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Abstract

The arithmetic-geometric mean (AGM) algorithm has an amazingly fast convergence. We try

to follow Gauss on his remarkable path of mathematical discoveries, posthumously published in

Gauss’s Nachlass in 1866.

1 Introduction

Carl Friedrich Gauss (1777-1855) was a titan of science [8]. Words fall short to describe his phenomenal

mathematical creations: just as paintings and musical pieces by the greatest artists1, his mathematics

fills an impressive gallery of the finest art. The only difference between music and paintings compared

to mathematical art is that the latter requires more effort to understand, before its penetrating light

embraces human emotions. After all, just as in music and paintings, it requires much technical skills,

before creations and art occur. Art is all about emotion. The most beautiful mathematical art shines

by its simplicity, which often shields its depth. It may sounds odd that I speak about mathematical art,

while most people associate mathematics with a cool and logical system, void of any human emotion.

And, yet, there is an ocean of beauty in which the logical pieces are built towards a magnificent castle.

The sequel here is devoted to one type of painting, one style of Gaussian symphony. I have tried to

unravel his unpublished work, posthumously collected in his Nachlass (Gauss Werke, band 3), about

the arithmetic-geometric mean (AGM). While the AGM algorithm, explained in (2) in Section 2, is

rather basic and before Gauss discovered by another genius Langrange, it was Gauss, who created

an astonishing piece of art. The first part in the Nachlass [13] in Latin is the easiest, because it is

sufficiently well explained. That first part also shows Gauss’s trajectory towards his first fundamental

result (28) via elegant Taylor series expansions. I have expanded that part in Section 3 and rederived

Gauss’s series based on our current theory of Taylor series. The second part [14] in German is

challenging and difficult, because Gauss has merely left sketches or just a list of formulae without any

clue nor derivation. Of course, we cannot blame Gauss: he never found the time to publish his work

∗Faculty of Electrical Engineering, Mathematics and Computer Science, P.O Box 5031, 2600 GA Delft, The Nether-

lands; email : P.F.A.VanMieghem@tudelft.nl
1Ludwig Van Beethoven (1770-1827), with Flemish roots fromMechelen, was a German contemporary of Carl Friedrich

Gauss.
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on AGM in his near to perfect style, based on his adagium2 “pauca, sed matura”. After Gauss has

seen the work of Abel and Jacobi, who found independently parts of his own discoveries about thirty

years later, Gauss seemed to have been content that Abel and Jacobi had relieved him from publishing

his work on elliptic functions. King [17] has provided a little more steps, but still insufficient. I found

King often insulting to a reader by the arrogant “it is easy to see”, which has cost me, unfortunately,

much time. King proposed many exercises with only a little hint. I found him mimicking the great

master, perhaps, frustrated by his time spent to unearth Gauss’s second part? King could have written

an attractive book on AGM, but his notes of merely 42 pages require from a reader so much that I

think that most people after him have just neglected his work. Cox [7, Section 2], on the other hand,

was a relief and pleasure to read. Thus, I have not copied Cox deductions in Section 10, especially

his Theorem 1, where Cox has rederived Gauss’s incredible achievement with the current knowledge

of the theory of elliptic functions. Let me stress this point: only with a current machinery that vastly

overreached the knowledge at Gauss’s time, Cox was able to fill in the many details, which Gauss in

[14] did not supply. Initially, I have also benefited from Borwein & Borwein [4] and Almkvist and

Berndt [2].

I end with the quote of Edwards in [9], “read the masters”, an advice that is still most valuable.

Sometimes, even after understanding the logic of Gauss’s derivations after laborious hours of trying,

it took me more time to really understand what he was telling, after rereading his work. In order to

safe a future reader both time and frustration – nothing is worse than struggling with a puzzle and

not finding the solution, because it confronts you with own stupidity –, I have provided here ample,

perhaps too many, intermediate steps. I hope that the story may read fluently, while opposing the

master’s “pauca” in his adagium.

2 The arithmetic-geometric mean (AGM)

1. Definition of the arithmetic-geometric mean M (a, b). The arithmetic mean of two numbers a and

b is defined by mA = a+b
2 and their geometric mean by mG =

√
ab. We first assume that a and b are

non-negative real numbers, to avoid complications with the squareroot in mG =
√
ab. An immediate

bound mA ≥ mG, with equality only if a = b, follows from

0 ≤ 1

2

(√
a−

√
b
)2

=
a+ b

2
−
√
ab (1)

After taking the logarithm of the geometric mean, we observe that logmG = log a+log b
2 is an arithmetic

mean.

Gauss [13] studies the sequence {(an, bn)}n≥0, where
3

an = an−1+bn−1

2 and bn =
√
an−1bn−1 (2)

2“Pauca, sed matura” is Latin and means “Few, but ripe”. Gauss wrote clearly and briefly in a Ciceroan Latin

style. He avoided unnecessary proza, in contrast to the then ruling French scientists of the Academy Francaise in Paris.

Each sentence in his work plays a role; it is hard to further condense or skip parts without missing the idea. When

contempories complained to him that he shielded the way in which he has found his discoveries, Gauss briefly replied:

“Have you ever seen a beautiful building, to which the scaffold is still attached?”

“Pauca” does not imply that Gauss wrote only few articles. In fact, he was very productive, but he could have

published more if his high writing standard was reduced. His work on AGM is an example; he did not publish this pearl.
3Gauss writes accents instead of subscripts in n; thus a′ = a1, a

′′ = a2, a
′′′ = a3, etc.
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starting from (a0, b0) = (a, b). Explicitly, the arithmetic-geometric mean (AGM) algorithm (2), written

in two columns, is

a0 = a b0 = b

a1 =
a+b
2 b1 =

√
ab

a2 =
1
2

(
a+b
2 +

√
ab
)

b2 =
√

a+b
2

√
ab

a3 = · · · b3 = · · ·

Invoking the inequality mA ≥ mG to (2) illustrates that an ≥ bn for any integer n ≥ 1. In other

words, for n ≥ 1, the left column with {an}n≥1 will contain numbers that are always larger than the

right column with {bn}n≥1, if we exclude the uninteresting case that a = b, for which an = bn = a and

nothing changes with n. If n = 0, we obviously have that a0 < b0 if a < b, but for n ≥ 1, it holds that

an ≥ bn. In the sequel, therefore, we assume that a > b, so that the inequality an > bn holds for any

integer n ≥ 0. Using (1), Tannery and Molk [29, p. 269] mention an − bn = 1
2

(√
an−1 −

√
bn−1

)2
,

implying that an > bn for any integer n ≥ 1, as found above. Combining an > bn with the arithmetic

mean an = an−1+bn−1

2 < an−1 then shows, for any integer n ≥ 1, that an < an−1, while the geometric

mean bn =
√
an−1bn−1 > bn−1 shows that bn > bn−1.

2. Convergence of the AGM algorithm in (2). Gauss observes, for a ≥ b ≥ 0, that

an − bn
an−1 − bn−1

=
(an − bn) (an + bn)

(an−1 − bn−1) (an + bn)
=

a2n − b2n
(an−1 − bn−1) (an + bn)

=

(
an−1+bn−1

2

)2
− an−1bn−1

(an−1 − bn−1) (an + bn)
=

(an−1 − bn−1)
2

4 (an−1 − bn−1) (an + bn)

=
an−1 − bn−1

2 (an−1 + bn−1) + 4bn
≤ 1

2

an−1 − bn−1

an−1 + bn−1
≤ 1

2

where equality only holds if b = 0. Only if b = 0, the AGM algorithm (2) reduces to bn = 0 and

an = 1
2an−1 with solution an = a

2n for n ≥ 0. Hence, for a > b > 0, Gauss obtains the inequality

an − bn <
1
2 (an−1 − bn−1), which after iteration on n ≥ 0 shows4 that

an − bn <
1

2n
(a− b) (3)

With an ± bn = 1
2

(√
an−1 ±

√
bn−1

)2
, we have

an − bn
an + bn

=

(√
an−1 −

√
bn−1

√
an−1 +

√
bn−1

)2

=

 an−1 − bn−1(√
an−1 +

√
bn−1

)2


2

<

(
an−1 − bn−1

an−1 + bn−1

)2

because
(√

an−1 +
√
bn−1

)4
=
(
an−1 + bn−1 + 2

√
an−1bn−1

)2
> (an−1 + bn−1)

2 for a > b > 0. Iter-

ated p times,

an − bn
an + bn

<

(
an−1 − bn−1

an−1 + bn−1

)2

< · · · <
(
an−p − bn−p
an−p + bn−p

)2p

4Indeed, denote the difference vn = an − bn, then the recursion is vn <
1
2
vn−1. Applying the recursion p-times yields

vn <
1
2
vn−1 <

1
4
vn−2 <

1
8
vn−3 < · · · or vn <

1
2p
vn−p. If n− p = 0, then v0 = a− b and we arrive, after choosing p = n

to (3).
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leads, after choosing p = n,

an − bn
an + bn

<

(
a− b

a+ b

)2n

(4)

Since an+1 = 2 (an + bn) and an+1 < an, we find that an − bn < 2a1

(
a−b
a+b

)2n
, which tends to zero

considerably faster than a−b
2n in (3) for n > n0, where n0 is a threshold value.

In summary, the difference an − bn in the sequence {(an, bn)}n≥0 tends to zero with n → ∞. In

other words, the sequences {an}n≥0 and {bn}n≥0 converge to the same limit M (a, b), which Gauss

calls the arithmetic-geometric mean (AGM),

M (a, b) = lim
n→∞

an = lim
n→∞

bn (5)

For a > b > 0, the above analysis shows that

a > a1 > · · · > an > an+1 ≥ · · · ≥M (a, b) ≥ · · · ≥ bn+1 > bn > · · · > b1 > b

while

M (a, a) = a M (a, 0) = 0

Since any pair (an, bn) in the sequence {(an, bn)}n≥0 converges to the same limit, we also conclude

that5

M (a, b) =M (a1, b1) = · · · =M (an, bn) = · · · (6)

3. Specifying the convergence rate of the AGM algorithm. Gauss [13, p. 375], followed by Borwein

& Borwein [4] and Almkvist and Berndt [2], defines, for n ≥ 0, a more quantitative measure of

convergence

cn =
√
a2n − b2n (7)

that obeys, with the AGM recursion (2),

cn =

√(
an−1 + bn−1

2

)2

− (an−1bn−1) =

√(
an−1 − bn−1

2

)2

=
an−1 − bn−1

2
=

a2n−1 − b2n−1

2 (an−1 + bn−1)

and

cn =
c2n−1

4an
(8)

After p iterations of (8), we find that cn =
(cn−p)

2p∏p−1
j=0 (4an−j)

2j
and choosing p = n yields

cn =
(c0)

2n∏n−1
j=0 2

2j+1 (an−j)
2j

=

(
a2 − b2

)2n−1∏n−1
j=0 2

2j+1∏n−1
j=0 (an−j)

2j
=

(a− b)2
n−1

(a+ b)2
n−1

22
∑n−1

j=0 2j ∏n−1
j=0 (an−j)

2j

= 4
(a− b)2

n−1

(a+ b)2
n−1

22n+1∏n−1
j=0 (an−j)

2j
= 4

(
a−b
2

)2n−1 (
a+b
2

)2n−1

22n
∏n−1
j=0 (an−j)

2j
= 4

(
a−b
2

)2n−1

(a1)
2n−1

22n (a1)
2n−1∏n

l=2 (al)
2n−l

5The harmonic-geometric mean of a and b is 1

M( 1
a
, 1
b )

= ab
M(a,b)

, where the equality follows from the scaling property

(11) below.
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and

cn = 4

(
a−b
8

)2n−1∏n
l=2 (al)

2n−l

Since a > a1 > · · · ≥M (a, b), we obtain, with a2
n−1−1

2 >
∏n
l=2 (al)

2n−l

> (M (a, b))2
n−1−1, that

4a2

(
a− b

8a2

)2n−1

< cn < 4M (a, b)

(
a− b

8M (a, b)

)2n−1

where the upper bound is tighter than the lower bound. Both upper and lower bound converge to

zero extremely rapidly. A recursion inequality follows from (8) with an ≥M (a, b) as

cn ≤
c2n−1

4M (a, b)
(9)

4. Convergence of order m. If the sequence {αn}n≥0 = {α0, α1, α2, . . . , αn} converges to α, i.e.

limn→∞ αn = α, and assume that there exist constants d > 0 and m ≥ 1 such that

|αn − α| ≤ d |αn−1 − α|m for n ≥ 2

then the convergence of the sequence {αn}n≥0 is of m-th order. Thus, cn in (8) tends to zero

quadratically and the convergence of {cn}n≥0 is of second order. The difference an − bn = 2cn+1 <

8M (a, b)
(

a−b
8M(a,b)

)2n
is a measure of the speed of convergence and of the number of common digits

as a function of n. A convergence of second order means that each iteration in the AGM algorithm

(2) for positive a and b approximately doubles the number of correct decimal digits. Indeed, since

bn < M (a, b) < am for any pair of finite integers n and m and a > b > 0, the inequality (4) with
a−b
a+b = 10−r < 1 and r > 0 (thus excluding that b = 0), shows that

an
an+1

<
bn
an+1

+
1

2

(
10−r

)2n
< 1 + 10−r.2

n
where r = − log10

(
a− b

a+ b

)
(10)

which implies that the ratio an
an+1

starts tending to one quadratically for n > n0, where r2
n0 ≥ 1; thus

for n > − log r
log 2 = − log2 r. Hence, quadratic convergence starts immediately when r ≥ 2. Only if r = 0,

thus only if b = 0, then the AGM algorithm converges linearly to zero.

If tn (z) =
∑n

k=0 fk (z0) (z − z0)
k is the n-order Taylor polynomial, then

|tn (z)− α| = |tn−1 (z) + fn (z0) (z − z0)
n − α| ≤ |tn−1 (z)− α|+ |fn (z0)| |(z − z0)

n|

shows that the convergence of Taylor series is, at best if |fn (z0)| |(z − z0)
n| < ε, of first order or the

convergence is linear.

5. Scaling of M (a, b). If we multiply both an and bn by a positive real number β, then the AGM

recursion (2) shows that also an+1 and bn+1 are multiplied by β. Hence, limn→∞ βan = βM (a, b) and

M (aβ, bβ) = βM (a, b) (11)

Taking β = 1
a and subsequently β = 1

b in (11) yields M (a, b) = aM
(
1, ba
)
= bM

(
a
b , 1
)
. The scaling

(11) means that the study ofM (a, b) can be reduced toM (1, x), where 0 ≤ x ≤ 1, because we assume
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Figure 1: The three means of x and 1: the arithmetic mean 1+x
2 , Gauss’s AGM M (x, 1) and the

geometric mean
√
x, both on lin-lin and log-log scale (inset).

as Gauss that a > b. However, interchanging a and b in the iterative algorithm (2) does not impact

the limit, i.e. M (a, b) = M (b, a). Thus, alternatively M (a, b) can be reduced to M (x, 1), where

x ≥ 1. Fig. 1 draws M (x, 1) together with its upper bound 1+x
2 and lower bound

√
x on a lin-lin and

log-log scale.

6. Backward AGM algorithm. Gauss [13, art. 2; p. 362-363] also inverts the AGM recursion (2) as{
2an = an−1 + bn−1

b2n = an−1bn−1

Substituting bn−1 = b2n
an−1

into 2an = an−1 + bn−1 yields 2an = an−1 +
b2n
an−1

. After multiplying both

sides by an−1, we obtain a quadratic equation in x = an−1,

x2 − 2anx+ b2n = 0

with solution

x = an ±
√
a2n − b2n

The quadratic equation illustrates that the sum of the roots is 2an and their product is b2n so that,

since an > bn, the roots are

an−1 = an +
√
a2n − b2n and bn−1 = an −

√
a2n − b2n

and, written in terms of cn =
√
a2n − b2n,

an−1 = an + cn and bn−1 = an − cn (12)
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This recursion (12) can be formulated in the opposite direction with m = −n, where m ≥ 0,

a−m−1 = a−m +
√
a2−m − b2−m and b−m−1 = a−m −

√
a2−m − b2−m (13)

and provides the opposite direction or backward iteration of the AGM algorithm (2).

Since
√
a2−m − b2−m > 0, it holds that a−m−1 > a−m > 0 for all m ≥ 0, which implies that

limm→∞ a−m = ∞, while bn−1 = b2n
an−1

indicates that b−m−1

b−m
= b−m

a−m−1
< b−m

a−m
and b−m−1

b−m
is decreasing

for all m ≥ 0, so that limm→∞ b−m = 0.

With cn = an−1−bn−1

2 and also cn =
a2n−1−b2n−1

4an
, it follows fromM (an, cn) =M

(
an+cn

2 ,
√
ancn

)
that

M (an, cn) =M

1

2

(
an +

an−1 − bn−1

2

)
,

√
a2n−1 − b2n−1

4an
an


=M

(
1

2
an−1,

1

2

√
a2n−1 − b2n−1

)
=

1

2
M (an−1, cn−1)

Iteration in n shows that

M (a, c) = 2nM (an, cn) (14)

and also M (a, c) = 2−mM (a−m, c−m). The definition (5) of M (a, b) then indicates that

M (a, c) = lim
m→∞

a−m
2m

= lim
m→∞

c−m
2m

illustrating, because M (a, c) is finite, that the sequence a0, a−1, a−2, . . . and c0, c−1, c−2, . . . grow as a

geometric series in 2m, which leads, with the definition c−m =
√
a2−m − b2−m, again to limm→∞ b−m =

0. If a = b
√
2, then c =

√
a2 − b2 = b, so that M (a, b) =M (a, c).

The backward iteration can be avoided by altering the starting values in the AGM algorithm

(2). Indeed, let a′n and b′n satisfy the AGM recursion (2) with initial values a′0 = a0 and b′0 = c0 =

1
2 (a−1 − b−1), then c

′
0 =

√
(a′0)

2 − (b′0)
2 = b0. For n = 1, we find

a′1 =
1

2

(
a0 +

1

2
(a−1 − b−1)

)
=

1

2
a−1

b′1 =

√
a2−1 − b2−1

4an
an =

1

2
c−1

c′1 =

√
(a′1)

2 − (b′1)
2 =

1

2

√
a2−1 − c2−1 =

1

2
b−1

and an induction6 shows, for any integer n, that

a′n = 2−na−n b′n = 2−nc−n c′n = 2−nb−n (15)

6Let us assume that (15) holds for n. We have already shown that (15) is satisfied for n = 1. Using (12) and

c−m−1 = 2
√
a−mc−m in (8), the case for n+ 1,

a′n+1 =
1

2

(
a′n + b′n

)
= 2−n−1 (a−n + c−n) = 2−n−1a−n−1

b′n+1 =
√
a′nb′n = 2−n√a−nc−n = 2−n−1c−n−1

c′n+1 =

√(
a′n+1

)2 − (b′n+1

)2
= 2−n−1

√
a2−n−1 − c2−n−1 = 2−n−1b−n−1

is also demonstrated. By the induction principle, (15) holds for any n ≥ 1.
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We conclude that the forward AGM algorithm with the set {an, bn, cn} and with the complementary

set {a′n, b′n, c′n}, connected via (15), combine both forward and backward algorithm and no other

information is gained by searching for another set.

Gauss [13, art. 3] computes 4 examples with different (a, b) up to 20 decimal digits (!) to illustrate

divergence in (13) on the one hand and how fast the recursion (2) converges on the other hand.

Numerical computations confirm a convergence of second order and that the iteration n in (2) has

about twice the number of correct digits than the iteration n− 1, which is numerically an amazingly

fast convergence. This very fast convergence of the sequence in (2) likely attracted Gauss to explore

the properties of the arithmetic-geometric mean M (a, b).

3 Power series for M (a, b)

7. Power series expansions. Gauss [13, art. 5] computes the Taylor expansion of

M (1 + x, 1) =
∞∑
k=0

hkx
k (16)

rather than M (1, x), because a Taylor only converges in a circle around a point in the complex

plane where the function is analytic. The geometric mean mG =
√
x, corresponding to M (1, x) =

M
(
1+x
2 ,

√
x
)
byM (a, b) =M (a1, b1), has a branch cut along the negative real axis. UsingM (a, a) =

a for a = 1, shows that h0 = M (1, 1) = 1. Since M (1 + x, 1) = M
(
1 + x

2 ,
√
1 + x

)
, Gauss proposes

to take x = 2t+ t2, resulting in

M (1 + x, 1) =M

(
1 + t+

t2

2
, 1 + t

)
= (1 + t)M

(
1 +

t2

2 (1 + t)
, 1

)
where the last step follows from scaling in (11). Applying the Taylor series (16) to the left- and

right-hand side yields
∞∑
k=0

hk
(
2t+ t2

)k
= (1 + t)

∞∑
k=0

hk

(
t2

2 (1 + t)

)k
(17)

As usual, Gauss almost directly gives the sequence of hk in [13, art. 5], but we proceed to simplify

the resulting series in (17) and write them as powers in t. First, invoking Newton’s binomium

∞∑
k=0

hk
(
2t+ t2

)k
=

∞∑
k=0

hkt
k (2 + t)k =

∞∑
k=0

k∑
m=0

hk

(
k

m

)
2k−mtm+k

=
∞∑
k=0

2k∑
m=k

hk

(
k

m− k

)
22k−mtm

and reversing the k- and m-sum, yields

∞∑
k=0

hk
(
2t+ t2

)k
=

∞∑
m=0


m∑

k=[m2 ]

hk

(
k

m− k

)
22k−m

 tm

Next, we compute the right-hand side in (17)

(1 + t)

∞∑
k=0

hk

(
t2

2 (1 + t)

)k
=

∞∑
k=0

hk
2k
t2k

1

(1 + t)k−1

8



and apply the Taylor series 1
(1−z)k+1 =

∑∞
m=k

(
m
k

)
zm−k for |z| < 1 (see e.g. [1, 24.1.1.B], [22, 26.3.4])

1

(1 + t)k−2+1
=

∞∑
m=k−2

(
m

k − 2

)
(−1)m−k tm−k+2 =

∞∑
m=k

(
m− 2

k − 2

)
(−1)m−k tm−k

to obtain

(1 + t)
∞∑
k=0

hk

(
t2

2 (1 + t)

)k
=

∞∑
k=0

hk
2k

∞∑
m=k

(
m− 2

k − 2

)
(−1)m−k tm+k

=
∞∑
k=0

hk
2k

∞∑
m=2k

(
m− k − 2

k − 2

)
(−1)m tm

Reversing the k- and m-sum results in

(1 + t)

∞∑
k=0

hk

(
t2

2 (1 + t)

)k
=

∞∑
m=0

(−1)m
[m2 ]∑
k=0

hk
2k

(
m− k − 2

k − 2

) tm

Equating corresponding powers in tm at both sides of (17) gives, for m ≥ 0,

m∑
k=[m2 ]

hk

(
k

m− k

)
22k−m = (−1)m

[m2 ]∑
k=0

hk
2k

(
m− k − 2

k − 2

)

If m = 1, then 2h1 = h0 = 1. It is better to rewrite the above as a recursion in hm

hm =
1

2m

(−1)m
[m2 ]∑
k=0

hk
2k

(
m− k − 2

k − 2

)
−

m−1∑
k=[m2 ]

hk

(
k

m− k

)
22k−m

 (18)

After iterating m > 0, we find h1 = 1
2 , h2 = − 1

16 , h3 = 1
32 , h4 = 21

1024 , h5 = 31
2048 , h6 = − 195

16384 ,

h7 = 319
32768 , h8 = −34325

4194304 , h9 = 58899
8388608 and h10 = −410771

67108864 . Gauss [13, art. 5] has computed the

coefficients up to h6, of course correctly, and he concludes that there is no obvious simple law that

produces these coefficients.

Subsequently, Gauss [13, art. 6] considers M (1 + x, 1− x) = (1− x)M
(
1 + 2x

1−x , 1
)
. Invoking

the Taylor (16) of M (1 + x, 1) shows that

M

(
1 +

2x

1− x
, 1

)
=

∞∑
k=0

hk

(
2x

1− x

)k
With the Taylor series 1

(1−z)k
=
∑∞

m=k−1

(
m
k−1

)
zm−k+1 for |z| < 1, we have

M

(
1 +

2x

1− x
, 1

)
=

∞∑
k=0

2khk

∞∑
m=k−1

(
m

k − 1

)
xm+1 =

∞∑
k=0

2khk

(
xk +

∞∑
m=k

(
m

k − 1

)
xm+1

)
After reversing the k- and m-sum, we find

M

(
1 +

2x

1− x
, 1

)
=

∞∑
m=0

2mhmx
m +

∞∑
m=0

{
m∑
k=0

2khk

(
m

k − 1

)}
xm+1

= 1 +
∞∑
m=1

{
2mhm +

m−1∑
k=0

2khk

(
m− 1

k − 1

)}
xm

9



We arrive at

M

(
1 +

2x

1− x
, 1

)
= 1 +

∞∑
m=1

cmx
m

where the Taylor coefficients are

cm =

m∑
k=0

(
m− 1

k − 1

)
2khk

Using the recursion (18) of the coefficients hk, we explicitly obtain the Taylor coefficients cm =∑m
k=0

(
m−1
k−1

)
2khk of M

(
1 + 2x

1−x , 1
)

as c0 = c1 = 1, c2 = c3 = 3
4 , c4 = c5 = 43

64 , c6 = c7 = 161
256 ,

c8 = c9 =
9835
16384 , c10 = c11 =

37961
65536 , etc. We observe that cm = c2[m2 ]

.

Computing M (1 + x, 1− x) = (1− x)M
(
1 + 2x

1−x , 1
)
= (1− x)

∑∞
m=0 cmx

m and observing that

M (1 + x, 1− x) is even in x, results in the Taylor series

M (1 + x, 1− x) =

∞∑
m=0

gmx
m (19)

where the Taylor coefficients gm = cm−cm−1 ofM (1 + x, 1− x) are g2m+1 = 0 and g2 = −1
4 , g4 = − 5

64 ,

g6 = − 11
256 , g8 = − 469

16384 , g10 = − 1379
65536 , etc. Gauss [13, art. 6] also remarks that the Taylor series of

the even function M (1 + x, 1− x) =
∑∞

m=0 g2mx
2m can be computed similarly as the Taylor series

M (1 + x, 1) =
∑∞

k=0 hkx
k in (16) by the substitution x = 2t

1+t2
, that transforms M (1 + x, 1− x) into

M
(
1 + 2t

1+t2
, 1− 2t

1+t2

)
. Invoking the property M (a, b) =M (a1, b2) leads to

M

(
1 +

2t

1 + t2
, 1− 2t

1 + t2

)
=M

(
1− t2

1 + t2
, 1

)
=

1

1 + t2
M
(
1 + t2, 1− t2

)
(20)

where the last equality follows from scaling in (11). Consequently, the Taylor coefficients g2m of

M (1 + x, 1− x) satisfy
∞∑
m=0

g2m

(
2t

1 + t2

)2m

=
1

1 + t2

∞∑
m=0

g2mt
4m

We omit the explicit computation, because the method is similar to that of (17). Gauss again says

that the Taylor coefficients {g2m}m≥0 do not exhibit a simple law.

8. However, in the next sentence on [13, p. 367] and just at the end of art. 6, Gauss gives the Taylor

series of
1

M (1 + x, 1− x)
=

∞∑
m=0

f2mx
2m (21)

with f0 = 1 and tells that the Taylor coefficients {f2m}m≥0 obey an interesting law!

Gauss [13, art. 7] inverts the previous relation (20)

1

M (1 + x, 1− x)

∣∣∣∣
x= 2t

1+t2

=
1 + t2

M (1 + t2, 1− t2)

substitutes at both sides the Taylor series 1
M(1+x,1−x) =

∑∞
m=0 f2mx

2m and obtains

∞∑
m=0

f2m

(
2t

1 + t2

)2m

=
(
1 + t2

) ∞∑
m=0

f2mt
4m =

∞∑
m=0

f2m
(
t2
)2m

+

∞∑
m=0

f2m
(
t2
)2m+1

=

∞∑
k=0

f2[ k2 ]
t2k

10



The Taylor series 1
(1−z)k

=
∑∞

m=k−1

(
m
k−1

)
zm−k+1 for |z| < 1 indicates that

∞∑
m=0

f2m

(
2t

1 + t2

)2m

= 1 +

∞∑
m=1

f2m2
2mt2m

∞∑
j=2m−1

(
j

2m− 1

)
(−1)j+1 (t2)j−2m+1

= 1 +
∞∑
m=1

f2m2
2m

∞∑
j=m

(
j +m− 1

2m− 1

)
(−1)j+m t2j

Reversing the summations yields

∞∑
m=0

f2m

(
2t

1 + t2

)2m

= 1 +

∞∑
j=1

{
j∑

m=1

f2m2
2m

(
j +m− 1

2m− 1

)
(−1)j+m

}
t2j

Equating corresponding powers in t2j yields, for j ≥ 1,

f2[ j2 ]
= (−1)j

j∑
m=1

f2m2
2m

(
j +m− 1

2m− 1

)
(−1)m

= f2j2
2j + (−1)j

j−1∑
m=1

f2m2
2m

(
j +m− 1

2m− 1

)
(−1)m

from which the recursion in f2j , starting at f0 = 1, follows as

f2j =
1

22j

(
f2[ j2 ]

− (−1)j
j−1∑
m=1

f2m2
2m

(
j +m− 1

2m− 1

)
(−1)m

)

Evaluating the first few coefficients yields f2 = 1
4 , f4 = 9

64 , f6 = 25
256 , f8 = 1225

16384 , f10 = 3969
65536 , etc.

Gauss recognizes that the Taylor coefficients {f2m}m≥0 of 1
M(1+x,1−x) are the squares of

√
f2 = 1

2 ,√
f4 = 3

8 = 3
2.4 ,

√
f6 = 5

16 = 1
2
3
4
5
6 ,

√
f8 = 35

128 = 1.3.5.7
2.4.6.8 ,

√
f10 = 63

256 = 1.3.5.7.9
2.4.6.8.10 , etc. In general, Gauss

finds that

f2m =

(
1.3.5 . . . (2m− 1)

2.4.6 . . . (2m)

)2

=

(
1.3.5 . . . (2m− 1)

2.4.6 . . . (2m)
.
2.4.6 . . . (2m)

2.4.6 . . . (2m)

)2

=

(
(2m)!

(2mm!)2

)2

(22)

resulting in the beautiful Taylor series around x = 0 of

1

M (1 + x, 1− x)
=

∞∑
m=0

(
(2m)!

(2mm!)2

)2

x2m = 1 +
∞∑
m=1

 m∏
j=1

2j − 1

2j

2

x2m (23)

I think that the discovery of (23) with the Taylor coefficients (22) for f2m must have been one of

the many “Eureka7” moments in Gauss’s life! After many trials or is it genial insights in the Taylor

coefficients?, he eventually succeeded in his first great step. Gauss in [13, art. 7] spends efforts in

rewriting the recursion above as a set of equations in {f2m}m≥0 and deduces, in his characteristic

genial style, the set 0 = f0 − 4f2; 0 = 9f2 − 16f4; 0 = 25f4 − 36f6; 0 = 49f6 − 64f8; etc. of which the

general form is 0 = (2m− 1)2 f2m−2 − (2m)2 f2m, for m ≥ 2. That general form again leads to the

explicit Taylor series (22).

7“Eureka” (ηυρηκα) means “I have found it” and is the Greek perfectum of ευρισκειν (to find).
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9. Taylor coefficients fm and gm. We found by numerical computations that both −24m−2g2m and

24m−2f2m are integers for m > 0. Since a binomial coefficient
(
m
k

)
is an integer for integer m and k,

it follows from
√
f2m = (2m)!

22mm!m!
=

(2mm )
22m

in (22) that

24mf2m =

(
2m

m

)2

Introducing the binomial series (1 + z)α =
∑∞

m=0

(
α
m

)
zm, convergent for |z| < 1 and for any complex

α, in the integral of arcsin z =
∫ z
0

du√
1−u2 leads to

arcsin z =

∞∑
k=0

(
−1

2

k

)
(−1)k

2k + 1
z2k+1 for |z| < 1 (24)

Using
(− 1

2
k

)
= (−1)k

(k− 1
2

k

)
= (−1)k

Γ( 1
2
+k)

k! Γ( 1
2
)

and the duplication formula of the Gamma function,

Γ(2z) = 1
2
√
π
22zΓ(z)Γ(z + 1

2), shows with Γ(12) =
√
π that

(
−1

2

k

)
=

(−1)k Γ(2k)

22k−1k!Γ(k)
=

(−1)k (2k − 1)!

22k−1k! (k − 1)!
=

(−1)k (2k)!

22k(k!)2
=

(−1)k

22k

(
2k

k

)
(25)

illustrating that
(− 1

2
k

)
are rational numbers8 with denominator at most 22k−1, because the integer(

2k−1
k

)
can be even and, hence, divisible by 2. In summary, this argument proves that 24m−2f2m are

integers. We have not spent time to prove the case for −24m−2g2m.

