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Abstract

The traffic dynamics in networks are investigated at the flow level. The relation between network
and traffic characteristics is modeled using a queueing approach. When we view the network as a
regular M/M/1/K queue, we find a linear relation between the “network capacity” and the number
of links, K = β

(
N
2

)
. This relation facilitates to explain several aspects of the dynamic behavior

inside the network, such as loading and rejection rate. Additionally, we study the number of flows
that can be allocated in a network before rejection occurs. We have found a good approximation
of the residual capacity of the network subject to the allocation of flows and compare the network
with the classical random graph regarding the rejection rate, connectivity and degree distribution.

1 Introduction

Voice over IP, Online gaming and video streaming are a grasp of the numerous emerging applications
that prelude a new generation of services on the Internet. Characteristic to these services are the
time-critical nature and high susceptibility to the network performance, e.g. delay and packet loss.
Currently, network providers meet the stringent requirements on end-to-end communications by over
provisioning the core network, because it is the simplest and most effective solution at hand (the
utilization of backbone links rarely reaches 60 percent). However, when Fibre-To-The-Home will
be a fact, the classical telecom network control and management will re-enter because the core will
use a same technology as in the access networks. The wide deployment of bulky services that we
envisage, will place high capacity demands on the core and access networks. Over-provisioning may
not suffice anymore and network providers may be forced to use alternate measures to meet the
performance requirements of user-demanded Quality-of-Service (QoS) [5]. Providing QoS requires a
good understanding of the (dynamic) network behavior and performance.

The primary tools for evaluating network performance are modeling and simulation. Measurements
on real networks and test-beds are in most situations not possible or feasible due to the required
network size and/or issues related to ownership, authority or secrecy. The difficulties in network
modeling stem from the heterogeneous and dynamic nature of real networks. Floyd and Paxson [3]
describe the Internet as “An Immense Moving Target” that is constantly changing. A universal model
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Figure 1: Performance evaluation at different levels (real network, network model and queueing model).
The white arrows indicate the main techniques that are commonly available at a specific level.

that adequately describes all network characteristics is not available. Instead, researchers must craft
a model based on the specific problem that captures all relevant behavior but that ignores redundant
aspects. A complementary problem is that network performance is often evaluated according so-called
“emergent properties”. Emergent properties are system global features and capabilities which are not
specified by network design and are difficult or impossible to predict from knowledge of its constituents.
Examples of such properties are the hopcount and the betweenness. Computation of such measures
is often possible for networks in equilibrium, but little is known about these measures when the load
in the network varies. The multitude in variables and their cross-correlations strongly complicate
stochastic and transient analyses of the network behavior.

The instinctive drive to model the network as realistic as possible, opposes to the ability to interpret
this model and to derive analytic solutions. The objective of this paper is to clarify certain aspects
of the network dynamics by means of queueing and graph theory. This is schematically displayed in
Figure 1, where common performance evaluation techniques are shown at various levels of modeling.
The network model that we use is presented in Section 2 where we will motivate the assumptions and
usability. In Section 3 we analyze the network model with use of queueing theory. Queueing theory
facilitates, to some extent, the distillation of the network behavior caused by topological features and
traffic conditions. In Section 6 we calculate blocking probabilities based on topology information.
Section 5 discusses how we can estimate the capacity of networks. Section A illustrates the difficulties
that are introduced into the network by path allocation. We conclude our paper with a summary in
Section 7.

2 Network Model

Let us consider a fixed network consisting of N nodes and L links. The term “network dynamics”
is here broadly understood as the set of network properties such as the blocking and loss rate, the
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number of allocated paths, the hopcount of these paths, etc. that change over time when loading the
network with traffic.

The loading of a network with traffic needs to be detailed. In general, traffic is injected into the
network and leaves the network elsewhere. First, we assume that traffic is only injected in one node,
the source, and that it leaves the network in one other node, the destination. In other words, we
confine to unicast. The source-destination pair is assumed to be uniformly chosen over all N nodes of
the network. This assumption for the Internet is quite realistic as argued in [11, pp. 340]. A slightly
more realistic setting is to take the density population of users on earth and measurements of traffic
matrices into account, at the expense of a considerably more complex model. Second, we confine to
flows. A flow can be regarded as a connection set-up between a source and a destination node in the
network. The ensemble of all packets of that flow follow the same path from a source to destination
during the life-time of that flow. The motivation to confine to flows lies in optical networks where light
paths are set-up in that manner. Alternatively, a flow can be an accumulation of connections from
source to destination, e.g. packets originated at various sources entering and leaving the backbone
at the same ingress and egress routers or, a flow can represent a multimedia streaming. In addition,
since only flows are observed in our setting, the details of the packet level such as packet inter-arrival
times and packet correlations can be omitted, but only the flow arrival rate plays a role. We assume a
Poisson arrival process with average rate λ. The Poisson assumption for flows is commonly regarded
as realistic: it is very precise for telephony, and, on the aggregate level, also for the Internet. The flow
duration is less universally agreed upon. For simplicity and as a first step in modeling the “network
dynamics”, we assume that the flow duration is exponentially distributed with mean 1

µ . Below, we
return to this assumption.

