ρ1 ≤ RG

N +N maxi ζi

− ρ1
(N−1) ≤ ρ2 < 0

−ρ1 < ρN ≤ − ρ1
(N−1)
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The last bounds for ρN are not tight. The second bound can be written as − N
N−1 (E [ζ] + ζmax) ≤ ρ2 <

0 and illustrates with the vector ζ =
(
Q†11, Q

†
22, . . . , Q

†
NN

)
that, for sufficiently large N , the interval

(−2ζmax, 0) in which ρ2 – the eigenvalue closest to zero – lies, is intimately connected to the diagonal

elements of the pseudoinverse of the Laplacian. Theses bounds may be sharpened by computations9

of trace(Ωm) =
∑m

k=1 ρ
m
k .

9We can show that

trace
(
Ω2) =

N∑
j=1

ρ2j = 2NζT ζ + 2

(
N−1∑
k=1

1

µk

)2

+ 4

N−1∑
k=1

1

µ2
k

where µ1 ≥ µ2 ≥ · · · ≥ µN−1 ≥ µN = 0 are the eigenvalues of the Laplacian matrix Q.
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B Perturbation of the effective resistance matrix Ω

Since the sum of two distance matrices is also a distance matrix, we consider Ω = Ω1 + εΩ2, where

ε ≥ 0 is a real number that can be chosen arbitrarily small. We are interested to deduce the effect of

perturbing the effective resistance matrix Ω1 by εΩ2 on the weighted Laplacian Q̃. By scaling Ω with

ε, the relations 2σ2 = 1
uTΩ−1u

and the vector p = 1
uTΩ−1u

Ω−1u indicate that only σ2 is multiplied by

ε, but not the vector p.

After combining (2) with Ω = Ω1 + εΩ2, we find

Ω−1 = (Ω1 + εΩ2)−1 =
(
Ω1

(
I + εΩ−1

1 Ω2

))−1

=
(
I + εΩ−1

1 Ω2

)−1
Ω−1

1

where (AB)−1 = B−1A−1 (see e.g. [27, p. 93]) is used. Invoking (I + εR)−1 =
∑∞

k=0 (−1)k εkRk for

sufficiently small ε < 1
λmax(R) ,

Ω−1 =

(
I +

∞∑
k=1

(−1)k εk
(
Ω−1

1 Ω2

)k)
Ω−1

1

and ignoring higher order terms O
(
ε2
)

yields

Ω−1 ≈ Ω−1
1 − εΩ

−1
1 Ω2Ω−1

1

Then
1

2σ2
= uTΩ−1u ≈ uTΩ−1

1 uT − εuTΩ−1
1 Ω2Ω−1

1 u =
1

2σ2
1

(
1− ε

2σ2
1

pT1 Ω2p1

)
and

p = 2σ2Ω−1u ≈ 2σ2Ω−1
1 u− ε2σ2Ω−1

1 Ω2Ω−1
1 u

=
σ2

σ2
1

(
p1 − εΩ−1

1 Ω2p1

)
≈ 1

1− ε
2σ2

1
pT1 Ω2p1

(
p1 − εΩ−1

1 Ω2p1

)
≈
(

1 +
ε

2σ2
1

pT1 Ω2p1

)(
p1 − εΩ−1

1 Ω2p1

)
= p1 + ε

(
pT1 Ω2p1

2σ2
1

− Ω−1
1 Ω2

)
p1

Finally, to first order in ε, we have with Ω−1 = 1
2σ2 p.p

T − 1
2Q̃

Q̃ ≈ 1

σ2
ppT − 2Ω−1

1 + 2εΩ−1
1 Ω2Ω−1

1

≈ 1

σ2
1

(
1− ε

2σ2
1

pT1 Ω2p1

)(
p1 + ε

(
pT1 Ω2p1

2σ2
1

− Ω−1
1 Ω2

)
p1

)(
p1 + ε

(
pT1 Ω2p1

2σ2
1

− Ω−1
1 Ω2

)
p1

)T
− 2Ω−1

1 + 2εΩ−1
1 Ω2Ω−1

1

=
1

σ2
1

(
1− ε

2σ2
1

pT1 Ω2p1

)
p1p

T
1 +

ε

σ2
1

{
pT1 Ω2p1

σ2
1

p1p
T
1 − Ω−1

1 Ω2p1p
T
1 − p1p

T
1 ΩT

2

(
Ω−1

1

)T}− 2Ω−1
1 + 2εΩ−1

1 Ω2Ω−1
1

=
1

σ2
1

p1p
T
1 − 2Ω−1

1 +
ε

σ2
1

{
pT1 Ω2p1

2σ2
1

p1p
T
1 − Ω−1

1 Ω2p1p
T
1 − p1p

T
1 ΩT

2

(
Ω−1

1

)T}
+ 2εΩ−1

1 Ω2Ω−1
1
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and

Q̃ ≈ Q̃1 + ε

{
pT1 Ω2p1

2σ4
1

p1p
T
1 −

1

σ2
1

(
Ω−1

1 Ω2p1p
T
1 + p1p

T
1 ΩT

2

(
Ω−1

1

)T)
+ 2Ω−1

1 Ω2Ω−1
1

}
which is fairly complicated.
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