With (25), we also have

1

M (1 + x, 1− x)
=

∞∑
m=0

(
−1

2

m

)2

x2m (26)

while
(− 1

2
k

)2
=
(
Γ( 1

2
+k)

k! Γ( 1
2
)

)2
leads to

1

M (1 + x, 1− x)
= F

(
1

2
,
1

2
, 1;x2

)
(27)

where the hypergeometric function [22, 15.2.1] is F (a, b, c; z) = Γ(c)
Γ(a)Γ(b)

∑∞
k=0

Γ(a+k)Γ(b+k)
Γ(c+k)k! zk.

We found that the largest prime number in the decomposition of 24m−2f2m is the integer just

smaller than 2m, i.e. pπ(2m), where pn is the n-th prime number and π (x) denotes the number of

primes smaller than or equal to x. Since f2m is a square, in contrast to g2m, all prime numbers have

multiplicity at least two and
√
f2m contains many small primes up pπ(2m). The integers

√
f2m and∏π(2m)

j=1 pj are even comparable: we found that
√
f2m always contains the factor

∏π(2m)
j=π(m)+1 pj with

the largest primes in the prime decomposition of
√
f2m.

In contrast, −g2m < f2m contains a few large primes larger than pπ(2m) with multiplicity 1: one

such prime for m = 2 up to m = 8, precisely two larger primes than pπ(2m) for m = 9 up to m = 15,

at most three larger primes (sometimes two or 1) for m = 16 up to m = 25, at most four larger primes

for m = 26 up to m = 36, at most 5 larger primes (actually only 1 at m = 37) for m = 37 up to

8Interestingly,
( 1

2
k

)
=

Γ( 1
2
+1)

k!Γ( 1
2
−k+1)

= 1
(1−2k)

(− 1
2

k

)
are also rational numbers with the same denominator as

(− 1
2

k

)
=

Γ( 1
2 )

k!Γ( 1
2
−k)

, because
(− 1

2
k

)
is divisible by (2k − 1).
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m = 48, at most 6 larger primes (actually only 1 at m = 49) from m = 49 up to more than m = 66

and 7 larger primes at m = 67 (we stopped at m = 70).

By fitting up to m = 500, we found the accurate fit for m > 0:

−f2m
g2m

≃ 0.615425 + 0.787049 log (2m) + 0.0798748 log2 (2m)

Also, y = log

( √
f2m∏π(2m)

j=π(m)+1
pj

)
linearly correlates with x = 2m and the fitted line (up to m = 30)

through the scattered data is y ≈ −0.793422 + 0.226858x and y ≈ −1.61084 + 0.223784x (up to

m = 120) revealing that the data y irregularly “oscillates” around the line. In other words, apart from

the clear linear correlation, the finer details of y as a function of x = 2m are complicated.

4 The arithmetic-geometric mean and elliptic integrals

10. An integral for M (a, b). After the discovery of the Taylor series for 1
M(1+x,1−x) = 1+

∑∞
m=1 f2mx

2m

in (23) and (26), Gauss dived deeper, incredibly much deeper as we will see soon and as elaborated

in Cox [7, Section 2]. A next fundamental result, called a “tour de force” by McKean and Moll, is∫ π
2

0

dθ√
a2 sin2 θ + b2 cos2 θ

=
π

2

1

M (a, b)
(28)

which is proved in the literature in several ways. Gauss himself provides two proofs, the first via a

power series and the second via an integral transformation that he has just stated, without any clue

how he has found it. We will give a couple of demonstrations, but they are essentially variations on

Gauss’s proofs.

In his second proof, Gauss9 proves (28), but we follow Cox [7, p. 278] and define

I (a, b) =

∫ π
2

0

dθ√
a2 sin2 θ + b2 cos2 θ

(29)

Substituting θ = π
2 − u and employing sin

(
π
2 − u

)
= cosu and cos

(
π
2 − u

)
= sinu indicates that∫ π

2

0

dθ√
a2 sin2 θ + b2 cos2 θ

=

∫ π
2

0

du√
a2 cos2 u+ b2 sin2 u

and that I (a, b) = I (b, a). The key is to demonstrate that I (a, b) = I (a1, b1), because iteration of

the AGM algorithm (2) then gives

I (a, b) = I (a1, b1) = I (a2, b2) = · · · = I (an, bn)

for all n. Taking the limit then yields

I (a, b) = lim
n→∞

I (an, bn) =

∫ π
2

0

dθ

limn→∞
√
a2n sin

2 θ + b2n cos
2 θ

=
1

M (a, b)

∫ π
2

0

dθ√
sin2 θ + cos2 θ

and

I (a, b) =
π

2

1

M (a, b)
(30)

9Gauss Werke, Band 3, p. 352-353. In fact, Gauss shows that 1
2π

∫ 2π

0
dθ√

a2 cos2 θ+b2 sin2 θ
= 1

M(a,b)
.
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We will devote many articles below and in appendix C to deduce I (a, b) = I (a1, b1) from its integral

definition (29) by substitutions.

11. A verification of Gauss’s fundamental integral (29). Before giving Gauss’s first proof, we provide

a verification proof by series expansion of the integral I (a, b) in (29). We rewrite the integral as

I (a, b) =

∫ π
2

0

du√
a2 cos2 u+ b2 sin2 u

=

∫ π
2

0

dθ√
a2 − (a2 − b2) sin2 θ

=
1

a

∫ π
2

0

dθ√
1− (a2−b2)

a2
sin2 θ

Introducing the binomial expansion (1 + z)α =
∑∞

m=0

(
α
m

)
zm, valid for |z| < 1, and denoting k = c

a =√
a2−b2
a < 1 yields

I (a, b) =
1

a

∞∑
m=0

(
−1

2

m

)
k2m

∫ π
2

0
sin2m θdθ

Invoking the Beta integral 1
2B (a, b) =

∫ π
2
0 sin2a−1 θ cos2b−1 θdθ in [22, 5.12.2] indicates that∫ π

2

0
sin2m θdθ =

1

2
B

(
m+

1

2
,
1

2

)
=

1

2

Γ
(
m+ 1

2

)
Γ
(
1
2

)
Γ (m+ 1)

=

√
π

2

Γ
(
m+ 1

2

)
m!

while also
∫ π

2
0 cos2m θdθ =

∫ π
2
0 sin2m θdθ. Further, with

(− 1
2
k

)
= (−1)k

Γ( 1
2
+k)

k! Γ( 1
2
)
, we find

∫ π
2

0
sin2m θdθ =

∫ π
2

0
cos2m θdθ =

√
π

2

Γ
(
m+ 1

2

)
m!

=
π

2
(−1)m

(
−1

2

m

)
=
π

2

(
2m
m

)
22m

=
π

2

1.3.5 . . . (2m− 1)

2.4.6 . . . (2m)
=
π

2

m∏
j=1

2j − 1

2j
(31)

where the last equalities follow from (22) and (25). Thus, we obtain

I (a, b) =
π

2

1

a

∞∑
m=0

(
−1

2

m

)2

k2m =
π

2

1

a

∞∑
m=0

(
−1

2

m

)2(
1− b2

a2

)m
which converges for |k| < 1, but diverges for k → 1 logarithmically (art. 47). The Taylor series

1
M(1+x,1−x) =

∑∞
m=0

(− 1
2
m

)2
x2m in (26) then shows that

I (a, b) =
π

2

1

a

1

M

(
1 +

√
1− b2

a2
, 1−

√
1− b2

a2

)
Finally, M (a, b) =M (a1, b1) leads to

I (a, b) =
π

2

1

bM

(
1,

√(
1−

√
1− b2

a2

)(
1 +

√
1− b2

a2

)) =
π

2

1

aM
(
1, ba
) =

π

2

1

M (a, b)

12. Gauss’s first proof or fundamental integral (29). Now, we return to Gauss’s great insight. From his

Taylor series 1
M(1+x,1−x) =

∑∞
m=0

(− 1
2
m

)2
x2m in (26), Gauss [13, art. 8] observes that

∫ π
0 cos2 φdφ = 1

2π,
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∫ π
0 cos4 φdφ = 1

2
3
4π,

∫ π
0 cos6 φdφ = 1

2
3
4
5
8π etc., which are instances of (31). Introduced in the Taylor

series (26) gives

1

M (1 + x, 1− x)
=

∞∑
m=0

(
1.3.5 . . . (2m− 1)

2.4.6 . . . (2m)

)2

x2m =
1

π

∞∑
m=0

1.3.5 . . . (2m− 1)

2.4.6 . . . (2m)

∫ π

0
cos2m φdφ x2m

=
1

π

∫ π

0
dφ

{ ∞∑
m=0

1.3.5 . . . (2m− 1)

2.4.6 . . . (2m)
(x cosφ)2m

}
=

1

π

∫ π

0
dφ

{ ∞∑
m=0

(
−1

2

m

)
(x cosφ)2m

}

=
1

π

∫ π

0

dφ√
1− (x cosφ)2

which is an instance of his fundamental result (28). Gauss further observes, for coefficients vk (x) only

dependent on x, that

1√
1− (x cosφ)2

= P + 2
∞∑
k=1

vk (x) cos (2kφ)

and that, after integrations with respect to φ, it holds that

1

π

∫ φ

0

dφ√
1− (x cosφ)2

= P
φ

π
+

1

π

∞∑
k=1

vk (x)

k
sin (2kφ)

which we have specified in (143) on p. 72. After letting φ = π, Gauss deduces

1

M (1 + x, 1− x)
= P =

1

π

∫ π

0

dφ√
1− (x cosφ)2

(32)

Gauss [13, art. 8] proceeds with the more general form, with positive real α, β and γ ≤ β,

W =
α√

β − γ cos2 φ
=

α
√
β
√
1− γ

β cos
2 φ

=
α√
β

(
P + 2

∞∑
k=1

bk

(√
γ

β

)
cos (2kφ)

)

which has a maximum Wmax = α√
β−γ and a minimum Wmin = α√

β
, while 1

π

∫ π
0

αdφ√
β−γ cos2 φ

= α√
β
P

corresponds to an average Wav of φ over the interval [0, π] and, due to periodicity of the cosine cosφ,

thus over the entire real φ axis. With Wmin ≤Wav ≤Wmax and (32), we find that α√
β
≤ α√

β
P ≤ α√

β−γ
and √

β − γ

α
≤

√
β

α
M

(
1 +

√
γ

β
, 1−

√
γ

β

)
≤

√
β

α

Using scaling cM (a, b) =M (ca, cb) in (11) and the property M (a, b) =M (a1, b1), it holds that
√
β

α
M

(
1 +

√
γ

β
, 1−

√
γ

β

)
=M

(√
β

α
+

√
γ

α
,

√
β

α
−

√
γ

α

)
=M

(√
β

α
,

√
β − γ

α

)
=M

(
1

Wmin
,

1

Wmax

)
and

1

Wmax
≤M

(
1

Wmin
,

1

Wmax

)
≤ 1

Wmin

Consequently, we arrive at the known bounds b ≤ M (a, b) ≤ a for a > b. Gauss ends part 1 in [13,

art. 8] and appreciates the divine beauty10 of (28) over its applications to astronomy.

10“...veritatum aeternarum sublimitatem atque divinam venustatem...”, in English “... sublimity and divine beauty of

eternal truths...”
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13. Newman’s approach to (28). Before turning to elliptic integrals in Section 8, we give a first example

of an integral substitution that demonstrates I (a, b) = I (a1, b1). After substitution t = tan θ, Gauss’s

fundamental formula (28) becomes

1

M (a, b)
=

2

π

∫ π
2

0

√
1 + tan2 θdθ√
a2 tan2 θ + b2

=
2

π

∫ ∞

0

1√
1 + t2

√
a2t2 + b2

dt

Letting u = at results in

1

M (a, b)
=

2

π

∫ ∞

0

du√
u2 + a2

√
u2 + b2

=
1

π

∫ ∞

−∞

du√
(u2 + a2) (u2 + b2)

Newman [21] proves M (a, b) =M (a1, b1), which equals∫ ∞

−∞

dt√(
t2 +

(
a+b
2

)2)
(t2 + ab)

=

∫ ∞

−∞

du√
(u2 + a2) (u2 + b2)

after the substitution t = 1
2

(
u− ab

u

)
or u = t±

√
t2 + ab. If we take the plus sign, then the interval t ∈

(−∞,∞) is mapped on the interval u ∈ [0,∞). The negative sign results in the interval u ∈ (−∞, 0].

Proceeding with the plus sign, we obtain∫ ∞

−∞

dt√(
t2 +

(
a+b
2

)2)
(t2 + ab)

=
1

2

∫ ∞

0

(
1 + ab

u2

)
du√(

1
4

(
u2 − 2ab+ a2b2

u2

)
+
(
a+b
2

)2)(1
4

(
u2 − 2ab+ a2b2

u2

)
+ ab

)
=

∫ ∞

0

u
(
1 + ab

u2

)
du√

(u4 + (a2 + b2)u2 + a2b2)
(
1
4

(
u2 + 2ab+ a2b2

u2

))
= 2

∫ ∞

0

(
u+ ab

u

)
du√

((u2 + a2) (u2 + b2))
(
u+ ab

u

)2 = 2

∫ ∞

0

du√
((u2 + a2) (u2 + b2))

=

∫ ∞

−∞

du√
(u2 + a2) (u2 + b2)

After n iterations, we arrive at∫ ∞

−∞

du√
(u2 + a2) (u2 + b2)

=

∫ ∞

−∞

du√
(u2 + a2n) (u

2 + b2n)

and taking the limit n→ ∞, recalling that limn→∞ an = limn→∞ bn =M (a, b) = µ, leads to∫ ∞

−∞

du√
(u2 + a2) (u2 + b2)

= lim
n→∞

∫ ∞

−∞

du√
(u2 + a2n) (u

2 + b2n)
=

∫ ∞

−∞

du

u2 + µ2
=
π

µ

which is again Gauss’s fundamental result (28).

5 Series and identities for M (a, b)

We prove a number of formulae for the arithmetic-geometric mean M (a, b), which Gauss has just

listed without any explanation in [14, p. 376]. The first articles in this section are elementary, except

for art. 16-17. These formulae illustrate Gauss’s versatility with his AGM algorithm (2).
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14. Iterating the recursion an = an+1 + cn+1 in (12) p times,

an = an+p +

p∑
k=1

cn+k

leads with M (a, b) = limp→∞ an+p to [14, p. 376]

M (a, b) = an − lim
p→∞

p∑
k=1

cn+k = an − cn+1 − cn+2 − · · · − cn+p − · · ·

while bn = an+1 − cn+1 similarly results in

M (a, b) = bn + lim
p→∞

p∑
k=1

cn+k = bn + cn+1 − cn+2 − · · · − cn+p − · · ·

15. After one iteration, the recursion cn+1 =
c2n

4an+1
in (8) equals

cn+2 =
c2n+1

4an+2
=

1

4an+2

c4n
16a2n+1

Since an+2 =
1
2 (an+1 + bn+1) =

1
2

(
1
2 (an + bn) +

√
anbn

)
=
(√

an+
√
bn

2

)2
, we obtain

√
cn+2 =

1

8
√
an+2

c2n
an+1

=
1

2
(√
an +

√
bn
) (an − bn) (an + bn)

(an + bn)

Hence, we find that
√
an+2 = 1

2

(√
an +

√
bn
)
and that

√
cn+2 = 1

2

(√
an −

√
bn
)
. Their combination

leads to
√
cn+2 =

√
an −

√
an+2 (33)

After p iterations of
√
an =

√
an+2 +

√
cn+2 in (33),

√
an =

√
an+2p +

p∑
k=1

√
cn+2k

and passing to the limit p→ ∞, the following series originates [14, p. 376]

√
M (a, b) =

√
an − lim

p→∞

p∑
k=1

√
cn+2k =

√
an −

√
cn+2 −

√
cn+4 − · · · − √

cn+2p − · · ·

Since
√
bn =

√
an − 2

√
cn+2, we also have√
M (a, b) =

√
bn +

√
cn+2 −

√
cn+4 − · · · − √

cn+2p − · · ·

16. From cn = an−1−bn−1

2 , it follows that

2bn−1cn = bn−1an−1 − b2n−1 = b2n − b2n−1 (34)

The right-hand side can be written in terms of cn with b2n = a2n − c2n as

b2n − b2n−1 = a2n − a2n−1 − c2n + c2n−1 (35)

17



With the AGM formulae (2),

a2n− a2n−1 =
1

4
a2n−1+

1

2
an−1bn−1+

1

4
b2n−1− a2n−1 = −3

4
a2n−1+

1

2
b2n+

1

4
b2n−1 = −3

4
c2n−1+

1

2

(
b2n − b2n−1

)
substitution into (35) yields

b2n − b2n−1 = −c2n + c2n−1 −
3

4
c2n−1 +

1

2

(
b2n − b2n−1

)
and, simplified,

b2n − b2n−1 = −2c2n +
1

2
c2n−1 (36)

After introduction of (36) into (34), we arrive at

2bn−1cn =
1

2
c2n−1 − 2c2n (37)

Iterating c2n = 4bncn+1 + 4c2n+1 in (37) p times,

c2n = 4bncn+1+42bn+1cn+2+43bn+2cn+3+ · · ·+4pbn+p−1cn+p+4pc2n+p =

p∑
k=1

4kbn+(k−1)cn+k+4pc2n+p

from which we find, for n = 0, that c2 =
∑∞

k=1 4
kb(k−1)ck. Summing (37) from n = m and n = p

yields

2

p∑
n=m

bn−1cn =
1

2

p∑
n=m

c2n−1 − 2

p∑
n=m

c2n =
1

2

p−1∑
n=m−1

c2n − 2

p∑
n=m

c2n

and

2

p∑
n=m

bn−1cn =
1

2
c2m−1 −

3

2

p−1∑
n=m

c2n − 2c2p (38)

while summing (36) gives

p∑
n=m

b2n −
p∑

n=m

b2n−1 = −2

p∑
n=m

c2n +
1

2

p∑
n=m

c2n−1

and simplifies to

b2p − b2m−1 =
1

2
c2m−1 −

3

2

p−1∑
n=m

c2n − 2c2p

With (38), we obtain

b2p = b2m−1 + 2

p∑
n=m

bn−1cn

and also

a2p = b2m−1 + 2

p∑
n=m

bn−1cn + c2p

Again with (38), we arrive at

a2p = b2m−1 +
1

2
c2m−1 −

3

2

p−1∑
n=m

c2n − c2p

18



and, if p→ ∞, [14, p. 376]

M2 (a, b) = b2m−1 +
1

2
c2m−1 −

3

2

∞∑
n=m

c2n

17. From cn =
c2n−1

4an
in (8), it follows that log

(
an
cn

)
= log

(
4a2n
c2n−1

)
= 2 log

(
2an
cn−1

an−1

an−1

)
, leading to the

recursion

log

(
an
cn

)
= 2 log

(
2an
an−1

)
+ 2 log

(
an−1

cn−1

)
(39)

After p iterations, we obtain

log

(
an
cn

)
=

p∑
j=1

2j log

(
2an+1−j
an−j

)
+ 2p log

(
an−p
cn−p

)

Since π
2
K(k′)
K(k) = limn→∞

1
2n log

(
an
cn

)
as shown by King11 [17, eq. (60) on p. 13], we find, after dividing

both sides by 2n,

1

2n
log

(
an
cn

)
=

p∑
j=1

1

2n−j
log

(
2an+1−j
an−j

)
+

1

2n−p
log

(
an−p
cn−p

)

=
1

2n−p
log

(
an−p
cn−p

)
+

p∑
j=1

1

2n−j
log

(
an+1−j
an−j

)
+ log (2)

p∑
j=1

1

2n−j

After executing the geometric series
∑p

j=1
1

2n−j = 21−n
∑p−1

j=0 2
j = 21−n (2p − 1) and letting l = n− j,

we obtain

1

2n
log

(
an
cn

)
=

1

2n−p
log

(
an−p
cn−p

)
+

n−1∑
l=n−p

1

2l
log

(
al+1

al

)
+ 2

(
2p−n − 2−n

)
log (2)

=
1

2n−p
log

(
4an−p
cn−p

)
−

n−1∑
l=n−p

1

2l
log

(
al
al+1

)
− 21−n log (2)

Finally12, choosing first p = n−m and then n→ ∞ leads to Gauss’s expansion [14, p. 377],

π

2

M (a, b)

M (a, c)
=

1

2m
log

(
4am
cm

)
−

∞∑
l=m

1

2l
log

(
al
al+1

)
(40)

where the sum in (40) contains only non-negative terms because al ≥ al+1.

11King’s derivation, similar in framework as his Section V that we have entirely derived in art. 57 based on a few

earlier articles, is equivalent to Gauss’s in [14, p. 388], illustrating the difficulty to follow the sketches of Gauss in the

Nachlass in sequential order. The formulae (40) and (42) are listed on p. 377.

12Gauss’s fundamental integral 1
M(a,b)

= 2
aπ
K

(√
1−

(
b
a

)2)
in (84) and k2 = c2

a2 = 1− b2

a2 = 1− (k′)
2
indicates that

M (a, b)

M (a, c)
=

K

(√
1−

(
c
a

)2)
K

(√
1−

(
b
a

)2) =
K
(√

1− k2
)

K (k)
=
K (k′)

K (k)
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Gauss’s alternative expansion is deduced from log
(
an−1

an

)
+log

(
bn−1

bn

)
= log

(
an−1bn−1

anbn

)
= 2 log

(
bn
bn+1

)
,

which leads the recurrence formula

log

(
an−1

an

)
= log

(
bn
bn−1

)
− 2 log

(
bn+1

bn

)
(41)

Substituting (41) into (40),

π

2

M (a, b)

M (a, c)
=

1

2m
log

(
4am
cm

)
−

∞∑
l=m

1

2l

(
log

(
bl+1

bl

)
− 2 log

(
bl+2

bl+1

))

=
1

2m
log

(
4am
cm

)
−

∞∑
l=m

1

2l
log

(
bl+1

bl

)
+ 4

∞∑
l=m+1

1

2l
log

(
bl+1

bl

)

=
1

2m
log

(
4am
cm

)
− log

(
bm+1

bm

)
−

∞∑
l=m+1

1

2l
log

(
bl+1

bl

)
+ 4

∞∑
l=m+1

1

2l
log

(
bl+1

bl

)
and simplifying ambm

cmbm+1
= bm+1

cm
gives Gauss’s alternative expansion [14, p. 377]

π

2

M (a, b)

M (a, c)
=

1

2m
log

(
4bm+1

cm

)
+ 3

∞∑
l=m+1

1

2l
log

(
bl+1

bl

)
(42)

where the sum in (42) also contains only non-negative terms because bl+1 ≥ bl. Since an and bn

converge very rapidly towards each other by the AGM algorithm (2) and an
an−1

= 1 + O
(
10−r.2

n)
in (10), it holds, using log (1 + x) = x + O

(
x2
)
, that log

(
an
an−1

)
= O

(
10−r.2

n)
. Thus, the series∑∞

l=m
1
2l
log
(

al
al+1

)
in (40) as well as

∑∞
l=m+1

1
2l
log
(
bl+1

bl

)
in (42) also converge quadratically as the

AGM algorithm (2). In art. 42, we derive, following Gauss, from (40) and (42) an upper and lower

bound for π, that illustrates the AGM algorithm’s characteristic approximate doubling in decimal

digits per iteration m.

From (40) and (42) together with M (a, c) = 2mM (am, cm) in (14) and M (a, b) = M (am, bm) in

(6), we deduce that

π

2
=
M (am, cm)

M (am, bm)
log

(
4am
cm

)
− M (a, c)

M (a, b)

∞∑
l=m

1

2l
log

(
al
al+1

)
=
M (am, cm)

M (am, bm)
log

(
4am
cm

)
+O

(
10−r.2

m)
π

2
=
M (am, cm)

M (am, bm)
log

(
4bm+1

cm

)
+ 3

M (a, c)

M (a, b)

∞∑
l=m+1

1

2l
log

(
bl+1

bl

)
=
M (am, cm)

M (am, bm)
log

(
4bm+1

cm

)
+O

(
10−r.2

m)
and

M (am, cm)

M (am, bm)
log

(
4bm+1

cm

)
≤ π

2
≤ M (am, cm)

M (am, bm)
log

(
4am
cm

)
(43)

Thus, Gauss notes that M(am,cm)
M(am,bm) log

(
4am
cm

)
and M(am,cm)

M(am,bm) log
(
4 bm+1

cm

)
, as well as the two backward

variants that we omit, tend to the same limit π
2 if m grows large, from which he concludes13 that

13With the scaling (11) property of M (a, b) and observing that log
bm+1

am
< 0 for finite m, the inequality (43) becomes

M
(
1, cm

am

)
M
(
1, bm

am

) (log(4am
cm

)
+ log

bm+1

am

)
≤ π

2
≤
M
(
1, cm

am

)
M
(
1, bm

am

) (log(4am
cm

))
If m → ∞, then am = bm → M (a, b) and cm → 0 so that replacing cm

am
= ε and using M (1, 1) = 1 demonstrates that

limε→0M (1, ε) log 4
ε
= π

2
.
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limε→0M (1, ε) log 4
ε = π

2 . This observation is verified in art. 57 in Appendix B, where we show that

K (k′) = O
(
log 4

k

)
if k → 0.

Gauss also states that his equations hold for complex values of a, b and c. The sequel of his Nachlass

is difficult, contains gaps and leads in the following page [14, p. 378] already to Theorem 2, which is

deciphered and treated in extenso by Cox (see art. 37). About his AGM system {an, bn, cn} where

n ∈ Z, thus comprising both the forward and backward AGM algorithm and the complementary

modulus k′ =
√
1− k2 with k = c

a and thus k′ = b
a , Gauss had a very deep knowledge. Without

King’s π
2
K(k′)
K(k) = limn→∞

1
2n log

(
an
cn

)
and the relation K(k′)

K(k) = M(a,b)
M(a,c) via (84), it is rather difficult to

demonstrate (40). Section 7, in particular art. 25, will illustrate the importance of the series (40) and

(42), as well as Gauss’s limit argument for large m.

6 Differential calculus on the arithmetic-geometric mean

18. Differential equation for y (x) = 1
M(1+x,1−x) . Gauss in [13, art. 8] derives a differential equation

for y (x) = 1
M(1+x,1−x) , starting from

y (x) =

∞∑
m=0

f2mx
2m =

∞∑
m=0

(
(2m)!

(2mm!)2

)2

x2m = 1 +

∞∑
m=1

 m∏
j=1

2j − 1

2j

2

x2m

= 1 +
1

4
x2 +

1

4

9

16
x4 +

1

4

9

16

25

36
x6 +

1

4

9

16

25

36

49

64
x8 + · · ·

The first and second derivative

dy (x)

dx
=

∞∑
m=0

2mf2mx
2m−1 =

1

2
x+

1

4

9

4
x3 +

1

4

9

16

25

6
x5 +

1

4

9

16

25

36

49

8
x7 + · · ·

d2y (x)

dx2
=

∞∑
m=0

2m (2m− 1) f2mx
2m−2 =

1

2
+

1

4

9

4
3x2 +

1

4

9

16

25

6
5x4 +

1

4

9

16

25

36

49

8
7x6 + · · ·

lead to

x
dy (x)

dx
=

∞∑
m=0

2mf2mx
2m =

1

2
x2 +

1

4

9

4
x4 +

1

4

9

16

25

6
x6 +

1

4

9

16

25

36

49

8
x8 + · · ·

and
d

dx

(
x
dy (x)

dx

)
= x

d2y (x)

dx2
+
dy (x)

dx
= x+

1

4

9

1
x3 +

1

4

9

16

25

1
x5 +

1

4

9

16

25

36

49

1
x7 + · · ·

Hence,

1

x2

(
x2
d2y (x)

dx2
+ x

dy (x)

dx

)
= 1 +

1

4
9x2 +

1

4

9

16
25x4 +

1

4

9

16

25

36
49x6 +

1

4

9

16

25

36

49

64
81x8 + · · ·

which also equals the sum of the series

x2
d2y (x)

dx2
=

1

4
2x2 +

1

4

9

16
12x4 +

1

4

9

16

25

36
30x6 +

1

4

9

16

25

36

49

64
56x8 + · · ·

3x
dy (x)

dx
=

1

4
6x2 +

1

4

9

16
12x4 +

1

4

9

16

25

36
18x6 +

1

4

9

16

25

36

49

64
24x8 + · · ·

y (x)− 1 =
1

4
1x2 +

1

4

9

16
x4 +

1

4

9

16

25

36
x6 +

1

4

9

16

25

36

49

64
x8 + · · ·
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Gauss then finds that x2 d
2y(x)
dx2

+ 3xdy(x)dx + y (x) = 1
x2

(
x2 d

2y(x)
dx2

+ xdy(x)dx

)
from which the differential

equation follows (
x3 − x

) d2y (x)
dx2

+
(
3x2 − 1

) dy (x)
dx

+ xy (x) = 0 (44)

Without proof, Gauss [13, art. 8] states that the general solution of the second order differential

equation (44) is

y (x) =
A

M (1 + x, 1− x)
+

B

M (1, x)
(45)

Gauss14 has explored the differential equation a little further.

The differential equation (44) can be reduced into the hypergeometric differential equation [22,

15.10.1]

z (1− z)
d2w

dz2
+ (c− (a+ b+ 1) z)

dw

dz
− abw (z) = 0 (46)

by the transformation z = x2 as mentioned in [8, p. 460]. Indeed, let w (z) = y (
√
z), then dy(x)

dx =
dy(

√
z)

dz
dz
dx = 2xdwdz = 2

√
z dwdz and

d2y (x)

dx2
=

d

dz

(
dy (x)

dx

)
dz

dx
= 2

√
z
d

dz

(
2
√
z
dw

dz

)
= 2

√
z

{
1√
z

dw

dz
+ 2

√
z
d2w

dz2

}
= 2

dw

dz
+ 4z

d2w

dz2

The differential equation (44) becomes

√
z (z − 1)

(
2
dw

dz
+ 4z

d2w

dz2

)
+ (3z − 1) 2

√
z
dw

dz
+
√
zw (z) = 0

and simplifies to

z (1− z)
d2w

dz2
+ (1− 2z)

dw

dz
− 1

4
w (z) = 0 (47)

which is an instance with a = b = 1
2 and c = 1 of the hypergeometric differential equation (46).

We observe that, after replacing z by 1 − z, the differential equation (47) remains the same, which

indicates that both w (z) and w (1− z) are a solution. The Wronskian15 [20, p. 524-530] is non-zero,

which indicates that both solutions are independent. Hence, the general solution of (46) is a linear

combination w (z) = AF (a, b, c; z) +BF (a, b, c; 1− z) of two hypergeometric functions F (a, b, c; z) =
Γ(c)

Γ(a)Γ(b)

∑∞
k=0

Γ(a+k)Γ(b+k)
Γ(c+k)k! zk and F (a, b, c; 1− z). After invoking (27) and z = x2, we arrive at Gauss’s

solution (45). Precisely the hypergeometric function has been studied in detail by Gauss in [12].

Anticipating 1
M(1,x) =

2
πK

(√
1− x2

)
in (85) and 1

M(1+x,1−x) =
2
πK (x), Gauss’s general solution (45)

y (x) =
2A

π
K (x) +

2B

π
K
(√

1− x2
)

exhibits that the complete elliptic integral K (x), evaluated at x and at its complementary modulus√
1− x2, constitute a set of independent functions, which underlines the importance of cn in (7),

beside an and bn in the AGM algorithm (2).

