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Abstract

The analytic — not the numerical — solution of a set of linear differential equations corresponding
to an upper triangular matrix is derived. When all diagonal elements of the triangular matrix are

different, the explicit solution can be written as an enumeration over paths.

1 Introduction

We consider a set of m linear differential equations

ds (t)
= s (¢ 1
a @) (1)
T
where s (t) = [ s1(t) s2(t) Sm () is an m x 1 vector and @ is an m X m upper triangular
matrix,
qi1 412 q1,m—1 qim
0 g2 q2,m—1 Q2m
Q= 0 (2)
gm—-1,m—1 dm—1,m
L 0 0 0 dmm
The matrix differential equation (1) is explicitly written as
[ dscllft) ] [ qe q1m—1 aim | [ si0) ]
dsflit(t) 0 g q2,m—1 Pm s (1)
: = 0 :
dspm—1(t)
d “Etl) dm—-1m—-1 Gm-1,m sm—1 (1)
m(t
L sdt i L 0 0 0 dmm i Sm (t) ]
or as a linear set,
d
séft) =q1181 + q1252 + - T q1,m—15m—1 + qimSm
d
s;t(t) = (2252 + o+ q2,m—18m—1 + G2mSm
: (3)
sy
. dtl(t) = Gm—1,m—15m—1 T Gm—1,mSm
dsm(t) _
dt . — 9mmSm
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We take the Laplace transform from both sides of the set (3). Denoting the Laplace transform as
L(sk(t) = [y e Psy (t) = Sk (p) and invoking £ (dsij—t(t» = pSk (p) — sk (0), which follows by partial

integration, the Laplace transformed set of the set (3) is
([ pS1(p) — 51 (0) = q11S1 (p) + @1252 (P) + - + q1m—1Sm—1 (P) + @1 Sm ()
pS2 (p) — 52 (0) = g2252 (p) +* + @2m—15m—1 () + g2mSm (P)

pSmfl (p) — Sm—1 (O) = mel,mflsmfl (p) + mel,mSm (p)
PSm (p) = $m (0) = gmmSm (p)

The matrix form,

[ q1—-p a2 e Qimed Gim Sy (p) s1(0)
0 g2 —DP - @2m-1 Q2m Ss (p) s2 (0)
0 f =—1: (4)
. dm—-1,m—-1 —P gm-—-1m Sm*l (p) Sm—1 (0)
[ 0 0 e 0 Grm —p | | Sm () | L sm (0) |
demonstrates that the algebraic set is (QQ — pI) S (p) = —s (0), which resembles an eigenvalue equation.

We simplify the notation of the matrix in (4) by denoting &; = ¢;; — p,

& @12 0 Qim-1 Qim
0 & - @m-1 P©m
A=1: 0 . (5)
: gm—l dm—1,m
00 - 0 Em |
which is an m x m triangular matrix where only the diagonal elements &1, &9, . .., &, depend upon the
Laplace transform parameter p. The linear equation in (4) becomes A (p) S (p) = —s (0) with solution
S(p)=-A""(p)s(0) (6)
and, per component,
m
Sj(p) == _si(0)(A7"). (p)
i=1

If a process starts in one state [, then s; (0) = d; or s (0) = e;, where the Kronecker delta §; = 1 if
i = 1, otherwise d;; = 0 and where ¢; is the [-th basic vector with (e;), = 1 if i = [, otherwise (e;), = 0.
The corresponding solution (6) then simplifies to S (p) = — (A_l)coll or Sj(p) = — (A_l)jl, where the
inverse matrix A~! (p) is a function of the Laplace parameter p. After inverse Laplace transformation
L71(S; (p) = 55 fccjif: S; (p) ePtdp = s; (t), we arrive at
s(t)=—A"1(t)s(0)
For the initial condition s; (0) = d;;, the solution of the set of differential equations in (3) is,

5 (0) =~ (A7), () 7)
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Our main result in this article is the analytic computation of (Afl)j (t) in (7). If all diagonal elements

of the matrix @ in (2) are different and non-zero, then (A_l)jl (t) is lexplicitly given in (22). The other
case, where not all diagonal elements are different, is clearly more complicated (see Theorem 3 on p.
8) and (19) illustrates that also integer powers of ¢, beside exponential functions, color the dynamics.

The article is structured as follows. Section 2 derives general properties of an m X m upper
triangular matrix. Section 3 computes the inverse A~! of the triangular matrix A, which is the more
elegant way instead of focusing on the eigenstructure of A, which is derived in Appendix A. Indeed,
the general solution of the inverse A~! allows Laplace transformation that leads to a general solution,
derived in Section 4, while the eigenvalue problem is already complicated from the start on when
multiple eigenvalues occur (as illustrated in the proof of Theorem 4). The simplest form solution in

(22) assumes that all eigenvalues of the triangular matrix A are different.

2 Properties of an upper triangular matrix A

If A is an m X m upper triangular matrix, then the structure in (5) shows that its elements obey
ap; = 0 if j < k (fix row k and vary the columns j) and, equivalently, a;, = 0 if j > n (fix column
n and vary the rows j). The determinant of a triangular matrix (both upper and lower triangular)
equals the product of its diagonal elements as proved in [3, art. 207]. Hence, for the upper triangular
matrix A in (5), it holds that det A = H;ilfj, from which we conclude that det A = 0 only if at least

one diagonal element &; for 1 < j < m is zero.

Theorem 1 If A and B are m X m upper triangular matrices, so is the product C' = AB. Inversely,

if C and A are m x m upper triangular matrices, then also B is an m X m upper triangular matric.

