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Abstract

Matrix perturbation theory is applied to the matrix W ({) = A+ Cg, where A is the N x N
symmetric, weighted adjacency matrix of an undirected graph G on N nodes with corresponding
weighted degree diagonal matrix A and ( is the perturbation parameter. Assuming that node ¢ has
a unique~weighted degree Jq = Ejvzl aqj, a power series in ¢ of an eigenvalue A (W (¢)), expanded
around dg, is deduced and its first four coefficients are computed explicitly.

In the unweighted case, A (without tilde) is the zero-one, symmetric adjacency matrix with
corresponding diagonal matrix A with nodal degrees. Choosing the perturbation parameter ( = —1
yields W (—=1) = A — A, which is the Laplacian matrix of the undirected graph G. Unfortunately,
the power series does not converge for ( = —1. However, after Euler summation, the resulting
eigenvalue perturbation expansion is found to converge, when d; is a high and unique degree, to a

Laplacian eigenvalue.

1 Introduction

We consider the matrix W ({) = W + (B. Perturbation theory, outlined in Appendix A, assumes that
the perturbation parameter ( is sufficiently small so that we may regard W ({) as the perturbation
of the original symmetric matrix W by a matrix B, which is not necessarily symmetric. We limit
ourselves to a simple eigenvalue A (W) of the matrix W with multiplicity one.

Here, we apply the perturbation theory in Appendix A to a weighted Laplacian C~2 =A— E, where
Ais a weighted adjacency matrix and the diagonal matrix is A= diag (ﬁu), where u is the all-one
vector. In the unweighted case, we omit the tilde and write the Laplacian Q = A — A, where A is the
N x N zero-one, symmetric adjacency matrix of a simple graph G' without self-loops, i.e. a;; = 0 for
any node j in the graph G. The graph G has N nodes and L links. Thus, in our case, the matrix
W = A and the perturbating matrix B = A. Hence, W (¢) = A + CA and W (—1) = Q. The entire
challenge is caused by the relatively large perturbation parameter ¢, which may lead to an excessive
number of terms in the eigenvalue expansion (7) and, even worse, to a diverging series, in case the

radius of convergence of (7) is smaller than 1.
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2 Coefficients and convergence of the perturbation power series

The diagonal matrix A has a rather obvious spectral structure. The eigenvalue \; (W) = cjj is equal
to the j-th diagonal element of ﬁ, which corresponds to the nodal strength d; = (Zlu) ~of node j.
The corresponding, normalized eigenvector e; is the basic vector with all zeros, except] an entry 1
for the j-th component, i.e. (ej), = d;x, where the Kronecker §;;, = 1 if k = j, else §; = 0. The
eigenvalue \j (W) can possess a multiplicity m;, but the orthogonal eigenvector matrix remains the
identity matrix I, which greatly avoids complications of Jordan forms in the general case.

In order to allow direct application of the perturbation theory in Appendix A, we assume that
Ag = Jq is a simple eigenvalue, i.e. the weighted degree should be simple and only node ¢ in the graph
G has a degree equal to ch.

The first perturbation coefficient ¢; in (14) translates to
c1(q) = 6qTA‘fq =agq =0

and, in general, x;{B:Bq translates to e;‘gﬁeq = apq > 0. The second perturbation coefficient in (19)

becomes . o
- ay
c2(q) = Z ~( q)~

k=1;k+#q dg — dy

and in the unweighted case

Olq 1
gk S dy—dy

where N is the set of all direct neighbors of node ¢. Thus, the perturbation coefficient ¢ (¢) is the sum
of the reciprocal degree difference with d, over all direct neighbors of node ¢. Using ZZ:L ktq Okg = dg;

the degree of node g, we can bound cs as

d
2 (q)] < max ——

— 9 — g, = (A?
1<k<n |dg — di| 4 ( )qq
k#q

The third perturbation coefficient in (21) reduces, with a4y = 0, to

~ = Eirq = akqakr
c3\q) = —_—= —_ =
3() :Z d—drk:lz;,;#qdq—dk

and in the unweighted case

Z Zd—d d—dk sz 1cl

r=1;r#q k=1; k;ﬁq reNg kENGNN,;-

which is the sum of the product of reciprocal degree differences over all mutually connected neighbors