14Gauss Werke, Band 10.1, p. 181-183. Also part of the Nachlass, which is far less clear and collected after Gauss’s

death.
15The Wronskian ∆ (z) = ∆ (z0) exp

(
−
∫ z

z0
p (u) du

)
of the differential equation d2v(z)

dz2
+ p (z) dv(z)

dz
+ q (z) v (z) = 0,

applied to (47), equals ∆ (z) = c
z(1−z)

, where the constant c depends on the initial condition.
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19. The differential dM (a, b). Part 2 in [13, art. 9] is the last, relatively complete text in Latin16 of

Gauss, in which he studies the differential dM (a, b) = ∂M(a,b)
∂b dx+ ∂M(a,b)

∂b db. Gauss replace an and bn

in his AGM algorithm (2) by the variable xn and yn, respectively, to emphasize that a and b are given

constant numbers, while x and y are variables. Here, we maintain the usual notation, but a and b are

now variables. The corresponding differentials of an and bn in the AGM algorithm (2) are

dan = 1
2 (dan−1 + dbn−1) and dbn = 1

2

(√
bn−1

an−1
dan−1 +

√
an−1

bn−1
dbn−1

)
where the last differential is rewritten with bn =

√
an−1bn−1 as dbn = 1

2bn

(
dan−1

an−1
+ dbn−1

bn−1

)
. Gauss

remarks that proceeding with these differentials will obscure the underlying law. Therefore, he defines

the new variables

fn = dan
an

+ dbn
bn

and gn = dan
an

− dbn
bn

(48)

which shows that fn = d log anbn and gn = d log an
bn
. Then, Gauss introduces dan = 1

2 (dan−1 + dbn−1)

and dbn = 1
2bn

(
dan−1

an−1
+ dbn−1

bn−1

)
in fn,

fn =
dan
an

+
dbn
bn

=
1

2

(
dan−1

an
+
dbn−1

an

)
+

1

2

(
dan−1

an−1
+
dbn−1

bn−1

)
=

1

2

(
dan−1

an−1
+
dbn−1

bn−1
+
dan−1

an
+
dbn−1

an

)
and he proceeds to deduce a recursion for fn as follows,

fn = fn−1 +
1

2

(
dan−1

an
+
dbn−1

an
− dan−1

an−1
− dbn−1

bn−1

)
= fn−1 +

1

2

(
an−1 − an
anan−1

)
dan−1 +

1

2

(
bn−1 − an
anbn−1

)
dbn−1

Replacing bn−1 = 2an − an−1 in the last bracket results in

fn = fn−1 +
1

2

(
an−1 − an
anan−1

)
dan−1 −

1

2

(
an−1 − an
anbn−1

)
dbn−1

= fn−1 +
1

2

(
an−1 − an

an

){
dan−1

an−1
− dbn−1

bn−1

}
Finally, with gn = dan

an
− dbn

bn
in (48), Gauss arrives at the recursion for fn,

fn = fn−1 +
1

2

(
an−1 − an

an

)
gn−1 (49)

An analogous computation for gn,

gn =
dan
an

− dbn
bn

=
1

2

(
dan−1

an
− dan−1

an−1
+
dbn−1

an
− dbn−1

bn−1

)
=

1

2

(
an−1 − an
anan−1

dan−1 +
bn−1 − an
anbn−1

dbn−1

)
16Pars II. De Functionibus Transscendentibus quae ex Differentiatione Mediorum Arithmetico-Geometricorium oriun-

tur.
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leads to

gn =
1

2

(
an−1 − an

an

)
gn−1 (50)

which allows us to simplify the recursion (49) for fn with (50) as

fn = fn−1 + gn (51)

After p iterations of (51), we obtain fn = fn−p +
∑p−1

j=0 gn−j and changing k = n − j then yields, for

integer p ≥ 0,

fn = fn−p +
n∑

k=n−p+1

gk (52)

Similarly, p iterations of (50) resulting in gn =
gn−p

2p
∏p−1
j=0

(
an−1−j−an−j

an−j

)
and choosing p = n, we

obtain

gn =
g0
2n

n∏
k=1

(
ak−1 − ak

ak

)
(53)

which demonstrates that gn decreases very rapidly with n, because ak−1−ak converges to zero quadrati-
cally by the AGM algorithm (2). Hence, the limit n→ ∞ of (53) is g∞ = 0 and, thus, the series for fn in

(52) converges rapidly. Gauss rewrites
ak−1−ak

ak
=

ak−1−bk−1

ak−1+bk−1
=

(ak−1−bk−1)
2

a2k−1−b
2
k−1

=
(ak−1+bk−1)

2−4ak−1bk−1

a2k−1−b
2
k−1

=

4
a2k−b

2
k

a2k−1−b
2
k−1

= 4
c2k
c2k−1

. Since

n∏
k=1

(
ak−1 − ak

ak

)
= 22n

∏n
k=1 c

2
k∏n

k=1 c
2
k−1

= 22n
∏n
k=1 c

2
k∏n−1

k=0 c
2
k

= 22n
c2n
c20

relations (53) and (52) simplify to

gn = g02
n c

2
n

c2
(54)

and

fn+p = fn +
g0
c2

n+p∑
k=n+1

2kc2k (55)

Gauss now returns toM (a, b) by noting that limn→∞
dan
an

= limn→∞
dbn
bn

= dM(a,b)
M(a,b) , while inverting

the definitions of fn and gn in (48) indicates that

2danan = fn + gn and 2dbnbn = fn − gn

Hence, dM(a,b)
M(a,b) = limn→∞

dan
an

= 1
2 limn→∞ (fn + gn) = 1

2f∞ and invoking (55) for p = 0 with the

definitions of fn and gn in (48)

dM (a, b)

M (a, b)
=

1

2

(
da

a
+
db

b

)
+

1

2c2

(
da

a
− db

b

) ∞∑
n=1

2nc2n

=
1

2

da

a

(
1 +

1

c2

∞∑
n=1

2nc2n

)
+

1

2

db

b

(
1− 1

c2

∞∑
n=1

2nc2n

)
Gauss arrives at the beautiful expansion for the differential of the logarithm of M (a, b)

dM (a, b)

M (a, b)
= d (logM (a, b)) =

1

2c2

{
da

a

( ∞∑
n=0

2nc2n

)
+
db

b

(
c2 −

∞∑
n=1

2nc2n

)}
(56)
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In [13, art. 10], Gauss gives a numerical example that illustrates how fast the series
∑∞

n=0 2
nc2n in (56)

converges. After art. 10, the Nachlass becomes very incomplete: art. 11 only contains “Facile iam

etiam coefficientes sequentes series”. Art. 12 in [14] continues in German and is a report of others,

who have collected Gauss’s unfinished and unpublished work after his death.

20. Partial differential equation. Since d logM (a, b) = ∂ logM(a,b)
∂a da+ ∂ logM(a,b)

∂b db, we find from (56)

that {
∂ logM(a,b)

∂a = 1
2c2a

(
c2 +

∑∞
n=1 2

nc2n
)

∂ logM(a,b)
∂b = 1

2c2b

(
c2 −

∑∞
n=1 2

nc2n
)

which can be compared with K(k)−E(k)
K(k) = 1

2a2
∑∞

n=0 2
nc2n below in (96). Hence, it holds that

a
∂ logM (a, b)

∂a
+ b

∂ logM (a, b)

∂b
= 1 (57)

which is also written as ∂ logM(a,b)
∂ log a + ∂ logM(a,b)

∂ log b = 1. If we replace a = eu and b = ev and denote

T (u, v) = log (M (eu, ev)), then the first order partial differential equation (57) becomes

∂T (u, v)

∂u
+
∂T (u, v)

∂v
= 1

Taking the partial derivative of (57) with respect to a yields

∂ logM (a, b)

∂a
+ a

∂2 logM (a, b)

∂a2
+ b

∂2 logM (a, b)

∂b∂a
= 0

and similarly for b,

∂ logM (a, b)

∂b
+ b

∂2 logM (a, b)

∂b2
+ a

∂2 logM (a, b)

∂a∂b
= 0

Elimination of ∂
2 logM(a,b)
∂a∂b results in

a
∂ logM (a, b)

∂a
+ a2

∂2 logM (a, b)

∂a2
= b

∂ logM (a, b)

∂b
+ b2

∂2 logM (a, b)

∂b2

which equals

a
∂

∂a

(
a
∂ logM (a, b)

∂a

)
= b

∂

∂b

(
b
∂ logM (a, b)

∂b

)
or

∂2 logM (a, b)

∂ (log a)2
=
∂2 logM (a, b)

∂ (log b)2

Again, a change in variable a = eu and b = ev is, functionally, more convenient. If we denote

T (u, v) = log (M (eu, ev)), then the above partial differential equation becomes

∂2T (u, v)

∂u2
− ∂2T (u, v)

∂v2
= 0

A change in variable w = iv, then results in a Laplacian equation

∂2T (u,w)

∂u2
+
∂2T (u,w)

∂w2
= 0

which implies that T (u,w) = log
(
M
(
eu, e−iw

))
represents an analytic function in the complex plane

z = u+ iw.
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21. The constant ∆. Rewriting (54) as g0
c2

= gn
2nc2n

indicates that the ratio gn
2nc2n

is independent of

n and, thus, a constant. Gauss [14, art. 13, p.379-380] defines ∆ = g0
c2

= 1
c2
d log a

b and with the

definition of gn = d log an
bn

in (48), he obtains

∆ =
1

2nc2n
d log

an
bn

=
gn
2nc2n

The constant ∆ will play a prominent role as shown below. From a2n = b2n+ c
2
n, we find the differential

andan = bndbn + cndcn, which allows us to eliminate dan in

d log
an
bn

=
dan
an

− dbn
bn

=
bndbn + cndcn

a2n
− dbn

bn

=

(
b2n − a2n
a2nbn

)
dbn +

cn
a2n
dcn =

c2n
a2n

(
dcn
cn

− dbn
bn

)
and

d log
an
bn

=
c2n
a2n
d log

cn
bn

Similarly, we eliminate dbn in d log an
bn

= dan
an

− dbn
bn

and find

d log
an
bn

=
c2n
b2n
d log

cn
an

In conclusion, the different representations lead, with ∆ = 1
c2
d log a

b , to

∆ =
1

2nc2n
d log

an
bn

=
1

2na2n
d log

cn
bn

=
1

2nb2n
d log

cn
an

(58)

which holds for all integer values of n and n = 0 returns the definition ∆ = 1
c2
d log a

b . The second

equality in (58) illustrates that an and cn can be reversed, equivalent to the transform (an, bn, cn) →
(cn, bn, an); the third equality justifies the reversal of an and bn or the transform (an, bn, cn) →
(bn, an, cn), while

1
c2n
d log an

bn
= 1

b2n
d log cn

an
exhibits the circular transformation (an, bn, cn) → (cn, an, bn).

The next circular transformation (cn, an, bn) → (bn, cn, an) additionally reverses the sign: 1
b2n
d log cn

an
=

− 1
a2n
d log bn

cn
and similarly, also the following circular transformation (bn, cn, an) → (an, bn, cn) changes

the sign.

22. Deduction from the constant ∆ in (58). We investigate the constant ∆ in (58) for the forward

AGM algorithm in (2) and the backward AGM algorithm in art. 6, which we denote by a′n, b
′
n and c′n

with initial values a′0 = a0, b
′
0 = c0 and c

′
0 = b0. Then (58) becomes ∆′ = 1

(c′0)
2d log

a′0
b′0

= 1
2n(a′n)

2d log
c′n
b′n

and
1

(c′0)
2d log

a′0
b′0

=
1

b2
d log

a

c
= −∆

where the last equality follows from the last equality in (58). Hence, for constants α and β, we conclude

that
1

a2n
d

(
1

2n
log

αcn
bn

)
+

1

(a′n)
2d

(
1

2n
log

βc′n
b′n

)
= 0 (59)

Multiplying the identity [17, p. 38, ex. 16]

1

a2n
d

(
an
a′n

)
+

1

(a′n)
2d

(
a′n
an

)
= 0
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by a constant Cn that is independent of {an, bn, cn} and {a′n, b′n, c′n} yields, after subtraction from

(59),
1

a2n
d

(
1

2n
log

αcn
bn

− Cn
an
a′n

)
+

1

(a′n)
2d

(
1

2n
log

βc′n
b′n

− Cn
a′n
an

)
= 0

Since a2n > 0 and (a′n)
2 > 0, both differentials must be zero and we find that 1

2n log αcn
bn

− Cn
an
a′n

= r

and 1
2n log βc′n

b′n
− Cn

a′n
an

= r′ hold for all n, which is only possible17 for r = r′ = 0; thus

1

2n
log

αcn
bn

= Cn
an
a′n

for all n

By the AGM property (art. 6), we have that limn→∞ a′n =M (a0, c0) = 2nM (an, cn) = 2nanM
(
1, cnan

)
as well as an = bn for n→ ∞ and

lim
n→∞

Cn = lim
n→∞

a′n
2nan

log
αcn
bn

= lim
n→∞

M

(
1,
cn
an

)
log

αcn
bn

= lim
n→∞

M

(
1,
cn
an

)
log

αcn
an

With M (1, w) = π
2K(

√
1−w2)

in (85) and let w = cn
an
, then M

(
1, cnan

)
= π

2
1

K

(√
1−
(

cn
an

)2) = π
2

1

log
(
4an
cn

)
for cn → 0, where the latter follows from (134). Thus,

lim
n→∞

Cn = lim
n→∞

M

(
1,
cn
an

)
log

αcn
an

=
π

2
lim
n→∞

1

log
(
4ancn

) log
αcn
an

= −π
2

because we can choose the constant α = 1
4 . Hence, we conclude that18

lim
n→∞

1

2n
log

4an
cn

=
π

2

an
a′n

(60)

We use (60) in ∆ = 1
b2n
d
(

1
2n log cn

an

)
for large n,

∆ = lim
n→∞

1

b2n
d

(
1

2n
log

αcn
an

)
= −π

2
lim
n→∞

1

a2n
d

(
an
a′n

)
= −π

2
lim
n→∞

1

a2n

an
a′n
d

(
log

an
a′n

)
and find [17, p. 39, ex. 17]

∆ =
π

2
lim
n→∞

1

ana′n
d

(
log

a′n
an

)
(61)

17If n = 0, we find r = log c
b
− C0 and r′ = − log c

b
− C0 which holds for all b and c while C0 does not change with b

and c, which is impossible, unless r = r′ = 0.
18We remark that the proof of (60) by the Borwein brothers [4, p. 357] is erroneous. They combine Gauss’s fundamental

result π
2
=M (a, b) I (a, b) in (30) with I (an, bn) = I (a, b) in art. 10 for any integer n, also for negative integers and the

complementary AGM algorithm with (15),

π

2
= lim

n→∞
a′nI

(
a′0, b

′
0

)
= lim

n→∞
a′nI

(
a′−n, b

′
−n

)
= lim

n→∞
a′nI (2

nan, 2
ncn)

The scaling property M (aβ, bβ) = βM (a, b) in (11) leads to π
2
= limn→∞ 2nana

′
nI
(
1, cn

an

)
, but they [4, p. 357] mention

π
2
= limn→∞

2−n

an
a′nI

(
1, cn

an

)
, from which, together with K (k′) = O

(
log 4

k

)
if k → 0, their claim (60) should follow.

However, we find Gauss’s bounds in (122) more valuable.
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23. A second order differential. Taking the differential 2nc2n = 1
∆d log

an
bn

of in (58) is

1

2
d

(
1

∆
d log

an
bn

)
= 2ncndcn = 2nc2nd log cn =

1

∆
d log

an
bn
d log cn

Similarly for the other two equalities in (58), we find

1

2
d

(
1

∆
d log

cn
bn

)
=

1

∆
d log

cn
bn
d log an

1

2
d

(
1

∆
d log

cn
an

)
=

1

∆
d log

cn
an
d log bn

We rewrite the first equation as

1

2
d

(
1

∆
d log

an
bn

)
=

1

2
d

(
1

∆
d log

ancn
bncn

)
=

1

2
d

(
1

∆
d log ancn −

1

∆
d log bncn

)
which leads to the set

1
2d
(
1
∆d log ancn

)
− 1

2d
(
1
∆d log bncn

)
= 1

∆d log and log cn −
1
∆d log bnd log cn

1
2d
(
1
∆d log ancn

)
− 1

2d
(
1
∆d log anbn

)
= 1

∆d log and log cn −
1
∆d log and log bn

1
2d
(
1
∆d log bncn

)
− 1

2d
(
1
∆d log anbn

)
= 1

∆d log bnd log cn −
1
∆d log and log bn

LetX = 1
2d
(
1
∆d log anbn

)
, Y = 1

2d
(
1
∆d log ancn

)
and Z = 1

2d
(
1
∆d log bncn

)
, while x = 1

∆d log and log bn,

y = 1
∆d log and log cn and z = 1

∆d log bnd log cn, then the above set becomes
Y − Z = y − z

Y −X = y − x

Z −X = z − x

(62)

whose rank is 2, because subtracting any equation from another gives the third equation. The first

two equations are solved in terms of Y as

Z = z + (Y − y)

X = x+ (Y − y)

After choosing y − Y = D (to comply with Gauss in [14, art. 14, p.380-381]), we arrive at the

symmetric solution x − X = y − Y = z − Z = D for any real constant D. In summary, we find for

any integer that

D =
1

∆
d log and log bn −

1

2
d

(
1

∆
d log anbn

)
=

1

∆
d log and log cn −

1

2
d

(
1

∆
d log ancn

)
=

1

∆
d log bnd log cn −

1

2
d

(
1

∆
d log bncn

)
(63)

Gauss has defined two constants ∆ (the Greek D) and D. If n→ ∞, the first equation becomes

D =
1

∆
(d logM (a, b))2 − d

(
1

∆
d logM (a, b)

)
=
dM (a, b)

M (a, b)

(
1

∆

dM (a, b)

M (a, b)

)
− d

(
1

∆

dM (a, b)

M (a, b)

)
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After substitution of dM(a,b)
M(a,b) = −M (a, b) d

(
1

M(a,b)

)
in the brackets, we have

D = −dM (a, b)

(
1

∆
d

(
1

M (a, b)

))
+ d

(
M (a, b)

1

∆
d

(
1

M (a, b)

))
=M (a, b) d

(
1

∆
d

(
1

M (a, b)

))
(64)

For the backward algorithm, the first equation becomes D = 1
∆′d log a′nd log b

′
n − 1

2d
(

1
∆′d log a′nb

′
n

)
,

which reduces similarly with limn→∞ a′n = limn→∞ b′n =M (a, c) to

D =M (a, c) d

(
1

∆
d

(
1

M (a, c)

))
(65)

As an application of (64), consider the case where a0 = a is a constant and not variable, then, for

n = 0,

D =
1

∆
d log ad log b− 1

2
d

(
1

∆
d log ab

)
= −1

2
d

(
1

∆
d log b

)
If a is a constant, then ∆ in (58) reduces to ∆ = − 1

c2
d log b = 1

a2
d log c

b = 1
b2
d log c. With the first

equality ∆ = − 1
c2
d log b, the constant D = −1

2d
(
1
∆d log b

)
becomes

D = −1

2
d

(
c2

−d log b
d log b

)
=

1

2
d
(
c2
)
= cdc = c2d log c

Invoking the last equality ∆ = 1
b2
d log c leads to D = c2b2∆, while the first equality ∆ = − 1

c2
d log b

gives D = −b2 log b. If a is a constant, then (64) equals

D =
M (a, b)

a
d

(
1

∆
d

(
a

M (a, b)

))
=M

(
1,
b

a

)
d

(
1

∆
d

(
1

M
(
1, ba
)))

Let x = b
a and denote y (x) = 1

M(1,x) , then

D = yd

(
1

∆
d

(
1

y

))
= −yd

(
1

∆

1

y2
dy

)
= −y 1

∆
d

(
1

y2
dy

)
− y

1

y2
dyd

(
1

∆

)
= − 1

∆

1

y
d2y + 2y

1

∆

1

y3
(dy)2 +

1

y∆2
dyd∆

Ignoring the second order differential (dy)2 results in D = 1
y∆

(
−d2y + dy d∆∆

)
. Combined with D =

c2b2∆ leads to the differential equation

d2y − d∆

∆
dy + c2b2∆2y = 0 (66)

Gauss does not relate this differential equation to the hypergeometric differential equation (47), but

just tells that its solutions are a
M(a,b) and

a
M(a,c) . No interpretation of the coefficients d∆

∆ and19 c2b2∆2

are given.

19Gauss [14, art. 14, p.381] gives −c2b2∇2 instead of our c2b2∇2.
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7 Towards Jacobi theta functions

24. A variation of the second order differential. Another observation of Gauss in [14, art. 15, p. 382]

is more interesting. Consider, besides the variable a, b, c another variable h and

Dh =
1

∆
(d log h)2 + d

(
1

∆
d log h

)
which is of similar form as the three relations for D in (63), when both appearing variables are the

same, except for the plus sign. Gauss computes

D +Dh =
1

∆

{
d log and log bn + (d log h)2

}
− d

(
1

∆

1

2
d log anbn −

1

∆
d log h

)
=

1

∆

{
d log and log bn + (d log h)2

}
− d

(
1

∆
d log

√
anbn
h2

)

With d log
√

anbn
h2

= d log
√

anbn
h2

= h√
anbn

d
√

anbn
h2

, we obtain

d

(
1

∆
d log

√
anbn
h2

)
= d

(
1

∆

h√
anbn

d

√
anbn
h2

)
= d

(√
h2anbn

1

∆anbn
d

√
anbn
h2

)

=
√
h2anbnd

(
1

∆anbn
d

√
anbn
h2

)
+

1

∆anbn
d

√
anbn
h2

d
√
h2anbn

Further, simplifying the last term with

d

√
anbn
h2

=
1

2

√
bn
h2an

dan +
1

2

√
an
h2bn

dbn −
√
anbn

dh

h2

=

√
anbn
h

(
1

2
d log anbn − d log h

)
and with

d
√
h2anbn =

√
anbndh+

1

2
h

(√
bn
dan√
an

+
√
an

dbn√
bn

)
=
√
anbn

{
dh+

1

2
hd log anbn

}
= h

√
anbn

{
1

2
d log anbn + d log h

}
results in

1

∆anbn
d

√
anbn
h2

d
√
h2anbn =

1

∆

{
1

anbn

√
anbn
h

(
1

2
d log anbn − d log h

)
h
√
anbn

(
1

2
d log anbn + d log h

)}
=

1

∆

(
1

4
(d log anbn)

2 − (d log h)2
)

Substituting all parts into D +Dh yields

D +Dh = −
√
h2anbnd

(
1

∆anbn
d

√
anbn
h2

)
+

1

∆

{
d log and log bn + (d log h)2 − 1

anbn
d

√
anbn
h2

d
√
h2anbn

}

= −
√
h2anbnd

(
1

∆anbn
d

√
anbn
h2

)
+

1

∆

{
d log and log bn + (d log h)2 − 1

4
(d log anbn)

2 − (d log h)2
}

= −
√
h2anbnd

(
1

∆anbn
d

√
anbn
h2

)
+

1

∆

{
d log and log bn −

1

4
(d log an + d log bn)

2

}
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and

D +Dh = −
√
h2anbnd

(
1

∆anbn
d

√
anbn
h2

)
− 1

4∆

(
d log

an
bn

)2

(67)

Gauss concludes that the second order differential only contains quotients of variables in the differen-

tials. Moreover, D+Dh does not depend upon n. Also, D+Dh remains the same if the pair (an, bn)

is replaced by (an, cn) or by (bn, cn) as follows from (63). If h = a in (67) for n = 0, then Gauss

mentions that20

D +Da = ∆b2c2

while for h = b and h = c, it holds that D + Db = −∆c2a2 and D + Dc = −∆a2b2, respectively. If

n→ ∞, then (67) becomes

D +Dh = −hM (a, b) d

(
1

∆M2 (a, b)
d
M (a, b)

h

)
(68)

and, after replacing the pair (a, b) by (a, c), also D +Dh = −hM (a, c) d
(

1
∆M2(a,c)

dM(a,c)
h

)
.

From (58) and sufficiently large n, we find that

∆M2 (a, b) = a2n∆ =
1

2n
d log

cn
bn

∆M2 (a, b) = b2n∆ =
1

2n
d log

cn
an

but ∆M2 (a, b) = 1
2n

a2n
c2n
d log an

bn
is of a different form. Therefore, from (58) and n = 0, it holds that

∆M2 (a, b) =

(
M (a, b)

c

)2

d log
a

b
=

(
M (a, b)

a

)2

d log
c

b
=

(
M (a, b)

b

)2

d log
c

a

=

(
M (a, b)

c

)2

d log

a
M(a,b)

b
M(a,b)

=

(
M (a, b)

a

)2

d log

c
M(a,b)

b
M(a,b)

=

(
M (a, b)

b

)2

d log

c
M(a,b)
a

M(a,b)

20After putting h = a in (67) for n = 0, we obtain

D +Da = −a
√
abd

(
1

∆ab
d

√
b

a

)
− 1

4∆

(
d log

a

b

)2
Since ∆ in (58) reduces for n = 0 to ∆ = 1

c2
d log a

b
, we find that D + Da = −a

√
abd

(
1

∆ab
d
√

b
a

)
− c4

4
∆. With

dfβ = βfβd log f for any β ̸= 1, we have for β = 1
2
that d

√
b
a
= 1

2

√
b
a
d log b

a
and

d

(
1

∆ab
d

√
b

a

)
=

1

2
d

(
1

∆ab

√
b

a
d log

b

a

)
= −1

2
d

(
c2

a
√
ab

)
= −1

2
d

(
a2 − b2

a
√
ab

)
= −1

2
d

√
a

b
+

1

2
d

(
b

a

) 3
2

Again invoking dfβ = βfβd log f ,

d

(
1

∆ab
d

√
b

a

)
=

1

2

{
−1

2

√
a

b
d log

a

b
+

3

2

(
b

a

) 3
2

d log
b

a

}
= −1

4
d log

a

b

{√
a

b
+ 3

(
b

a

) 3
2

}

= −c
2∆

4

{√
a

b
+ 3

(
b

a

) 3
2

}

Substituted in D +Da yields, again using c2∆ = d log a
b
, D +Da = c2∆

4

(
a
√
ab
√

a
b
+ 3a

√
ab
√

b
a

b
a
− c2

)
= ∆b2c2.
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Without motivation where the squareroot comes from, Gauss defines in [14, art. 15, p. 382],

p =
√

a
M(a,b) q =

√
b

M(a,b) r =
√

c
M(a,b) (69)

so that

∆M2 (a, b) =
2

r4
d log

p

q
=

2

p4
d log

r

q
=

2

q4
d log

r

p
(70)

Since a2 = b2 + c2 from (7), the definition (69) indicates that

p4 = q4 + r4 (71)

25. A fourth definition besides (69). Gauss defines in [14, art. 15, p. 382]

log y = −πM (a, b)

M (a, c)
(72)

which equals log y = −π M(an,bn)
2nM(an,cn)

by (14). Unfortunately, Gauss does not motivate definition (72).

Relation (43) is equivalent to M(an,cn)
M(an,bn)

log
(
4an
cn

)
→ π

2 for large n and we write, for large n,

−2n log y = π
M (an, bn)

M (an, cn)
= π

1
M(an,bn)

2nM(an,cn)

log
(
4an
cn

)
log
(
4am
cn

)
to obtain

−2n−1 log y = log

(
4an
cn

)
(73)

which is equivalent for large n and any real number k to

y−2n−k
=

(
4an
cn

)21−k

If a > b > 0, then an
cn
> 0 implies that y > 0. Hence, for large n and choosing k = 2, Gauss [14, art.

16, p. 383] concludes that
1

2
y−2n−2

√
cn√

M (a, b)
→ 1

After taking the differential of both sides in (73),

d log y =
1

2n−1
d log

(
cn
4an

)
=

1

2n−1
d log

(
cn
an

)
and using ∆ = 1

2nb2n
d log cn

an
in (58), we arrive, for large n, at

∆M2 (a, b) =
1

2
d log y (74)

which complements the equalities in (70) for p, q and r.

Returning to D +Dh = −hM (a, b) d
(

1
∆M2(a,b)

dM(a,b)
h

)
in (68), choosing h = a and invoking the

definitions of p, q and r in (69), then M(a,b)
a = 1

p2
and D +Da = ∆b2c2 so that

∆ = −aM (a, b)

b2c2
d

(
2

d log y
d
1

p2

)
= − 2p2

r4q4M2 (a, b)
d

(
1

d log y
d
1

p2

)
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Hence, we arrive at
1

2
∆M2 (a, b) = − p2

r4q4
d

(
1

d log y
d
1

p2

)
Similarly, after choosing h = b and h = c with the corresponding D +Db = −∆c2a2 and D +Dc =

−∆c2a2, we find that

1

2
∆M2 (a, b) =

q2

r4p4
d

(
1

d log y
d
1

q2

)
=

r2

p4q4
d

(
1

d log y
d
1

r2

)
Denote U = d

(
1

d log yd
1
p2

)
, V = d

(
1

d log yd
1
q2

)
and W = d

(
1

d log yd
1
r2

)
, then

1

2
∆M2 (a, b) = − p2

r4q4
U =

q2

r4p4
V =

r2

p4q4
W (75)

Gauss finds21, after elimination of q and r, the differential equation for p (and similarly for q and

r as well as backwards variants where M (a, b) in the definition (69) is replaced by M (a, c)){
1

p2?
1

d log y
d log

(
16

p6?
1

d log y
U

)}2

− 16

p6?
1

d log y
U − 1 = 0 (76)

In other words, Gauss [14, art. 15, p. 382] has demonstrated that p, q and r are functions of y, actually

of log y.

26. Series expansions of the functions p (y), q (y) and r (y). We deduced in art. 25 that the quantity
1
2

(
y−2n

) 1
4

√
cn√

M(a,b)
→ 1 with increasing integer n and that r (y) =

√
c√

M(a,b)
is a function of y, which

suggests that
√
cn√

M(a,b)
= r

(
y2

n)
for |y| < 1 and 1

2

(
y−2n

) 1
4 r
(
y2

n)→ 1 for large n, which is equivalent

to 1
2u

− 1
4 r (u) → 1 for u → 0. Alternatively, the function r (u) = 2u

1
4 g (u) if a real, positive u is

sufficiently small and limu→0 g (u) = 1. If we assume that g (u) is an analytic function in some region

around u = 0, which implies that g (u) =
∑∞

k=0 gku
k possesses a Taylor series, convergent for |u| < R

with g0 = 1, then the corresponding series expansion of r (u) is

r (u) = 2u
1
4

(
1 +

∞∑
k=1

rku
k

)
(77)

In this article art. 26, we will specify the Taylor coefficients rk in (77), following the sketches of Gauss

in [14, art. 16, p. 383].

