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Abstract

After a brief description of the in�nitesimal generator matrix of a Markov chain for SIS epidemics

on a �xed graph, we motivate its study by pointing to the epidemic phase transition that is exactly

embedded in its governing equations. The major computational challenge lies in the size of the

Markov state space and its corresponding in�nitesimal generator matrix, which grows as 2N for a

graph with N nodes.

This note is a quest for any means, classical or quantum, to compute the Markovian SIS process

for realistic graph sizes N .

1 Introduction

We consider epidemic spread in a contact graph G that represents a set N of N individuals as nodes

and speci�es the L contacts between all pairs of individuals as links [10]. We assume that the graph

G, characterized [14] by a symmetric adjacency matrix A, is �xed and does not change over time.

Epidemic spread on a graph is one of the simplest, non-trivial di¤usion processes in networks that

not only models biological disease spread (e.g. Covid) and digital computer viruses and malware in

the Internet, but also social contagion in on-line social platforms (e.g. Twitter and Facebook), rumor

spread, cascades of failures in infrastructural networks as the Internet and power grids and brain

anomalies such as epileptic seizures [7, 8] and other real-world di¤usion applications in graphs.

The class of Susceptible-Infected-Susceptible (SIS) epidemics is the simplest compartmental model

of a disease spread with re-infections in a population, in which individuals are either infectious (I) or

healthy, but susceptible (S). Other compartmental models can be described [12], both stochastically

and deterministically (after a mean-�eld approximation), similarly as an SIS epidemic.

2 Markovian SIS epidemics on a graph

The viral state of a node k at time t is speci�ed by a Bernoulli random variable Xk (t) 2 f0; 1g:
Xk (t) = 0 for a healthy node and Xk (t) = 1 for an infected node. A node k at time t can be in one of

the two states: infected, with probability wk(t) = Pr[Xk(t) = 1] or healthy, with probability 1�wk(t),
but susceptible to the virus. We assume that the curing process per node k is a Poisson process
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with rate � and that the infection process per link is a Poisson process with rate �. The e¤ective

infection rate is � = �
� . Obviously, only when a node is infected, it can infect its direct neighbors,

that are still healthy. Both the curing and infection Poisson process are independent. This is the

general continuous-time description of the simplest type of a Susceptible-Infected-Susceptible (SIS)

virus process on a network. Occasionally, a third, independent self-infection process with self-infection

rate " is considered, which describes background or indirect infections. Infections may happen either

through direct contact or indirectly, for example, after touching infected surfaces or inhaling air in a

closed room previously contaminated by an infected individual. The Markovian "-SIS model consists

of three, independent Poisson processes: (i) the curing process with rate �, (ii) infection process with

rate � and (iii) self-infection process with rate ".

A description of the "�SIS epidemic process is as follows [15, Section 17.2-17.3]. Let I denote the
set of infected nodes in the graph G and let aij be the element of the adjacency matrix A. Then, the

Markov transitions (
for j =2 I: I 7! I [ fjg at rate �

P
k2I akj + "

for i 2 I: I 7! In fig at rate �
(1)

detail the dynamics between the infected subgraph I and its complement Ic = GnI, the subgraph of
healthy nodes.

The time-dependent "-SIS process can be described as a continuous-time Markov chain with 2N

states [20],[19]. Computationally, enumerating the subgraphs I in G leads to the governing equation

(2). Indeed, representing the Markov state i as i =
PN
k=1 xk (i) 2

k�1, where the binary k-th digit xk (i)

represents the infectious state of a node k in the network, the time dependence of the probability state

vector s (t) in "-SIS epidemics, with components

si (t) = Pr[X1(t) = x1 (i) ; X2(t) = x2 (i) ; :::; XN (t) = xN (i)]

and normalization
P2N�1
i=0 si (t) = 1, obeys the di¤erential equation

ds(t)

dt
= �Qs(t) (2)

where the 2N � 2N in�nitesimal generator �Q is speci�ed in [20] and [19]. The solution of the matrix
di¤erential equation is

s(t) = e�Qts(0) (3)

and, for self-infection rate " > 0, a non-trivial1 2N � 1 steady-state vector s1 exists, that obeys

Qs1 = 0 and which is the right-eigenvector belonging to zero eigenvalue of Q. The left-eigenvector is

the all-one vector u, resulting in uTQ = 0. Exact analyses for the complete graph are presented in [1]

and [16] and for the star in [3]; extensions to fractional calculus in [17].

2.1 Epidemic phase transition

Since the start of the research on epidemics in networks [11], the determination of the epidemic phase

transition has been key [10]. The epidemic threshold is the value of the e¤ective infection rate �c in

1 If " = 0, then the Markov graph possesses an absorbing state (i.e. the overall healhty state in which there is no virus

anymore). That absorbing state is also the steady-state vector.
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a su¢ ciently large graph (actually2 for N !1) at which the phase transition occurs. The epidemic
threshold separates the epidemic dynamics into two regimes: if the e¤ective infection rate � > �c, then

the epidemic causes that a non-zero fraction of nodes becomes infected, else the epidemic dies out and

only a negligible part of the network becomes infected. Already in 1927, Kermack and McKendrick [6]

demonstrated the existence of an epidemic phase transition in a homogeneous population, which led

to the introduction of the basic reproduction number R0. The precise relation between the Markovian

SIR phase transition [2] and the basic reproduction number is di¢ cult, although in a mean-�eld

approximation, it holds that R0 = �
�c
so that the phase transition occurs at R0 = 1.