of node q. We bound c3 as

les (q)] = Z Z — QQkakr Z Z \d, _d||§qk_alzl;|

r=1lir#£q k=1:k+#£q dq — r=1lir#£q k=1:k+£q
< a AglQ

R \d, — 22 qu qkkr

T#q =



With D7 arg Y ey GgkGlr = 9 peq Grg (AQ)qT = (Ag)qq, the number of closed walks of length 3 from
node j back to itself [4], we find

(4%) 4y

3
1<l~c<Xn \d, —di]* ~ ( )qq
k#q

les ()] <

The fourth perturbation coefficient in (22) reduces, with a4, = 0, to

~ . - 57"(] g [ . akqakl _ § (5':~q)2 . (5kq)2
D Dl s S0 Dl 4D S 2 T 2 G

2
r=lir#q 9 YT 1=1;l#q 1;k#£q d dk r=1;r#q <dq — dr> k=1;k#q

and in the unweighted case

n n n n n
_ Qrq Q] QkqQl Qrq Okq
alp= >, — d, — d, 2. d—dk_zm 2 dy — dy,
r=lirq 1 I=Li#q 1 k=Lik#q 1 r=lir#q \"0 T T/ k=Lik#q 1

Conservatively bounding yields

Ayl QLqQEl
lea (q)] < Z Z Z \d, —de —di| |dq — dy|

r=1;r#q l=1;l#q k=1;k#q
n 4
(4,

n

4

< ma E E Cgr QA0 max ————= < (A

1She, \d, — 3 qrort@ikShe = 0o, \dy — dy,|® ( )qq
k#q r=1 =1 k=1 k#q

If dy = dmax, then ¢ (¢) and c3(q) are positive, but the sign of ¢4 (¢) may be negative. In summary,
up to order ¢, we find that the eigenvalue expansion &; (¢) in (8) of the matrix A + (A around degree
dg is

€4 (Q) =dg+ CPe2 (q) + ez (q) + CPea(q) + O (¢°)

n n n
2 Qkq 3 Qrq Qqk Oy
=dg+¢ Z d—dk+C Z d. —d Z d, — dj,
=Lik#q 1 r=lir#q 1 " k=Lik#q !
k
n n n n n
Y D M D D I D R
dy —d, dg — d dg — dj, (d _d)2 dg — dj,
r=lir#q 1 I=1l£q 1 k=Lik#q 1 r=lirq \"0 T U7 k=Lik#q 1

(1)

Assuming that |¢; (¢)] < (Aj )qq holds for any integer j, then the eigenvalue expansion in (8) of
the matrix A + (A,

& () =dg+ ez (q) + Pes () +CPealq) +-- =dg + Y ¢ (q) ¢
=2

is bounded as

& (O <dg+ Y (A7), ¢ =dg+ | D A
Jj=2

o
J aq



Introducing the eigenvalue decomposition A = XAXT = Eivzl M (A) 2zl where xy, is the normal-
ized eigenvector of A belonging to eigenvalue Ay (A) and assuming the ordering \; (A) > A2 (A) >
- > An (A), then

o)
=2

o0 N
DA = waf Y (M (A
= k=1 i

The geometric j-series converges, provided |\, (A) (| < 1 for any k, i.e. |¢| < ﬁ, which is smaller
than 1 in any connected graph G of size N > 2, because A1 (4) > dgy = % (see e.g. [4]). The bounds
lcj (q)] < (Aj )qq are conservative, because, if d; # dmax, then there will be negative terms in each
sum of the coefficients ¢; (¢) for j > 2. Nevertheless, numerical computations indeed reveal that the
expansion &, (—1) = dq—I—E;iQ (—1)j ¢j (q), corresponding to an eigenvalue of the Laplacian Q = A—A
around degree d, (assumed to be unique or simple), diverges. For N = 10 and N = 20, we found
numerically that the first 4 coefficients ¢ (¢) decrease and just from ¢5 (¢) on increase. Limiting the
series . (—1) = dg+ ZJKZQ (=1)? ¢j (q) up to K = 4 terms seems “reasonably” accurate and limiting
a divergent series (as in Stirling’s approximation [5]) to the point where the terms start increasing may
be meaningful. Numerical evaluation seems that the accuracy of {;.x (—1) improves with increasing