The series
√
M (a, b) =

√
an −

∑∞
k=1

√
cn+2k in art. 15, rewritten for n = 0 as

1 =

√
a

M (a, b)
−

∞∑
k=1

√
c2k

M (a, b)

becomes, with the definition p =
√

a
M(a,b) in (69) and

√
cn√

M(a,b)
= r

(
y2

n)
,

p (y) = 1 +

∞∑
k=1

r
(
y2

2k
)
= 1 + r

(
y4
)
+ r

(
y16
)
+ r

(
y64
)
+ · · ·

21We have skipped the verification of this tedious calculation. Moreover, our copy of the Nachlass was insufficiently

sharp to distinguish the powers of p in (76), whence, the ?.
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The companion series
√
M (a, b) =

√
bn +

√
cn+2 −

∑∞
k=2

√
cn+2k in art. 15 is similarly transformed

into

q (y) = 1− r
(
y4
)
+

∞∑
k=2

r
(
y2

2k
)

From r4 (y) = p4 (y)− q4 (y) in (71) follows that

r4 (y) =

(
1 + r

(
y4
)
+

∞∑
k=2

r
(
y2

2k
))4

−

(
1− r

(
y4
)
+

∞∑
k=2

r
(
y2

2k
))4

Denote S = 1 +
∑∞

k=2 r
(
y2

2k
)
, then

r4 (y) =
(
r
(
y4
)
+ S

)4 − (S − r
(
y4
))4

=
((
r
(
y4
)
+ S

)2 − (S − r
(
y4
))2)((

r
(
y4
)
+ S

)2
+
(
S − r

(
y4
))2)

Simplifying, we arrive at the function equation for r (y),

1

8
r4 (y) = r

(
y4
)
S
(
S2 + r2

(
y4
))

(78)

It remains to introduce the series expansion (77) to develop both sides into a Taylor series around

y = 0. Equating corresponding powers in y will result into equations that determine all Taylor

coefficients {gk}k≥1 in (77). The computation is quite involved and deferred to appendix E, where we

found that

r (y) = 2y
1
4

∞∑
k=0

y(k+
1
2)

2− 1
4 = 2

∞∑
k=0

y(k+
1
2)

2

(79)

Armed with the explicit series (79), the Taylor series of p (y) and q (y) follows as

p (y) = 1 +
∞∑
k=1

r
(
y2

2k
)
= 1 + 2

∞∑
k=1

∞∑
j=0

y2
2k(j+ 1

2)
2

= 1 + 2
∞∑
k=1

∞∑
j=0

y(2
k(j+ 1

2))
2

Let m =
(
2k
(
j + 1

2

))2
, then j =

√
m

2k
− 1

2 ∈ N from which
√
m

2k
− 1

2 ≥ 0 and m ≥ 22k−2 and the double

sum is
∞∑
k=1

∞∑
j=0

y(2
k(j+ 1

2))
2

=
∞∑
k=1

∞∑
m=22(k−1)

1{√
m

2k
− 1

2
∈N
}ym =

∞∑
k=0

∞∑
m=22k

1{ √
m

2k+1−
1
2
∈N
}ym

After reversal of summations

∞∑
k=0

∞∑
m=22k

1{ √
m

2k+1−
1
2
∈N
}ym =

∞∑
m=1

[log2
√
m]∑

k=0

1{ √
m

2k+1−
1
2
∈N
}
 ym

we obtain22 the Taylor series

p (y) = 1 + 2

∞∑
m=1

[log2
√
m]∑

k=0

1{ 1
2

(√
m

2k
−1
)
∈N
}
 ym = 1 + 2

∞∑
m=1

1{m is a square}y
m

22The sequence m =
(
2k
(
j + 1

2

))2
for k ≥ 1 and j ≥ 0 only consists of squares. Since 2k is never equal to

j + 1
2
, all squares in the sequence are different and only appear once in the double sum. Numerical computation of∑[log2
√

m]
k=0 1{ 1

2

(√
m

2k
−1

)
∈N

} = 1{m is a square} verfies the observation.
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which is equivalent to the series

p (y) = 1 + 2
∞∑
m=1

ym
2
= 1 + 2

(
y + y4 + y9 + y16 + · · ·

)
The series for q (y) follows similarly from q (y) = 1− r

(
y4
)
+
∑∞

k=2 r
(
y2

2k
)
and (79) as

q (y) = 1 + 2

∞∑
m=1

(−1)m ym
2
= 1− 2

(
y − y4 + y9 − y16 + · · ·

)
27. The functions p (y), q (y) and r (y) are Jacobi theta functions. It follows from the definition (72)

that y = exp
(
−πM(a,b)

M(a,c)

)
. Replacing y by q = eiπτ and τ = iM(a,b)

M(a,c) with Im τ > 0, the three series are

rewritten as

p (q) =

√
a

M (a, b)
= 1 + 2

∞∑
n=1

qn
2
= ϑ3 (0, τ) (80)

q (q) =

√
b

M (a, b)
= 1 + 2

∞∑
n=1

(−1)n qn
2
= ϑ4 (0, τ) (81)

r (q) =

√
c

M (a, b)
= 2

∞∑
n=1

q
(2n−1)2

4 = ϑ2 (0, τ) (82)

which are now called (art. 50 and art. 46) Jacobi theta functions ϑj (z; τ) with j = 1, 2, 3 and

4, whose many fascinating properties and series expansion Gauss found via his sinus lemniscatus

function (art. 38). Tannery and Molk [26, 27, 28, 29] cover very nicely the theory of elliptic functions

and theta functions. Impressively, Cox [7, Section 2, pp. 283-309] mentions23 that Gauss found the

product expansions

ϑ3 (0, τ) =

∞∏
n=1

(
1− q2n

) (
1 + q2n−1

)2
ϑ4 (0, τ) =

∞∏
n=1

(
1− q2n

) (
1− q2n−1

)2
ϑ2 (0, τ) = 2q

1
4

∞∏
n=1

(
1− q2n

) (
1 + q2n

)2
and the transformations of the theta functions, as (−iτ)

1
2 ϑ3 (z, τ) = exp

(
−i z2πτ

)
ϑ3
(
− z
τ ,−

1
τ

)
and

similar formulae for the other ϑj (z; τ), see [22, 20.7.30-33], which are examples of modular transfor-

mations. From the identities, known to Gauss,{
ϑ23 (0, τ) + ϑ24 (0, τ) = 2ϑ23 (2τ, 0)

ϑ3 (0, τ)ϑ4 (0, τ) = ϑ24 (0, 2τ)
(83)

we recognize that ϑ23 (2τ, 0) =
ϑ23(0,τ)+ϑ

2
4(0,τ)

2 is the arithmetic mean and ϑ24 (0, 2τ) =
√
ϑ23 (0, τ)ϑ

2
4 (0, τ)

is the corresponding geometric mean. Thus, the AGM algorithm in (2) enables the computation of

23The product expansions do not appear in Gauss Werke, band 3, pp. 361-403 that covers the Arithmetic Geometric

Mean in the Nachlass, to which I have limited myself.
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theta functions (see also [1, 16.32]). If µ = M (a, b), then an = µϑ23 (0, 2
nτ) and bn = µϑ24 (0, 2

nτ) for

n ≥ 0 satisfies24 the AGM algorithm in (2), because eπi2
nτ → ∞ for n→ ∞ so that limn→∞ ϑ23 (0, 2

nτ) =

limn→∞ ϑ24 (0, 2
nτ) = 1. Hence, every solution τ of the complementary modulus k′ (τ) = b

a gives a

value µ = a
ϑ23(0,τ)

of the arithmetic-geometric mean M (a, b). Finding all solutions of k′ (τ) = b
a , that

satisfies the functional equation k′ (τ) = −k′
(

τ
2τ+1

)
, relies on the admissible region in the complex

plane of the modular function k′ (τ).

8 Legendre’s elliptic integrals and the AGM

28. Complete elliptic integrals and AGM. We express the integral I (a, b) =
∫ π

2
0

dθ√
a2 cos2 θ+b2 sin2 θ

in

(29) in terms of the complete elliptic integral K (k) = F
(
π
2 , k
)
of the first kind, defined in Appendix

B. By convention, we assume that a ≥ b. With

a2 cos2 θ + b2 sin2 θ = a2 +
(
b2 − a2

)
sin2 θ = a2

(
1− a2 − b2

a2
sin2 θ

)
we find, with k2 = a2−b2

a2
= c2

a2
> 0, that

I (a, b) =
1

a

∫ π
2

0

dθ√
1− k2 sin2 θ

=
1

a
K (k) =

1

a
K

(
1

a

√
a2 − b2

)
Gauss’s fundamental integral (28) is rewritten in terms of the complete elliptic integral K (k) as

1

a
K

(
1

a

√
a2 − b2

)
=
π

2

1

M (a, b)
(84)

or, with w = b
a ≤ 1,

1

M (1, w)
=

2

π
K
(√

1− w2
)

(85)

Alternatively, with a = 1 + x and b = 1− x, we have

1

M (1 + x, 1− x)
=

2

π (1 + x)

∫ π
2

0

dθ√
1−

(
2
√
x

1+x

)2
sin2 θ

=
2

π (1 + x)
K

(
2
√
x

1 + x

)

The property M (a, b) = M (a1, b1) indicates that M (1 + x, 1− x) = M
(
1,
√
1− x2

)
and scaling

M (ac, bc) = cM (a, b) in (11) that M (1 + x, 1− x) = (1 + x)M
(
1, 1−x1+x

)
. Combining both properties

of the arithmetic-geometric mean M (a, b) with the above complete elliptic integral K (k) leads to

1

M
(
1, 1−x1+x

) =
2

π
K

(
2
√
x

1 + x

)
24Tannery and Molk [29, p. 270-273] show that, with a0 = ϑ2

3 (0, τ) and b0 = ϑ2
4 (0, τ), it holds that c0 = ϑ2

2 (0, τ).

Iteration of the AGM algorithm indicates that

an = ϑ2
3 (0, 2

nτ) bn = ϑ2
4 (0, 2

nτ) cn = ϑ2
2 (0, 2

nτ)
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Let y = 1−x
1+x , which is an instance of the univalent and conformal Möbius transform w = az+b

cz+d , then

the inverse Möbius transform is x = 1−y
1+y and 2

√
x

1+x =
√
1− y2 so that 1

M(1,y) =
2
πK

(√
1− y2

)
, which

is (85), and
1

M (1 + x, 1− x)
=

1

M
(
1,
√
1− x2

) =
2

π
K (x)

Equating M
(
1,
√
1− x2

)
= (1 + x)M

(
1, 1−x1+x

)
establishes the Landen transformation (1775)

K (x) =
1

1 + x
K

(
2
√
x

1 + x

)
(86)

Fig. 2 draws 1
M(1,x) =

2
πK

(√
1− x2

)
in (85) and of 1

M(1+x,1−x) =
2
πK (x) as a function of x ∈ [0, 1].
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Figure 2: Plots of 1
M(1,x) =

2
πK

(√
1− x2

)
in (85) and of 1

M(1+x,1−x) =
2
πK (x).

29. AGM expansion of the complete elliptic integral K (x). The Mobius transformation y = 1−x
1+x has a

similar form as its inverse x = 1−y
1+y . We rewrite the Landen transformation (86) in terms25 of y = 1−x

1+x

as (
1 +

1− y

1 + y

)
K

(
1− y

1 + y

)
= K

(√
1− y2

)
25Gauss’s fundamental relation 2

πa
K
(
c
a

)
= 1

M(a,b)
in (84) with the definition cn =

√
a2n − b2n and property (6) point to

1

a
K
( c
a

)
=

1

a1
K

(
c1
a1

)
= · · · = 1

an
K

(
cn
an

)
and writing the first equality explicitly yields

1

2

(
1 +

b

a

)
K

√1−
(
b

a

)2
 = K

(
a− b

a+ b

)
= K

(
1− b

a

1 + b
a

)

illustrating that y = b
a
.
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Replace w =
√

1− y2 or y =
√
1− w2, then a rewritten form of the Landen transformation is

K (w) =

(
1 +

1−
√
1− w2

1 +
√
1− w2

)
K

(
1−

√
1− w2

1 +
√
1− w2

)
(87)

We will first iterate (87) a few times. Let w = 1−
√
1−x2

1+
√
1−x2 in the left-hand side of (87), then quantities

in the right-hand side of (87) are

√
1− w2 =

√√√√1−

(
1−

√
1− x2

1 +
√
1− x2

)2

=

√√√√√√
(
1 +

√
1− x2

)2
−
(
1−

√
1− x2

)2
(
1 +

√
1− x2

)2
=

1

1 +
√
1− x2

√(
1 +

√
1− x2 + 1−

√
1− x2

)(
1 +

√
1− x2 − 1 +

√
1− x2

)
=

2
√√

1− x2

1 +
√
1− x2

and

1−
√
1− w2

1 +
√
1− w2

=
1− 2

√√
1−x2

1+
√
1−x2

1 + 2
√√

1−x2
1+

√
1−x2

=
1 +

√
1− x2 − 2

√√
1− x2

1 +
√
1− x2 + 2

√√
1− x2

=

(
1−

(
1− x2

) 1
4

)2
(
1 + (1− x2)

1
4

)2
Substituted into (87)

K

(
1−

√
1− x2

1 +
√
1− x2

)
=

1 +

(
1−

(
1− x2

) 1
4

)2
(
1 + (1− x2)

1
4

)2
K


(
1−

(
1− x2

) 1
4

)2
(
1 + (1− x2)

1
4

)2


Thus, after replacing x by w in the above, the first iteration of (87) is

K (w) =
2

1 +
√
1− w2

1 +

(
1−

(
1− w2

) 1
4

)2
(
1 + (1− w2)

1
4

)2
K


(
1−

(
1− w2

) 1
4

)2
(
1 + (1− w2)

1
4

)2


For 0 < A < 1, it holds that 1−A
1+A > 1−

√
A

1+
√
A
, because

√
A > A, and thus that 1−

√
1−x2

1+
√
1−x2 >

(
1−(1−x2)

1
4

)2

(
1+(1−x2)

1
4

)2 .
The next iteration of (87) is

1−

√√√√1−
(
1−(1−x2)

1
4

)4
(
1+(1−x2)

1
4

)4

1 +

√√√√1−−
(
1−(1−x2)

1
4

)4
(
1+(1−x2)

1
4

)4
=

(
1 +

(
1− x2

) 1
4

)2
−
√(

1 + (1− x2)
1
4

)4
−
(
1− (1− x2)

1
4

)4
(
1 + (1− x2)

1
4

)2
+

√(
1 + (1− x2)

1
4

)4
−
(
1− (1− x2)

1
4

)4

With A2 −B2 = (A+B) (A−B), we have(
1 +

(
1− x2

) 1
4

)4
−
(
1−

(
1− x2

) 1
4

)4
= 8

(
1 +

(
1− x2

) 1
2

) (
1− x2

) 1
4
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and

x3 =

(
1 +

(
1− x2

) 1
4

)2
− 2

√
2
(
1− x2

) 1
8

√
1 + (1− x2)

1
2(

1 + (1− x2)
1
4

)2
+ 2

√
2 (1− x2)

1
8

√
1 + (1− x2)

1
2

After replacing x by w in the above, the second iteration of (87) is

K (w) =
4

1 +
√
1− w2

(
1 +

(
1− w2

) 1
4

)2
+
(
1−

(
1− w2

) 1
4

)2
(
1 + (1− w2)

1
4

)2
+
√
8 (1− w2)

1
8

√
1 + (1− w2)

1
2

×K


(
1 +

(
1− w2

) 1
4

)2
− 2

√
2
(
1− w2

) 1
8

√
1 + (1− w2)

1
2(

1 + (1− w2)
1
4

)2
+ 2

√
2 (1− w2)

1
8

√
1 + (1− w2)

1
2

 (88)

Instead of computing a next iteration, we observe that the iterative structure in the integer n ≥ 0 ≥
is, for 0 < xn < 1,

xn+1 =
1−

√
1− x2n

1 +
√
1− x2n

with x0 = w (89)

which is related to the AGM algorithm (2). We concentrate on iteration (89) and rewrite

xn+1 =
1−

√
1− x2n

1 +
√

1− x2n
=

1

x2n

(
1−

√
1− x2n

)2
=

1

x2n

(
2− 2

√
1− x2n − x2n

)
=

2

x2n

(
1−

√
1− x2n

)
− 1

The first and last equality lead to

x2n
2

(1 + xn+1) =
(
1−

√
1− x2n

)
while the first and second equality indicate that

xn+1 =
1

x2n

(
1−

√
1− x2n

)2
Substitution of the first into the latter gives us

xn+1 =
1

x2n

(
x2n
2

(1 + xn+1)

)2

=
x2n
4

(1 + xn+1)
2

from which the lower bound xn+1 ≥ x2n
4 follows and from which we find the inverse of (89)

2
√
xn+1

1 + xn+1
= xn

Let x = xn+1 in Landen’s transformation (86) and using xn =
2
√
xn+1

1+xn+1
leads to the recursion

K (xn) = (1 + xn+1)K (xn+1) (90)

Since 0 < xn < 1 for all n, it holds that xn =
2
√
xn+1

1+xn+1
>

√
xn+1 and x2n > xn+1. In summary, we have

shown that x2n
4 < xn+1 < x2n < xn for 0 < xn < 1; in other words, the subsequent iterates xn decrease

with n. Iterating (90) p times

K (xn) = (1 + xn+1) (1 + xn+2) . . . (1 + xn+p)K (xn+p)
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shows, with x0 = w and choosing n = 0, that

K (w) = K (xp)

p∏
j=1

(1 + xj)

The limp→∞K (xp) = K (0) = π
2 finally leads to the AGM-expansion of the complete elliptic integral

K (w) =
π

2
lim
p→∞

p∏
j=1

(1 + xj) (91)

which converges very fast and any truncation of p provides a lower bound. With p = 5 in (91), we

found 45 decimals accurate for w = 3/4 and 33 decimals for w = 7/8, but more than 80 decimals for

w = 1/8. The explicit product in (88) with p = 3 has 28 decimals accurate for w = 1/8 and 8 decimals

for w = 7/8.

The Landen transformation is a special case [2, p. 590] of

(1 + x)

∫ α

0

dφ√
1− x2 sin2 φ

= 2

∫ β

0

dφ√
1− 4x

(1+x)2
sin2 φ

with x sinα = sin (2β − α)

for α = π and β = π
2 . Almkvist and Berndt [2, p. 590] present the approach due to Landen, who

substituted

tanφ =
sin (2φ)

x1 + cos (2φ)

in the complete elliptic integral of the first kind K (x) =
∫ π

2
0

dθ√
1−k2 sin2 θ

to obtain, after tedious

manipulations, (87). The Landen transformation is now of historical interest, because it directly

follows from transformations connecting Jacobi theta functions [34, p. 476].

30. Trigonometric form of the Landen recursion (89). We start from the recursion xn+1 =
1−
√

1−x2n
1+
√

1−x2n
in (89) and let xn = sin θn, then

sin θn+1 =
1−

√
1− sin2 θn

1 +
√

1− sin2 θn
=

1− cos θn
1 + cos θn

=
1− cos2 θn2 + sin2 θn2
1 + cos2 θn2 − sin2 θn2

=
2 sin2 θn2
2 cos2 θn2

which leads to the recursion [17, ex. 9, p. 38]

sin θn+1 = tan2
θn
2

(92)

Since 1
aK

(
c
a

)
= π

2
1

M(a,b) in (84) and M (a, b) = M (an, bn), we have 1
an
K
(
cn
an

)
= π

2
1

M(an,bn)
and

xn = cn
an

= sin θn, from which cn
an

=

√
1−

(
bn
an

)2
and cos θn = bn

an
. By combining cn = an sin θn and

an+1 =
an+bn

2 , we deduce that

cn+1 = an+1 sin θn+1 =
an + bn

2
tan2

θn
2

=
an
2

(1 + cos θn) tan
2 θn
2

= an cos
2 θn
2

sin θn
2

cos θn2
tan

θn
2

=
an
2

sin θn tan
θn
2

and

cn+1 =
cn
2

tan
θn
2

(93)
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After p-fold iteration, we find that cn = 1
2p cn−p

∏n−1
j=n−p tan

θj
2 . If p = n, then c0 = c = a sin θ0 = ax0

and x0 =
k
a (or requiring that a = 1), so that

cn =
k

2n

n−1∏
j=0

tan
θj
2

By squaring the recursion (93), we obtain c2n+1 = c2n
4 tan2 θn2 , while recursion (92) indicates that

c2n+1 = c2n
4 sin θn+1. Iterating p times, we find c2n = 1

4p c
2
n−p

∏n
j=n−p+1 sin θj and choosing p = n, with

c0 = k, we arrive at

c2n =
k2

4n

n∏
j=1

sin θj

Taking the logarithm of the AGM expansion (91) of the complete elliptic integral K (k) yields [17,

ex. 9 (ii), p. 36], with xn = sin θn and (92),

log

(
2

π
K (k)

)
=

∞∑
j=1

log (1 + sin θj) =

∞∑
j=1

log

(
1 + tan2

θj−1

2

)
= 2

∞∑
j=1

log

(
sec

θj−1

2

)

We translate π
2
M(a,b)
M(a,c) = 1

2m log
(
4am
cm

)
−
∑∞

l=m
1
2l
log
(

al
al+1

)
in (40) with cm = am sin θm and with

(12), al
al+1

=
al+1+cl+1

al+1
= 1 + sin θl+1, to

π

2

M (a, b)

M (a, c)
=

1

2m
log

(
4

sin θm

)
−

∞∑
l=m

1

2l
log (1 + sin θl+1)

which reduces, with M(a,b)
M(a,c) =

K(k′)
K(k) and m = 1, to [17, ex. 9 (iv), p. 36].

31. The complete elliptic integral E (k). The integral associated to I (a, b) in (29) is

J (a, b) =

∫ π
2

0

√
a2 sin2 θ + b2 cos2 θdθ (94)

which is written, similarly as in art. 28 after observing that J (a, b) = J (b, a), in terms of the complete

elliptic integral E (k) =
∫ π

2
0

√
1− k2 sin2 θdθ as

J (a, b) = a

∫ π
2

0

√
1− c2

a2
sin2 θdθ = aE

( c
a

)
where c =

√
a2 − b2. An important relation, assuming as before that a > b > 0 and c2n = a2n − b2n, is

J (a, b) =

(
a2 − 1

2

∞∑
n=0

2nc2n

)
I (a, b) (95)

which is a special case26 of (173) in art. 57. We write (95) in terms of Legendre’s complete elliptic

integrals K (k) and E (k) with k = c
a as

K (k)− E (k)

K (k)
=

1

2a2

∞∑
n=0

2nc2n (96)

26The proof of (173) in art. 57 has cost us a considerable amount of time. Almkvist and Berndt [2, Theorem 4] omit

the proof and refer to King [17, pp. 7- 8], who merely states formulae, most of them without demonstrations, forcing an

interesting reader to repeat his work.
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The right-hand series in (96) converges extremely rapidly; a second order convergence due to the AGM

algorithm (2).

The recursion cn+1 =
c2n

4an+1
in (8) leads to

c2n + 2c2n+1 = 4an+1cn+1 + 2c2n+1 = 2cn+1 (2an+1 + cn+1) = 2cn+1

(
an+1 +

1

2
(an + bn) + cn+1

)
and with cn+1 =

an−bn
2 , we arrive at c2n + 2c2n+1 = 2cn+1 (an + an+1). We employ that relation in

∞∑
n=0

2nc2n =
∞∑
n=0

22nc22n +
∞∑
n=0

22n+1c22n+1 =
∞∑
n=0

22n
(
c22n + 2c22n+1

)
= 2

∞∑
n=0

22n (c2n+1 (a2n + a2n+1))

so that (96) becomes [17, ex. 3, p. 35]

K (k)− E (k)

K (k)
=

∞∑
n=0

22n (a2n + a2n+1) c2n+1 (97)

32. Legendre’s formula. Legendre [18, p. 61] has demonstrated for 0 < k < 1 and k′ =
√
1− k2 that

K (k)E
(
k′
)
+K

(
k′
)
E (k)−K (k)K

(
k′
)
=
π

2
(98)

Almkvist and Berndt [2, Theorem 3] present a “proof that appears not to have been, heretofore, given”,

but their proof is similar to that of Legendre, who uses differentials instead of integrals. Whittaker

and Watson [34, p. 520] give a three line proof of Legendre’s formula (98), based on elliptic functions;

they also mention an analogous result of Legendre’s formula (98) in Weierstrass’s theory.

We follow the proof of Almkvist and Berndt, but generalize the derivations to the incomplete elliptic

integrals F (φ, k) and E (φ, k). Since their proof of (98) is rather technical and less illuminating, we

have placed it in Appendix D.

33. Proof of Legendre’s formula (98) via the differential dM (a, b). We derive additional relations of

the differential dM (a, b) in art. 19, that appear in [14, p. 380], from which Legendre’s formula (98)

follows, as first noted by King [17, ex. 18, p. 39].

The recursion fn = fn−1 + gn in (51) maps, with the definition fn = d log anbn and gn = d log an
bn

and the first equality of ∆ in (58), to

d log (an−1bn−1) = d log (anbn)− 2nc2n∆

and (55) is written as

d log (an+pbn+p) = d log (anbn) + ∆

n+p∑
k=n+1

2kc2k (99)

The limit limp→∞ d log (an+pbn+p) = 2d (log (M (a, b))), it holds [14, p. 380] that

2d (log (M (a, b))) = d log (anbn) + ∆
∞∑

k=n+1

2kc2k (100)

On the other hand, for n = 0 in (99), we find for any integer p that

d log (apbp) = d log (a0b0) + ∆

p∑
k=1

2kc2k
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Since the differential computation in art. 19 holds for any integer n ∈ Z, the complementary

AGM algorithm (a′n, b
′
n, c

′
n) indicates that d log

(
a′n−1b

′
n−1

)
= d log (a′nb

′
n) − 2n

(
c
′
n

)2
∆′. With (15),

we have ∆′ = 1
(c′)2

d log a′

b′ = 1
b2
d log a

c = −∆ with (58) and with d log (a′nb
′
n) = d log

(
2−2na−nc−n

)
=

d log (a−nc−n) that

d log (a−n+1c−n+1) = d log (a−nc−n)− 2−nb2−n∆

From 2d (log (M (a′, b′))) = d log (a′nb
′
n) + ∆′∑∞

k=n+1 2
k (c′k)

2 in (100), we obtain with (15)

2d (log (M (a, c))) = d log (a−nc−n)−∆

∞∑
k=n+1

2−kb2−k (101)

while the finite p variant becomes

d log
(
a′pb

′
p

)
= d log

(
a′0b

′
0

)
−∆

p∑
k=1

2k
(
c′k
)2

First, we subtract the finite p variants,

d log

(
apbp
a′pb

′
p

)
= d log

(
a0b0
a′0b

′
0

)
+∆

(
p∑

k=1

2kc2k +

p∑
k=1

2k
(
c′k
)2)

(102)

Since a0 = a′0 and b′0 = c0, it holds that d log
(
a0b0
a′0b

′
0

)
= d log

(
b0
c0

)
and ∆ = 1

2na2n
d log cn

bn
in (58)

leads to d log
(
a0b0
a′0b

′
0

)
= −a20∆. If p is sufficiently large, then ap = bp as well as a′p = b′p so that

d log
(
apbp
a′pb

′
p

)
= 2d log

(
ap
a′p

)
. Using ∆ = π

2
1

apa′p
d
(
log

a′p
ap

)
in (61) yields d log

(
apbp
a′pb

′
p

)
= − 4

π∆apa
′
p.

Hence, (102) becomes, for p→ ∞,

− 4

π
apa

′
p = −a20 +

(
p∑

k=1

2kc2k +

p∑
k=1

2k
(
c′k
)2)

With K(k)−E(k)
K(k) = 1

2a2
∑∞

n=0 2
nc2n in (96) and ap = π

2K(k) where k = c
a for large p as well as similar

expressions for the complementary functions in terms of the backward AGM in accented symbols, the

above becomes with a0 = a = 1

4

π

π

2K (k)

π

2K (k′)
− 1 = −

(
2
K (k)− E (k)

K (k)
− c20 + 2

K (k′)− E (k′)

K (k′)
− c′20

)
Since c20 = a2 − b2 and c′20 = b2, we have c20 + c′20 = a2 = 1 and the above [17, ex. 18, p. 39] simplifies

to Legendre’s formula (98),
π

2K (k)K (k′)
=
E (k)

K (k)
+
E (k′)

K (k′)
− 1

Adding and subtracting (100) and (101) results in

2d (log (M (a, b)M (a, c))) = d log (anbn) + d log (a−nc−n) + ∆

( ∞∑
k=n+1

2kc2k −
∞∑

k=n+1

2−kb2−k

)

2d

(
log

(
M (a, b)

M (a, c)

))
= d log (anbn)− d log (a−nc−n) + ∆

( ∞∑
k=n+1

2kc2k +
∞∑

k=n+1

2−kb2−k

)
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Since d log (anbn) + d log (a−nc−n) = d (log (anbna−nc−n)) = d (log (anbna
′
nb

′
n)) and if n grows large,

then an = bn as well as a′n = b′n and

d (log (M (a, b)M (a, c))) = d log
(
ana

′
n

)
+

∆

2

( ∞∑
k=n+1

2kc2k −
∞∑

k=n+1

2−kb2−k

)

d

(
log

(
M (a, b)

M (a, c)

))
= d log

(
an
a′n

)
+

∆

2

( ∞∑
k=n+1

2kc2k +

∞∑
k=n+1

2−kb2−k

)

By elimination of the differential with the help of ∆ as above, the Gauss’s series [14, art. 13, p.380]

4

π
M (a, b)M (a, c) = −

∞∑
k=n+1

2−kb2−k − 2n−1b2n−1 + 2na2n −
∞∑

k=n+1

2kc2k

can be derived.

9 Applications of the arithmetic-geometric mean AGM

34. The lemniscate. We refer to Cox [7, Section 3] for the history of the lemniscate, invented by

Jacob Bernoulli in 1694.

Any point with coordinates (x, y) on an oval of Cassini has a constant product b2 of its distances

to two fixed points f1 = (f, 0) and f2 = (−f, 0), called the foci, i.e.√
(x− f)2 + y2 ×

√
(x+ f)2 + y2 = b2

Squaring and simplifying yields (
x2 + y2

)2
+ 2f2

(
y2 − x2

)
+ f4 = b4

which is transformed to Cartesian coordinates by x = r cos θ and y = r sin θ, with x2 + y2 = r2, as

r4 − 2f2r2 cos (2θ) = b4 − f4

The lemniscate27 is the special case of a Cassini oval where b = f and has the elegant expression in

polar coordinates

r2 = 2f2 cos (2θ) ≡ a cos (2θ)

with corresponding Cartesian representation for a = 2f2,(
x2 + y2

)2
+ a

(
y2 − x2

)
= 0

After combining r2

a = cos 2θ = 2 cos2 θ − 1 and x = r cos θ and similarly r2

a = cos 2θ = 1− 2 sin2 θ

with y = r sin θ, we obtain the parametric form of the lemniscate in r as x (r) = r√
2

√
1 + 1

ar
2

y (r) = ± r√
2

√
1− 1

ar
2

(103)
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Figure 3: A lemniscate with a = 1

Fig. 3 draws the lemniscate for a = 1.

The arc length of a curve y (x) with a ≤ x ≤ b is Lab =
∫ b
a

√
1 +

(
dy
dx

)2
dx, as follows from

Pythagoras’ theorem on an infinitesimal triangle at a point (x, y) on the curve y (x), or in parametric

form,

L =

∫ tb

ta

√
dx2 (t) + dy2 (t) =

∫ tb

ta

√(
dx (t)

dt

)2

+

(
dy (t)

dt

)2

dt

The length Ll (r) of the lemniscate28, from the origin to a point at distance r from the origin, is with

(103),

Ll (r) =

∫ r

0

√√√√( d

dt

(
t√
2

√
1 +

1

a
t2

))2

+

(
d

dt

(
t√
2

√
1− 1

a
t2

))2

dt

=
1√
2

∫ r

0

√√√√√
√1 +

1

a
t2 +

1
a t

2√
1 + 1

a t
2

2

+

√1− 1

a
t2 −

1
a t

2√
1 + 1

a t
2

2

dt

=
1√
2

∫ r

0

√√√√√
 1 + 2

a t
2√

1 + 1
a t

2

2

+

 1− 2
a t

2√
1− 1

a t
2

2

dt =

∫ r

0

1√
1−

(
t2

a

)2dt
and

Ll (r) =
√
a

∫ r√
a

0

du√
1− u4

(104)

Hence, the length Ll (r) of the lemniscate, from the origin to a point at distance r from the origin,

is written in terms of the elliptic integral F (φ, k) =
∫ sinφ
0

dt√
1−t2

√
1−k2t2 of the first kind in (130) as

Ll (r) =
√
aF
(
arcsin r√

a
, i
)
. In terms of the integral I (a, b;φ) =

∫ φ
0

dθ√
a2 cos2 θ+b2 sin2 θ

in (145), we

27Leminscate is derived from the Greek ληµνισκoς, meaning “ribbon”, e.g. a pendant ribbon fastened to a victor’s

garland.
28The length of an arc on an ellipse x = a sin θ and y = b cos θ is Le =

∫ φ

0

√
a2 sin2 θ + b2 cos2 θdθ and can be written

in terms of the elliptic integral E (φ, k) =
∫ φ

0

√
1− k2 sin2 θdθ of the second kind in (131).
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have

Ll (r) =
√
a

∫ arcsin r√
a

0

dθ√
2 cos2 θ + sin2 θ

=
√
aI

(√
2, 1; arcsin

r√
a

)

The total length Ll of the lemniscate with a = 1 is Ll = 4Ll (1) = 4I
(√

2, 1
)
=
∫ π

2
0

dθ√
2 cos2 θ+sin2 θ

.

The fundamental integral in (28) then shows that the total length Ll of the lemniscate with a = 1

equals

Ll =
2π

M
(√

2, 1
)

After substitution of y = sin θ, the integral I
(√

2, 1
)

=
∫ π

2
0

dθ√
1+sin2 θ

transforms to I
(√

2, 1
)

=∫ 1
0

dy√
1−y4

, where the last integral appeared in 1691 in a paper of Jacob Bernoulli. The definition

F (φ, k) =
∫ sinφ
0

dt√
1−t2

√
1−k2t2 in (130) illustrates that F (φ, i) =

∫ sinφ
0

dt√
1−t4 and K (i) =

∫ 1
0

dy√
1−y4

;

see also the imaginary transform (138) on p. 69. The Beta integral B (α, β) =
∫ 1
0 x

a−1 (1− x)β−1 =
Γ(α)Γ(β)
Γ(α+β) , after substitution of x = y4, results in∫ 1

0

dy√
1− y4

=
1

4

∫ 1

0
x

1
4
−1 (1− x)

1
2
−1 dx =

√
π
Γ
(
5
4

)
Γ
(
3
4

)
Consequently, a basic result in Gauss’s investigations [7, p. 280-283] relates the total length of the

lemniscate to the arithmetic-geometric mean

M
(√

2, 1
)
=

2π

4I
(√

2, 1
) =

π

2
∫ 1
0

dy√
1−y4

=

√
π

2

Γ
(
3
4

)
Γ
(
5
4

) ≃ 1.19814

Gauss denotes ϖ = 2
∫ 1
0

dy√
1−y4

≃ 2.39628 to29 emphasize the importance of Ll =
2π

M(
√
2,1)

, which is

then

M
(√

2, 1
)
=
π

ϖ
(105)

In a posthumous paper30 of 1786, Euler has proved the amazing result,∫ 1

0

dy√
1− y4

∫ 1

0

y2dy√
1− y4

=
π

4
(106)

so that

M
(√

2, 1
)
= 2

∫ 1

0

y2dy√
1− y4

(107)

If k = k′ = 1√
2
, then Legendre’s formula (98) simplifies to 2K (k)E (k)−K2 (k) = π

2 . If k = k′ = 1√
2

and φ = π
2 in (139), we observe that

K

(
1√
2

)
=

√
2

∫ 1

0

dx√
1− x4

Similarly, we find from (132) that 2E
(

1√
2

)
−K

(
1√
2

)
=

√
2
∫ 1
0

x2dx√
1−x4 . Substituting these integrals in

2K (k)E (k)−K2 (k) = π
2 leads [19, p. 69][2, p. 596] to Euler’s lemniscate identity (106).