Proof: The elementwise matrix product for any matrix A and B is ¢x = Z;n:l a;bj;. Since A
is here an upper triangular matrix with ay; = 0 if j < k (fix row k£ and vary columns j), we obtain
Crl = Z;”Zk ap;bji. If also B is an upper triangular matrix, with b;; = 0 if j > [ (fix column [ and vary

the rows j), then we arrive at
!
Ckl = Z ay;bji (8)
j=k

If | < k, then (8) indicates that ¢, = 0, because, by convention, Z;:k f(j) =0if k > [. Alternatively,
for j > k > [, the triangular structure shows that b; = 0. Consequently, the property “cy; = 0ifl <k
(fix row k and vary the columns [)” implies that C' is an m x m upper triangular matrix.

The inverse property follows from cg; = Z;n:k arjbji, where the triangular property “cy; = 0 if
[ < k (fix row k and vary the columns [)” requires that B is triangular. Indeed, if B is not triangular,

then any element cp; = E;n:k ar;bj; can be non-zero, in which case the matrix C' is not triangular. [

Corollary 1 If A is an m x m upper triangular matriz, then A* is also an m x m upper triangular
matriz for non-negative integers k > 0. Any integer power k € Z of a triangular matriz without zero

diagonal elements is also a triangular matriz without zero diagonal elements.

Proof: Replacing B in Theorem 1 by A shows that A? is an m x m upper triangular matrix.

Repeating the argument by replacing B by A2, then A3 and so on, proves the first part of Corollary



1. From A¥ = A*~1A and assuming that det A # 0 (i.e. none of the diagonal elements of A is zero),
it follows that A~1A* = AF=1. Since both A* and A*~! are upper triangular, Theorem 1 states that
also the inverse matrix A~! must be an m x m upper triangular matrix. Hence, any integer power
k € Z of a triangular matrix without zero diagonal elements is also a triangular matrix without zero

diagonal elements. O

If K =1 in (8), then cxr = agrbrr, which illustrates that diagonal elements of C' are the direct
product of the corresponding diagonal elements in A and B; a property related to the Hadamard

product of two matrices.

Corollary 2 If A and B are mxm upper triangular matrices, the elements in the n-th upper diagonals
of C' = AB possess the same number of elements, i.e. m + 1 terms of products. In other words, if

Il — k =mn, then ¢k consists of a sum of n+ 1 products.

Proof: Corollary 2 is a consequence of (8). If [ = k + n, then (8) becomes

k+n n
Chtn = E akjbjkyn = E Ak j+kDj 4k ktn
j=k §=0

illustrating that the elements in the n-th upper diagonal of C = AB consist of a sum of n + 1 terms

of products. 0

3 The inverse A~! of the triangular matrix A

From the definition A='A = I, the matrix product and the Kronecker delta dj1 = 1{j=13, we deduce
that

0j1 = Zaﬂ'n (Ail)nz
n=1

Since A is an upper triangular matrix with aj, = 0 if j < n, we obtain for the matrix in (5)

=) apm (A7), =& AT+ D am (A7), 9)
n=j n=j+1

Taking the determinant from both sides of A='A = I leads to det (Afl) = dei 4= H:Zlé. Theorem
1 with C = I and B = A~! indicates that the inverse matrix A~! of an m x m upper triangular matrix
A is also an m X m upper triangular matrix.

Before concentrating on the general case, the situation where j = [ in (9), 1 = ¢; (A_l)jj +
Z?:j+1 Ujn (Afl)nj, is equivalent by cpr = aprbrr after Corollary 1, to Z?:jﬂ Uin (Afl)nj = 0,
which is correct, because the triangular matrix satisfies (A_l)nj =0ifn > j. If j < then
(A_l)jl = 0 and (9) is again obeyed. If j > [, then the governing relation ;; = Z;”:j Gjn (A_l)

(9) reduces with (A_l)nl =0ifn>1to

nl mn

m l
0= 3 0 (), = Y (47,
n=j n=j



leading for j > [ to the recursion (Afl)jl = —glj il:j—i—l Qjn (Afl)nl. Invoking (Afl)” = %, the
non-zero elements of the inverse matrix A~! can be iteratively computed from
a0 —j—1
(A, =9t 1 DR -h for I > j (10)
! . e +3il
J fjfl 5] n—1 n J
The recursion (10) illustrates that the number of terms increases with the difference [—j as in Corollary
2. If | = j + 1, then the recursion (10) shows that (A_l)m+1 = —gjgﬁ. The recursion (10) reduces
forl=75+2to
( —1) __%Bgt2 Tty ( —1) _ _9g+2 + 45,j4+195+1,5+2
A IS B it2 o GG &€

and for [ = j+ 3 to

1

%Gg+s 1 - -
I g (AT s g (A a45548

AN = -
( )J’]+3 §J§J+3 5]

45,543 95,1+ [ 4j+1,5+3 qj+1,j+295+2,5+3 q95,2+j5 ( 45+2,5+3
=— + - +
§i€js & \&r&a3 §ir1&+28+3 & \&+28+3
which is simplified as
(Aq) _ _ YB3 | G GH1+3 | B2+ T+20+43 G+ 1+ +1,5+2
JF3 §i&i+s §i&i11842 §i&i+285+3 §i&i€i+18+2

The structure of (A_l) , resembles the summations of paths between node j and j+3 in a complete

JJ+3
graph with four nodes, 7,7 + 1,7 + 2,7 + 3 and link weight ¢;; between node k and I. The first term
is the direct, one hop path, the second term contains all two-hop paths between node j and j + 3
and the third term contains the single three-hops path [3, art. 20]. Continuing the evaluation of the

recursion (10) leads to Theorem 2:

Theorem 2 If A is an m X m upper triangular matriz with the structure in (5), then the elements of

the inverse matriz A~ satisfy, for 1 > j,

h—2
-1 45,k HTZIQk,.,kH_l Qhp_1 1

1— j -1
_ g 1
I R 2O VD YR S = "
351 ki=j+1ka=k1+1  kp_1=kp_2+1 Hrzlgkr
and 1
(47, = ¢ "

il g
From a graph perspective, the general formal structure (11) forl > j is written as a sum over all paths
Pr, with h hops (and with maximum h =1 — j hops) in the complete, directed graph formed by h + 1
nodes, labelled from 7,5+ 1,...,1, as

h—1
l—j
1 Ak, ke
(A—l) = QJZ N (_1)h HTO_ +1
g8 1SR (ko,k1,eeeskn) Hh 15
P Kiseskn, kr
hko 0]7k1 l} r=1

(13)

where a path of h-hops from node ko = j to kp, =1 is P, = (j — k1) (k1 — k2) -+ (kn—1 — 1) and all
intermediate nodes {k.} .., are different, different from {j,1} and j <k, <1I.