size N of the graph, but for not too high density p = (TL)
2

Instead of summing &, (—1) = dg + 3272, ¢ (=1)?, Euler summation [2]

& +Z(Z( e 1)’%)2; )

yields considerably better results: for sufficiently large K, the sum

- d+2(2( D)t );n—ﬂik

for some integer £ and pu, is close to dg, where the eigenvalues of the Laplacian matrix @) are pu; > po >

- > puny = 0. In particular, we found numerically that the largest eigenvalue u; is retrieved from
dq = dmax, even with 4 coefficients, quite accurately! In addition, Euler summation (2) also seems to
converge for other large degrees. On the other hand, expansion around dy = dmin is considerably less
accurate and Euler summation (2) does not seem to converge anymore. In other words, if the number

of terms K = 4 in (2) is limited and the node ¢ has a sufficiently large degree d, (that is unique), then

Epa (1) = d, —i—% 1—5603—1— 6
Z 9 & rq zn: Qg Oy
g %~ 16, g Ba = dr ) T, da =
1 - Qrq - ary "\ QkgQkl o Arq - kg
T 16 d, —d Zd—dl Zd—dk_z(d_d)z 2 dg — dy,
r=lir#q 1 "i=1iq 1 k=1l;k#q 1 r=lLr#q V4 ") k=Lik#q 1

is a reasonable estimate for a Laplacian eigenvalue uj. There exist many bounds on Laplacian eigen-
values. The Brouwer-Haemers bound [1] is pup > d(y) — k + 2, where d, is the k-th largest degree in
the graph, i.e. d(;) > d@) > ... > d(y). An upper bound for the largest Laplacian eigenvalue [4] is
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1 < min (N, maxjer (dj+ + d;-)), where d;+ and d;- are the nodal degrees at the left- and right-hand
node of a link [; clearly dj+ + dj- < 2dyax. We hope that the approximation (3) may lead to sharper
bounds.

The Euler summation of the matrix perturbation series in (2) bears resemblance to Lagrange
series, where expansions around different points may converge to a same zero. Lagrange’s series for
the inverse f~1(2) of a function f (z) is [3, II, pp. 88]

JN ) =20+ g o [d(fum”jl <f(wu; - ;O<zo>>m]

A zero y of f(z), obeying f (y) = 0 and y = f~1(0), has the Lagrange series

= o= S [t (i) |

provided that zg is sufficiently close to y, else the Lagrange series may diverge or converge towards

(z = f(20))™ (4)

w=zg

(=f(z0))™

w=z0

a different, more nearby zero of f(z). Since the characteristic polynomial cq (z) = det (Q — 2I) =
Zi\;o Y2k = ch\le (1 — 2z) corresponds to the function f (z), it is tempting to infer by comparing
the Euler summation (2) and the Lagrange series (4) of pp = cél (0) that 2o = dg, c (dg) = —%

m — —_ m .
and 37, (7)) (—1)F e, = 4 [dfum_ll (C;Ewﬁ%> ”w_d . However, we are unable to prove this
—7q

speculation.

3 Numerical examples

The recursion in (15) and (18) in Appendix A becomes, for r # ¢,

Qr
ﬁlr = dq—qdr
N | —2 .
Bir = gt Sittirg {Zizl BrorBj—k—1,aq1 — 5]'—1,%1} for j > 1

and the coefficients (17) for 7 > 1 are

N
(@)= > Bji-1kag (5)

k=1;k#q

which can be computed up to any desired value of j.