29As a comparison, the integral
∫ 1

0
dy√
1−y2

= arcsin (1) = π
2
= 1.5708.

30Euler, “De miris proprietatibus curvae elasticae sub equatione y =
∫

xxdx√
1−x4

contentae”, in 1786.
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35. The pendulum. A mass m is hung on a cord that is fixed at a point 0 on a ceiling. The mass m is

released at time t = 0 from an angle θ (0) = θ0 and will swing around the point 0 in the well-known

pendulum fashion. The length of the cord is l and we ignore its weight. Further ignoring friction

and considering the mass as a point, the forces that act upon the mass m are the gravitation force

FG = mg and the force FC exerted by the cord, that restricts the movement of the mass to a circle

with midpoint 0 and radius l, as depicted in Fig. 4. At time t, the angle θ (t) is measured between

the cord and the line perpendicular to the ceiling. Newton’s law of motion states that the sum of

the forces acting on an object equals its mass multiplied by its acceleration. The only acceleration

possible is due to the tangential force FT = FG sin θ along the circle, because the normal force FN ,

which is perpendicular to the tangent on the circle, is precisely equal to the force FC of the cord. The

tangential acceleration aT of the mass along the circle is aT = l d
2θ(t)
dt2

and its tangential velocity is

vT = l dθ(t)dt .

𝜃

𝜃
𝐹!

𝐹" 𝐹#

𝐹$

𝑙

0

Figure 4: An ideal pendulum consists of a point mass and a weightless cord or rod, suspended from a

pivot, allowing the pendulum to swing freely.

Hence, the mechanical motion of the mass obeys the differential equation

−FT = ml
d2θ (t)

dt2

and the minus sign arises from the fact that the tangential force is opposite to the direction in which

the angle θ (t) is measured. Substituting FT = mg sin θ (t) yields the pendulum governing equation in

the angle θ (t),
d2θ (t)

dt2
= −g

l
sin θ (t) (108)

This non-linear differential equation can be integration, after multiplying both sides by dθ(t)
dt and rec-

ognizing that d2θ(t)
dt2

dθ(t)
dt = 1

2
d
dt

((
dθ(t)
dt

)2)
, while sin θ (t) dθ(t)dt = − d

dt (cos θ (t)). Thus, the pendulum

law (108) becomes

d

dt

(
1

2

(
dθ (t)

dt

)2

− g

l
cos θ (t)

)
= 0
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implying that
(
dθ(t)
dt

)2
− 2g

l cos θ (t) = c, where c is a constant independent of time t. At time t = 0,

the angle is θ (0) = θ0, but the initial velocity is zero so that c = −2g
l cos θ0. In terms of the velocity

vT = l dθ(t)dt and the kinetic energy Ek =
mv2

2 , it holds that the velocity

vT (t) =
√

2gl (cos θ (t)− cos θ0)

does not dependent on the mass, but on the square root
√
l of the length of the rope and the difference

between cosines at the starting angle and at the angle at time t = 0. Another integration of dθ(t)
dt =

±
√

2g
l cos θ (t) + c, where the sign changes at the highest angle at velocity vT = 0 just when the

pendulum returns and which is written in differential form as dθ(t)

±
√

2g
l
cos θ(t)+c

= dt, is

t =

∫ θ(t)

θ0

dθ√
2g
l (cos θ − cos θ0)

=
1

2

√
l

g

∫ θ(t)

θ0

dθ√
sin2 θ02 − sin2 θ2

=
1

2 sin θ0
2

√
l

g

∫ θ(t)

θ0

dθ√
1− 1

sin2
θ0
2

sin2 θ2

The time t can be written in terms of the elliptic integral F (φ, k) =
∫ φ
0

dθ√
1−k2 sin2 θ

in (130). Since

1

sin
θ0
2

≥ 1, we cannot simply choose k = 1

sin
θ0
2

after letting u = θ
2 . The more complicated substitution

sinu =
sin θ

2

sin
θ0
2

with inverse θ = 2arcsin
(
sin θ0

2 sinu
)
gives us

t =
1

2 sin θ0
2

√
l

g

∫ arcsin
sin

θ(t)
2

sin
θ0
2

π
2

du√
1− sin2 u

2 sin θ0
2 cosu√

1− sin2 θ02 sin2 u
=

√
l

g

∫ arcsin
sin

θ(t)
2

sin
θ0
2

π
2

du√
1− sin2 θ02 sin2 u

With k = sin θ0
2 , we arrive at the time evolution of the pendulum expressed in its angle θ (t),

t =

√
l

g

(
F
(π
2
, k
)
− F

(
arcsin

sin θ(t)
2

sin θ0
2

, k

))
The period P of the pendulum is twice the time from the starting angle θ0 to the maximum opposite

angle −θ0, which is four times the time from the starting angle θ0 and the angle θ = 0 where maximal

velocity vT is reached. With F
(
π
2 , k
)
= K (k), the period P of the pendulum is

P = 4

√
l

g
K

(
sin

θ0
2

)
(109)

which is maximal for θ0 = π and equal to Pmax = 4
√

l
gK (1) → ∞. The angle θ0 = π is the unstable

equilibrium, while θ0 = 0 is the stable equilibrium. The AGM expansion (91) of the complete elliptic

integral K (k) provides a very fast converging expansion of (109).

The Taylor series (144) of K (k) with f2m =
(− 1

2
m

)2
=
(∏m

j=1
2j−1
2j

)2
in (22) indicates that

P = 2π

√
l

g

1 +

∞∑
m=1

 m∏
j=1

2j − 1

2j

2

sin2m
θ0
2

 (110)

If the angle θ0 and thus all subsequent angles θ (t) ≤ θ0 are small, then the approximation sin θ (t) ≈
θ (t) in (108) yields the linear differential equation d2θ(t)

dt2
+ g

l θ (t) = 0, with general solution θ (t) =
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a cos
(√

g
l t
)
+ b sin

(√
g
l t
)
. If the begin velocity vT (0) = 0, thus dθ(t)

dt

∣∣∣
t=0

= 0 and b = 0, then we

arrive at the approximation θapp (t) of the angle θ (t),

θapp (t) = θ0 cos

(√
g

l
t

)
θ0 is small

The corresponding period is Papp = 2π
√

l
g and comparison with the series (110), whose terms are

non-negative, shows that Papp ≤ P .

36. Returning to the starting point in a random walk. Random walks in several dimensions and

on graphs (see e.g. [33, p. 63-65]) constitute a basic and well-studied topic in probability theory.

We refer to Feller [11, Chapter III] for a clear exposition of the simple random walk on a line or in

one dimension. An interesting theorem due to Polya states that a random walker in one and two

dimensions returns to his initial position with probability 1, but in three dimensions, that probability

is only around 0.35. Polya’s theorem is proved in [11, p. 361]. We compute the probability un that a

random walker on a 2D lattice, i.e. in two dimensions, starting at the origin, returns after n steps to

the origin. If the number of steps is odd, i.e. n = 2m− 1, then returning is impossible on a 2D lattice

and u2m−1 = 0. A return to the initial position at the origin is only possible if the number of steps

in positive x- and y-directions on the lattice are equal to those in the negative x- and y-directions,

respectively, implying, using a multinomial distribution [11, p. 361], that

u2m =
1

42m

m∑
k=0

(2m)!

k!k! (n− k)! (n− k)!
=

1

42m

(
2m

m

) m∑
l=0

(
m

l

)2

=

(
2m
m

)2
42m

= f2m

where
∑m

l=0

(
m
l

)2
=
(
2m
m

)
is an instance of Vandermonde’s identity (140). Hence, the Taylor coefficient

f2m of 1
M(1+x,1−x) in (22) equals the probability that a random walker on a 2D lattice, starting at the

origin, returns after n = 2m steps to the origin. The probability generating function of the random

variable R of returning to the origin is

φR (z) =

∞∑
n=0

unz
n =

∞∑
n=0

fnz
n =

1

M (1 + z, 1− z)
=

1

M
(
1,
√
1− z2

) =
2

π
K (z)

10 From the arithmetic-geometric mean to elliptic functions

37. Extension of M (a, b) to complex a and b. Based on incomplete sketches in Gauss’s Nachlass,

Cox [7, Section 2, pp. 283-309] has reconstructed the entire complex theory of M (a, b) that Gauss

has discovered. Although the fundamental integral in (28) was already a tour de force of Gauss,

his extension to the complex plane is even more astonishing. Whereas Section 3 reviews the entire

historical evolution towards elliptic functions and theta functions, we summarize Cox’s Section 2:

1. If a, b ∈ C, then the AGM algorithm (2) creates two solutions for bn+1 =
√
anbn for all n ≥ 0,

so that there are uncountably many sequences {an}n≥0 and {bn}n≥0 for a given pair (a, b).

Moreover, it is even unclear whether the AGM algorithm (2) still converges! All these sequences

converge, but only countably many have a non-zero limit.
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2. A deep result31 of which Gauss predicted in his mathematical diary that “the demonstration of

M
(√

2, 1
)
= 2π

Ll
will surely open an entirely new field of analysis” is

Theorem 2 (Werke, Band 3, p. 378) If one chooses the negative value of the squareroot of

bn =
√
an−1bn−1 in the AGM algorithm (2), all values M (a, b) of the arithmetic-geometric mean

for a, b ∈ C are comprised in

1

M (a, b)
=

1

M (a, b)
+

4il

M (a, c)

where l ∈ Z and c =
√
a2 − b2 as defined in (7).

The proof of Theorem 2 is involved.

3. Amazingly, Gauss found properties of modular functions, the univalent Möbius transformation

w = az+b
cz+d in the complex plane, group properties of SL(2,Z), reduction theory, as explained in

Cox [7, Section 2, pp. 283-309].

Let us return to Cox’s reformulation in Theorem 1. Suppose that τ0 is a solution of k′ (τ) = b
a ,

then a = µp2 (τ0) and b = µq2 (τ0) are the simplest values of M (a, b). Cox shows that any solution of

µ̃ of M (a, b) can be written as µ̃ = µ
cτ0+d

, where (see art. 27)

τ0 = i
M (a, b)

M (a, c)
(111)

which is especially useful when a > b > 0. For example, if a =
√
2 and b = 1, then c = 1 from which

(111) implies that τ0 = i and that M
(√

2, 1
)
=

√
2

p2(i)
= 1

q2(i)
. Invoking π

ϖ = M
(√

2, 1
)
≃ 1.19814 in

(105) and the rapidly converging theta-function expansions (80) and (81) leads to

ϖ

π
=

1√
2

(
1 + 2

∞∑
n=1

e−n
2π

)2

and

ϖ

π
=

(
1 + 2

∞∑
n=1

(−1)n e−n
2π

)2

31Cox [7, p. 287-288] has proved a more accurate rephrasing of Gauss’s Theorem 2:

Theorem 1 (Gauss (1800)) Given a, b ∈ C that satisfy a ̸= ±b and |a| ≥ |b| and let µ = limn→∞ an = limn→∞ bn

in the AG algorithm (2) for M (a, b) and λ = limn→∞ (a+ b)n = limn→∞ (a− b)n in the AG algorithm (2) for

M (a+ b, a− b). Then all values µ̃ of M (a, b) obey

1

µ̃
=
d

µ
+ i

c

λ

where d and c are arbitrary relatively prime integers satisfying d ≡ 1mod 4 and c ≡ 0mod 4.

We add that M (an, cn) =M
(

an−1+bn−1

2
,
an−1−bn−1

2

)
= 1

2
M (an−1 + bn−1, an−1 − bn−1) =

1
2
M (a+ b, a− b)
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Finally, with k (τ) = r2(τ)
p2(τ)

and the complementary modulus k′ (τ) =
√
1− k2 (τ), the generalization

of Gauss’s basic integral (28) is written in terms of Jacobi’s theta function

1

M (1, k′ (τ))
=

2

π

∫ π
2

0

dθ√
1− (k (τ))2 sin2 θ

= p2 (τ) = ϑ23 (τ, 0)

38. Sinus Lemniscatus. Theorem 2 on p. 50 was Gauss’s avenue towards double periodicity in

the complex plane and towards elliptic functions. Analogous to trigonometric functions, where y =

arcsinx =
∫ x
0

dt√
1−t2 is the inverse function of x = sin y, Gauss realized that 1

M(a,b) is the inverse

function of elliptic functions in the complex plane! There is a similarity between π
2 =

∫ 1
0

dy√
1−y2

and

ϖ
2 =

∫ 1
0

dy√
1−y4

. Gauss32 defined the lemniscatic functions as

sinlem

(∫ x

0

dy√
1− y4

)
= x (112)

coslem

(
ϖ

2
−
∫ x

0

dy√
1− y4

)
= x

After writing sl (x) = sinlem(x) and cl (x) = coslem(x), Gauss derived the basic identities

sl2 (x) + cl2 (x) + sl2 (x) cl2 (x) = 1(
1 + sl2 (x)

) (
1 + cl2 (x)

)
=

(
1

sl2 (x)
− 1

)(
1

cl2 (x)
− 1

)
= 2

sinlem (a± b) =
sl (a) cl (b)± sl (b) cl (a)

1∓ sl (a) cl (b) sl (b) cl (a)

coslem (a± b) =
cl (a) cl (b)∓ sl (b) sl (a)

1± sl (a) cl (b) sl (b) cl (a)

sl (x) =

√
1− cl2 (x)

1 + cl2 (x)
and cl (x) =

√
1− sl2 (x)

1 + sl2 (x)

and deduced from these many beautiful series expansion and theta-function like expansions, that were

never published by Gauss, only in his Nachlass. Gauss generalized the sinus lemniscatus to complex

values,

sl (iy) = isl (y) and cl (iy) =
1

cl (y)

Indeed, formally let y = it in
∫ x
0

dy√
1−y4

= i
∫ ix
0

dt√
1−t4 in (112), then sl

(
i
∫ ix
0

dy√
1−y4

)
= ix and replace

y = ix. Using sl (iy) = isl (y), the formula cl (iy) = 1
cl(y) follows from cl (x) =

√
1−sl2(x)
1+sl2(x)

. Then,

sinlem(a± b) = sl(a)cl(b)±sl(b)cl(a)
1∓sl(a)cl(b)sl(b)cl(a) shows that

sl (x+ iy) =
sl (x) + isl (y) cl (x) cl (y)

cl (y)− isl (x) sl (y) cl (x)

32Gauss Werke, Band 3, p. 404 on “Elegantiores integralis
∫ x

0
dy√
1−y4

proprietatis”, in which he defines the sinuslem-

niscatus and derives many of its functional properties, much more than the sinus possesses.
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which illustrates that sl (z) is doubly periodic with periods 2ϖ and 2iϖ, because sl (0) = 0 and

cl
(
ϖ
2

)
= 0 as follows from the definition (112). The zeros sl (z) occur at z = (m+ in)ϖ and the poles

at z = ((2m− 1) + i (2n− 1)) ϖ2 , where m,n ∈ Z.

39. Sinus Amplitudinis. Jacobi’s sinus amplitudinis sn (z; k), cosinus amplitudinis cn (z; k) and delta

amplitudinis cn (z; k) are defined [22, Chapter 22] as

sn (z (φ) ; k) = sinφ

cn (z (φ) ; k) = cosφ

dn (z (φ) ; k) =

√
1− k2 sin2 φ

where

z (φ) =

∫ φ

0

dθ√
1− k2 sin2 θ

= F (φ, k)

and its inverse φ = am (z, k) is Jacobi’s amplitude [24, p. 286]. If k = 0, then z (φ) = φ and we obtain

sn (φ; 0) = sinφ, cn (φ; 0) = cosφ and dn (φ; 0) = 1. If k = 1, then z (φ) =
∫ φ
0

dθ
cos θ = ln

(
1+sinφ
cosφ

)
.

We invert the latter, i.e. solve ez = 1+y√
1−y2

for y = sinφ and find that y = −1±e2z
1+e2z

= ±ez−e−z

ez+e−z , where

the plus must be chosen because y > 0 for small φ, which results in sinφ = tanh z and

sn (z (φ) ; 1) = tanh z

cn (z (φ) ; 1) = dn (z (φ) ; 1) = sechz

If φ = π
2 , then z

(
π
2

)
= K (k) in art. 47 and

sn (K (k) ; k) = 1

cn (K (k) ; k) = 0

dn (K (k) ; k) =
√
1− k2

The relation between Gauss’s and Jacobi’s elliptic functions is

sl (z) = 1√
2

sn
(
z
√
2; 1√

2

)
dn
(
z
√
2; 1√

2

) and cl (z) = cn
(
z
√
2; 1√

2

)
which appears if k2 = 1

2 . Hence, Gauss’s sinus and cosinus lemniscatus are a special case of Jacobi’s

elliptic amplitudinis functions. Finally, Cox [7, Section 3] demonstrates that Gauss had a complete

theory of elliptic functions!

11 Computations of π

The number π has fascinated humans for over 4000 years since the Babylonians and old-Egyptians

and is still captivating current mathematicians. The Borwein brothers and Bailey [5] overview the

history of the computing π and also mention that π is used to test the hardware of supercomputers

today.

40. Leibniz’s series. Perhaps the simplest or most classic series to compute π are derived from inverse

trigonometric functions. We confine ourselves to series for arctan z.
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The inverse function z = f−1 (w) of the function w = f (z) = tan z is f−1 (z) = arctan z. The

definition of the inverse function implies that f
(
f−1 (z)

)
= z and differentiation gives

(
f−1 (z)

)′
=

1

f ′ (f−1 (z))
(113)

Applied to f (z) = tan z for which f ′ (z) = sec2 z = 1 + tan2 z = 1 + f2 (z), we arrive at

d

dz
(arctan z) =

1

1 + z2

After integration, we find

arctan z =

∫ z

0

du

1 + u2
(114)

Let u = −t, then arctan z = −
∫ −z
0

dt
1+t2

, from which arctan (−z) = − arctan z is an odd function

around z = 0. Substitution of the geometric series 1
1−z =

∑∞
k=0 z

k, convergent for |z| < 1, leads to

the Taylor series around z = 0

arctan z =
∞∑
k=0

(−1)k

2k + 1
z2k+1 for |z| < 1 (115)

which converges for z = 1, because Leibniz’ series

π

4
= lim

K→∞

K∑
k=0

(−1)k

2k + 1
= 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+

1

13
− 1

15
+ · · · (116)

is an alternating sum with decreasing terms. Most likely, Leibniz’ series (116) is one of the simplest, but

also slowest convergent series for π. If K = 10m terms are computed in (116), then about m decimal

digits are correct. In [3, Section 1.8.1], the remarkable observation that Leibniz’ series, computed up

to K = 5 106 terms, contains many correct digits of π and only a few incorrect digits, is explained as

due to Euler numbers that appear in the Euler-MacLaurin summation [3, Theorem 1.8]. While the

alternating Leibniz’ series (116) is very slowly converging, the errors are highly predictable. Leibniz33

(1646-1716) did not obtain (116) as derived above, but from his general method of “transmutation”,

which is nicely explained by Edwards [10, p. 245-252]. The companion series of (116), due to Newton

(1643-1727) and equally slowly converging, is

π

2
√
2
= lim

K→∞

K∑
k=0

(−1)k
(

1

4k + 1
+

1

4k + 3

)
= 1 +

1

3
− 1

5
− 1

7
+

1

9
+

1

11
− 1

13
− 1

15
+ · · · (117)

Newton’s π-series (117) follows from
∫ 1
0

1+z2

1+z4
dz. First, expanding the integrand in a geometric series

1
1+z4

=
∑∞

k=0 (−1)k x4k and term-wise integrating results in the right-hand side series in (117). Since

33Edwards [10, p. 222] mentions that Newton in 1676 inquired Henry Oldenburg, secretary of the Royal Society in

London, to send a first letter (epistola prima) to Leibniz in which Newton announced his bionomial series (1 + z)α =∑∞
k=0

(
α
k

)
zk for any (complex) α, but did not mention the validity range |z| < 1. Leibniz replied Newton’s epistola prima

by his alternating series (116). In the second (and last) letter to Leibniz, the epistola posterior, Newton gave a general

integral of which (117) was a special case.
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1+z4 =
(
1 + z2 +

√
2z
) (

1 + z2 −
√
2z
)
, partial fraction expansion yields 1+z2

1+z4
=

1
2

1+z2+
√
2z
+

1
2

1+z2−
√
2z

and ∫ 1

0

1 + z2

1 + z4
dz =

1

2

∫ 1

−1

dz

1 + z2 +
√
2z

=

∫ 1

−1

dz(√
2z + 1

)2
+ 1

=
1√
2
arctan

(√
2z + 1

)∣∣∣1
−1

=
1√
2

(
arctan

(
1 +

√
2
)
− arctan

(
1−

√
2
))

=
1√
2

(
3π

8
−
(
−π
8

))
=

π

2
√
2

By splitting the series (116) in odd and even terms in k, Leibniz deduces

π

8
=

1

2

∞∑
k=0

(−1)k

2k + 1
=

1

2

∞∑
k=0

(
1

4k + 1
− 1

4k + 3

)
=

∞∑
k=0

1

(4k + 1) (4k + 3)
=

1

1.3
+

1

5.7
+

1

9.11
+ · · ·

Leibniz [10, p. 249] was intrigued by the comparison with Mercator’s series log 2 =
∑∞

k=1 (−1)k−1 1
k =

1− 1
2 + 1

3 − 1
4 + · · · , derived from log (1 + z) =

∑∞
k=1 (−1)k−1 zk

k ; thus,

log 2 =
∞∑
k=1

(
1

2k − 1
− 1

2k

)
=

∞∑
k=1

1

(2k − 1) 2k
=

∞∑
k=0

1

(2k + 1) (2k + 2)
=

1

1.2
+

1

3.4
+

1

5.6

but,

1

2
log 2 =

∞∑
k=0

1

(4k + 2) (4k + 4)
≃ 0.346574 and

π

8
=

∞∑
k=0

1

(4k + 1) (4k + 3)
≃ 0.392699

The mathematician and astronomer Madhava of Sangamagrama (ca. 1350 - ca. 1425) or his

followers in the Kerala school of astronomy and mathematics in India found the series34

π =
√
12

∞∑
k=0

(−1)k

(2k + 1)

1

3k
(118)

which is an instance of the Taylor series (115) for z = 1√
3
, because arctan

(
1√
3

)
= π

6 . The series (118)

converges signficantly faster than Leibniz’ series (116) and was discovered about 250 years earlier, but

Madhava’s method was considerably less powerful than Newton’s and Leibniz’ calculus.

Many other variations on arctan z exists [4, p. 352]. John Machin (1680-1752) found35 that

π = 16 arctan

(
1

5

)
− 4 arctan

(
1

239

)
while Leonhard Euler (1707-1783) started from

π = 20 arctan

(
1

7

)
+ 8arctan

(
3

79

)
34Information found on Wikipedia.
35Gilbert [15, p. 114] gives the details. In order to compute π, we consider u = kx − π

4
and tanu = tan

(
kx− π

4

)
=

tan kx−1
tan kx+1

. We try to find integers k and n with tanx = 1
n
, so that tan k arctan 1

n
− 1 small and n is large. Numerically,

k = 4 and n = 5 achieves a minimum for
∣∣tan k arctan 1

n
− 1
∣∣ for all 1 ≤ k ≤ 77 and 1 ≤ n ≤ 13. For k = 4,

Bernoulli’s formula tan kx =
∑[ k+1

2 ]
n=1 ( k

2n−1)(−1)n−1(tan x)2n−1

∑[ k2 ]
n=0 (

k
2n)(−1)n(tan x)2n

in [25, p. 282] reduces to tan 4x = 4 tan x−4 tan3 x
1−6 tan2 x+tan4 x

, from

which tan 4 arctan 1
5
= 120

119
and tanu =

tan 4 arctan 1
5
−1

tan 4 arctan 1
5
+1

= − 1
239

. Since π
4
= kx−u, we finally arrive at Machin’s expression,

which has a much smaller u value than Euler’s form, at the expense of a larger x = 1
n
value.
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Euler introduced his famous Euler transform and derived [31] the series in 1755

arctan z =
z

1 + z2
lim
K→∞

K∑
k=0

(k!)2 22k

(2k + 1)!

(
z2

1 + z2

)k
(119)

=
z

1 + z2

(
1 +

2

3
y +

2.4

3.5
y2 +

2.4.6

3.5.7
y3 + · · ·

)
y= z2

1+z2

Borwein & Borwein [4] mention that Euler computed π to 20 decimal places in an hour, because

powers of z2

1+z2

∣∣∣
z= 1

7

= 1
50 and z2

1+z2

∣∣∣
z= 3

79

= 9
6250 are small. Since all terms in (119) are positive, a

truncation at K terms is a lower bound for π. The table below shows the relatively fast convergence.

K Eq.(119) numeric error : π − Eq.(119)

1 92021032
29296875 3.1409845589333333333 0.000608094

2 1438102216076
457763671875 3.1415822277585578667 0.000010425831

3 31458588519871552
10013580322265625 3.1415924681726507152 1.8541714252 10−7

4 42132040637669901232
13411045074462890625 3.1415926502176251985 3.3721680399385 10−9

5 2027604457824094913367616
645406544208526611328125 3.1415926535275248823 6.2268356170484 10−11

6 7488311918246002611936781024
2383603714406490325927734375 3.1415926535886307107 1.1625277423450 10−12

7 13000541524737363629719001389056
4138200893066823482513427734375 3.1415926535897713528 2.1885627663394 10−14

8 68374723081666039140468448557295591168
21764350321973324753344058990478515625 3.1415926535897928237 4.1471729103989 10−16

9 4059749182973921599678281054996440790084608
1292258300367166157229803502559661865234375 3.1415926535897932306 7.9000419090266 10−18

10 1122221689234277313603455710212883556391424
357214258173144116881303489208221435546875 3.1415926535897932383 1.5114192562194 10−19

41. Archimedes’ computation of π. Surprisingly similar to Gauss’s AGM recursion (2), the Borwein

brothers [4] (see also [10, p. 31-35]) mention Archimedes’ recursion

An = An−1+Bn

2 and Bn =
√
An−1Bn−1 (120)

where 1
An

is the area of the circumscribed regular 2n-gon and 1
Bn

denotes the area of an inscribed

regular 2n-gon around a circle with radius 1. The recursion of Archimedes (ca. 287-212 BC) in (120)

seems due to Gauss’s teacher Pfaff [5, p. 205]. Comparing with the circle, we find the inequalities
1
Bn

< π < 1
An

and the recursion (120), starting at n = 2 with B2 = 1
2 and A2 = 1

4 as shown below,

converges to π. The angle θ = π
2n for n ≥ 2; thus, for a square θ2 = π

4 , for an octagon θ3 = π
8 , etc.

Fig. 5 shows both square (dotted lines) and octagon (full lines). The area αc;2 of circumscribed square

(red) is αc;2 = 4× 1 = 4, but also 8 times the area of the triangle r0p, which is |0p||rp|
2 = 1

2 tan θ2 =
1
2 ;

thus αc;2 = 8 × 1
2 = 4. The corresponding perimeter pc;2 is 8 times |rp| = 1; thus pc;2 = 8 = 2αc;2.

The area αi;2 of inscribed square (blue) is αi;2 =
(√

2
)2

= 2, but also 4 times a triangle with area
1
2 . The corresponding perimeter pi;2 = 4

√
2. Comparing with the circle, we find the inequalities

αi;2 =
1
B2

< π < αc;2 =
1
A2

and
1

B2
= 2 < π <

1

A2
= 4

and pi;2 < 2π < pc;2. We repeat the exercise for the octagon. The area αc;3 of circumscribed octagon

(green) is 8 times the area of the triangle q0q′. The area of the triangle q0q′ is two times the area

of the triangle p0q = 1
2 tan

π
8 , hence αc;3 = 23 tan π

23
= 3.31371. The perimeter pc;3 is 16|pq| = 2αc;3.

The area αi;3 of inscribed octagon (blue) is 8 times the area of the triangle p0p′, whose area is
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Figure 5: Inscribed and circumscribed 2n-gon of a circle with radius 1.

1
2 sin 2θ3 = 1

2 sin θ2 =
√
2
4 ; hence, αi;3 = 2

√
2 = 2.82843. The corresponding perimeter pi;3 is 8 times

|pp′| =
√
2− 2 cos (2θ3) =

√
2−

√
2; hence, pi;3 = 8

√
2−

√
2 = 6.12293. In summary, we obtain the

inequalities
1

B3
= 2.82843 < π <

1

A3
= 3.31371

and pi;3 = 6.12293 < 2π < pc;3 = 6, 62742.

The area and perimeter of the circumscribed 2n-gon are αc;n = 1
An

= 2n tan
(
π
2n

)
and pc;n =

2n+1 tan
(
π
2n

)
, respectively. The area of the inscribed 2n-gon is αi;n = 1

Bn
= 2n

2 sin 2θn = 2n−1 sin π
2n−1 ,

while its perimeter is pi;n = 2n
√
2− 2 cos

(
2 π
2n

)
= 2n+1 sin

(
π
2n

)
. Invoking tan

(
x
2

)
= sin(x)

1+cos(x) yields

An =
1

2n tan
(
π
2n

) =
1

2n tan
(
1
2

π
2n−1

) =
1 + cos

(
π

2n−1

)
2n sin

(
π

2n−1

) =
1

2

(
1

2n−1 sin
(

π
2n−1

) + 1

2n−1 tan
(

π
2n−1

))
=

1

2
(Bn +An−1)

while sin
(
x
2

)
=
√

1−cosx
2 leads to

Bn =
1

2n−1 sin π
2n−1

=
1

2n−1 sin 1
2

π
2n−2

=
1

2n−1

√
2

1− cos π
2n−2

=
1

2n−1

√
2
(
1 + cos π

2n−2

)
1− cos2 π

2n−2

=

√
2
(
1 + cos π

2n−2

)
22n−2 sin2 π

2n−2

=

√
1

2n−2 sin π
2n−2

(
1 + cos π

2n−2

2n−1 sin π
2n−2

)
=
√
Bn−1An−1

which demonstrates the Archimedes recursion (120). The computation shows, as mentioned in Borwein

and Borwein [4], that An (θ) =
1

2n tan( θ
2n )

and Bn (θ) =
1

2n−1 sin θ
2n−1

satisfy the Archimedes recursion
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(120) for any complex θ. Since

lim
n→∞

An (θ) = lim
n→∞

Bn (θ) =
1

θ

Archimedes’ recursion (120) can be used to calculate the inverse trigonometric and inverse hyperbolic

functions. The difference

An −Bn =
1

2

(
An−1 +

√
Bn−1An−1

)
−
√
Bn−1An−1

=
1

2

(
An−1 −

√
Bn−1An−1

)
=

√
An−1

2

(√
An−1 −

√
Bn−1

)
=

√
An−1 (An−1 −Bn−1)

2
(√
An−1 +

√
Bn−1

)
illustrates that 1

4 (An−1 −Bn−1) < An −Bn <
1
2 (An−1 −Bn−1). Iterated

An −Bn <
1

2
(An−1 −Bn−1) <

1

22
(An−2 −Bn−2) < · · · < 1

2p
(An−p −Bn−p)

shows that Archimedes’ recursion (120) converges as An − Bn <
1

2n−1 (An−1 −Bn−1), implying that

the error decreases at each iteration with a factor a little less than 4, because as Bn ≤ An, the factor√
An−1

2
(√

An−1+
√
Bn−1

) = 1

2

(
1+

√
Bn−1√
An−1

) ≤ 1
4 and equality only holds when n → ∞. In other words, the

computation of n decimal digits of π (or inverses of trigonometric or hyperbolic functions) requires

O (n) iterations. The table below computes Archimedes’ recursion (120) for π up to n = 15:

n 1
An

1
Bn

1
An

− 1
Bn

1 4 2 2

2 3.3137084989 2.82842712474 0.485281

3 3.1825978780 3.06146745892 0.12113

4 3.1517249074 3.12144515225 0.0302798

5 3.1441183852 3.13654849054 0.00756989

6 3.1422236299 3.14033115695 0.00189247

7 3.1417503691 3.14127725093 0.000473118

8 3.1416320807 3.14151380114 0.00011828

9 3.1416025102 3.14157294036 0.0000295699

10 3.1415951177 3.14158772527 7.39247 10−6

11 3.1415932696 3.14159142151 1.84812 10−6

12 3.1415928075 3.14159234557 4.6203 10−7

13 3.1415926920 3.14159257658 1.15507 10−7

14 3.1415926632 3.14159263433 2.88768 10−8

15 3.1415926559 3.14159264877 7.21921 10−9

42. AGM computation of π. Following Almkvist and Berndt [2, Theorem 5], we start from Legendre’s

formula (98) for k = k′ = 1√
2
,

2K

(
1√
2

)
E

(
1√
2

)
−K2

(
1√
2

)
=
π

2
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With I (a, b) = 1
aK

(
1
a

√
a2 − b2

)
in art. 28 and choosing a = 1 and b = 1√

2
, we have I

(
1, 1√

2

)
=

K
(

1√
2

)
and, similar for the integral J (a, b) = aE

(
c
a

)
in art. 31, it holds that J

(
1, 1√

2

)
= E

(
1√
2

)
.