Analogous to crystallization3 of matter from the liquid to the solid phase, understanding the

formation of �epidemic cohesion�in a graph when sweeping the e¤ective infection rate � from below to

above the epidemic threshold �c (or vice versa) is a major motivation to compute the 2N�1 probability
state vector s (t) for large N . In particular, the theory of phase transitions suggests that the joint

probability of infection between any subset of nodes in the graph behaves or scales similarly, which

implies that the component i in the probability state vector s (t) in an "-SIS epidemics, which quanti�es

the probability that a certain subset i of nodes is infected in the graph, cannot be approximated by

si (t) =
QN
k=1;xk(i)=1

Pr[Xk(t) = 1]. Hence, mean-�eld theory breaks down around the phase transition.

Physically, it is interesting to understand in what topological fashion the epidemic freezes: How do

the pairs, triples, quadruples or any particular subset of nodes join the �epidemic ice�? Which subset

freezes �rst? Does the epidemic ice grows similarly as a giant component [5] at the structural phase

transition in Erd½os-Rényi graphs, etc.?

Although exact for SIS and SIR [2], the solution (3) is hardly computable for a large size N of

the contact graph due to the exponential explosion cN of the state space for an epidemic with c

compartments. Nevertheless, all details about the phase transition of the "-SIS process around the

epidemic threshold4 are embedded in the huge 2N � 2N matrix Q, still waiting to be unraveled. We

believe that a (su¢ ciently dense) graph of N = 50 nodes is already su¢ cient to exhibit the physics

of the epidemic phase transition. As far as I know, only the famous Onsager5 computation [9] of a

phase transition of the Ising model in two dimensions is exactly computable by using elliptic, Jacobian

theta-functions: a most remarkable Gaussian [18] tour-de-force!

2.2 Extremal probabilities

What is the probability that, during an epidemic, more than x% of the population is infected at a

certain time? Or, what is the probability that a speci�c group of nodes in a given contact network is

infected at the same time? Generally, these questions ask to compute the joint probability si (t) of a

2The larger the size N of the graph, the faster quantities change around the phase transition. When N ! 1, a
zero-one transition occurs at a single point, which de�nes the phase transition sharply. If N is �nite, there is always an

interval in which the transition happens.
3The most well-known phase transition occurs when water freezes at zero Celsius (or 273 Kelvin): at a temperature

T < 273K, we can stand on water/ice, while at T > 273K, only swimming is possible.
4The epidemic threshold lies approximately in a region of the e¤ective infection rate � 2 ( 1

�1
; 1
�1
+ c), where �1 is the

largest eigenvalue of the adjacency matrix A of the graph G and c is a yet unknown, positive real number.
5The Nobel Prize in Chemistry 1968 was awarded to Lars Onsager �for the discovery of the reciprocal relations bearing

his name, which are fundamental for the thermodynamics of irreversible processes�; not for his computation of the exact

phase transition!
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nodal set i =
PN
k=1 xk (i) 2

k�1 (e.g. set i = 01010010 of N = 8 labelled nodes) being infected at time

t. Related questions ask for the time t when the joint probability si (t) > 10�a or si (t) < 10�a, where

a � 0 is an accuracy level. All such problem can be solved from the Markovian SIS model, but are

extremely hard to simulate, because Monte Carlo-like simulations will last long to generate su¢ cient

events where a set of three and more nodes are jointly infected.

3 Open problem

The 2N � 2N in�nitesimal generator matrix Q is minus a weighted Laplacian matrix. All Laplacian

matrices on graphs are positive semi-de�nite, with a zero eigenvalue of multiplicity 1 if the graph is

connected. Moreover, as shown in [20, Fig. 2 & 3] and [19, Fig. 2], the matrix Q contains structure

and is sparse. A matrix recursion formula for the 2N+1 � 2N+1 in�nitesimal generator matrix QN+1
in terms of QN exists. Via nodal relabelling, which interchanges rows and columns in Q, another

structure may be found (see e.g. [4] and references in [2]).

Commercial software such as Matlab and Mathematica is able to provide the solution (3) of the

probability state vector roughly up to N = 12 (i.e. solving linear equations in matrices up to ca.

4000�4000). By using Expokit, a software algorithm by Roger Sidje [13] that computes the exponential
of a matrix, it seems that the size N = 12 can be shifted to N = 24.

Notwithstanding the serious increase in graph size N due to Expokit, we would like to explore

possibilities to further increase the number N of nodes of the graph for which the 2N � 1 probability
state vector s (t) in (3) can be computed:

1. Can we �nd a numerical computation method of the 2N � 1 probability state vector s(t) as a
function of time t for graphs larger than N = 24 with about 3 digits accurate (i.e. the numerical

computation s�i (t) for all 1 � i � 2N satis�es jsi (t)� s�i (t)j < 10�a with a = 3)? What is the
maximal size N of the contact graph for which the 2N � 1 probability state vector s(t) can be
computed?

2. Anticipating the rise of quantum computers, we expect that quantum algorithms may help?

There seems to be a correspondence between the spin-up and spin-down of qubits and the

epidemic state Xk = 1 or Xk = 0.
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