Example 1 A tree on N = 5 nodes, with the adjacency matrix

00111
00001
A={100 0 0
10000
1100 0

has a degree vector d = (3,1, 1, 1, 2) and Laplacian eigenvalue vector u = (4.17009,2.31111, 1.,0.518806, 0).
The infinite series (2) does not seem to converge, but the Euler sum (3) up to K = 4 terms equals
€sa (—1) = 2.125 for ds = 2 and &5 (—1) = 2.375 for K = 5 terms and &4 (—1) = 4.21875 for



dy = 3. Also, all odd coefficients co;,+1(¢) = 0 in (5) for odd m > 0 are zero, possibly agreeing
with the fact [4, p. 133] that the characteristic polynomial of the adjacency matrix of a tree is even,
e (2) = det (Atree — 1) = Ca, (—2).

Example 2 An instance of an Erdds-Rényi graph G, (N) on N = 20 nodes and link density
p = 0.3 has the adjacency matrix

o
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SO O O O OO0 OO0 O o +HH+HF+HOOO O O O
SO O O R O OO O O B O+ O = =B OOOo o o o

SO O O O = B O O O = O OO O o +~=O oo o

degree vector
d=(4,4,8,3,7,4,12,4,7,6,7,6,10,6,6,6,6,5,4,5)

ranked in decreasing order as (12,10,8,7,7,7,6,6,6,6,6,6,5,5,4,4,4,4,4,3) to see

Laplacian eigenvalue vector

uniqueness and

w=(13.3514,11.6199,9.80641,9.32872, 7.6586, 7.46193, 7.11613, 6.92149,
6.3782,6.07484, 5.80058, 5.29648, 4.59557, 4.05486, 3.58036, 3.50647
2.83079, 2.39082, 2.22645, 0)

The Euler summation &;.x (—1) in (2), in short &;.x, seems to converge for node ¢ = 13 and d, = 10.

Indeed, &13.x as function of the number K of terms converges to pp = 11.6199 as

£13.2 = 10.48154762
£13.3 = 11.00138889
€13.4 = 11.33195709
€135 = 11.49508126
¢13.6 = 11.57496760

€137 = 11.61206362
€13.8 = 11.62002740
€130 = 11.61508019
€13.10 = 11.61181587
1311 = 11.61364728

€13.12 = 11.61699285
€13.13 = 11.61921713
€13.14 = 11.62029217
€13.15 = 11.62070805
€13.16 = 11.62057580

€13.17 = 11.62009681
€13.18 = 11.61968541
§13:19 = 11.61958213
&13:00 = 11.61970380
€13.30 = 11.61991367



The Euler summation ;. i converges faster for node ¢ = 7 with the maximum degree d, = 12. Indeed,

&7k as function of K converges to p1q = 13.3514 as

where all presented digits of £7.30 are correct. For node ¢ = 3 with degree d3 = 8, the Euler summation

(2) seems to diverge. Indeed, &3, initially tends to converge to pug = 9.80641, but diverges for larger

K,

Er.0 = 1255684524
Er.3 = 12.92105159
€74 = 13.10777862
¢r.5 = 13.22029144
Er.6 = 13.28081543

£3.0 = 8.937500000
€33 = 9.593750000
€34 = 9.541536458
€35 = 9.632552083
€3.6 = 10.14137146

&7 = 13.32451888
¢r.8 = 13.33893469
Er.0 = 13.34549561
€710 = 13.34889571
711 = 13.35029701

€37 = 9.961090970
€38 = 9.152494535
£3:0 = 9.649234801
€310 = 10.87231670
€311 = 9.574716849

€7.12 = 13.35071509
€7.13 = 13.35094032
7.4 = 13.35114508
€7.15 = 13.35126516
€7.16 = 13.35131598

€319 = 7.834417220
€313 = 11.10756619
€314 = 13.44103998
€315 = 5.881312597
€316 = 3.636664041

717 = 13.35134956
€718 = 13.35137642
&7.19 = 13.35138894
£7.90 = 13.35139125
€7.30 = 13.35139267

€317 = 20.15673862
€318 = 19.02124175
€319 = —15.77306388

€300 = —0.7480476187

£3:30 = —1883.697136

All mentioned values of &4, corresponding to the explicitly form in (3), indicate that (3) is a reasonably

accurate estimate for a Laplacian eigenvalue.