As a second relation between K
(

1√
2

)
and E

(
1√
2

)
, (95) is used,

E

(
1√
2

)
=

(
1− 1

2

∞∑
n=0

2nc2n

)
K

(
1√
2

)
which we substitute in Legendre’s formula(

2

(
1− 1

2

∞∑
n=0

2nc2n

)
− 1

)
K2

(
1√
2

)
=
π

2

Finally, we invoke Gauss’s basic integral 1
aK

(
1
a

√
a2 − b2

)
= π

2
1

M(a,b) in (84), indicating thatK
(

1√
2

)
=

π
2

1

M
(
1, 1√

2

) , which leads to π =
2M2

(
1, 1√

2

)
1−
∑∞

n=0 2
nc2n

or

π =
4M2

(
1, 1√

2

)
1−

∑∞
n=1 2

n+1c2n
(121)

Borwein & Borwein [4, Section 5] present another algorithm for π with second order convergence.

The corresponding computation for π in (121), based on Gauss’s arithmetic-geometric mean algo-

rithm (2), is considerably fast. Only 10 iterations , with a = 1 and b = 1√
2
, lead to an astonishingly

small error at n = 9 of less than 10−29 ≈ 10−512, as illustrated in the table, where 30 decimal digits

are given:

n an bn 2cn+1= an−bn formula (121)

0 1 0.707106781186547524400844362105 0.29289 4

1 0.853553390593273762200422181052 0.840896415253714543031125476233 0.012656 3.18767264271210862720192997053

2 0.847224902923494152615773828643 0.847201266746891460403631453693 0.000023636 3.14168029329765329391807042456

3 0.847213084835192806509702641168 0.847213084752765366704298051780 8.24274 10−11 3.14159265389544649600291475882

4 0.847213084793979086607000346474 0.847213084793979086605997900490 1.00244 10−21 3.14159265358979323846636060271

5 0.847213084793979086606499123482 0.847213084793979086606499123482 1.48265 10−43 3.14159265358979323846264338328

6 3.24336 10−87

7 1.55206 10−174

8 3.55415 10−349

9 1.86375 10−698

We again observe that, at each iteration in n, the number of decimal digits approximately doubles!!

We add another AGM computation of π due to Gauss [14, p. 377]. We deduce from (40) and (42)

the inequality
1

2n
log

(
4bn+1

cn

)
≤ π

2

M (a, b)

M (a, c)
≤ 1

2n
log

(
4an
cn

)
(122)

Thus, if a = b
√
2 = c

√
2, then M(a,b)

M(a,c) = 1 and, confining to n = 0 in (122), we have that log
(
4a0
c0

)
=

log
(
4
√
2
)
= 5

2 log (2), while log
(
4b1
c0

)
= log

(
4
√
a0b0
c0

)
= log

(
22+

1
4

)
= 9

4 log 2 from which Gauss

concludes that 9
4 log 2 <

π
2 <

10
4 log 2. If n increases in (122), we find lower and upper bounds for π

where each step in n results in the famous approximate doubling of decimal digits. Choosing a = 1

and b = 1√
2
as above, the first four iterations of (122) are
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n 1
2n−1 log

(
4bn+1

cn

)
1

2n−1 log
(
4an
cn

)
0 3.11916231251975389237754454656 3.46573590279972654708616060729

1 3.14157172949917097506914830630 3.14904153515897666929968289288

2 3.14159265355330856833419360289 3.14159962823802109942254203509

3 3.14159265358979323846242152809 3.14159265360195479517183083648

4 3.14159265358979323846264338328 3.14159265358979323846271733501

while for n = 5 all 30 digits are correct. The lower bound for n = 4 has already 30 decimals

correct, while the upper bound only has 22 correct decimals. Hence, we observe that Gauss’s upper

and lower bounds (122) converge a little faster in n towards π than (121), in spite of the computation

of the logarithm, which is numerically more demanding.

In summary36, Leibniz method requires about 10n terms for n correct decimals in π, Archimedes’

recursion (120) needs n iterations for about n
p with 2 < p < 4 correct decimals, Euler’s series (119)

gives about 2n correct digits after n terms, while Gauss’s AGM (121) returns about 2n correct digits

at iteration n!

43. Newton-Raphson method. Borwein and Borwein [4] mention that, apart from Newton-Raphson’s

iteration, no generally convergence method of quadratic order is known, except for Gauss’s AGM

algorithm (2).

Let us briefly explain Newton’s method. Assume that the Taylor series
∑∞

k=0 fk (z0) (z − z0)
k of

a function f (z) is known around z0, where fk (z0) = 1
k!

dkf(u)
duk

∣∣∣
u=z0

, and assume also that z0 is a

reasonably good approximation of a zero of f (z). Let z − z0 = h and if h is sufficiently small, then

f (z0 + h) = f (z0) + f1 (z0)h+O
(
h2
)

Newton observes that by requiring that f (z0 + h) = 0, a good approximation of h up to O
(
h2
)
can

be computed by solving the linear equation in h,

h(1) = − f (z0)

f1 (z0)

If the first derivative can be computed in a range around z0, then Newton’s iteration scheme for the

zero is

zk = zk−1 −
f (zk−1)

f1 (zk−1)
(123)

and the sequence z0, z1, z2, . . . , zm must converge to the correct37 zero ζ of f (z), which is close enough

to z0. Indeed and limiting ourselves to the first order Newton scheme,

f (zk) = f

(
zk−1 −

f (zk−1)

f1 (zk−1)

)
= f (zk−1)− f1 (zk−1)

f (zk−1)

f1 (zk−1)
+ f2 (zk−1)

(
f (zk−1)

f1 (zk−1)

)2

+O

((
f (zk−1)

f1 (zk−1)

)3
)

= f2 (zk−1)

(
f (zk−1)

f1 (zk−1)

)2

+O

(
f (zk−1)

f1 (zk−1)

)
36There exist many more computations of π for which we refer to Wikipedia. The latest computations are based on

series deduced from modular forms, first exploited by Ramanujan, but further developed by others.
37If f (z) is real on the real z-axis, then Newton’s iteration (123) will only converge to a possibly real zero. In case

f (z) has a complex zero, then the initial starting value must be complex and not purely real.

59



which shows, approximately provided that h(1) = − f(zk−1)
f1(zk−1)

is small enough to ignore terms of order 3

and higher, that

f (zk) ≃
f2 (zk−1)

f21 (zk−1)
(f (zk−1))

2

In other words, the sequence {f (zk)}k≥0 converges quadratically : if f (zk−1) = 10−a is already close

to zero, then f (zk) ≃ 10−2a, provided that the derivatives f1 (zk−1) are not too small, nor f2 (zk−1)

too large.

A slightly more accurate variant of Newton’s iteration scheme (123) uses the Taylor series up to

order O
(
h3
)

f (z0 + h) = f (z0) + f1 (z0)h+ f2 (z0)h
2 +O

(
h3
)

Solving the quadratic equation f (z0)+f1 (z0)h+f2 (z0)h
2 = 0 in h gives h(2) =

−f1(z0)±
√
f21 (z0)−4f(z0)f2(z0)

2f2(z0)
,

where the proper sign must be chosen. If the first and second derivatives can be computed, then New-

ton’s more accurate iteration scheme is

zk = zk−1 +
−f1 (zk−1)±

√
f21 (zk−1)− 4f (zk−1) f2 (zk−1)

2f2 (zk−1)
(124)

Similarly, Newton’s accurate iteration scheme (124) yields

f (zk) = f

(
zk−1 +

−f1 (zk−1)±
√
f21 (zk−1)− 4f (zk−1) f2 (zk−1)

2f2 (zk−1)

)

= f3 (zk−1)

(
−f1 (zk−1)±

√
f21 (zk−1)− 4f (zk−1) f2 (zk−1)

2f2 (zk−1)

)3

+O(h4)

illustrating that the sequence {f (zk)}k≥0 converges cubically : if f (zk−1) = 10−a is already close to

zero, then f (zk) ≃ 10−3a, provided that the step h(2) is small enough to enter the cubic convergence

regime.

The Borwein brothers [4] mention that inverse functions can be effectively computed by Newton’s

recursion (123). Indeed, replace f (x) by g (x) − y, then Newton’s recursion returns the zero of

g (x)−y = 0, which equals x = g−1 (y). For example, if g (x) = xp, then Newton’s first order recursion

(123) becomes zk =
zk−1

p

{
(p− 1) + y

zpk−1

}
. For p = 2, Newton’s recursion simplifies to

zk =
1

2

{
zk−1 +

y

zk−1

}
(125)

and converges to y
1
2 . The recursion for

√
y in (125) with initial start z0 = y was already known

[4, p. 353] by the Babylonians! Numerical computations of the Babylonian algorithm, starting with

z0 = 9, gives z1 = 5, z2 = 3.4, z3 = 3.023529, z4 = 3.0000915, z5 = 3.000000001396 and z6 =

3.00000000000000000032526 has 19 decimals correct, while z7 about 38 decimals, z8 about 77 and

further about a doubling each iteration. Of course, the smaller y, the closer it is to
√
y and the faster

the second order convergence kicks in. For y = 2, the third iteration z3 has 6 correct decimals, 12

correct decimals for z4, 24 for z5 and so on. The extremely fast converges for
√
y may simplify the

computation of the geometric mean Gauss’s AGM algorithm (2). Newton’s iterative scheme (123) was

likely inspired by François Viète’s method for the computation of
√
y as outlined in Edward [10, p.

184].
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Housedorf’s method zk = zk−1 + m

(
1
f

)(m−1)
(zk−1)(

1
f

)(m)
(zk−1)

, with initial guess z0, is a generalization of

Newton’s recursion with convergence ofm-th order. Ifm = 1, Housedorf’s method reduces to Newton’s

recursion (123), because

m

(
1
f

)(m−1)
(zk−1)(

1
f

)(m)
(zk−1)

=

1
f(zk−1)(

1
f

)(1)
(zk−1)

=
1

f (zk−1)

(
− 1

1
f2(zk−1)

f ′ (zk−1)

)
= − f (zk−1)

f1 (zk−1)

Due to the higher efforts and possible computational complications of the higher order derivatives

of 1
f(z) , the effective convergence of Household’s method can be of lower order than m. A similar

observation holds for Newton’s more accurate iteration scheme (124) compared to (123).

12 Summary

We have tried to follow the steps in Gauss’s Nachlass from the AGM algorithm towards his series of

what are now called the Jacobi theta functions. Almost all statements or formulae of Gauss along the

track are re-derived. Sections 9-11 are applications of the AGM.

While the first part [13] (in Latin) is well organized and relatively easy to follow and verify, the

second part [14, art. 13, p.380] (in German) in the Nachlass of Gauss’s results about the AGM is

challenging and mainly outlines end results with little guidance how these formulae or results were

obtained. On the other hand, that second part illustrates that Gauss must have made many more

computations and studies that are not recorded, thus lost. It is also unclear to me what Gauss wrote

himself in [14, art. 13, p.380] and what others, who have published this posthumous work, have

written or interpreted. Apart from one minus sign in the differential equation (66) – where I and not

Gauss must have been mistaken – I did not find a single mistake, nor in his numerical computations.

Being close to error-free is again extremely unusual for a normal human. But, Gauss was definitely

not “normal”, as measured by his own Gaussian or normal distribution, in which the level of his

mind-blowing achievements lies several standard deviations away from the human mean!

Critics or negatively oriented comments about Gauss’s work have appeared. In those cases, where

I understood Gauss’s work, I find that these comments, written at a much later time with the current

insights, degrade the master’s statue.
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[15] Ph. Gilbert. Cours d’Analyse Infinitésimale. Paris. Gauthier-Villars, Libraire, 4th edition, 1982.

[16] C. G. J. Jacobi. Fundamenta Nova Theoriae Functionum Ellipticarum. Borntraeger, Regiomonti (Königsberg),

1829.

[17] L. V. King. On the Direct Numerical Computation of Elliptic Functions and Integrals. Cambridge University Press,

Cambridge, 1924.
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A Elliptic functions

We briefly review elliptic functions.

44. Elliptic functions. The general theory of elliptic functions starts today from the Weierstrass

elliptic functions [26, 24, 34]. Elliptic functions E (z) are completely defined in a parallelogram P

in the complex plane. Liouville’s theorem [34], stating that a complex function which is bounded in

the entire complex plane is a constant, indicates that elliptic functions (with a minimum amount of

singularities in their parallelogram P ) must38 have either two simple poles or a double pole within

each parallelogram. The basic parallelogram P0 consists of the linear combination xω1+yω2 of the two

periods ω1 and ω2, where ω1 and ω2 are complex numbers so that τ = Imω2
Imω1

> 0 and the real numbers

0 ≤ x < 1 and 0 ≤ y < 1. By translations of the basic parallelogram P0, the entire complex plane

can be covered. Any set of independent complex numbers ω′
1 and ω′

2 can represent a parallelogram

[6, Chapter I],[26, p. 145-148; art.86; p. 205-221; p. 238-246], but each of such set can be produced

by a linear, unimodular transformation

(
ω′
1

ω′
2

)
=

(
a b

c d

)(
ω1

ω2

)
from the two periods ω1 and

ω2. The ratio
ω′
1
ω′
2
=

a
ω1
ω2

+b

c
ω1
ω2

+d
is a Möbius or unimodular transform u = az+b

cz+d . The geometry of the

basic parallelogram leads to the Möbius transform, that provides rapidly converging series for elliptic

functions. Liouville’s theorem [34] is a powerful tool to deduce many properties of elliptic functions

and theta functions.

45. Weierstrass elliptic functions. A direct application of Weierstrass’s beautiful theory of entire

functions [30] in the complex plane generates the Weierstrass elliptic functions. The Weierstrass’s

elliptic functions σ (u) is

σ (u) = σ (u|ω1, ω2) = u
∞∏

n=−∞;n̸=0

∞∏
m=−∞;m ̸=0

(
1− u

nω1 +mω2

)
e

(
u

nω1+mω2
+ 1

2

(
u

nω1+mω2

)2)

whose zeros corresponds to Ω = nω1+mω2, i.e. all complex corner points of all period parallelograms.

The Weierstrass zeta-function is ζ (u) = d
du log σ (u) and Weierstrass P-function is P (u) = −dζ(u)

du =

− d2

du2
log σ (u) = 1

u2
+
∑′

Ω

(
1

(u−Ω)2
− 1

Ω2

)
. Further variants are defined as σa (u) =

e−ηauσ(u+ωa)
σ(ωa)

and

ηa = ζ (ωa) for a = 1, 2, 3, where ω3 obeys ω1 + ω2 + ω3 = 0. Also, it holds that η1 + η2 + η3 = 0,

38Indeed, the contour integral along the parallelogram is
∫
∂P

E (z) dz = 0, due to periodicity. Cauchy’s integral

theorem tells us that
∫
∂P

E (z) dz = 2πi
∑m

k=1res(pk), where pk is a pole of E (z) in P . If m = 1 and res(p1) = 0,

then E (z) is analytic inside P and on its perimeter ∂P and thus bounded, which Liouville’s theorem prevents. Hence,

m must be at least 2, implying either two single poles with opposite residue or a double pole with residue zero, i.e.

limz→p2 2πi
d
dz

(
(z − p2)

2 E (z)
)
= 0 from which it must hold that

lim
z→p2

(z − p2)
2 d

dz
E (z) = 2 lim

z→p2
(z − p2) E (z)
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P (ω1) + P (ω2) + P (ω3) = 0 and a variant of Legendre’s relation is η1ω2 − η2ω1 = π
2 for Im ω2

ω1
=

Im τ > 0.

46. Theta functions. The basic properties of theta functions are treated in many books (see e.g. [34,

chap. XXI], [6, pp. 69], [23, pp. 172], [24, Chapter 5]).

Tannery and Molk [27, p. 1-14] start from Weierstrass’s elliptic functions σ (u) and σα (u) for

α = 1, 2, 3, in which they make the substitutions q = eiπτ for Im τ > 0, τ = ω2
ω1

and z = u
ω1
,

where ω1 and ω2 are the complex periods39. After those substitutions and deducing nice algebraic

transformations of infinite products, they [27, p. 14] define40, as Jacobi did in [16], the theta functions

as

ϑ1 (z|τ) =
1

i

∞∑
m=−∞

(−1)m q(m+ 1
2)

2

e(2m+1)iπz

ϑ2 (z|τ) =
∞∑

m=−∞
q(m+ 1

2)
2

e(2m+1)iπz

ϑ3 (z|τ) =
∞∑

m=−∞
qm

2
e2miπz

ϑ4 (z|τ) =
∞∑

m=−∞
(−1)m qm

2
e2miπz

which are rewritten [27, art. 161, p. 16] as

ϑ1 (z|τ) = 2

∞∑
m=0

(−1)m q(m+ 1
2)

2

sin ((2m+ 1)πz) (126)

ϑ2 (z|τ) = 2
∞∑
m=0

q(m+ 1
2)

2

cos ((2m+ 1)πz) (127)

ϑ3 (z|τ) = 1 + 2

∞∑
m=1

qm
2
cos (2mπz) (128)

ϑ4 (z|τ) = 1 + 2
∞∑
m=1

(−1)m qm
2
cos (2mπz) (129)

with q = eπiτ and Im (τ) > 0. We further refer for a wealth of theta-function properties to Olver et

al. [22, Chapter 20].

In terms of the products

q0 =
∏∞
n=1

(
1− q2n

)
q1 =

∏∞
n=1

(
1 + q2n

)
q2 =

∏∞
n=1

(
1 + q2n−1

)
q3 =

∏∞
n=1

(
1− q2n−1

)
39Tannery and Molk define the period as 2ω1 and 2ω3. They define ω2 such that ω1 + ω2 + ω3 = 0.
40Unfortunately, there exist many slightly different notations for theta functions, but that of Tannery and Molk is now

standard [23, pp. 172]. A general form defining all four theta functions [23, sec. 76],

θµ ν(v | τ) =
∞∑

k=−∞

(−1)ν ke(k+
µ
2 )

2
πiτ e2πi(k+µ

2 ) v

where µ and ν are 0 or 1.
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that41 obey q1q2q3 = 1, the relations between theta and Weierstrass’s sigma functions are [27, p. 17]

π

ω1
q

1
4 q30σ (u) = e2η1ω1z2ϑ1 (z|τ)

2q
1
4 q0q

2
1σ1 (u) = e2η1ω1z2ϑ2 (z|τ)

q0q
2
2σ2 (u) = e2η1ω1z2ϑ3 (z|τ)

q0q
2
3σ3 (u) = e2η1ω1z2ϑ4 (z|τ)

B The incomplete elliptic integrals F (φ, k) and E (φ, k)

47. Elliptic integrals. Legendre in [18] developed and studied elliptic integrals. The Legendre’s elliptic

integral [22, Section 19.2] of the first kind is42

F (φ, k) =

∫ φ

0

dθ√
1− k2 sin2 θ

=

∫ sinφ

0

dt√
1− t2

√
1− k2t2

(130)

and of the second kind

E (φ, k) =

∫ φ

0

√
1− k2 sin2 θdθ =

∫ sinφ

0

√
1− k2t2√
1− t2

dt (131)

The cases with φ = π
2 are called the complete elliptic integrals

K (k) = F
(π
2
, k
)

and E (k) = E
(π
2
, k
)

If k = 0, then

F (φ, 0) = E (φ, 0) = φ

from which

K (0) = E (0) =
π

2

If k = 1, then E (φ, 1) =
∫ φ
0 cos θdθ = sinφ and

F (φ, 1) =

∫ φ

0

dθ

cos θ
=

∫ sinφ

0

dt

1− t2
=

1

2
log

(
1 + sinφ

1− sinφ

)
= log

(
1 + sinφ

cosφ

)
= log

(
cosφ

1− sinφ

)
=

= log

(
cos2 φ2 − sin2 φ2
1− 2 sin φ

2 cos φ2

)
= log

(
cos2 φ2 − sin2 φ2

cos2 φ2 + sin2 φ2 − 2 sin φ
2 cos φ2

)
= log

(
cos φ2 + sin φ

2

cos φ2 − sin φ
2

)

Hence, if φ → π
2 , then with cosφ = sin

(
π
2 − φ

)
=
(
π
2 − φ

) (
1 +O

((
π
2 − φ

)2))
and F (φ, 1) =

log
(
1+sinφ
cosφ

)
, we find that F (φ, 1) = log 2−log

(
π
2 − φ

)
+O

((
π
2 − φ

)2)
, which illustrates a logarithmic

singularity at F
(
π
2 , 1
)
= K (1).

41Indeed, the product q0 is

q0 =

∞∏
n=1

(
1− q2n

)
=

∞∏
n=1

(1− qn) (1 + qn) =

∞∏
n=1

(1− qn)

∞∏
n=1

(1 + qn)

Writing each product over all positive integers n as products over even and odd integers, i.e.
∏∞

n=1 (1± qn) =∏∞
n=1

(
1± q2n

)∏∞
n=1

(
1± q2n−1

)
, results in q0 = q0q1q2q3.

42Unfortunately, in the literature, there are slightly different definitions of the elliptic integrals. There is also an elliptic

integral of the third kind, for which we refer to [22, Section 19.2].
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Since
√
1− k2 sin2 θ = 1−k2 sin2 θ√

1−k2 sin2 θ
, the elliptic integral of the second kind is written by Legendre

[18] as

E (φ, k) = F (φ, k)− k2
∫ φ

0

sin2 θdθ√
1− k2 sin2 θ

(132)

48. Behavior when k → 1. A different rewriting than Legendre, inspired by [4, p. 355] who fixed

φ = π
2 , is

F (φ, k) =

∫ φ

0

k sin θ dθ√
1− k2 sin2 θ

+

∫ φ

0

(1− k sin θ) dθ√
1− k2 sin2 θ

= −
∫ φ

0

d (k cos θ)√
1− k2 + k2 cos2 θ

+

∫ φ

0

√
1− k sin θ

1 + k sin θ
dθ

Substitution of u = k√
1−k2 cos θ transforms the first integral in the last equality to

∫ φ

0

d (k cos θ)√
1− k2 + k2 cos2 θ

=

∫ φ

0

d
(

k√
1−k2 cos θ

)
√
1 + k2

1−k2 cos
2 θ

=

∫ k√
1−k2

cosφ

k√
1−k2

du√
1 + u2

= arcsinh (u)|
k√

1−k2
cosφ

k√
1−k2

The logarithmic representation [1, 4.6.20] of arcsinh(u) = log
(
u+

√
1 + u2

)
indicates that

∫ φ

0

d (k cos θ)√
1− k2 + k2 cos2 θ

= log

 k√
1−k2 cosφ+

√
1−k2+k2 cos2 φ

1−k2

k√
1−k2 +

√
1 + k2

1−k2

 = log

(
k cosφ+

√
1− k2 sin2 φ

k + 1

)

The second integral43 exist for k → 1 and for all angles −π
2 < φ < 3π

2 and equals

lim
k→1

∫ φ

0

(1− k sin θ) dθ√
1− k2 sin2 θ

=

∫ φ

0

(1− sin θ)

cos θ
dθ =

∫ φ

0

dθ

cos θ
−
∫ φ

0
tan θ dθ

= log

(
1 + sinφ

cosφ

)
+ log (cosφ) = log (1 + sinφ)

where F (φ, 1) =
∫ φ
0

dθ
cos θ is evaluated above. In summary, if k tends to one, then the first elliptic

integral behaves as

F (φ, k) = log

(
k + 1

k cosφ+
√
1− k2 sin2 φ

)
+ log (1 + sinφ) if k → 1 (133)

For φ = π
2 , (133) simplifies to

K (k) =
1

2
log

(
4
1 + k

1− k

)
if k → 1

which is equivalent to k → 0 in the complementary modulus k′ =
√
1− k2,

K
(
k′
)
=

1

2
log

(
4
1 +

√
1− k2

1−
√
1− k2

)
= log

2
(
1 +

√
1− k2

)
k

 = O

(
log

(
4

k

))
(134)

43The integrand in
√

1−k sin θ
1+k sin θ

≤ 1 for θ ∈ [0, π] can be expanded in a Taylor series in k sin θ, in which the remaining

integral is evaluated as in art. 52 to provide an exact result for all k.
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49. Fundamental angle of φ ∈
[
0, π2

]
. Parts of art. 10 are generalized to an arbitrary angle φ ∈

[
0, π2

]
instead of just confining to φ = π

2 . The substitution of θ = mπ − w or w = mπ − θ, where m is an

integer, in the integral (130)

F (φ, k) =

∫ φ

0

dθ√
1− k2 sin2 θ

leading to

F (mπ − φ, k) =

∫ mπ−φ

0

dθ√
1− k2 sin2 θ

= −
∫ φ

mπ

dw√
1− k2 sin2 (mπ − w)

=

∫ mπ

φ

dw√
1− k2 sin2 (w)

and, similarly for the integral (131)

E (φ, k) =

∫ φ

0

√
1− k2 sin2 θdθ

show that

F (mπ − φ, k) = F (mπ, k)− F (φ, k) (135)

and, similarly,

E (mπ − φ, k) = E (mπ, k)− E (φ, k)

If m = 0, then F (0, k) = E (0, k) = 0 and we find that both elliptic integrals are odd functions of φ,

F (−φ, k) = −F (φ, k) (136)

E (−φ, k) = −E (φ, k)

If φ = π, then (135) simplifies to the recursion F (mπ, k) = F ((m− 1)π, k) + F (π, k), from which

follows

F (mπ, k) = mF (π, k)

E (mπ, k) = mE (π, k)

If φ = π
2 , then (135) becomes, with F (mπ, k) = mF (π, k),

F
(
(2m− 1)

π

2
, k
)
= mF (π, k)− F

(π
2
, k
)

which reduces for m = 1 to F (π, k) = 2F
(
π
2 , k
)
= 2K (k). Hence, with

F
(
(2m− 1)

π

2
, k
)
= (2m− 1)K (k)

E
(
(2m− 1)

π

2
, k
)
= (2m− 1)E (k)

and (136), relation (135), and similarly for E (φ, k), becomes

F (mπ ± φ, k) = 2mK (k)± F (φ, k) (137)

E (mπ ± φ, k) = 2mE (k)± E (φ, k)

The case m = 1 in (137), F (π − φ, k) + F (φ, k) = 2K (k), illustrates for a real angle φ that its

fundamental range is φ ∈
[
0, π2

]
.
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50. Inversion of elliptic integrals. Let us define

z =

∫ φ

0

dθ√
1− k2 sin2 θ

=

∫ sinφ

0

dt√
1− t2

√
1− k2t2

= F (φ, k)

then its inverse φ = F−1 (z, k) = am (z, k) is Jacobi’s amplitude [24, p. 286]. We start by writing the

definition of the incomplete elliptic integral in (130) with w = sinφ as

F (arcsinw, k) =

∫ w

0

dt√
1− t2

√
1− k2t2

For k = 0, we obtain the trigonometric case, where F (arcsinw, 0) = arcsin (w) = z and its inverse

function is w = sin (F (arcsinw, 0)) = sin z. The novel observation for k ̸= 0 and k ̸= 1 is that the

inversion of the Legendre’s incomplete elliptic integral F (φ, k) leads to an elliptic function, which is a

single-valued complex function with not one but two independent complex periods. This fundamental

discovery was first made by Gauss in 1799 and later, independently, by Abel in 1827.

Since F−1 (z, k) = F−1 (F (φ, k) , k) = φ, we have am (F (φ, k) , k) = φ = F (am (z, k) , k). The

function am (z, k) is odd, due to (136), and quasi-periodic, because it holds that

am (z + 2K (k) , k) = am (z, k) + π

which follows from F (π + φ, k) = 2K (k) + F (φ, k) in (137) by taking the inverse function am (z, k)

of both sides. If k = 0, then z = F (φ, k) = φ, so that the inverse is φ = am (z, 0) = z. The

derivative of the basic inverse relation f
(
f−1 (x)

)
= x, being df

du

∣∣∣
u=f−1(x)

df−1(x)
dx = 1, shows here that

dz
dφ = 1√

1−k2 sin2 φ
and

(
dz
dφ

)−1
= dφ

dz =
√

1− k2 sin2 φ, thus the derivative, called delta amplitudinis,

is

dn (z) =
d (am (z, k))

dz
=

√
1− k2 sin2 am (z, k) ≥ 0

and
d2 (am (z, k))

dz2
=

−k2 sin (2am (z, k))√
1− k2 sin2 am (z, k)

d (am (z, k))

dz
= −k2 sin (2am (z, k))

Hence, the function am (z, k) is increasing and concave for 0 ≤ z ≤ K (k) and convex for K ≤ z ≤ 2K.

Jacobi further defines the sinus amplitudinis sn (z, k) = sin (am (z, k)) and his cosinus amplitudinis

cs (z, k) = cos (am (z, k)). Both are periodic functions with period 4K (k). The zeros of sn (z, k) are

at z = 2nK (k) and the zeros of cs (z, k) lies at z = (2n+ 1)K (k). Since am (−z, k) = −am (z, k) is

odd, so is sn (z, k), but cs (z, k) is even. The Jacobian functions satisfy

sn2 (z, k) + cs2 (z, k) = 1

and

dn2 (z, k) + k2sn2 (z, k) = 1

We further refer to [34, Chapter XXII] for the complex function theoretical treatment of Jacobian

elliptic functions [16]. The integral u =
∫ y
0

dt√
1−t2

√
1−k2t2 is equivalent to the differential equation

(
dy

du

)2

=
(
1− y2

) (
1− k2y2

)
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with initial condition dy
du

∣∣∣
y=u=0

= 1. It is shown in Whittaker and Watson [34, Chapter XXI] that the

solution y = ϑ3(0)
ϑ2(0)

ϑ1

(
u

ϑ2
3(0)

)
ϑ4

(
u

ϑ2
3(0)

) exists, where the Jacobian theta functions ϑ1, ϑ2, ϑ3 and ϑ4 possess the

form ϑj (z|τ) with the parameter τ that satisfies k2 =
ϑ42(0|τ)
ϑ43(0|τ)

. In other words, the solution y = sn (u, k)

can be written as a quotient of Jacobian theta functions, a fact that Gauss has discovered first, but

never published.

51. Elliptic integral transformations. The integral F (φ, k) =
∫ sinφ
0

dt√
1−t2

√
1−k2t2 in (130) becomes for

k → ik,

F (φ, ik) =

∫ sinφ

0

dt√
1− t2

√
1 + k2t2

=
1√

1 + k2

∫ sinφ

0

dt
√
1− t2

√
1− k2

1+k2
(1− t2)

Substitute u2 = 1− t2, then t =
√
1− u2 and dt = −udu√

1−u2 ,

F (φ, ik) =
1√

1 + k2

∫ 1

cosφ

dt√
1− k2

1+k2
u2

du√
1− u2

to obtain

F (φ, ik) =
1√

1 + k2

(
F

(
π

2
,

k√
1 + k2

)
− F

(
cosφ,

k√
1 + k2

))
Hence, for φ = π

2 , we find for the imaginary modulus that

K (ik) =
1√

1 + k2
K

(
k√

1 + k2

)
(138)

If x = cos θ, then (130) becomes

F (φ, k) =

∫ φ

0

dθ√
1− k2 sin2 θ

=

∫ φ

0

dθ√
1− k2 + k2 cos2 θ

= −
∫ cosφ

1

dx√
1− x2

√
1− k2 + k2x2

= − 1√
1− k2

∫ cosφ

1

dx
√
1− x2

√
1 + k2

1−k2x
2

which is written, in terms of the modulus k and complementary modulus k′ =
√
1− k2 as

F (φ, k) =
1

k′

∫ 1

cosφ

dx√
(1− x2)

(
1 +

(
k
k′

)2
x2
) (139)

If u = 1
t , then

F (φ, k) =

∫ ∞

1
sinφ

du√
u2 − 1

√
u2 − k2

The conformal map of the half-plane into a rectangle is treated in [19, p. 55] and [24, Vol. 2, p.

127-138].