Next, we need to specify the capacity consumption of a flow. In this paper, we focus on an extreme
scenario in which a flow consumes the entire link capacity. In addition, we assume that all links have
a unit capacity, are unweighed and undirected. We exclude the existence of self-loops and multiple
links between two nodes. Thus, the network is homogeneous: for example, a same optical technology
with same link drivers. Since each flow consumes the full capacity of a link, an allocated link remains
unavailable for future request until the flow has been terminated or released. Upon the arrival of
a flow set-up request, a minimum-hop path is computed between the source-destination pair using
Dijkstra’s shortest path algorithm. If a path is found, the flow is set-up by allocating the required
capacity on the links that constitute the path. If multiple shortest paths are found, one of these
paths is chosen randomly. If the network lacks resources to provide a feasible path, the flow request is
rejected. Figure 2 illustrates a schematic representation of the network model with the arrival process.
Flow requests arrive at random intervals (Poisson assumption) and are then routed. If the flow request
is accepted, the connection is established.

The major reason for choosing such an extreme scenario was inspired by the question: “How many
flows (light paths) can be set-up in a network?” The maximal possible number of flows that can be
set-up in our setting appears in the complete graph because any other graph is a subgraph of the
complete graph. Hence, we first focus on the complete graph. The description of the network model
is now complete.

Although the network model may seem overly simplified with respect to reality – a fact that we
do not deny –, this comment should be placed in some perspective. The even simpler model of a
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Figure 2: The network model with flow arrivals. Arrivals occur at random intervals and the requests
are routed in the network. E.g. flow request request j corresponds to a connection between nodes B

and D, while flow j + 2 follows the path A− C − E.

K queue buffer capacity
N nodes
L links
p link density or probability
pc critical link density
D nodal degree
j flow or path index
λ average flow arrival rate
µ average flow service rate
ρ traffic load

Gp(N) E-R random graph
KN complete graph
NS system size of the queue (buffer plus server) /

flows in the network
TS sojourn time of jobs in the queue /

time flows resides in the network
HN hopcount
τr relaxation time
R flow requests
r flow rejection rate

Table 1: Table of notation.

lattice in which each flow just consists of 1 link already leads to a difficult percolation problem [4].
Indeed, when removing random links in a lattice, the lattice is disconnected with high probability if
the link density p = L

Ltotal
→ 1

2 for large N , where Ltotal is the total number of links in the lattice.
When considering the complete graph instead of the lattice, the complete graph is disconnected by
removing random links when p < pc and the threshold link density is pc ≈ log N

N for large N . This is a
key result in the theory of the Erdös-Rényi (E-R) or classical random graph Gp(N) (see e.g. [6]). In
the first stages of loading the network – equivalent to removing paths, a set of correlated links –, our
network model shows resemblance with the random graph Gp(N). However, the fact that paths and
not random links are removed, is shown to considerably complicate the understanding of our results.

3 A queueing model of our network model

Before turning to simulations, in this section, we analyze our network model explained in Section 2
with queueing theory. We regard the network as a single system at which flows arrive and depart at
random times. We assume that the network functionalities such as routing, signalling and admission-
control, are invisible outside the network. Hence, the network can be viewed as a black box, which is
illustrated as a cloud at the top in Figure 3. We compare the network model with a single-server queue
with finite buffer K as visualized at the bottom in Figure 3 at which jobs (flow requests) arrive and
depart. The correspondence between the network model and its queueing analogue requires that the
network and the queue experience a same in- and output. The arrival of a flow at the network coincides
with adding a new job to the queue’s buffer. The analogue of the life time of a flow is the sojourn
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Figure 3: The network is modeled by a single queue. The flow arrivals at the network correspond to
arriving jobs at the queue.

time of a job at the queue, where each job consists of (i) selecting an arbitrary source-destination
pair, (ii) performing a shortest path computation, and (iii) setting-up of the path/connection or, if
not possible, announcing an error/rejection message. The average service rate at the queue is equal to
the average release or termination rate of a flow in the network. Since flows are terminated arbitrarily
in the network, the service discipline in the queueing system should be random, in the sense that the
server selects a uniformly chosen packet in the buffer. The service discipline is not FIFO order. Our
network modeling assumption have been taken in such a way that the corresponding queue arrival
process is a Poisson process with rate λ and the service process is exponentially distributed with mean
service rate µ. Hence, the analogue of the network model is of the M/M/1 queuing family. The sequel
of this section is devoted to further discuss and motivate the analogy.