If I = j in (11), then the first term — éqﬂé = é, because gj; = §; and second sum is zero, due to
the convention that Zh:a (h) = 0 if @ > b, which has the opposite sign of (12) and, therefore, the

case [ = j is excluded from (11). The case [ = j corresponds to a zero-hop path or a self-loop, where

h =01in (11) and (13). A hop count h = 1 means the direct link between node j and node [, which

is the first term in (11) and (13). If h = 2, equivalent to one intermediate node k; in the path P,

between starting node j and destination node [, then the second multiple sum in (11) with kp_1 = k

reduces to a single sum

-1 -1 Hh_lqk k = '
L™t L D5 ker Dkl
2 Z 2 T &, 2 Eky

ki=j+1ko=ki+1  kp_1=kp_o+1 Hriofkr 1=j+1

while A = 3 becomes

-1 -1 Hhilqk & -1 4
)SID DN D g6 2 > e

h
ki=j+1 ko=k1+1 kp_1=kp_2+1 Hr—ngT kl =j+1 ko=k1+1

and so on. Relations (11) and (13) resemble an inclusion-exclusion formula (see e.g. [2, p. 10-12]).

Proof: In order to prove the validity of (11), we introduce the solution (11) into the recursion

(Ail)jl = _% N é Ziz_:ljJrl gin (A71),,; in (10) for I > j,
qj1 1 A qjndni
AN =—2r 4= > L 4Ry
( )]l fyﬁl gjf n;—l §n J

where

h—2
-1 QJnQn,kl <HT:1QkT,kT+1) Qkh,l,l

-1 Il-n -1
h
IR S NEIID DD S » -
IS n=j+1h=2 ki=n+1ko=ki+1  kn_1=hy_o+1 é‘nHTﬂSkr

(14)

The term = 2071 &ndnl iy (14) represents the h = 2 term in (11). Interchanging the n- and

§i& 4om=j+1 &,
h-summation in Rj; yields

h—2
-1 qjndn,k, (Hrzl ri,kHl) Qkp_1,l

—1—9 -1
PRI ST SED SR S
] h—1
&&= n=j+1ki=n+1lka=k1+1  kp_1=kp_o+1 £”HT:1£'“'

Increasing the index of h by one,

h—3
U j l+1 h -1 -1 9jndn,kq <Hr:1qk“kr+1> qky, )l

Bi=—ge> Y Y Y ey

h—2
n=j+1ki=n+1 ko=k1+1 kp_o=kp_3+1 €”Hr_1§k1“



replacing the index n by ki and the index k. by k.41 for all r, then results in

h—3
1 lij l+1 h -1 -1 q]’k1Qk1,k2 <H7’ ri+17 r+2> qkh 17
le - _55 Z Z Z Z h—2
J h=3 ki=j+1ko=k1+1ks=kot1l  kp_1=kp_o+1 fklnr_lfkrﬂ
h—2
L j ik 1 ik (] ke ke ) ar
TS S YD ST -
J h=3 ki=j+1 ka=k1+1 ks=ka+1  kp_1=kp_2+1 51@11—[71:2&%
h—2
1 l—j l+l h -1 -1 ij1 Hr:lqkr’errl Qkh,l,l
TS S YD ST -
IS p=3 k1=j+1ka=k1+1 k3=k2+1 kp_1=kp_o+1 Hr—lgkr
Substituting the above into (14) and comparing with (11) demonstrates Theorem 2. O

4 Inverse Laplace transform

The denominators in (11) only contain {-terms that are function of p by &; = ¢;; — p and each term
can be straightforwardly inverse Laplace transformed as demonstrated in this Section 4. Explicitly in

terms of the Laplace transform parameter p with ¢; = ¢;; — p, formula (11) becomes

h—2
-1 dj,k, HT:1ri,kr+1 Aky,_y 1

I—j -1
(A_l)jl (p) = —— L _ +Z Z Z Z h—1
(435 =) (au =2 k=i ttkemkitt b=kt (@5 =) [ @k —p) (u —p)
(15)
The inverse Laplace transform of £ (f (t)) = [, e ' f (t) dt = F (p) is computed via a contour integral
L7 (F (p)) = 5 ctico eP'F (p) dp = f (t), where the real number ¢ > 0,

27 Je—ioo

B 1 c+1i00 queptdp
(A 1)jl(t):_2-/ :

T Je—ioo (455 — ) (qu — D)
h—2
Z_J -1 -1 1 chioo qj,kl <HT:1 ri,kr+1> Qkh,l,lept
OICOEDY Z > 5l ; dp
h=2 ki=j+1ko=k1+1  kj_1=kn_o+1 c—ioo H ~ (ak,k, — D)
r=0
We define the integral
1 c+1i00 ept
I dp (16)
{qkr,kr}[)grgh 2772 c—ioo H qkr’kr _p)
where the set {riykr}0<7-<h {qjj, Qher ey s - - - 7qkh—17kh—1’q”} is a selection or subset of diagonal ele-

ments {¢nn } ;< <, in the matrix Q in (2) with all different elements (as follows from the path structures

in Theorem 2). The product H (Gk, k. — p) is a polynomial of order h + 1 in the complex variable

p with zeros at the elements of the set {4k, i, Yo<pep,- In terms of the integral I{(Ik o} in (16), the
- - ™) o<r<h