52. Taylor series for F (φ, k) and E (φ, k). The Taylor series (1 + z)α =
∑∞

m=0

(
α
m

)
zm, convergent

for |z| < 1 and for any complex α, shows that

(1 + z)α (1 + z)β =
∞∑
m=0

(
α

m

)
zm

∞∑
m=0

(
β

m

)
zm =

∞∑
m=0

(
m∑
n=0

(
α

n

)(
β

m− n

))
zm
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Equating corresponding powers in z in the above Taylor series and (1 + z)α+β =
∑∞

m=0

(
α+β
m

)
zm leads

to Vandermonde’s formula (
α+ β

m

)
=

m∑
n=0

(
α

n

)(
β

m− n

)
(140)

If β = 1, then
(

β
m−n

)
=
(

1
m−n

)
= 1{{m−n=0}or{m−n=1}} and (140) reduces to(

α+ 1

m

)
=

(
α

m

)
+

(
α

m− 1

)
which generalizes the binomial recursion

(
n+1
m

)
=
(
n
m

)
+
(

n
m−1

)
in e.g. [1, 24.1.1.II.A] to complex α. If

β = −α, then Vandermonde’s formula (140) gives

m∑
n=0

(
α

n

)(
−α
m− n

)
= 1

which can be written as a recursion
(−α
m

)
= 1−

∑m
n=1

(
α
n

)( −α
k−n
)
, from which

(−α
m

)
can be determined in

terms of
(
α
n

)
. On the other hand, the definition of the complex binomial coefficient

(
α
n

)
= α!

n!(α−n)! =
Γ(α+1)

n!Γ(α−n+1) encourages to employ the properties of the Gamma function Γ (z). The binomial coefficients

of the Taylor series (1− z)−
1
2 =

∑∞
m=0

(− 1
2
m

)
zm and (1− z)

1
2 =

∑∞
m=0

( 1
2
m

)
zm are investigated in art. 9.

Introducing the Taylor series (1 + z)α =
∑∞

m=0

(
α
k

)
zm into the integral∫ φ

0

(
1− k2 sin2 θ

)α
dθ =

∞∑
m=0

(
α

m

)
(−1)m k2m

∫ φ

0
sin2m θdθ (141)

establishes its Taylor series in k and requires the evaluation of the integral
∫ φ
0 sin2m θdθ. There are

different methods44. We start from Newton’s binomium

sin2m θ =

(
eiθ − e−iθ

2i

)2m

=
(−1)m

22m

2m∑
l=0

(
2m

l

)
(−1)l eiθle−iθ(2m−l)

=
(−1)m

22m

2m∑
l=0

(
2m

l

)
(−1)l e−2iθ(m−l)

44In general, we define

T (β) =

∫ φ

0

sinβ θdθ =

∫ φ

0

sinβ−1 θ sin θdθ = −
∫ φ

0

sinβ−1 θd cos θ

= −
∫ φ

0

(
1− cos2 θ

) β−1
2 d cos θ =

∫ 1

cosφ

(
1− u2) β−1

2 du =

∞∑
m=0

(
β−1
2

k

)
(−1)m

1− cos2m+1 φ

2m+ 1

Another method starts from partial integration of
∫ φ

0
sin2m θdθ =

∫ φ

0
sin2m−1 θ sin θdθ,∫ φ

0

sin2m θdθ = − cosφ sin2m−1 φ+ (2m− 1)

∫ φ

0

sin2m−2 θ cos2 θdθ

= − cosφ sin2m−1 φ+ (2m− 1)

∫ φ

0

sin2m−2 θdθ − (2m− 1)

∫ φ

0

sin2m θdθ

from which follows the recursion

2mT (2m) = − cosφ sin2m−1 φ+ (2m− 1)T (2m− 2)

with T (0) = φ or T (2) =
∫ φ

0
sin2 θdθ =

∫ φ

0
1−cos 2θ

2
dθ =

φ− 1
2
sin 2φ

2
.
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and obtain ∫ φ

0
sin2m θdθ =

(−1)m

22m

2m∑
l=0

(
2m

l

)
(−1)l

1− e−2iφ(m−l)

2i (m− l)

=
(−1)m

22m

2m∑
l=0

(
2m

l

)
(−1)l e−iφ(m−l) sinφ (m− l)

(m− l)

Since the integral is real, we rewrite the sum S =
∑2m

l=0

(
2m
l

)
(−1)l e−iφ(m−l) sinφ(m−l)

(m−l) by letting j =

2m− l as

S =
2m∑
j=0

(
2m

j

)
(−1)j eiφ(m−j) sinφ (m− j)

(m− j)

so that adding both sums leads to

S =
2m∑
l=0

(
2m

l

)
(−1)l cos (φ (m− l))

sinφ (m− l)

(m− l)
=

1

2

2m∑
l=0

(
2m

l

)
(−1)l

sin 2φ (m− l)

(m− l)

Employing liml→m
sinφ(m−l)

m−l = φ, we split the sum as

2S = 2φ

(
2m

m

)
(−1)m +

2m∑
l=0;l ̸=m

(
2m

l

)
(−1)l

sin 2φ (m− l)

m− l

We simplify the last sum as

2m∑
l=0;l ̸=m

(
2m

l

)
(−1)l

sin 2φ (m− l)

(m− l)
=

m−1∑
l=0

(
2m

l

)
(−1)l

sin 2φ (m− l)

m− l
+

2m∑
l=m+1

(
2m

l

)
(−1)l

sin 2φ (m− l)

m− l

=
m−1∑
l=0

(
2m

l

)
(−1)l

sin 2φ (m− l)

m− l
+
m−1∑
j=0

(
2m

j

)
(−1)j

sin 2φ (m− j)

m− j

= 2

m−1∑
l=0

(
2m

l

)
(−1)l

sin 2φ (m− l)

m− l

and find

S = φ

(
2m

m

)
(−1)m +

m−1∑
l=0

(
2m

l

)
(−1)l

sin 2φ (m− l)

m− l

and45 ∫ φ

0
sin2m θdθ =

(−1)m

22m

{
φ

(
2m

m

)
(−1)m +

m−1∑
l=0

(
2m

l

)
(−1)l

sin 2φ (m− l)

m− l

}
(142)

If φ = π
2 , then

sinπ(m−l)
m−l = 0 for 0 ≤ l < m and the sum in (142) vanishes. We verify

∫ π
2
0 sin2m θdθ =

(2mm )π
22m+1 in (31).

45Differentiation of (142) with respect to φ leads to

sin2m φ =
1

22m

{(
2m

m

)
+ 2

m−1∑
l=0

(
2m

l

)
(−1)m−l cos 2φ (m− l)

}
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Substituting (142) into the Taylor series (141) gives us∫ φ

0

(
1− k2 sin2 θ

)α
dθ =

∞∑
m=0

(
α

m

)
k2m

22m

{
φ

(
2m

m

)
(−1)m +

m−1∑
l=0

(
2m

l

)
(−1)l

sin (2φ (m− l))

m− l

}
(143)

We recall that
( 1

2
m

)
= 1

(1−2m)

(− 1
2
m

)
and

(− 1
2
m

)
= (−1)m

22m

(
2m
m

)
in (25). For α = −1

2 and φ = π
2 , we have

that
∑∞

m=0

(− 1
2
m

)
(−1)m

(
2m
m

)
k2m

22m
=
∑∞

m=0

(− 1
2
m

)2
k2m = 1

M(1+k,1−k) in (26) and that the expansion (143)

simplifies to Gauss’s form (32) for 1
M(1+k,1−k) =

2
πK (k), where the latter is deduced in art. 28. Hence,

the Taylor expansion of the complete elliptic integral K (k) for |k| < 1 is

K (k) =
π

2

∞∑
m=0

(
−1

2

m

)2

k2m =
π

2
F

(
1

2
,
1

2
, 1; k2

)
(144)

where the last equality follows from (27). We can also write (143) for α = −1
2 as

F (φ, k) =

∫ φ

0

1√
1− k2 sin2 θ

dθ =
2φ

π
K (k) +

∞∑
m=0

(
−1

2

m

)
k2m

22m

m−1∑
l=0

(
2m

l

)
(−1)l

sin (2φ (m− l))

m− l

C Gauss and Landen transformation of elliptic integrals

53. Elliptic integrals and AGM. Gauss’s basic integral I (a, b) =
∫ π

2
0

dθ√
a2 sin2 θ+b2 cos2 θ

= π
2

1
M(a,b)

in (28) obeys the property I (a, b) = I (a1, b1) as a consequence of the convergence property of the

arithmetic-geometric mean M (a, b) =M (an, bn) for any integer n, as demonstrated in art. 1, as well

as the property I (a, b) = I (b, a) due to M (a, b) = M (b, a). Conversely, these properties imply that

the integral I (a, b) can be transformed into I (a1, b1) by integral manipulations.

Here, we would like to transform the more general integral

I (a, b;φ) = I (b, a;φ) =

∫ φ

0

dθ√
a2 cos2 θ + b2 sin2 θ

=
1

a
F (φ, k) with k =

c

a
(145)

in a similar manner as I (a, b;φ) = I (a1, b1;φ1) to deduce how the angle φ transforms to the angle

φ1. It turns out that there are several integral substitutions that map I (a, b) = I (a1, b1) and one is

due to Gauss. Gauss substitutes sin θ = 2a sinψ
(a+b)+(a−b) sin2 ψ for which the value 0 ≤ θ ≤ π

2 transforms

to the new variable 0 ≤ ψ ≤ π
2 . He then asserts “after the development has been made correctly, it

will be seen” that dθ√
a2 cos2 θ+b2 sin2 θ

= dψ√
a21 cos

2 ψ+b21 sin
2 ψ

. Cox [7, p. 278] comments that Jacobi46 has

provided more details which Gauss has omitted. In art. 54, we give the entire derivation. In art. 55,

we concentrate on the Landen transformation.

54. The Gauss transformation. We explore Gauss’s substitution

sin θ =
2a sinψ

(a+ b) + (a− b) sin2 ψ
(146)

that expresses the angle θ as a function of the new angle ψ. First, we determine the inverse that

expresses ψ as a function θ. Let w = sinψ, then sin θ = 2aw
(a+b)+(a−b)w2 , which is equivalent to the

46Fundamenta nova theoriae functionum ellipticorum, on p. 151 in C. C. J. Jacobi, Gesammelte Werke, G. Reimer,

Berlin, 1881.
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quadratic equation (a− b) sin θ w2 − 2aw + (a+ b) sin θ = 0, whose solution is

w =
2a± 2

√
a2 − (a2 − b2) sin2 θ

2 (a− b) sin θ

If θ = 0, then sin θ = 2a sinψ
(a+b)+(a−b) sin2 ψ tells us that sinψ = 0, because a ̸= −b and a ̸= 0. Hence, we

must choose the minus sign. With c2 = a2 − b2 and k = c
a , we find that

sinψ = a
1−

√
1− k2 sin2 θ

(a− b) sin θ

Next, we perform the substitution θ = arcsin
(

2a sinψ
(a+b)+(a−b) sin2 ψ

)
based on (146) into the integral

I (a, b;φ) in (145) and compute

dθ =
1√

1−
(

2a sinψ
(a+b)+(a−b) sin2 ψ

)2 d

dψ

(
2a sinψ

(a+ b) + (a− b) sin2 ψ

)
dψ

=
1√

1−
(

2a sinψ
(a+b)+(a−b) sin2 ψ

)2
(
(a+ b) + (a− b) sin2 ψ

)
2a cosψ − 2a sinψ (2 (a− b) sinψ cosψ)(

(a+ b) + (a− b) sin2 ψ
)2 dψ

=
2a cosψ√

1−
(

2a sinψ
(a+b)+(a−b) sin2 ψ

)2 (a+ b)− (a− b) sin2 ψ(
(a+ b) + (a− b) sin2 ψ

)2dψ
as well as cos2 θ in

√
a2 cos2 θ + b2 sin2 θ. From sin θ = 2a sinψ

(a+b)+(a−b) sin2 ψ in (146), we have

cos2 θ = 1−
(

2a sinψ

(a+ b) + (a− b) sin2 ψ

)2

=
(a+ b)2 + 2

(
a2 − b2

)
sin2 ψ + (a− b)2 sin4 ψ − 4a2 sin2 ψ

(a+ b)2 + 2 (a+ b) (a− b) sin2 ψ + (a− b)2 sin4 ψ

=
(a+ b)2 − 2

(
a2 + b2

)
sin2 ψ + (a− b)2 sin4 ψ(

(a+ b) + (a− b) sin2 ψ
)2

which we use to compute

a2 cos2 θ + b2 sin2 θ = b2
4a2 sin2 ψ(

(a+ b) + (a− b) sin2 ψ
)2 + a2

(a+ b)2 − 2
(
a2 + b2

)
sin2 ψ + (a− b)2 sin4 ψ(

(a+ b) + (a− b) sin2 ψ
)2

= a2
(a+ b)2 + 2

(
2b2 −

(
a2 + b2

))
sin2 ψ + (a− b)2 sin4 ψ(

(a+ b) + (a− b) sin2 ψ
)2

= a2
(a+ b)2 − 2 (a+ b) (a− b) sin2 ψ + (a− b)2 sin4 ψ(

(a+ b) + (a− b) sin2 ψ
)2

= a2
(
(a+ b)− (a− b) sin2 ψ

)2(
(a+ b) + (a− b) sin2 ψ

)2
Hence, we arrive at √

a2 cos2 θ + b2 sin2 θ = a

(
(a+ b)− (a− b) sin2 ψ

)(
(a+ b) + (a− b) sin2 ψ

)
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After this preparation, we obtain, denoting the angle φ1 = arcsin

(
a
1−
√

1−k2 sin2 φ
(a−b) sinφ

)
,

∫ φ

0

dθ√
a2 cos2 θ + b2 sin2 θ

=

∫ φ1

0

1

a
((a+b)−(a−b) sin2 ψ)
((a+b)+(a−b) sin2 ψ)

2

2a cosψ (a+b)−(a−b) sin2 ψ
((a+b)+(a−b) sin2 ψ)

2√
(a+ b)2 − 2 (a2 + b2) sin2 ψ + (a− b)2 sin4 ψ

dψ

=

∫ φ1

0

cosψ√(
a+b
2

)2 − 1
2 (a

2 + b2) sin2 ψ +
(
a−b
2

)2
sin4 ψ

dψ

It remains to write the integrand as
√
a21 cos

2 ψ + b21 sin
2 ψ, because I (a, b;φ) = I (a1, b1;φ1) must

hold. Now, √
a21 cos

2 ψ + b21 sin
2 ψ =

√(
a+ b

2

)2

cos2 ψ + ab sin2 ψ

=

√(
a+ b

2

)2

−
(
a+ b

2

)2

sin2 ψ + ab sin2 ψ

=

√(
a+ b

2

)2

−
(
a− b

2

)2

sin2 ψ

which suggests that(
a+b
2

)2 − 1
2

(
a2 + b2

)
sin2 ψ +

(
a−b
2

)2
sin4 ψ

cos2 ψ
=

(
a+ b

2

)2

−
(
a− b

2

)2

sin2 ψ

We verify this guess and compute((
a+ b

2

)2

−
(
a− b

2

)2

sin2 ψ

)
cos2 ψ =

((
a+ b

2

)2

−
(
a− b

2

)2

sin2 ψ

)
1− sin2 ψ

=

(
a+ b

2

)2

− 1

2

(
a2 + b2

)
sin2 ψ −

(
a− b

2

)2

sin4 ψ

illustrating consistency. Finally, we arrive at∫ ψ

0

dθ√
a2 cos2 θ + b2 sin2 θ

=

∫ ψ1

0

dψ√
a21 cos

2 ψ + b21 sin
2 ψ

(147)

where the angle ψ1 = arcsin

(
a
1−
√

1−k2 sin2 ψ
(a−b) sinψ

)
. With k = c

a , the angle ψ1 obeys

sinψ1 =
a−

√
a2 − (a2 − b2) sin2 ψ

(a− b) sinψ
=
a−

√
a2 cos2 ψ + b2 sin2 ψ

(a− b) sinψ

but it is more convenient to proceed with the inverted relation between the angle ψ and ψ1,

sinψ =
2a sinψ1

(a+ b) + (a− b) sin21 ψ

Backwards substitution with a = a1 + c1 and b = a1 − c1 in (12) shows that

sinψ =
2 (a1 + c1) sinψ1

(a1 + c1 + a1 − c1) + (a1 + c1 − a1 + c1) sin
2
1 ψ

=
(a1 + c1) sinψ1

a1 + c1 sin
2
1 ψ
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from which

cos2 ψ =

(
a1 + c1 sin

2
1 ψ
)2 − (a1 + c1)

2 sin21 ψ(
a1 + c1 sin

2
1 ψ
)2

=
a21 + 2a1c1 sin

2 ψ1 + c21 sin
4 ψ1 − (a1 + c1)

2 sin2 ψ1(
a1 + c1 sin

2 ψ1

)2
=
a21 sin

2 ψ1 + a21 cos
2 ψ1 + 2a1c1 sin

2 ψ1 + c21 sin
4 ψ1 − (a1 + c1)

2 sin2 ψ1(
a1 + c1 sin

2 ψ1

)2
=
a21 cos

2 ψ1 +
(
a21 + 2a1c1 − (a1 + c1)

2
)
sin2 ψ1 + c21 sin

4 ψ1(
a1 + c1 sin

2 ψ1

)2
=
a21 cos

2 ψ1 − c21 sin
2 ψ1 + c21 sin

4 ψ1(
a1 + c1 sin

2 ψ1

)2 =
a21 cos

2 ψ1 − c21 sin
2 ψ1

(
1− sin2 ψ1

)(
a1 + c1 sin

2 ψ1

)2
=
a21 cos

2 ψ1 − c21 sin
2 ψ1 cos

2 ψ1(
a1 + c1 sin

2 ψ1

)2 = cos2 ψ1
a21 − c21 sin

2 ψ1(
a1 + c1 sin

2 ψ1

)2
and

cosψ = cosψ1

√
a21 − c21 sin

2 ψ1(
a1 + c1 sin

2 ψ1

)
so that

tanψ =
sinψ

cosψ
=

(a1 + c1) sinψ1

a1 + c1 sin
2 ψ1

(
a1 + c1 sin

2 ψ1

)
cosψ1

√
a21 − c21 sin

2 ψ1

= tanψ1
(a1 + c1)√

a21 cos
2 ψ1 + b21 sin

2 ψ1

Finally with a = a1 + c1, we arrive at Gauss’s recurrence [17, p. 4]

tanψ = tanψ1
a√

a21 cos
2 ψ1 + b21 sin

2 ψ1

More generally and defining ∇n =
√
a2n cos

2 ψn + b2n sin
2 ψn for an integer n results in

tanψn+1 =
∇n+1

an
tanψn (148)

Since 0 ≤ ∇n+1

an
=

√
a2n+1−c2n+1 sin

2 ψn+1

a2n
≤ an+1

an
= 1

2

(
1 + bn

an

)
≤ 1, the limit limn→∞

∇n+1

an
= 1 and

(148) shows that limn→∞ tanψn exists. In particular, for sufficiently large n, the Gauss angle recursion

(148) indicates that ψn+1 ≃ ψn, which contrasts the Landen angle doubling evolution φn+1 ≃ 2φn in

(156). Another variant of the Gauss angle recursion follows from (146) with cn+1 = 1
2 (an − bn) and

an = an+1 + cn+1 in (12) as

sinψn =
(an+1 + cn+1) sinψn+1

an+1 + cn+1 sin
2 ψn+1

(149)

which is a backward recursion, while the corresponding forward recursion is

sinψn+1 =
an −

√
a2n cos

2 ψn + b2n sin
2 ψn

(an − bn) sinψn
=

an −∇n

(an − bn) sinψn
(150)
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In summary, given Gauss’s transform sin θ = 2a sinψ
(a+b)+(a−b) sin2 ψ , the demonstration of I (a, b;φ) =

I (a1, b1;φ1) is already quite involved. But finding the transform must have been considerably more dif-

ficult and we may question how Gauss has discovered the non-trivial transform sin θ = 2a sinψ
(a+b)+(a−b) sin2 ψ .

Once we have the recursion (148) for the angle φn at our disposal, its solution by iteration is

tanφn =
∇n

an−1
tanφn−1 =

∇n

an−1

∇n−1

an−1
tanφn−2 = · · · =

n−1∏
j=0

∇j+1

aj
tanφ0

from which we deduce, with φ0 = φ, that

φn = arctan

n−1∏
j=0

∇j+1

aj
tanφ


For large n, we have that ∇n =

√
a2n cos

2 φn + b2n sin
2 φn =

√
a2n − c2n sin

2 φn → an and that φn

converges towards a limit Φ, so that

lim
n→∞

∫ φn

0

dθ√
a2n cos

2 θ + b2n sin
2 θ

= lim
n→∞

∫ φn

0

dψ

∇n
= lim

n→∞

φn
an

= lim
n→∞

1

an
arctan

n−1∏
j=0

∇j+1

aj
tanφ


It follows from Gauss’s AGM algorithm that

I (a, b;φ) = I (a1, b1;φ1) = · · · = I (an, bn;φn) = · · ·

and we arrive at ∫ φ

0

dθ√
a2 cos2 θ + b2 sin2 θ

= lim
n→∞

1

an
arctan

n−1∏
j=0

∇j+1

aj
tanφ

 (151)

where the right-hand side converges extremely fast. If φ = π
2 , then ∇n = bn, limn→∞ φn = π

2 and the

right-hand side of (151) becomes π
2M(a,b) , so that (151) reduces to Gauss’s basic integral (28).

55. The Landen transformation. Almkvist and Berndt [2, p. 590] give the Landen transformation

tanψ =
sin (2θ)

k1 + cos (2θ)
with k1 =

c1
a1

=
a− b

a+ b
=
a−

√
a2 − c2

a+
√
a2 − c2

=
1−

√
1− k2

1 +
√
1− k2

(152)

We repeat the work of art. 54 by substituting47 ψ = arctan
(

sin(2θ)
k1+cos(2θ)

)
in (152) into the integral

I (a, b;φ) =
∫ φ
0

dθ√
a2 cos2 θ+b2 sin2 θ

. Differentiation of the Landen transformation (152) gives

sec2 ψ dψ =
d

dθ

(
sin (2θ)

k1 + cos (2θ)

)
dθ = 2

(k1 + cos (2θ)) cos (2θ) + sin2 (2θ)

(k1 + cos (2θ))2
dθ = 2

1 + k1 cos (2θ)

(k1 + cos (2θ))2
dθ

47Using arctan z = arcsin z√
1+z2

translates ψ into

ψ = arcsin

sin(2θ)
k1+cos(2θ)√

1 +
(

sin(2θ)
k1+cos(2θ)

)2 = arcsin
sin (2θ)√

k21 + 2k1 cos (2θ) + 1
= arcsin

2 sin (θ) cos θ

(k1 + 1)
√

1− 4k1

(k1+1)2
sin2 θ

With k1 + 1 = 2

1+
√

1−k2
= 2

1+k′ and 4k1

(k1+1)2
= (1 + k′)

2 1−k′

1+k′ = 1− (k′)
2
= k2, we have [22, 19.8.11]

ψ = arcsin
(1 + k′) sin (θ) cos θ√

1− k2 sin2 θ
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Since sec2 ψ = 1+ tan2 ψ = 1 +
(

sin(2θ)
k1+cos(2θ)

)2
=

k21+2k1 cos(2θ)+1

(k1+cos(2θ))2
, we find that

dψ = 2
1 + k1 cos (2θ)

1 + k21 + 2k1 cos (2θ)
dθ

The inversion of the Landen transformation (152) follows from sec2 ψ =
k21+2k1 cos(2θ)+1

(k1+cos(2θ))2
with w =

cos (2θ) as

sec2 ψ =
k21 + 2k1w + 1

(k1 + w)2
=

(k1 + w)2 + 1− w2

(k1 + w)2
= 1 +

1− w2

(k1 + w)2

or

tan2 ψ =
1− w2

(k1 + w)2

The quadratic equation, sec2 ψ w2 + 2 tan2 ψ k1w + tan2 ψ k21 − 1 = 0, rewritten as

w2 + 2 sin2 ψ k1w + sin2 ψ k21 − cos2 ψ = 0

has as solution

w = − sin2 ψ k1 ±
√
sin4 ψ k21 − sin2 ψ k21 + cos2 ψ

= − sin2 ψ k1 ± cosψ
√
1− k21 sin

2 ψ

After simplification and choosing the plus sign, because θ = 0 corresponds to ψ = 0 in the Landen

transformation (152), we find the inverse Landen transformation

cos (2θ) = −k1 sin2 ψ + cosψ
√
1− k21 sin

2 ψ (153)

The integrand of I (a, b;φ) =
∫ φ
0

dθ√
a2 cos2 θ+b2 sin2 θ

contains

√
a2 cos2 θ + b2 sin2 θ =

√
c2 cos2 θ + b2 =

√
c2
1 + cos 2θ

2
+ b2 =

√
c2 + 2b2 + c2 cos 2θ

2

=

√
a2 + b2 + (a2 − b2) cos 2θ

2

Backwards substitution with a = a1 + c1 and b = a1 − c1 in (12) shows that,

√
a2 cos2 θ + b2 sin2 θ =

√√√√(a1 + c1)
2 + (a1 − c1)

2 +
(
(a1 + c1)

2 − (a1 − c1)
2
)
cos 2θ

2

=
√
a21 + c21 + 2a1c1 cos 2θ (154)

= a1

√
1 + k21 + 2k1 cos 2θ

Combining the above with dθ = 1
2
1+k21+2k1 cos(2θ)

1+k1 cos(2θ)
dψ yields

I (a, b;φ) =

∫ φ

0

dθ√
a2 cos2 θ + b2 sin2 θ

=
1

2

∫ φ1

0

1

a1
√
1 + k21 + 2k1 cos 2θ

1 + k21 + 2k1 cos (2θ)

1 + k1 cos (2θ)
dψ

=
1

2a1

∫ φ1

0

√
1 + k21 + 2k1 cos 2θ

1 + k1 cos (2θ)
dψ
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where φ1 = arctan
(

sin(2φ)
k1+cos(2φ)

)
= arcsin (1+k′) sinφ cosφ√

1−k2 sin2 φ
. Finally, we evaluate the integrand with (153)

as a function ψ,

In =

√
1 + k21 + 2k1 cos 2θ

1 + k1 cos (2θ)
=

√
1 + k21 − 2k21 sin

2 ψ + 2k1 cosψ
√

1− k21 sin
2 ψ

1− k21 sin
2 ψ + k1 cosψ

√
1− k21 sin

2 ψ

=

√
1 + k21 − 2k21 sin

2 ψ + 2k1 cosψ
√

1− k21 sin
2 ψ

(
1− k21 sin

2 ψ
)2 − (k1 cosψ√1− k21 sin

2 ψ

)2

(
1− k21 sin

2 ψ − k1 cosψ
√
1− k21 sin

2 ψ

)

The denominator is(
1− k21 sin

2 ψ
)2 − (k1 cosψ√1− k21 sin

2 ψ

)2

= 1− 2k21 sin
2 ψ + k41 sin

4 ψ − k21 cos
2 ψ
(
1− k21 sin

2 ψ
)

= 1− 2k21 sin
2 ψ + k41 sin

2 ψ
(
sin2 ψ + cos2 ψ

)
− k21 cos

2 ψ

= 1− 2k21 sin
2 ψ + k41 sin

2 ψ − k21 + k21 sin
2 ψ

= 1− k21 +
(
k21 − 1

)
k21 sin

2 ψ

=
(
1− k21

) (
1− k21 sin

2 ψ
)

The numerator N is simplified by first computing the square

Y =

(
1− k21 sin

2 ψ − k1 cosψ
√
1− k21 sin

2 ψ

)2

=
(
1− k21 sin

2 ψ
)2 − 2k1

(
1− k21 sin

2 ψ
)
cosψ

√
1− k21 sin

2 ψ + k21 cos
2 ψ
(
1− k21 sin

2 ψ
)

= 1− 2k21 sin
2 ψ + k41 sin

4 ψ + k21 cos
2 ψ − k41 sin

2 ψ cos2 ψ

− 2k1
(
1− k21 sin

2 ψ
)
cosψ

√
1− k21 sin

2 ψ

= 1− k21 sin
2 ψ + k41 sin

2 ψ
(
sin2 ψ − cos2 ψ

)
+ k21

(
cos2 ψ − sin2 ψ

)
− 2k1

(
1− k21 sin

2 ψ
)
cosψ

√
1− k21 sin

2 ψ

=
(
1− k21 sin

2 ψ
){

1 + k21
(
cos2 ψ − sin2 ψ

)
− 2k1 cosψ

√
1− k21 sin

2 ψ

}
Then, the numerator N is

N =

√(
1 + k21 − 2k21 sin

2 ψ + 2k1 cosψ
√

1− k21 sin
2 ψ

)(
1− k21 sin

2 ψ − k1 cosψ
√
1− k21 sin

2 ψ

)2

=
√
1− k21 sin

2 ψ

√(
1 + k21 cos 2ψ + 2k1 cosψ

√
1− k21 sin

2 ψ

){
1 + k21 cos 2ψ − 2k1 cosψ

√
1− k21 sin

2 ψ

}

=
√

1− k21 sin
2 ψ

√√√√((1 + k21 cos 2ψ
)2 − (2k1 cosψ√1− k21 sin

2 ψ

)2
)

=
√
1− k21 sin

2 ψ
√(

1 + 2k21 (cos 2ψ) + k41 cos
2 2ψ − 4k21 cos

2 ψ + k41 sin
2 2ψ

)
=
√
1− k21 sin

2 ψ
√(

1 + 2k21 (2 cos
2 ψ − 1− 2 cos2 ψ) + k41

)
=
√
1− k21 sin

2 ψ
√(

1− 2k21 + k41
)
=
(
1− k21

)√
1− k21 sin

2 ψ
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Finally, we arrive at

I (a, b;φ) =
1

2a1

∫ φ1

0

(
1− k21

)√
1− k21 sin

2 ψ(
1− k21

) (
1− k21 sin

2 ψ
)dψ

=
1

2a1

∫ φ1

0

dψ√
1− k21 sin

2 ψ
=

1

2a1

∫ φ1

0

dψ√
1− c21

a1
sin2 ψ

=
1

2

∫ φ1

0

dψ√
a21 cos

2 ψ + b21 sin
2 ψ

illustrating that I (a, b;φ) = 1
2I (a1, b1;φ1), but the Landen angle φ1 is different from the Gauss angle

recursion!

Landen’s transformation for the angle is

φ1 = arctan

(
sin (2φ)

k1 + cos (2φ)

)
= arcsin

(1 + k′) sinφ cosφ√
1− k2 sin2 φ

from which we deduce the recursion

tanφn+1 =
sin (2φn)

cn+1

an+1
+ cos (2φn)

(155)

If n grows large, then cn → 0 and the Landen angle recursion (155) shows that

φn+1 ≈ 2φn (156)

Iterated from a certain n = m on, for which the term cn+1

an+1
in (155) can be ignored, indicates that

φn ≃ 2n−mφm for n ≥ m and that limn→∞ 2−nφn ≃ 2−mφm, which is some finite angle implying that

the limit exists. Following King [17, p. 7], we rewrite the Landen recursion (155) in three different,

but equivalent ways. The first is

cn+1

an+1
sinφn+1 = sin (2φn) cosφn+1 − sinφn+1 cos (2φn)

and

sin (2φn − φn+1) =
cn+1

an+1
sinφn+1 (157)

The second follows from (157) as

cos2 (2φn − φn+1) = 1−
c2n+1

a2n+1

sin2 φn+1 =
a2n+1 cos

2 φn+1 + b2n+1 sinφn+1

a2n+1

=

(
∇n+1

an+1

)2

and, thus,

cos (2φn − φn+1) =
∇n+1

an+1
(158)

The third variant starts from (155) and moves to undoubling the angle,

tanφn+1 =
2 sin (φn) cos (φn)

cn+1

an+1
+ 2 cos2 (φn)− 1

=
2 sin (φn) cos (φn)

−an+1+cn+1

an+1
+ 2 cos2 (φn)

We divide the right-hand side numerator and denominator side by cos2 (φn) and invoke bn = an+1 −
cn+1 in (12)

tanφn+1 =
2 tan (φn)
−bn

an+1 cos2(φn)
+ 2

=
2 tan (φn)

−2bn
an+bn

(1 + tan2 (φn)) + 2
=

(an + bn) tan (φn)

−bn (1 + tan2 (φn)) + an + bn

=
(an + bn) tan (φn)

an − bn tan2 (φn)
=

(
1 + bn

an

)
tanφn

1− bn
an

tan2 (φn)
=

tan (φn) +
bn
an

tanφn

1− bn
an

tan2 (φn)
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We rewrite the fraction as

bn
an

tanφn = tanφn+1

(
1− bn

an
tan2 (φn)

)
− tanφn

= tanφn+1 − tanφn −
bn
an

tanφn+1 tan
2 φn

and collect terms in bn
an

tan (φn)

bn
an

tanφn (1 + tanφn+1 tanφn) = tanφn+1 − tanφn

to arrive at the third variant of Landen’s recursion for the angle,

bn
an

tanφn =
tanφn+1 − tan (φn)

1 + tanφn+1 tan (φn)
= tan (φn+1 − φn) (159)

56. Further deductions from the Landen transformation. From the Landen recursions (155), (157),

(158) and (159) of the angle forms, King [17, p. 7] states without proof nor any hint that

∇n+1 + cn+1 cosφn+1 = ∇n (160)

∇n+1 − cn+1 cosφn+1 =
anbn
∇n

(161)

and that

∇2
n+1 + cn+1∇n+1 cosφn+1 =

1

2
∇2
n +

1

2
anbn (162)

The remainder consists of proving (160), (161) and (162). In part A, we give a direct proof of (160)

and (161), followed in part B by a verification type of proof. In part C, we demonstrate (162) as a

consequence of (160) and (161).