The M/M/1 queue is one of the few queueing systems for which a time-dependent analysis is
available. The mean system size NS(t) (buffer plus server) of the M/M/1 queue as a function of time
is given for ρ < 1 by [9],

E
[
NSM/M/1

(t)|NSM/M/1
(0) = 0

]
= E

[
NSM/M/1

]
− 2

π

π∫

0

e−γ(y)µt sin2 y

γ(y)2
dy (3.1)

where E
[
NSM/M/1

]
= ρ

1−ρ is the steady state system size and γ(y) = 1 + ρ − 2
√

ρ cos y. Abate and
Whitt [1] and Sharma et al. [8, 7] provide alternate expressions for the mean system size. Using
Little’s Law [11, Sec. 13.6], the average system time – the time each jobs spends in the system –
is E [TS(t)] = E [NS(t)] /λ. One important difference between the network model and the classical
M/M/1 queue is the service order: FIFO whereas the network releases flows arbitrarily. Since we
are interested in average quantities to first order, Little’s law is not affected by the service discipline,
as long as the service discipline does not control the arrivals. Furthermore, Little’s Law assumes a
work-conserving system where all offered load is serviced. If the network induces blocking, a fraction of
the flows offered to the network are rejected which affects the actual arrival rate seen by the network.
Hence, Little’s Law must be applied with use of the effective arrival rate.

When the network lacks resources to accommodate a new flow request, the request is rejected.
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The rejection rate is equal to the loss probability for each new flow request and is defined as

r =
E [Rreject]

Rtotal

where Rreject and Rtotal represent the sum of rejected requests and the total number of requests,
respectively. In the queueing analogue, rejections are modeled by assuming a finite buffer. The size
of the buffer then relates to the maximum number of concurrent flows in the network. If we assume
an M/M/1/K model as analogy for the network, then K corresponds to maximum number of flows
that the network can accommodate, which we will refer to as the “network capacity”. The limited
capacity affects the rejections by network and consequently the load. The steady state rejection rate
for the M/M/1/K queue is found as the probability that the system contains K items,

r = Pr
[
NSM/M/1/K

= K
]

=
(1− ρ)ρK

1− ρK+1
(3.2)

Analytic solutions for the M/M/1/K queue in both the transient and stationary domain are found
by Tarabia [10]. Equations (3.3)–(3.5) give the first and second order moment of the system size in
steady state and the first order moment in the transient domain when ρ 6= 1.

E
[
NSM/M/1/K

]
= E

[
NSM/M/1

]
− (K + 1) ρK+1

1− ρK+1
(3.3)

E
[
N2

SM/M/1/K

]
=

ρC(ρ)
(1− ρ)2 (1− ρK+1)

(3.4)

E
[
NSM/M/1/K

(t)
]

= E
[
NSM/M/1/K

]
− 1

K + 1

K∑

j=1

A(ρ, ν)e−(λ+µ)t+2t
√

ρ cos ν (3.5)

with ν = πj
K+1 and where

A(ρ, ν) =
2ρ

(
sin ν + ρ

K+1
2 sinKν

)
sin ν

(
1 + ρ− 2

√
ρ cos ν

)2

+ ρ
K+2

2 (2 + 4K + ρ (2K − 1)) sinKν

C(ρ) = 1 + ρ− (K + 1)2 ρK +
(
2K2 + 2K − 1

)
ρK+1 −K2ρK+2

As mentioned previously, to correctly apply Little’s formula to the case of the M/M/1/K queue, the
effective arrival rate must be considered,

E
[
TSM/M/1/K

]
=

E
[
NSM/M/1/K

]

λ(1− r)
=

1− ρK+1

λ(1− ρK)
E

[
NSM/M/1/K

]

A non-trivial issue is the determination of K. In the M/M/1/K queueing model, K is simply a
parameter that is fixed. In the network perspective, K is a random variable that, in a complicated
manner, depends on the topology and traffic parameters. Hence, we use simulation to obtain estimates
for K and investigate how K scales with the network size N and traffic load ρ. A novel point of our
analysis is the relation (3.6) between K and the network capacity, at least for the complete graph KN

where β ≈ 0.42,

K = β

(
N

2

)
(3.6)
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1 INITIALIZE(KN )
2 tarrivals ← tdepartures ← 0
3 queue Qflows ← ∅
4 for j ← 1 to jmax