4 Conclusion

Quite remarkably, we discovered that the Euler summation (2) seems to converge, for some suitably
chosen node ¢ with large and unique degree d,, to a Laplacian eigenvalue pj. Convergence does not
always happen. For smaller (and unique) degrees, the Euler summation (2) seems to diverge most of
the time. Perhaps, a better tuning of the Euler summation' may be needed.

Apart from unique degree nodes, it would be desirable to know the graph properties for which
the Euler summation (2) converges to Laplacian eigenvalues. More generally, under which matrix
conditions does Euler summation (6) of the perturbation eigenvalue series in (8) in Appendix A
converge, when the power series itself diverges.

Finally, the extension of spectral matrix theory to multiple eigenvalues is placed on the agenda of

future research.
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A Perturbation Theory

We confine ourselves to simple eigenvalues of a symmetric matrix, in which case the perturbation
theory is relatively simple [6, pp. 60-70]. Perturbation theory for non-symmetric matrices and for

eigenvalues with higher multiplicity is more involved and omitted.

A.1 Perturbation theory around a simple eigenvalue

Let us consider the matrix A ({) = A + (B. Perturbation theory assumes that the real number ( is
sufficiently small so that we may regard A ({) as the perturbation of the original nxn symmetric matrix
A, not necessarily an adjacency matrix, by an n x n matrix B, which is not necessarily symmetric.
We denote by z ({) the n x 1 eigenvector of A (¢) belonging to the eigenvalue A (¢). As shown in [6,
pp. 60-70], both = (¢) and A () are analytic functions of { around zero and can be represented by a

power series

r(Q) =z +CatCat =3 ¢ (7)
j=0

AQ =M+ Ca+ Pt =) ¢l (8)
j=0

where z (0) = & = 2 is the eigenvector of A and A (0) = A = ¢ is its corresponding simple eigenvalue.
We omit considerations about the convergence radius of the above power series. We choose x = z, as
the normalized eigenvector of A corresponding to A = \,.

The eigenvalue equation of A (¢) is

(A+¢B)z(¢) =A(¢)z(C)

After introducing the power series (7) and (8), we obtain
(A+(B) [2g+)_z¢ | => e Y ¢
j=1 j=0 j=0
The left-hand side equals

(A+(B) |z + Z 20 | = Az, + Z Az;¢? + (Bzy + Z Bz;¢d ™!
j=1

J=1 J=1

= A\gxq + (Az1 + Bzy) ¢ + Z (Azj + Bzj_1)
j=2



while the Cauchy product of the right-hand side gives

J 00 J
chqj Z zi¢d = Z (Z Cj_k2k> (7 = Agzq + (c1mg + Ag21) € + Z (Z cj_kzk> ¢’
7=2 \k=0

7=0 \k=0

Equating corresponding powers in ( yields, for j =1,

Az + By = A\gz1 + c12y 9)
and, for j > 1,
J Jj—1
AZj + BZj_l = Z Cj—kRk = CjTqg + Z Cj—kRk T )\qu (10)
k=0 k=1

Relations (9) and (10) are the results of complex function theory. The solution for the n x 1 vectors

{zj};51 in (7) and the coefficients ¢y in (8) now requires linear algebra.