inverse Laplace transform of (Afl)jl (p) in (15) is written as

I—j -1 -1 -1
-1 — h h—2
(A )jl (t) = _quI{ij,QLz}+Z (=1) Z Z o Z T kr (Hr1 qhvkr“) qkhflvll{qkmkr}ogﬁ
h=2 k1=7+1 ko=k1+1 kh—1=kp_o+1 -
(17)
In spite of the fact that the path structure indicates that all intermediate nodes k1, ko, ..., k,_1 are

different and different from begin node ky = j and end node kj = [, the corresponding values of the
diagonal elements {qu},;<;<,, in the matrix @ in (2) can be the same, i.e. g,k = q,k, for some
pair of (different) nodes k, and k,. Depending on the number of same diagonal elements {qu},<;<,,
in the matrix @ in (2), the contour integral (16) has a different form (see also [2, p. 45]). We first
concentrate on the computation of the contour integral (16) in Section 4.1 and then proceed with the

implication for the expression (17) in Section 4.2.

4.1 The contour integral in (16)

Theorem 3 If all diagonal elements {QZl}jglgm in the matriz Q in (2) are different and Re (q) <0,
then

>

eqks ,kst

_ . (18)
s=0 HTZO;T#S (Ghy ker — Qs ks)

I
{q’“r»’fr }ogrgh

h
If some diagonal elements are the same, then the polynomial can be written as | | 0 (G, by — D) =
r—=

b
Hu:O (Qky kw — D)7, where the sum of the multiplicities of the zeros satisfies ZZ:O vy = h+1, and
the integral in (16) becomes

(')

b
b - =
y—0 kn=i;kn>0 IIn 7&0

1 ctioo Dt b vu—l S S P n#u (an,kn—%u,ku)k"
(& dp _ etkuku n#u
27 Joos b v ZZ (v — 1 —14)! NI
c—1i00 | |u:0 (Qku,ku —p) w u=0 =0 HZ;S (q n,kn qk,, u)

(19)

Proof: If all diagonal elements {qu};<;<,, are different, then also all {gy, x, }(<, <, are different by
Theorem 2 and the contour can be closed over the negative Re (p)-plane. Cauchy’s residue theorem
then states that

>

1 c+ioco ept h ept

dpzz lim o

% c—100 h — _ quks,k?s i B — h —
I (r -0 50 || (TR DRl [ BN C Sy

eqks,kst

provided Re (gk, k,) < 0, because positive poles are not encircled by the contour.
) h R e . b B
If some diagonal elements are the same and Hr:O (Gk, k, — ) = Hu:O (Gl oy — ) With > ) vy =
h + 1, then the integral (16) is

b

1 dV“_l pt
dp=Y lim (Hb ¢ Vn) (20)

omi | . b — D dpru—1
21 c—ioco Hu:O (qku,ku _ p)l/u uzop*ﬂﬂvu,ku (Vu 1) dpu it (qkn,kn _ p)

1 c+1i00 ebt




where the Cauchy integral %

duufl

d* f(2)

dzk

f(w) dw
(w—zp)k+1

_ 1 N :
= > fC(ZO) has been used. Leibniz’ rule gives us

z2=20

w—1 b
dpl/ Hn:a;n;&u (qkn7k7L

Substitution into (20) yields

1 c+i00 ept

270 Jo_s b .
T emico TT (@ —2)"

vu—l —1—i i b
Vy — 1) dv ot d u
Un = Z ( ) vy —1—1 € i H (anakn - p) )
o p) > =0 ! dp dp n=0;n#u
Vy—1 dz b
_ ept Z < ) —1—1W H (an,kn _p)—yn
p n=0;n#u

b Vu—1 = 1—i i b
TS in LT =9
' —_ —_ V3 nshvn
u=0 =0 v V 1 Z) P AP n=0;n#u

(21)

The remaining limit in (21) is most elegantly computed after Taylor expansion around p = g, k.-

Thus,

b

H (Qhpkn —2) "

n=0;n#u

Newton’s binomial series (1 + 2)* =

H= f[ (1—

n=0;n#u

where * = p — qi, k,

(P — ko k) )

Qkp sk — Qku ko

b
H (Qhn kn = Truske) = (P = Q)"
n=0;n#u
b b ( . ) —up,
H (T n = W)™ H (1 - pql%k”)
n=0;n#u n=0;n#u Then b~ Gheu o

> 720 (?) 27, convergent for all « and |z| < 1, yields

L5 () Gtan)

n=0;n#u j=0

-1 1 ko =~ 1 ko
-2 () aas) 2 () Gas)
= Qko,ko = Thuku = \ ko ) Ny — Qs

p"qg

S (

ky=0

'ZH

=

=}
Il
o

t”18

ey

o
Il
o

=0n=0;n#u

k k
> (1> L <—”b> <1> R >
Ao ko — Tk ku Ky Ay ky, — o ke
k7l
< ) <1> €T I;L On;ﬁukn
anykn - qkuyku

After letting m = ZZZO;H#U ky, with k, > 0 for each 0 < n # u < b, we obtain

(P Ghukl)

) Un
qknykn - qkuyku

00 b —u, 1 kn .
- Z Z H < kn ) <an,kn - Qku,ku> ’

m=0 \ b i En=mikn >0 n=0mFu



and

di b
_ _ —Up
n=0;n#u
b . b L
v & D = Qky b "
= H (@ ke = Qe ka) " o H <1 _ %
n=0;n#u P n=0:n#u Akp by — Gky ko
b
- H (qknvk" - qk'lmku)iun X
n=0;n#u

dt > b -, 1 Fen
n m
dz’ Z Z H <k>(Qkk—Qkk> v

m=0 Z?E:O-n?ﬁu kn=m;kn,>0 n=0;n7u " o o

b
= H (qk‘nykn - qkuyku)_yn X

n=a;n#u
> 2 Il (o) (G )k e

. . ko kn, — iy k
m=t ZZ,:O;n#ukn:m§kn>0n:0’n7ﬁu o o

After taking the limit p — gy, ,, which is equivalent to x — 0, we arrive at

k
) b —n 1 "
. dl b —v . ZZZ:O-n;&u kn=1;kn>0 HTLZO;?’L#U ( k'l':b ) (qkn,k" —Aky, ky )
B B | BT = Vn
p qku”ku p n:a;n;éu Hn:O;n;ﬁu (qk’nakn - qkuvku)
Introducing into (21) results into (19). O

The simplest case of (19), when two diagonal elements g;j; and ¢ of the matrix @ are the same, is

differently computed in Appendix C.