5 do while Qflows 6= ∅ and tdepartures ≤ tarrivals

6 do tdepartures ← tdepartures+ RANDOM-EXPONENTIAL( 1
µ)

7 RELEASE-FLOW(KN , Qflows)
8 tarrivals ← tarrivals+ RANDOM-EXPONENTIAL( 1

λ)
9 if Qflows = ∅

10 then tdepartures ← tarrivals

11 f ← GENERATE-FLOW(KN )
12 if length[f ] > 0
13 then ALLOCATE-FLOW(KN , Qflows, f)

Figure 4: Meta-code for network simulation.

4 Simulations

We have evaluated network performance measures via simulations. The meta-code for a simulation
is presented in Figures 4 to 7. The network is initialized in line 1 as the complete graph KN with
unweighed, bi-directional links with unit capacity. The network is empty and unloaded. In line 2,
variables tarrivals and tdepartures are initialized that correspond to the flow-arrival and -departure times.
In line 3 the queue Qflows is initialized, which stores the active flows in the networks. The simulation
starts in line 4, where it enters a loop that is executed for each flow-arrival. The loop repeats jmax

times, corresponding to the maximum number of flow-arrivals. In lines 5–7, flows are released from
the network until the network is empty or until tdepartures > tarrivals. Next, tarrivals is updated and
if the network is empty, tdepartures is given the same value in lines 9–10. Finally, in lines 11–13 a new
flow is generated and allocated.

Figures 5, 6 and 7 contain meta-code for three subroutines used in Figure 4. Figure 5 illustrates
how a flow is generated. Two (different) nodes are chosen randomly from KN in lines 2 and 3, after
which Dijkstra’s shortest path is computed and inserted into f . In Figure 6 the meta-code is displayed
for allocating flow f into KN . In lines 1–4 each link along flow f is traversed and allocated in KN .
When the link is allocated, the full capacity on that link is reserved. In line 5 the flow is added to the
queue Qflows. Figure 7 explains the release of a flow. In line 1 a random flow is chosen and removed
from Qflows. In lines 2–5 the links used by this flow are released.

At the start of the simulation, the network resides in a temporal warm-up phase, where the average
amount of incoming traffic exceeds the average amount of traffic being served. The load gradually
increases until a steady state is reached where the average number of flows entering and leaving the
network are in balance. The speed of convergence to the steady state is compared for different network
sizes. Furthermore, we are interested how the average number of flows in steady state is a function
of N . We have simulated 103 network realizations and issued 105 flow requests per realization.
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GENERATE-FLOW(KN )
1 flow f ← ∅
2 node v ← RANDOM-NODE(KN )
3 node u ← RANDOM-NODE(KN )
4 f ← DIJKSTRA(KN , v, u)
5 return f

Figure 5: Meta-code for GENERATE-FLOW subroutine.

ALLOCATE-FLOW(KN , Qflows, f)
1 for i ← 1 to length[f ]− 1
2 do node v ← f [i]
3 node u ← f [i + 1]
4 ALLOCATE-LINK(KN , v, u)
5 ENQUEUE(Qflows, f)

Figure 6: Meta-code for ALLOCATE-FLOW subroutine.

RELEASE-FLOW(KN , Qflows)
1 flow f ← DEQUEUE-RANDOM(Qflows)
2 for i ← 1 to length[f ]− 1
3 do node v ← f [i]
4 node u ← f [i + 1]
5 RELEASE-LINK(KN , v, u)

Figure 7: Meta-code for RELEASE-FLOW subroutine.
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Figure 8: Simulations of the average number of flows for networks of various sizes and average number
of jobs in the M/M/1 queue as a function of time, normalized with respect to the relaxation time
(τr ≈ 39800). Computations of (3.1) are added for reference.

4.1 Number of flows in the network

Figure 8 shows the average number of flows as function of time, normalized with respect to the
relaxation time. The relaxation time reflects the convergence rate to the stationary regime and is
given for the M/M/1 queue by [11, pp. 217],

τr =
1

µ
(
1−√ρ

)2 (4.1)

The arrival and service rate are chosen as λ = 0.99 and µ = 1, respectively. Hence, with ρ = λ
µ =

0.99, the mean steady state system size of the M/M/1 queue is E
[
NSM/M/1

]
= 99. Since the M/M/1

queue does not induce rejections, E
[
NSM/M/1

]
can be seen as an upper-bound for the average number

of flows in the network; which is also evident from (3.3). Figure 8 shows that the average number
of flows tends towards the upper-bound for N = 50. Networks of more than 50 nodes have therefore
not been considered with this load. Choosing ρ closer to 1 will increase the variance of the average
throughput and will lead to large fluctuations in the flow arrivals. Moreover, an extremely high load
may result in numerical instability.