A.2 Scaling of the eigenvector x (¢)

Since the vector z; can be written as a linear combination of the eigenvectors zj, of A, we have
n
zj = Zﬁjkxk (11)
k=1

where the coefficients 3, = x%zj = ijacm # Bim;. The particular case j = 0, where zg = x4, indicates

that Bor, = dkg. Thus, the eigenvector in (7) is rewritten as

:UC):ZZjCjZZ Zﬁgkéﬂ T = Zﬂjq< Tq+ Z Zﬁjkd Tk
=0

k=1 \j=0 k=1;k#q \j=0
and
o n (o9}
Q=1+ Bl |xg+ D D Bind |
j=1 k=Lik#q \j=1
We can always scale an eigenvector by a scalar a # 0, which we choose here as a = 1 + Z;; quCj ,

assuming that the power series converges to a value different than —1. The latter condition can always

be met for sufficiently small |¢| and we arrive at

1/6]k<
a "z (C) =x4+ Z ( +ZJ lﬁjq@)

k=1;k+q

If we choose B4 = a:sz = zgzj = 0 for j > 1 and recall that By, = 1, then o = 1 and we simplify the

q
computation by requiring that any “perturbation” vector z; for j > 1 is orthogonal to the eigenvector
x4 of the matrix A.

If we choose a different scaling by requiring a normalized eigenvector, such as 7 ({)z (¢) = 1,

then it implies that

1=2"(Qz() =) 2] > zm("= Z (Zz 2j- m> ¢
j=0 m=0

7=0



and equating corresponding powers in ( leads, for j = 0, to z(:)F zo = 1, which is satisfied for any
normalized eigenvector zyp = x4 of A and, for j > 0, to 0 = anzo z;‘gzj,m. The latter condition
means that 2021 = 0 and furthermore that 22, = —4 Zm 122 2im for j > 2. In summary, the
normalization of the eigenvector z (¢) imposes conditions on the scalar products zg zj for all 7 > 1.
Choosing a different scaling leads to a different computational scheme and the art consists of choosing

the most appropriate conditions on zg 2j.

A.3 Evaluation of the power series coefficients ¢; and vectors z;

After expressing the relations (9) and (10) with (11) in terms of the normalized eigenvectors 1, xa, . .., Tp
of the matrix A and taking the eigenvalue equation Axj = Aprp into account, we obtain the set of

linear equations

C1Tq = Z 611@ A — .%'k + Ba:q (12)
and, for j > 1,
n n n j—1
citg =Y Bit Mk —A) i+ Y Bi—1kBrr — Y > ¢j_iBumi (13)
k=1 k=1 I=1 k=1

in the unknown numbers {cj};~, and {Bjr};5 ;- As eigenvector scaling, we choose fBjq = xl

7 =

ZOT zj = 0 for 7 > 1, which is computationally, the simplest choice.

Pre-multiplying (12) with the vector z!, using zl'z, = 6,, yields
Cl(srq = ﬂlr ()‘7‘ - )\q) + $ZB$q

In particular, if r = ¢, then
= quB:Eq (14)

else,
T
x, Bxg

ﬁlr = )\q_)\r

for r # ¢ (15)

The expression (15) emphasizes that the eigenvalue A\, must be simple, which is a basic limitation of

the presented perturbation method. Hence, it follows from (11) that

N N
:U{qu

a=> Burk= Y X, Tk Piet
k=1 k=liktq 4~ "k

With our eigenvector scaling choice 514 = 0, we find the first order expansion in ¢,

{ 2(Q) =g+ lk;éqm qu$k+0(g2)
A(Q) = Ag + CalBag 4+ O (¢?)

Pre-multiplying (13) with the vector z. analogously leads, for j > 1, to

7j—1
¢jrq = Bjr (Ar — Ag) +Zﬁg LkTr Bzg = Y ¢ kB
k=1 k=1

10



In particular, if » = ¢, then

n j—1
cj = Zﬁj—l,ku’ﬂqTBxk — Z Cj—kBrq
k=1 k=1
else
1 7j—1 n
Bjr = S {Z Cj—kBrr — Zﬂjl,kszxk} for r # ¢ (16)
T 7 (k=1 k=1

With our eigenvector scaling choice 8j, = 0 for j > 0, the first recursive equation in the coefficients