4.2 The time-dependent solution (A~) (1)

We confine ourselves to the situation where all diagonal elements of the matrix ) are different. Intro-

ducing the explicit form of the integral I (a5, in (18) into (17) yields

kr}ogrgh

B it _ paut I—j . -1 -1 -1 o
(A )jl (t) = —qji - + Z (-1) Z Z Z @k Hr:l Qv kyir | Qo0
17 h=2 ki=j+1ko=ki+1  kp_1=kp_o+1
h edkn kn't

X
h
=0 —
n ||T:0;r g @ = Qi )

We take into account that the begin node kg = j and kj, = [ are fixed,

10



X ot _ paut I—j -1 -1 o
(A0 =0 (T IR e e Y Y Y g (TS )
45 h=2 k=gl ka=ki+1  kno1=hn_a+1
e%ist h—1 ek hn edult
(qu—a;) (455 akn ke ) (1= Gh k) (gj;—aqu)
x h1 + h1 ——
Il Gaew —a) o= ] L (B = T ) II_, Gk —aw)

(22)
illustrating that the intermediate nodes ki,...,kn,_1 in a path Pp from j to [ changes for different

paths and that each intermediate node k, has a node label in the set {j + 1,7+ 2,...,l — 1}. Explicit
in the direct and first hop, (22) is

iy -1 eis? edut
eliit — equt CTET) ek1,k @ —a)
AT () = —qj <> + @ key Ty 1 B e 12
(A7), () T\ au — a4y zﬂ;ﬂ PEE N (G — @) (@5~ G ) (@ = @y ) (ahy e — qu)
I- g - -1
VD DIEEED DR (1 KTt P
h=3 k1=j+1 ko=k1+1 kn_1=kp_o+1
eq]’jt h—1 eqk7z7knt edt
% h_l(qu j5) n Z (13”1 ) n h_l(ij_Qll)
I, G —as) =[] R C N S T II_, (@ —aw
The path structure Py, = (j, k1, ..., kn—1,1) or P, =j — k1 — ... = kp—1 — [ in a directed complete

h—2
graph is encoded in (22) via the indices in the product g;z, <H S, e As shown in [2,
r=

Sec. 15.2] and [3, art. 20|, the total number of different paths with A hops, which arises when all
elements of the matrix @) are non-zero (as in the complete graph with N = [ — j + 1 nodes), equals
% For large N, the asymptotic law is (ZgNhQ)ll), = FE]]X hg = Nh-1 (1 + O( )) and summed

over all h = N — 1 hop paths in (22) leads to a maximum total number of different paths equal

to [e (N —2)!]. In particular when the matrix @ is sparse, the total number of different paths can
be substantially smaller. Another observation from (22) is that only pure exponentials e%n.knt for
0 <n < h specify the time-dependence of (A_l)ﬂ (t).

It is convenient to rewrite (22) in terms of a sum of exponentials in the time ¢,

h—2
-1 qj k1 (Hrl ri,kT_H) Qkj,_1,0 cdist

- ] -1
(A )jl () = {4+ Z Z Z h—1 (¢ — qu)
h:2 ki=j+1ke=ki+1  kp_y=kp_o+1 I_LZ1 (Qk, ke — jj) 7
h—2
- -7 -1 -1 -1 Qj,kl Hrzlqkr»k'r'Jrl qkhflyl equt
— |t Z Z Z h—1 (i — )
h:2 IRy ST Nt R [ B ST ”
W h—2
I—j h—1 1I-1 -1 -1 (—1) qj,k1 Hr—ﬂk“kr“ k1,1

_ iz D

h—1
h—2n=l k=1 kot 1 knoa—hno+1 (€j5 = Qhnkn) (G = Q) | |

Lt (T kr = Ui o)

11
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. I—j l—j—1 1—j—1 l 1
We reverse the h- and n-summation, ., 7, = > J Z =3, J J -, to

arrive at

h—2
- .7 -1 -1 qj,]ﬁ <HTIri,kr+1> qkh—lyl €qjjt
(A )jl(t)_ g5 + Z Z Z h—1 (gi; — an)
h:2 ki=j+lha=ki+1  kp_1=kn_o+1 l_L_1 (ke — jj) I
h—2
- -] -1 -1 qj7kl HT’:1 qkTva"rl qkhflvl eq”t
e Z Z Z h—1 (@57 — a)
h:2 k1=7+1 ko=k1+1 kn_1=kp_o+1 HTZI (ri,k,ﬂ - QZZ) 77
h—2
l—j—1 [ l—5—-1 -1 -1 -1 Qj,kl Hri ri,krﬂ Qkh,l,l (_1)h eqkn»knt

n= ki1 kp_i=kp_o+1 HT Lt (@b o — Qb o) (955 = Gk k) (G0 = Gt 1)

—_
|I

+
—
E
w

??‘

which can be summarized, with kg = j and ky,,, = k—; = [ as

l=j
(A_l)jl (t) = Z \Iljl;ne%n’knt (23)
n=0
where, as told before, any node k, has a label between ko = j and k;_; = I. The first coefficients
h—2
95,k <Hr:1%,kﬂrl>%h_1,z
h—1
Hr:l (@rp kr—a55)

h—2
q5,kq Hrzl Aker kpyq | 9kp, 1,
h—1
I_L":1 (@ ke —aut)