A. The inverse Landen transformation (153) yields

cos (2φn) = − cn+1

an+1
sin2 φn+1 + cosφn+1

√
1−

c2n+1

a2n+1

sin2 φn+1

= − cn+1

an+1
sin2 φn+1 +

cosφn+1

an+1

√
a2n+1 cos

2 φn+1 + b2n+1 sin
2 φn+1

= − cn+1

an+1
sin2 φn+1 +

cosφn+1

an+1
∇n+1

from which

∇n+1 cosφn+1 = an+1 cos (2φn) + cn+1 sin
2 φn+1 (163)

We rewrite (163) as

cn+1 cos
2 φn+1 = an+1 cos (2φn) + cn+1 −∇n+1 cosφn+1

and multiplying by cn+1,

c2n+1 cos
2 φn+1 = an+1cn+1 cos (2φn) + c2n+1 − cn+1∇n+1 cosφn+1

First, we add 2cn+1∇n+1 cosφn+1 at both sides,

c2n+1 cos
2 φn+1 + 2cn+1∇n+1 cosφn+1 = an+1cn+1 cos (2φn) + c2n+1 + cn+1∇n+1 cosφn+1
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and deduce that

(cn+1 cosφn+1 +∇n+1)
2 = ∇2

n+1 + an+1cn+1 cos (2φn) + c2n+1 + cn+1∇n+1 cosφn+1

We use (163) again in the right-hand side,

(cn+1 cosφn+1 +∇n+1)
2 = ∇2

n+1 + 2an+1cn+1 cos (2φn) + c2n+1 + c2n+1 sin
2 φn+1

= a2n+1 cos
2 φn+1 +

(
b2n+1 + c2n+1

)
sin2 φn+1 + 2an+1cn+1 cos (2φn) + c2n+1

= a2n+1 + 2an+1cn+1 cos (2φn) + c2n+1

Invoking ∇n =
√
a2n+1 + c2n+1 + 2an+1cn+1 cos 2φn in (154) proves (160). Formula (161) directly

follows from the first verification in part B below, once (160) is known.

B. We give a verification for (160) and (161). First, multiplying (160) and (161) yields

(∇n+1 + cn+1 cosφn+1) (∇n+1 − cn+1 cosφn+1) = ∇2
n+1 − c2n+1 cos

2 φn+1

= a2n+1 cos
2 φn+1 + b2n+1 sin

2 φn+1 − c2n+1 cos
2 φn+1

= b2n+1 = anbn

Second, dividing (160) by (161) yields

∇2
n

anbn
=

∇n+1 + cn+1 cosφn+1

∇n+1 − cn+1 cosφn+1
=

(∇n+1 + cn+1 cosφn+1)
2

∇2
n+1 − c2n+1 cos

2 φn+1

=
∇2
n+1 + 2cn+1∇n+1 cosφn+1 + c2n+1 cos

2 φn+1

anbn

and we must shows that

∇2
n = ∇2

n+1 + 2cn+1∇n+1 cosφn+1 + c2n+1 cos
2 φn+1

=
(
a2n+1 + c2n+1

)
cos2 φn+1 + b2n+1 sin

2 φn+1 + 2cn+1∇n+1 cosφn+1

Substituting (163) in the above,

∇2
n = a2n+1 cos

2 φn+1 + c2n+1 cos
2 φn+1 + b2n+1 sin

2 φn+1 + 2cn+1an+1 cos (2φn) + 2c2n+1 sin
2 φn+1

= a2n+1 cos
2 φn+1 + c2n+1

(
cos2 φn+1 + sin2 φn+1

)
+
(
b2n+1 + c2n+1

)
sin2 φn+1 + 2cn+1an+1 cos (2φn)

= a2n+1 cos
2 φn+1 + c2n+1 + a2n+1 sin

2 φn+1 + 2cn+1an+1 cos (2φn)

= a2n+1 + c2n+1 + 2cn+1an+1 cos (2φn)

which is an identity by (154). In summary, from the product of the factors (∇n+1 + cn+1 cosφn+1)

and (∇n+1 − cn+1 cosφn+1) and their ratio, we deduce (160) and (161).

C. Finally, multiplying (160) with ∇n+1 yields

∇2
n+1 + cn+1∇n+1 cosφn+1 = ∇n∇n+1

On the other hand, multiplying (160) with ∇n,

∇n∇n+1 +∇ncn+1 cosφn+1 = ∇2
n
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and multiplying (161) with ∇n,

∇n∇n+1 −∇ncn+1 cosφn+1 = anbn

indicates that their addition is

2∇n∇n+1 = ∇2
n + anbn (164)

Substituted into the above proves (162).

57. Differentiation of forms of the Landen transformation. We compute the differentials of ∇n+1 +

cn+1 cosφn+1 = ∇n in (160) and ∇n+1 − cn+1 cosφn+1 = anbn
∇n

in (161). First, the differential of the

right-hand side ∇n =
√
a2n cos

2 φn + b2n sin
2 φn of (160) is

d∇n =
d∇n

dφn
dφn =

1

2∇n

(
−a2n sin (2φn) + b2n sin (2φn)

)
dφn

and

d∇n = −c
2
n sin (2φn)

2∇n
dφn (165)

The differential of the left-hand side of (160) follows as

d (∇n+1 + cn+1 cosφn+1) = d∇n+1 − cn+1 sinφn+1dφn+1

= −
(
c2n+1 sinφn+1 cosφn+1

∇n+1
+ cn+1 sinφn+1

)
dφn+1

= − (cn+1 cosφn+1 +∇n+1)
cn+1 sinφn+1

∇n+1
dφn+1

= −∇n
cn+1 sinφn+1

∇n+1
dφn+1

Combining both sides48,

c2n sin (2φn)

2∇2
n

dφn =
cn+1 sinφn+1

∇n+1
dφn+1 (166)

We rewrite (166) as
dφn
∇n

=
2∇ncn+1 sinφn+1

c2n sin (2φn)

dφn+1

∇n+1

With tanφn+1 =
sin(2φn)

cn+1
an+1

+cos(2φn)
,

2∇ncn+1 sinφn+1

c2n sin (2φn)
=

2∇ncn+1 sinφn+1

c2n tanφn+1

(
cn+1

an+1
+ cos (2φn)

) =
2∇nan+1cn+1 cosφn+1

c2n (cn+1 + an+1 cos (2φn))

=
1

2

∇n cosφn+1

cn+1 + an+1 cos (2φn)

48The differential of the left-hand side of (161) is

d (∇n+1 − cn+1 cosφn+1) = d∇n+1 + cn+1 sinφn+1dφn+1

=

(
−c

2
n+1 sinφn+1 cosφn+1

∇n+1
+ cn+1 sinφn+1

)
dφn+1

= (−cn+1 cosφn+1 +∇n+1)
cn+1 sinφn+1

∇n+1
dφ =

anbn
∇n

cn+1 sinφn+1

∇n+1
dφn+1

Combining both sides yields, with d
(

anbn
∇n

)
= −anbn

∇2
n
d∇n = anbn

∇2
n

c2n sin(2φn)

2∇n
dφn leads to the same result (166).
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Multiplying numerator and denominator with cn+1 yields

2∇ncn+1 sinφn+1

c2n sin (2φn)
=

1

2

∇ncn+1 cosφn+1

c2n+1 + cn+1an+1 cos (2φn)
=

1

2

∇ncn+1 cosφn+1

c2n+1 + cn+1an+1 cos (2φn)

With ∇n+1 + cn+1 cosφn+1 = ∇n in (160) and (164), it holds that

∇ncn+1 cosφn+1 = ∇2
n −∇n+1∇n = ∇2

n −
1

2

(
∇2
n + anbn

)
=

1

2
∇2
n −

1

2
anbn

such that, replacing anbn = b2n+1

2∇ncn+1 sinφn+1

c2n sin (2φn)
=

1

2

∇2
n − b2n+1

2c2n+1 + 2cn+1an+1 cos (2φn)

It follows from ∇n =
√
a2n+1 + c2n+1 + 2an+1cn+1 cos 2φn in (154) that

∇2
n − b2n+1 = a2n+1 + c2n+1 + 2an+1cn+1 cos 2φn − b2n+1 = 2c2n+1 + 2cn+1an+1 cos (2φn)

resulting in
2∇ncn+1 sinφn+1

c2n sin (2φn)
=

1

2
(167)

In summary, we arrive at the remarkable differential recursion

dφn
∇n

=
1

2

dφn+1

∇n+1
(168)

from which, after iterations, we find, for any positive integer n,

dφ0

∇0
=

dφ√
a2 cos2 φ+ b2 sin2 φ

=
1

2n
dφn
∇n

(169)

If we take the differential of ∇2
n+1 + cn+1∇n+1 cosφn+1 =

1
2∇

2
n +

1
2anbn in (162), then

2∇n+1d∇n+1 −∇n+1cn+1 sinφn+1dφn+1 + cn+1 cosφn+1d∇n+1 = ∇nd∇n

and

(2∇n+1 + cn+1 cosφn+1) d∇n+1 −∇n+1cn+1 sinφn+1dφn+1 = ∇nd∇n

Employing d∇n = − c2n sin(2φn)
2∇n

dφn in (165), we execute

(2∇n+1 + cn+1 cosφn+1)

(
−
c2n+1 sin (2φn+1)

2∇n+1
dφn+1

)
−∇n+1cn+1 sinφn+1dφn+1 = −∇n

c2n sin (2φn)

2∇n
dφn

At the right-hand side, we substitute c2n sin(2φn)
2∇n

= 2cn+1 sinφn+1 in (167), divide both sides by

cn+1 sinφn+1 and obtain(
1 +

(
∇n+1 + cn+1 cosφn+1

∇n+1

))
cn+1 cosφn+1dφn+1 +∇n+1dφn+1 = 2∇ndφn

We substitute ∇n+1 + cn+1 cosφn+1 = ∇n in (160),

cn+1 cosφn+1dφn+1 +

(
∇n

∇n+1
cn+1 cosφn+1

)
dφn+1 +∇n+1dφn+1 = ∇ndφn +∇ndφn
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and arrange to construct the difference

∇ndφn −∇n+1dφn+1 = cn+1 cosφn+1dφn+1 + (cn+1 cosφn+1)
∇n

∇n+1
dφn+1 −∇ndφn

We invoke dφn = 1
2

∇n
∇n+1

dφn+1 in (168)

∇ndφn −∇n+1dφn+1 = cn+1 cosφn+1dφn+1 + (2cn+1 cosφn+1 −∇n) dφn

We rewrite 2cn+1 cosφn+1 −∇n with ∇n+1 + cn+1 cosφn+1 = ∇n in (160) as

2cn+1 cosφn+1 −∇n = cn+1 cosφn+1 −∇n+1 = −anbn
∇n

where the last equality follows from (161). Finally, we arrive at

∇ndφn −∇n+1dφn+1 = cn+1 cosφn+1dφn+1 −
anbn
∇n

dφn (170)

There is still a useful identity, following from dφn

∇n
= 1

2
dφn+1

∇n+1
in (168)

a2n
dφn
∇n

− a2n+1

dφn+1

∇n+1
=
(
a2n − 2a2n+1

) dφn
∇n

=

(
1

2
c2n − anbn

)
dφn
∇n

(171)

because
(
a2n − 2a2n+1

)
= a2n− 1

2

(
a2n + 2anbn + b2n

)
= 1

2

(
a2n − b2n

)
−anbn = 1

2c
2
n−anbn. After subtracting

(171) from (170), we have(
∇n −

a2n
∇n

)
dφn −

(
∇n+1 −

a2n+1

∇n+1

)
dφn+1 = cn+1 cosφn+1dφn+1 −

1

2

c2n
∇n

dφn (172)

The main reason of the subtraction towards (172) is that limn→∞∇n − a2n
∇n

= 0. Summing (172) over

n from n = m to n = p

p∑
n=m

(
∇n −

a2n
∇n

)
dφn −

p∑
n=m

(
∇n+1 −

a2n+1

∇n+1

)
dφn+1 =

p∑
n=m

cn+1 cosφn+1dφn+1 −
1

2

p∑
n=m

c2n
∇n

dφn

and recognizing the telescoping series at the left-hand side results in(
∇m − a2m

∇m

)
dφm −

(
∇p+1 −

a2p+1

∇p+1

)
dφp+1 =

p∑
n=m

cn+1 cosφn+1dφn+1 −
1

2

p∑
n=m

c2n
∇n

dφn

With dφn

∇n
= 2n dφ0

∇0
in (169), the last sum is

1

2

p∑
n=m

c2n
∇n

dφn =
1

2

dφ0

∇0

p∑
n=m

2nc2n

We let p → ∞ and choose m = 0 with ∇0 = ∇ =
√
a2 cos2 φ+ b2 sin2 φ, then after integration, we

find∫ φ

0

√
a2 cos2 φ+ b2 sin2 φdφ =

∞∑
n=0

cn+1 sinφn+1 +

∫ φ

0

dφ√
a2 cos2 φ+ b2 sin2 φ

(
a2 −

∞∑
n=0

2n−1c2n

)
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With I (a, b;φ) =
∫ φ
0

dφ√
a2 cosφ+b2 sin2 φ

in (145) and J (a, b;φ) =
∫ φ
0

√
a2 cosφ+ b2 sin2 φdφ leads to

J (a, b;φ) =

∞∑
n=1

cn sinφn +

(
a2 −

∞∑
n=0

2n−1c2n

)
I (a, b;φ) (173)

With k = c
a , rephrased in terms of the Jacobi elliptic integrals in F (φ, k) =

∫ φ
0

dθ√
1−k2 sin2 θ

in (130)

and E (φ, k) =
∫ φ
0

√
1− k2 sin2 θdθ in (131) is

aE (φ, k) =
∞∑
n=0

cn+1 sinφn+1 +
1

a
F (φ, k)

(
a2 −

∞∑
n=0

2n−1c2n

)

If n increases, then limn→∞ an = limn→∞ bn = M (a, b) and the angle φn

2n → Φ as shown by (156).

Hence, I (a, b;φ) = limn→∞
φn

2nan
and F (φ, k) = a limn→∞

φn

2nan
. If φ = π

2 , then Landen’s angle

recursion (156) reduces to φn

2n = π
2 for n > 0, so that sinφn = 0 and (173) reduces to (95). Also,

F (φ, k) = a limn→∞
φn

2nan
becomes K (k) = π

2
a

M(a,b) .

D Proof of Legendre’s formula (98) of products of complete elliptic

integrals

Replace k2 in (132) by c and differentiate with respect to c,

d

dc

(
E
(
φ,

√
c
)
− F

(
φ,

√
c
))

= − d

dc

(
c

∫ φ

0

sin2 θdθ√
1− c sin2 θ

)

= −
∫ φ

0

sin2 θ√
1− c sin2 θ

dθ − 1

2

∫ φ

0

c sin4 θ(
1− c sin2 θ

)√
1− c sin2 θ

dθ

=
1

c

∫ φ

0

1− c sin2 θ − 1√
1− c sin2 θ

dθ − 1

2

∫ φ

0

c sin4 θ(
1− c sin2 θ

)√
1− c sin2 θ

dθ

=
1

c

∫ φ

0

√
1− c sin2 θdθ − 1

2c

∫ φ

0

2
(
1− c sin2 θ

)(
1− c sin2 θ

)√
1− c sin2 θ

dθ

− 1

2c

∫ φ

0

c2 sin4 θ(
1− c sin2 θ

)√
1− c sin2 θ

dθ

=
1

c

∫ φ

0

√
1− c sin2 θdθ − 1

2c

∫ φ

0

1 + 1− 2c sin2 θ + c2 sin4 θ(
1− c sin2 θ

)√
1− c sin2 θ

dθ

=
1

c

∫ φ

0

√
1− c sin2 θdθ − 1

2c

∫ φ

0

1 +
(
1− c sin2 θ

)2(
1− c sin2 θ

)√
1− c sin2 θ

dθ

=
1

c

∫ φ

0

√
1− c sin2 θdθ − 1

2c

∫ φ

0

(
1− c sin2 θ

)2(
1− c sin2 θ

)√
1− c sin2 θ

dθ

− 1

2c

∫ φ

0

dθ(
1− c sin2 θ

)√
1− c sin2 θ

=
1

2c

∫ φ

0

√
1− c sin2 θdθ − 1

2c

∫ φ

0

dθ(
1− c sin2 θ

) 3
2
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Since

1

2

d

dθ

(
sin 2θ√

1− c sin2 θ

)
=

1

4

c sin2 2θ(
1− c sin2 θ

)√
1− c sin2 θ

+
cos 2θ√

1− c sin2 θ

=
c sin2 θ cos2 θ +

(
cos2 θ − sin2 θ

) (
1− c sin2 θ

)(
1− c sin2 θ

)√
1− c sin2 θ

=
c sin2 θ cos2 θ + cos2 θ − sin2 θ − c sin2 θ cos2 θ + c sin4 θ(

1− c sin2 θ
)√

1− c sin2 θ

=
cos2 θ − sin2 θ

(
1− c sin2 θ

)(
1− c sin2 θ

)√
1− c sin2 θ

=
cos2 θ(

1− c sin2 θ
)√

1− c sin2 θ
− sin2 θ√

1− c sin2 θ

=
cos2 θ(

1− c sin2 θ
)√

1− c sin2 θ
+

1

c

1− c sin2 θ − 1√
1− c sin2 θ

=
1

c

√
1− c sin2 θ − 1

c

1√
1− c sin2 θ

+
cos2 θ(

1− c sin2 θ
)√

1− c sin2 θ

=
1

c

√
1− c sin2 θ − 1

c

1− c sin2 θ − c cos2 θ(
1− c sin2 θ

)√
1− c sin2 θ

from which
1(

1− c sin2 θ
) 3

2

=
1

1− c

√
1− c sin2 θ − c

1− c

d

dθ

(
sin θ cos θ√
1− c sin2 θ

)
we deduce, denoting c′ = 1− c, that

d

dc

(
E
(
φ,

√
c
)
− F

(
φ,

√
c
))

=
1

2c

∫ φ

0

√
1− c sin2 θdθ − 1

2c

∫ φ

0

dθ(
1− c sin2 θ

) 3
2

=
1

2c

∫ φ

0

√
1− c sin2 θdθ − 1

2cc′

∫ φ

0

√
1− c sin2 θdθ

− 1

2c′

∫ φ

0

d

dθ

(
sin θ cos θ√
1− c sin2 θ

)
dθ

= − 1

2c′
E
(
φ,

√
c
)
− 1

2c′
sinφ cosφ√
1− c sin2 φ

If we choose φ = π
2 , then the above simplifies to

d

dc

(
E
(√
c
)
−K

(√
c
))

= − 1

2c′
E
(√
c
)

(174)

We can verify with c′ = 1− c that

d

dc

(
E
(√

1− c
)
−K

(√
1− c

))
=

1

2c
E
(√

1− c
)

Further

d

dc
E
(
φ,

√
c
)
=

d

dc

∫ φ

0

√
1− c sin2 θdθ =

1

2

∫ φ

0

− sin2 θ√
1− c sin2 θ

dθ =
1

2c

∫ φ

0

1− c sin2 θ − 1√
1− c sin2 θ

dθ

so that
d

dc
E
(
φ,

√
c
)
=

1

2c

(
E
(
φ,

√
c
)
− F

(
φ,

√
c
))
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and, similarly with c′ = 1− c,

d

dc
E
(
φ,

√
1− c

)
= − 1

2c′

(
E
(
φ,

√
c′
)
− F

(
φ,

√
c′
))

For φ = π
2 , the above reduces to

d

dc
E
(√
c
)
=

1

2c

(
E
(√
c
)
−K

(√
c
))

(175)

d

dc
E
(√

1− c
)
= − 1

2c′

(
E
(√

c′
)
−K

(√
c′
))

If we denote

L (φ) = F
(
φ,

√
c
)
E
(
φ,

√
1− c

)
+ F

(
φ,

√
1− c

)
E
(
φ,

√
c
)
− F

(
φ,

√
c
)
F
(
φ,

√
1− c

)
= E

(
φ,

√
c
)
E
(
φ,

√
1− c

)
−
(
E
(
φ,

√
c
)
− F

(
φ,

√
c
)) (

E
(
φ,

√
1− c

)
− F

(
φ,

√
1− c

))
then

dL (φ)

dc
= E

(
φ,

√
1− c

) d
dc
E
(
φ,

√
c
)
+ E

(
φ,

√
c
) d
dc
E
(
φ,

√
1− c

)
−
(
E
(
φ,

√
1− c

)
− F

(
φ,

√
1− c

)) d
dc

(
E
(
φ,

√
c
)
− F

(
φ,

√
c
))

−
(
E
(
φ,

√
c
)
− F

(
φ,

√
c
)) d
dc

(
E
(
φ,

√
1− c

)
− F

(
φ,

√
1− c

))
=
E
(
φ,

√
c′
)

2c

(
E
(
φ,

√
c
)
− F

(
φ,

√
c
))

− E (φ,
√
c)

2c′

(
E
(
φ,

√
c′
)
− F

(
φ,

√
c′
))

−
(
E
(
φ,

√
c′
)
− F

(
φ,

√
c′
))(

− 1

2c′
E
(
φ,

√
c
)
− 1

2c′
sinφ cosφ√
1− c sin2 φ

)

−
(
E
(
φ,

√
c
)
− F

(
φ,

√
c
))( 1

2c
E
(
φ,

√
c′
)
+

1

2c

sinφ cosφ√
1− c′ sin2 φ

)

=

(
E
(
φ,

√
c′
)
− F

(
φ,

√
c′
))

2c′
sinφ cosφ√
1− c sin2 φ

− (E (φ,
√
c)− F (φ,

√
c))

2c

sinφ cosφ√
1− c′ sin2 φ

which is zero if φ = π
2 , implying that

L
(π
2

)
= E

(√
c
)
E
(√

1− c
)
−
(
E
(√
c
)
−K

(√
c
)) (

E
(√

1− c
)
−K

(√
1− c

))
is a constant for any c. When choosing c = 0, then art. 47 shows that limc→0E (

√
c) = π

2 and

limc→0E
(√

1− c
)
= 1. Further, art. 47 indicates for c→ 0 that (E (

√
c)−K (

√
c)) < π

2
c√
1−c = O (c)

and
(
E
(√

1− c
)
−K

(√
1− c

))
= O

(
1√√
c

)
. Hence, their product is O

(
c1−1/4

)
, which tends to

zero for c → 0 resulting in L
(
π
2

)
= π

2 for any c, which proves Legendre’s formula K (k)E (k′) +

K (k′)E (k)−K (k)K (k′) = π
2 in (98).

When subtracting (175) from (174), we find that

d

dc

(
K
(√
c
))

=
1

2c′
E
(√
c
)
+

1

2c
E
(√
c
)
− 1

2c
K
(√
c
)

=
1

2c

{
1

(1− c)
E
(√
c
)
−K

(√
c
)}
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E Expansion of the function r (y) based on its functional equation

(78)

The functional equation of r (y) is 1
8r

4 (y) = r
(
y4
)
S
(
S2 + r2

(
y4
))

in (78).

First, we rewrite the series expansion fN (z) =
(∑∞

k=0 fk z
k
)N

=
∑∞

j1=0 · · ·
∑∞

jN=0

∏N
i=1 fji z

∑N
i=1 ji

for an integer N . After letting m =
∑N

i=1 ji with ji ≥ 0 for each 1 ≤ i ≤ N , we obtain

fN (z) =
∞∑
m=0

 ∑
∑N

i=1 ji=m;ji≥0

N∏
i=1

fji

 zm (176)

The series expansion of the left-hand side in (78) becomes with N = 4,

r4 (y) = 24y

( ∞∑
k=0

rky
k

)4

= 16y

∞∑
m=0

 ∑
∑4

i=1 ji=m;ji≥0

4∏
i=1

rji

 ym

= 16y

1 +
∞∑
m=1

 ∑
∑4

i=1 ji=m;ji≥0

4∏
i=1

rji

 ym


The Taylor coefficients can be computed via the recursion relation of our characteristic coefficients (see

e.g. [32]). The Taylor coefficient
∑∑4

i=1 ji=m;ji≥0

∏4
i=1 rji for m > 0 contains terms in which product∏4

i=1 rji = rm in all ways
∑4

i=1 ji = m, where 3 out of the 4 ji are equal to zero, because r0 = 1.

Thus, in precisely
(
4
3

)
= 4 ways and the highest index term is thus 4rm, while all other products∏4

i=1 rji consists of lower indices v in rv. Another way to compute the Taylor coefficient is by twice

evaluating a Cauchy product. Indeed,
(∑∞

k=0 rky
k
)2

=
∑∞

k=0

(∑k
l=0 rk−lrl

)
yk and

(∑∞
k=0 rky

k
)4

=∑∞
k=0

(∑k
i=0

(∑i
l=0 ri−lrl

)(∑k−i
j=0 rk−i−jrj

))
yk, so that

∑
∑4

i=1 ji=m;ji≥0

4∏
i=1

rji =
m∑
i=0

i∑
l=0

ri−lrl

m−i∑
j=0

rm−i−jrj

For m > 0, we can write

∑
∑4

i=1 ji=m;ji≥0

4∏
i=1

rji = 4rm + 2

m−1∑
j=1

rm−jrj +

m−1∑
i=1

i∑
l=0

ri−lrl

m−i∑
j=0

rm−i−jrj (177)

The first factor on the right-hand side in (78) of the series r (u) = 2u
1
4

(
1 +

∑∞
k=1 rku

k
)
in (77)

has the Taylor series

r
(
y4
)
= 2y

∞∑
k=0

rky
4k = 2y

∞∑
m=0

rm
4
1{4|m}y

m

= 2y

(
1 +

∞∑
m=1

rm
4
1{4|m}y

m

)

where the indicator 1{4|m} only equals one if m is a multiple of 4, which is equivalent to requiring that

4 must divide the integer m. If m4 is not an integer, then 1{4|m} = 0.
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The second factor on the right-hand side in (78) requires the Taylor expansion of S = 1 +∑∞
l=2 r

(
y2

2l
)
. We introduce the series (77),

∞∑
l=2

r
(
y2

2l
)
= 2

∞∑
l=2

(
y2

2l
) 1

4
∞∑
k=0

rky
22lk = 2

∞∑
l=2

∞∑
k=0

rky
22(l−1)+22lk = 2

∞∑
l=1

∞∑
k=0

rky
22l(4k+1)

Letm = 22l (4k + 1), then m
22l

must run over the integers 1, 5, 9, 14, . . . , 1+4k, . . .. Hence, the condition

for m is that 1
4

(
m
22l

− 1
)
∈ N, implying that m ≥ 22l, so that

∞∑
l=2

r
(
y2

2l
)
= 2

∞∑
l=1

∞∑
m=22l

r 1
4

(
m

22l
−1
)1{ 1

4

(
m

22l
−1
)
∈N
}ym

Reversing the l- and m-summation yields, where [x] is the integer smaller than or equal to x,

∞∑
l=2

r
(
y2

2l
)
= 2

∞∑
m=1

[log4m]∑
l=1

r 1
4

(
m

22l
−1
)1{ 1

4

(
m

22l
−1
)
∈N
}
 ym

The Taylor series of S is

S =

∞∑
m=0

smy
m

where s0 = 1 and, for m > 0,

sm = 2

[log4m]∑
l=1

r 1
4

(
m

22l
−1
)1{ 1

4

(
m

22l
−1
)
∈N
}

In fact, s1 = s2 = s3 = 0 and s4 = 2. The highest index of rv in sm occurs for l = 1,

sm = 2

r 1
4(

m
4
−1)1{ 1

4(
m
4
−1)∈N} +

[log4m]∑
l=2

r 1
4

(
m

22l
−1
)1{ 1

4

(
m

22l
−1
)
∈N
}


The third factor S2 + r2
(
y4
)
on the right-hand side in (78) consists of the sum of two Cauchy

products of Taylor series, namely

r2
(
y4
)
= 4y2

∞∑
m=0

rm
4
1{4|m}y

m
∞∑
l=0

r l
4
1{4|l}y

l = 4y2
∞∑
m=0

(
m∑
l=0

rm−l
4
1{4|m−l}r l

4
1{4|l}

)
ym

=
∞∑
m=2

(
4
m−2∑
l=0

rm−2−l
4

1{4|m−2−l}r l
4
1{4|l}

)
ym

and

S2 =
∞∑
m=0

(
m∑
l=0

sm−lsl

)
ym = 1 +

∞∑
m=2

(
m∑
l=0

sm−lsl

)
ym

because
∑1

l=0 s1−lsl = 2s0s1 = 0. Hence, the Taylor series is

S2 + r2
(
y4
)
= 1 +

∞∑
m=2

(
m∑
l=0

sm−lsl + 4

m−2∑
l=0

rm−2−l
4

1{4|m−2−l}r l
4
1{4|l}

)
ym
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which we write as

S2 + r2
(
y4
)
=

∞∑
m=0

Umy
m

where U0 = 1 and for m > 0,

Um =
m∑
l=0

sm−lsl + 4
m−2∑
l=0

rm−2−l
4

1{4|m−2−l}r l
4
1{4|l}

The Taylor series of r
(
y4
)
S again consists of the Cauchy product of two Taylor series r

(
y4
)
S =

2y
∑∞

m=0 rm
4
1{4|m}y

m
∑∞

m=0 smy
m and equals

r
(
y4
)
S = 2y

∞∑
m=0

(
m∑
l=0

rm−l
4
1{4|m−l}sl

)
ym

The Taylor series of the right-hand side 1
8r

4 (y) = r
(
y4
)
S
(
S2 + r2

(
y4
))

in (78) is

r
(
y4
)
S
(
S2 + r2

(
y4
))

= 2y
∞∑
m=0

(
m∑
k=0

Um−k

k∑
l=0

r k−l
4
1{4|k−l}sl

)
ym

Let us investigate the Taylor coefficient Wm =
∑m

k=0 Um−k
∑k

l=0 r k−l
4
1{4|k−l}sl for m > 0, because

W0 = 1. We rewrite

Wm =
m∑
l=0

rm−l
4
1{4|m−l}sl +

m−1∑
k=0

Um−k

k∑
l=0

r k−l
4
1{4|k−l}sl

= rm
4
1{4|m} +

m∑
l=1

rm−l
4
1{4|m−l}sl +

m−1∑
k=0

Um−k

k∑
l=0

r k−l
4
1{4|k−l}sl

The second and third sum only contain terms in rv with a lower index v < m
4 .

Finally, both left-hand an right-hand side Taylor series in 1
8r

4 (y) = r
(
y4
)
S
(
S2 + r2

(
y4
))

in (78)

2y

 ∞∑
m=0

 ∑
∑4

i=1 ji=m;ji≥0

4∏
i=1

rji

 ym

 = 2y
∞∑
m=0

(
m∑
k=0

Um−k

k∑
l=0

r k−l
4
1{4|k−l}sl

)
ym

leads, after equating corresponding powers in y for49 m > 0 with (177), to

4rm + 2

m−1∑
j=1

rm−jrj +

m−1∑
i=1

i∑
l=0

ri−lrl

m−i∑
j=0

rm−i−jrj =

m∑
k=0

Um−k

k∑
l=0

r k−l
4
1{4|k−l}sl

Since the right-hand side does not contain rv with index equal to m (but at most rm
4
), all Taylor

coefficients for m > 0 are found by the recursion

rm =
1

4

 m∑
k=0

Um−k

k∑
l=0

r k−l
4
1{4|k−l}sl − 2

m−1∑
j=1

rm−jrj −
m−1∑
i=1

i∑
l=0

ri−lrl

m−i∑
j=0

rm−i−jrj


Executing the recursion returns rm = 1{

m=(k+ 1
2)

2− 1
4

} for k ≥ 0. Hence,

r (y) = 2y
1
4

(
1 + y2 + y6 + y12 + y20 + y30 + · · ·+ y(k+

1
2)

2− 1
4 + · · ·

)
which agrees with Gauss’s last series in [14, art. 16, p. 383].

49If m = 0, then both sides are equal to 1.
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