¢, simplifies considerably to
n
Z ﬁj_kaqTBmk for j > 1 (17)
k=1;k#q
Substituting the explicit form of the coefficients ¢; in (17) into (16) yields, for j > 1,

n j—1
1 J
Bjr = SV E { § BrrBj—k—1,7) Bry — 5j—1,l$rTBfUz} for r # q

- =119 \k=1

T

The scaling choice 3y; = d;q and 34 = 0 for j > 1 simplifies, for r # ¢, to a recursion in §j,

ijl;r:L‘TBl‘q
Bir = N _q)\q X _)\ Z ZB[GT‘B_] k-11% Brp — Bj_12) By (18)

9 1=1;1#q (k=1

which can be iterated up to any desired integer value of j.

For example, if j = 2, then (irrespective of the choice of scaling)

n n
T T
co = E Birry Bry — c181 = § Birxy Bxy

k=1 k:l;k;ﬁq

and

Bar = N _)\ {ﬂh«x Bz, — Zﬁmx Bﬂck} for r # q

k=1

Using (15) results in
- ($;}Fqu)2

Cy = (19)
k=1ikq Ag = Ak
and n T T T T
_ 1 (azk_ BZL'q) (:Ek B:z:r) B (xr B:Uq) (:rq qu)
Bar = SV S 3 for r # g (20)
q — \r k=1;k+q q — \k ()\q — )\7«)
Moreover, we can use (2, immediately in c3 = Zzzl; ktq ngquB:vk in (17),
B z": T, Ba:,n Zn: (2] Bzg) (2] Bxy) zn: (a?,TBa:q)Q (2l Bxy) (1)
“o 2= A N — M (g — Ar)?
r=1;r#q 1;k# r=1;r#q q r

illustrating that, in general, the eigenvalue expansion (8) can always be computed, with the same
efforts, one order higher in ¢ than the eigenvector expansion (7). Indeed, the coefficient ¢; in (17) only

depends on fj_1 ; and not on 3 as z; in (11).
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If j = 3, then (18) becomes, for r # q,

Borz ! Bx
Bar = " - )\qq (v )\q zz; {B1Buzy Bry — Bz, By}
_ :J:?qu Zn: (xk Ba:q) (m%er) (a:Zqu) (:chqu)2
M= M)?  Ss Mg — Mk (Mg —A)?
@By, < (@fBr)t, 1 Z": z) By Z": () Bzg) (v Bu1)
2
g =)™ s MM A A S A T AL Aq = Ak

_efBey (o Ba) (o] B)
)‘q - (/\q - )\k)Q

" k=Lk#q

The coefficient ¢4 = Zzzl;k;ﬁq ngquBxk in (17) is

ey WiBe) iBr) g (o Br) (B (a7 Bz,)” (s Br,)’
- (Ag = Ar) k=1 k;éq Ag = Ak r=TLir£q (Ag = Ar)
i (xZqu)z i ($k qu T, By, x! By i (:E;{qu) (m%Bxl)
rTogtg Mo — Ar)? k=T3kq r=lir#q >‘q A T M TN, Ag = M
zn: (wg Bz) (zq Bxy) zn: (xk Buy) (i Bar)
r=1;r#q Ag = Ar k=1;k+q (Ag — )

The first and last sum are the same and we obtain

o= (B 3o B g s (GBR) g (ol Bay) (e Br)

rrtq Pa = Ar)? rTrtq Aa = M) Lk Ag = Ak
_ Zn: (sz%)z Zn: (mngq)z
r=lir#q (Ag = \)’ k=1;k#q Aq = A
N n x:{Bl‘r n @ i (asgB;rq) (xfol) (22)
rTrtg M T T M T N Aq = A

If Ay = A1 is the largest eigenvalue of a symmetric matrix A, then we observe that the coefficient
co in (19) is positive. Consequently, if ¢ is sufficiently small so that the remainder of the series in (8)
obeys ‘Z;}ig cjcj‘ < c2¢?, then the first order perturbation A (¢) > A1 + ¢z By is a lower bound.
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