I
le‘f'zh:j ( ) Zkl—jJrlZ =ki+1" Ek’h 1=kp—2+1

V0 =
955 — qu

i
leJrZh:]z( ) Zkl ]+IZ =k1+1" Zkh 1=kp_2+1

U= —
Jhl=y
455 — qu

possess the same structure, whereas for the intermediate nodal indices 1 <n <1 — j,

h—2
5,k Hr:1qk”’k7‘+1 Qkp,_ 1.1
I,
Qkey ke — ki,
7‘:1;,";&”( T Rr n, n)

l—5—1
h:Jn ( ) Zkl =j+1 Zkg ki+1° Zkh 1=kp_2+1

W =
Jun (@55 — Wonen) (@1 — Ghep )

Since the diagonal elements of a triangular matrix equal the eigenvalues, thus A\;, = g, k,, the
exponentials e%n*n' with rate gy, 5, are weighted by the coefficients Vi.n, that reflect the total
contribution of all paths between two nodes j and [, in a complete graph configuration on the nodes
ko= 3,k1,... . ki—j—1,ki—; = . If the matrix () can be regarded as minus a weighted Laplacian or an
infinitesimal generator of a continuous-time Markov chain, then the directed graph G without loops

is defined by the weighted off-diagonal elements of the triangular matrix Q).

5 Summary

We have derived the entire, analytic solution of the set of differential equations in (3). The solution
sj(t) = — (A_l)jl (t) in (7) with either (22) or (23) is the basic building block for the dynamics of

12



Markovian SIR epidemics on any network [1].
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A Eigenvectors of an upper triangular matrix A

The eigenvalue problem for triangular matrices is considerably easier than that for general matrices,
m
b1 (&x — A) =0 for

the matrix A in (5). The eigenvalue equation Ax,, = A,z of the n-th eigenvalue \,, of an m x m upper

because a diagonal element is an eigenvalue which follows from det (A — \I) = H

triangular matrix becomes, with (Axy,), = 3770, akj (vn); = D71, akj (¥4);, for the right-eigenvector

component (),
=k

which leads to

m

1
(n)e = 5= D akj (wn); for k < m (25)
n kk j=kt1

Similarly, the left-eigenvalue equation y! A = Ayl equivalent to (ATys) ;= As (ys);» leads, with
!
(ATys), = 27y ag (ys); = 251 aji (ys);, to

-1
1
(ys); = N —ay E aji (ys>j for1 >1 (26)
j=1

A.1 Right-eigenvectors of an upper triangular matrix A

Theorem 4 If A is an m X m upper triangular matriz with different, non-zero diagonal elements,

then the right-eigenvector matrix X with the right-eigenvectors x1,x2,...,xy in the columns is an
upper triangular matriz with arbitrary non-zero diagonal elements g1,g2, ..., Gm.
Proof: The right-eigenvalue equation (24) for k = m reduces to A, (n),, = @mm (Tn),, OF

(A — @mm) (zp),, = 0, implying that either (z,),, = 0 or A\, = @mm. Any diagonal element is
an eigenvalue and we propose the convention that A\, = a,,. Thus, eigenvalues are not ordered, but
indexed according to the position of the diagonal element. With the convention that A\, = a,,, we
enter two cases: (a) if all diagonal elements are different, then A, # @y, for n # m and consequently,
(n),;, = 9m Onm, where gy, is any, non-zero number. In the other case (b) where diagonal elements are
the same, the analysis is more involved and the diagonal vector (ai1,asg, ..., amm) must be specified

in terms of a reduced set (a1, as,...,a,), where p < m.

13



We have shown that (z),, = 0 if n < m and that (z,,),, = gm. Using (z,),, = 0, the right-
eigenvalue equation (24) for eigenvectors x,, where n < m becomes A, (z,);, = Z;”;kl ak;j (zn); which
indicates that (A, — am—1,m—1) (zn),,_; = 0, leading to (zm-1),,_1 = gm—1 and (xy),, , = 0 for
n < m — 1. Repeating the argument for n < m — 1 shows that (z,,—2),, 5 = gm—2 and (z,),, o =0

for n < m — 2. Continuing the iteration demonstrates Theorem 4. U

The proof shows that the eigenstructure for a triangular matrix with at least two same diagonal

elements is different and more complicated.

Corollary 3 If A is an m x m upper triangular matriz with different diagonal elements, then the
left-eigenvector matrix Y with the left-eigenvectors yi,y2, ..., Ym in the columns is a lower triangular

matriz with non-zero diagonal elements 91—1792—1’ e

Proof: The eigenvalue equation in matrix form [3, p. 3] is AX = XA, where A is the diagonal
matrix with eigenvalues. Theorem 4 implies that det (X) = H:—1 gr # 0 so that X! exists. Hence,
the eigenvalue equation is written as A = XAX~!. Since B = XA is an upper triangular matrix,
Theorem 1 states that X ! is also an upper triangular matrix. Generally, the left- and right-eigenvector
matrix Y and X satisfy [3, art.238] that Y7 X = I or Y7 = X!, which proves Corollary 3. U

Corollary 3 suggests to take g; = 1 to simplify computations.

A.1.1 The right-eigenvector z,,

If k=m —1in (25), then (z,),, ; = % (xn),, and where (z,),, = dpm. We proceed with
n = m and compute the eigenvector x,,. With our convention A\, = a,, we obtain
Am—1,m
x =
( m)m—l /\m - )\m—l
which is reformulated for the matrix in (5) as
dm—1,m
Tm), 4= — 27
( m)m 1 ém o gmfl ( )

If K = m—2 and n = m, then (25 becomes (z,),,_» = 1 (am_gm_l (Tm)m_q + Gm—2,m (a:m)m)

- /\m*am72,m72

Introducing (2,),, = 1 and (27) yields

dm—2,m dm—2,m—19m—1,m
(xm)me = +

§m - gm—Q (ém - fm—l) (ém - fm—?)

A next iteration with k =m — 3 and n = m in (25) reveals that

dm—3,m gm—3,m—29m—2,m + dm—3,m—19m—1,m )

(mm)m_g - ém — fm—?, + <(€m - ém—?)) (fm - 5m—2) (fm - fm—?)) (ém - ém—l)

+ qm—3m—29dm—2,m—19m—1,m

(gm - gm73) (fm - 6m72) (gm - gmfl)

Analogously to (11) in Theorem 2, we deduce, for | < m, that

h—2
m—l m—1 m—1 m—1 ql.k; Hrzlqk”k’“"l Qkp_1,m
; .5 2
h=2 ky=l+1 ka=k1+1  kn_1=kn_o+1 (Em — &) Hr:l (&m — &k,)

qi,m

gm_gl

(@m), =

14



b
with the convention H f(r)=11if a > b. Similarly as in the proof of Theorem 2, introducing (28)
r=a
in the right-eigenvalue equation (x,,); = ng_& > i1 @y (o), in (24) for the eigenvectors z,, for the
matrix A in (5) for [ < m demonstrates the correctness of (28).

A.1.2 The right-eigenvector z,,_

We repeat the computation in Section A.1.1 for n = m—1in (25), for which we know that (2,,—1),, =0

and (zpm-1),,_; = 1. f k=m —2and n =m —1in (25), then (z,,-1),, o = %, which equals
(27) with m decreased by one. The case Kk = m — 3 and n = m — 1 in (25) yields (zp,—1),,_5 =
dm—3,m—29m—2,m—1 dm—3,m—1

it )t T Bt which again provides the same form as for n = m in Section

A.1.1 after replacing m by m — 1 everywhere. Hence, (28) transforms for [ < m — 1 into

h—2
i L I ]
Qo1 m m— m— m qiky < TIri,kr+1> Akp,_1,m—1

(om)y = ¢ 2+ Z Z Z

h=2 ki1=l+1ko=k1+ kh—1=kp—2+1 (Sm—l - gl) H:Z;ll (gm—l - gkr)

Repeating the procedure and replacing m in (28) by n shows that

Theorem 5 If A is an m X m upper triangular matriz with different diagonal elements, then the l-th

component of the right-eigenvector x,, is, for l <n,

n—1 ql,k; <Hh_2ri,kT-+1> Qkp_1,n
(1'71) . QZn +Z Z Z Z r=1

1
h=2ki=l+1ko=k1+1  kn_1=kn_o+1 (En — &) Hr:1 (&n = &k,

(29)

and for 1 = n, it holds that (z,),, = 1. Ifl > n, then (v,), = X, = 0, because X is an upper triangular

matrix.

Taken into account that (x,,); = X, (29) is similar in structure than (A~1), in (11),

h—2
a 1 n—l W n—1 n—1 n—1 ql,kl HT*IQkT7kr+1 kah_l,n
—1 _ n -
(A )ln__§l§ _flf Z(_l) Z Z Z h—1
" " h=2 ki=j+lke=k1+1  kp_1=kp_2+1 Hrzlfkr

A.2 Left-eigenvectors of an upper triangular matrix A

The left-eigenvalue equation y!' A = Ayl equivalent to (ATyS) , = As (Ys);, leads for the [-th com-
ponent of the s-th left-eigenvector to Zé‘:1 aj (ys)j = As(ys);- Thus, for I = 1, we find that
(As —a11) (ys); = 0 from which (y1); = 0, while (ys); = 0 for s > 1. The eigenvalue equation
(26) for s =1 and for the m x m upper triangular matrix in (5) becomes

forl>1

15



After iteration, we obtain for the few first values of I:

(y1); =1
_ q12
(yl)z - & — &
i3 412923
(y1)3 = & — & T (&1 — &) (&1 — &)
(yl) d14 q124924 413434 912923434

T a4 " (61— 8&2) (&1 —&4) " (61— 8&3) (&1 —&4) * (&1 — &) (&1 — &) (&1 — &)

from which we deduce, similarly to (28), for I > 1,

-1 1-1 - -1 q1,k; <Hf_12%,kr+1> Ak, 1,1
S I M SIS S @)

=2 k=2 bkt koa=ha+ (G- &) ] (6n &)

The companion of Theorem 5 is

Theorem 6 If A is an m X m upper triangular matriz with different diagonal elements, then the [-th

component of the left-eigenvector yy, is, for 1l > n,

I-n -1 -1 Ank, <Hh_2QkT,k,.+l) Akp 1,1
=gty X > o
h=

h_l (31)
2ki=n+1ka=ki+1  kn_1=kn_o+1 (&n — &) Hr:l (&n — &)

and for | = n, it holds that (yn), = 1. If I <n, then (yn); = Yin = 0, because Y is a lower triangular

matriz.

One may verify XY7T = I, i.e. I, (i), (¥i),, = O, by combining (29) and (31). Next, the
eigenvalue equation A = XAY 7T implies, if all diagonal elements & for 1 < k < m, are non-zero, that
A1 = XA~'YT. This would then be a second verification of (A_l)jl in (11).

B Second method to compute A~}

A direct computation of the inverse for any matrix A [3, p. 324] is

i+j det A\ row j\ col

(Ail)ij = (=1 det A

(32)
For an m X m upper triangular matrix A in (5), where det A = H::lfk, it remains to compute
det A\ row j\ colis Where A\ row j\ cols 18 an upper triangular matrix, possibly complemented with one
subdiagonal.
. . . m

Indeed, if i = j, then det A\ 1ow i\ coli = Hk . k#fk and (A )]] gj which agrees with (12).

If « < j, then A\ oy j\ coli 1S @ triangular matrix with at least one zero diagonal element. Hence,
we retrieve that (Afl)l.j =0 if i < j and, consequently, that A~! is an upper triangular matrix.

If i = j+ 1, then A\ owj\colj+1 18 an (m —1) x (m — 1) triangular matrix, where all diagonal
elements equal &, for 1 < k < m — 1, except that &; is replaced by g;j+1. Hence, (32) becomes

(A 501 = ~ €&
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If i > j + 1, then A\ oy j\ coli 18 an (m — 1) x (m — 1) triangular matrix complemented with one
subdiagonal. However, the diagonal elements contain not only &, but also g x4+1. The subdiagonal
contains & and, only if ¢ > 1, it contains zeros.

We illustrate the structure and consider first ¢ > j:

(& @yl @y @ger o Q-1 @ quiel o Qim
0 . . .
i1 @i-1j @-14+1 : : qj—1,m
0 & Q1 : Gjm
0 0 §i+1 e 5 dj+1,m
Apicm =
§i-1 Q-1 Gi-1i+41 c Qi-1m
0 & Giit1 i,m
0 0 §it1 Qi lm
L0 - 0 0 0 Em ]

Removing row j and column ¢ results in

SRR q1j—-1 415 q1,5+1 o q1i—-1 4141 o (im
0 .
-1 Qj-1j @i-14+1 : 5 qj—1,m
0 0 i+ SR 3 Qj+1,m
0
A\rowj\coli =
-1 Gi—1i+1 ' Gi—1m
0 di,i+1 Qi;m
0 §it1 o Qilm
0 - 0 0 Em |

and contains ¢ — j zero elements on the diagonal. Hence, if i > j, then det (A\ row j\CO”) =0 and (32)
shows that (Afl)ij =0 for i > j.

17



If i < j, then

&1 0 Q-1 qu q1,i+1 o q1j—-1 41y q1,5+1 T dim
0 . . .
i1 Gim1i Qi-1,i4+1 : : Gi—1,m
0 & Giiy1 e : Qi;m
0 0 Eiv1 e ; di+1,m
Apism =
§i-1 Qi-1j Q-1j5+1  Gi—1m
0 & qj,j+1 qj,m
0 0 i1 o Qi+m
0 0 0 0 Em |
from which
[ &1 0 Q-1 q1,i+1 o q1-1 q1j q1,5+1 o Gim ]
0 . .
§ic1 Qi-1,i+1 : : di—1,m
0 dii+1 e : di,m
A\ v coli = 0 §it1 R : Qit+1,m
qj—2,5—1
§i—1 TG-1j G-14+1 " T-1m
0 0 §i+1 e Qi+lm
0 - 0 0 0 bm |

Unfortunately, the direct evaluation of det A\ ;y j\ col; is difficult. Theorem 2, on the other hand,

offers the complete evaluation of det A\ ow j\ coli> Via (32).

C The simplest instance of the general (19) differently computed

Merely as an illustration, we add here a more basic computation when two diagonal elements g;; and
qu of the matrix @ are the same. The computation in Lemma 7 is the simplest instance of the general
(19) and shows the appearance of the time dependent factor te%ist next to pure exponentials en.knt
for1<n<h-1.

Lemma 7 If only two diagonal elements q;; and q; of the matriz () are the same, i.e. q;; = qu, then

18



the integral in (16) with ko = j and kp =1 equals

lim I{ } = lim I
qu—qj; erikr focp<p qu—q;5;5 {ijﬂkl,kl,m,%h,l,kh,l,q”}

h—1 edkn knt

tediit
—— T Z 5 Tph—1
I, e =) =0 (a5 = i) T (e
h—1

2 h—1
=t (ke — 0 T L (G = 45i)

ediit

Proof: We invoke (18), where all g, , for 0 < r < h are different,

eqkn qknt

h
d =2
{q’““kr}ogrgh

h
n=0 Hr:w n (ko or — Tl o)

and take the definition kg = j and kj, = [ into account,

~ Gk kn)

(33)

; eqjjt h—1 ern,knt
{kakr} . - h—1 + h—1
== T @ — a35) (= a35) - 0= (@35 = @) (@0 = ) Hrzl;#n (@ e = Q)
edut
+
h—1
(57 —a) [T, (amr — aw)
Rewritten as
/ 1 ediit edut
{ri,kr} . = . h—1 B h—1
osrsn - (an = 4jg) ]__Lzl (Tk, b — 255) I_LZ1 (T
h—1
edkn knt
+> =

n=1 (Qjj = Qhpkn) (AU — Thin i) HT:M#” (ko v — Do )

illustrates when ¢;; — ¢;; that
eqjjt ext
lim I{__ } = lim h—1 - h—1
o Mt tthese e ) | T e — 0 [1, @0 —2)
r=1 T r=1 T
h—1
edkn kn't
+2 (34)

h—1
2
n=1 (@5 = Qi) [ (@b = Ghk)
The remaining limit follows from de I'Hospital’s rule as

eqjjt vt
h—1

h—1 -
[oee) Mowe) 0 e

L= lim
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The derivative is

xt

d € te*t d yrh—1 B
do T1h—1 — -1 + ext%Hrzl (qr, 5, — )"
[ @ =2 TI @ —2)

dlog f(z)

where the last derivative is computed with the logarithmic derivative f’(z) = f (z) =5-= as
h—1
d yrh-1 _1 1 d
%HT:1 (qk’ﬁk’r - x) - Hh—l ( _ x) % (Zl log (qknykn - 1'))
re1 Ak, k. n=
1 (h‘l 1 )
= o h—1 _
IT_, (@rr —2) \n=1 (e = )
r=1 ’
- P
n=t (@, =2 [T L (@b — @)
Combining all ingredients results in the limit
h—1
te*t 1
L=- lim h—1 - + e Z h—1
Q5 H (ri kr — x) n=1 (an kn — $)2 H (an kn — .Z')
r=1 ’ ’ r=1;r#n ’
tedist h-1 ediit

= >
Hlel (e = @i3) 7= (@hab — 45)° ]|

Substitution into (34) leads to (33).

h—1

r=1;r#n (ri,kr N ij)
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