For N = 50 the average number of flows in Figure 8 closely follows equation (3.1). The fluctuations
around the average number of flows in steady state increase as the network size grows, which agrees
with (3.3) and (3.4). Smaller networks lack resources to accommodate each request, resulting in early
rejections. To get an impression of the magnitude of the variance as compared to the mean number of
flows in the M/M/1/K queue, the average system size as a function of K has been plotted in Figure 9
with error bars (± one standard deviation). Due to the high load, the standard deviation nearly equals
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Figure 9: Computations of the mean system size of the M/M/1/K queue as a function of K with error
bars (± one standard deviation).

the average system size.
To find a relation between the network size N and buffer size K, we have computed the sample

mean of the number of flows in the steady state from Figure 8 over an interval of 104 arrivals. The
mean has been plot against the total number of links Ltotal =

(
N
2

)
in Figure 10. The values for N = 1

and N = 2 are obtained analytically: for N = 1, the network does not have links and the average
number of flows will be zero. For N = 2 the network contains a single link, which is either occupied
or not. This can be modeled by a two state continuous time Markov chain, where the probability rate
from the free to the occupied state is λ and the reverse transition occurs with rate µ. The steady
state probability that the link is occupied is found [11, pp. 195–196] as λ

λ+µ , ρ
1+ρ . This probability

is precisely the long run average occupation time of this link. Since only one flow is allowed to travel
over that link, it is also equal to the average number of flows on this link. The sample mean E [NS(N)]
has been fitted with (3.3) where K = β

(
N
2

)
. The best value for β = 0.42 (see the legend of Figure 10).

Figure 10 shows that (3.3) agrees remarkably well with the simulations. The spread of the samples
that occurs for larger N is due to the high variance, as mentioned previously. A remarkable result
is K = β

(
N
2

)
: the linearity between the network capacity and the number of links in KN . The number

of links that effectively contributes to the capacity appears constant at some 42 percent of the total
number of links, independent of the network size. Figure 11 illustrates some examples where (3.5)
with K = β

(
N
2

)
has been applied to the results in Figure 8 for various N .

To examine to what extend the network capacity is influenced by the traffic load, we have simulated
networks of 10, 20, 30 and 40 nodes and traffic load ranging from 0.85 to 0.99. Figure 12 compares
the simulation results with computations of (3.3) using corresponding load and buffer sizes. Figure 12
points out that the network capacity is not dependent on the load, i.e. β and consequently K are not
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Figure 11: The average number of flows in the network as a function of time, compared with compu-
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dependent on the traffic load. Moreover, the network capacity appears to be fixed for a given topology
and the average number of flows is in accordance with queueing theory.

4.2 Hopcount

The hopcount is the number of links (hops) a flow must traverse to reach a destination from a given
source. It is a random variable that depends on many variables in the network, e.g. the number of
nodes, the link density and the topological structure. The average hopcount indicates how many links
are allocated per flow on average. In our model, the allocation of a link consumes the full capacity
of that link and is analogous to the (temporal) removal of that link. Provided that the average path
length (in hops) mostly spans a single link and seldom more than two, the process of allocating flows is
quite well modeled by the construction of the E-R random graph, where links are removed at random
with probability p from KN . This observation suggests us to compare the topology that originates
after flow allocations with the E-R random graph. The average hopcount for the E-R random graph
is, for large N , approximated by [11, pp. 346],

E [HN ] ≈ 2− p + (1− p)(1− p2)N−2 (4.2)

≈ 2− p for N →∞ (4.3)

where we have used that Pr [HN = 3] ≈ Pr [HN > 2]. The average hopcount of the shortest path for
flows entering the network is displayed in Figure 13 as a function of time. Contrary to the average
number of flows, we observe that the variance decreases for growing N . The explanation is that,
when N grows, the number of routes between a particular source and destination pair increases. The
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Figure 13: Average hopcount of the allocated flows as a function of time. The time axis has been
normalized with respect to the relaxation time.

probability to find a short route increases with N , yielding a lower hopcount (see Figure 13) and less
variance (the probability that the hopcount equals 2 or even 3 drops exponentially with N). The
average hopcount in steady state, computed over an interval of 104 arrivals, is shown in Figure 14
as a function of N . We have made computations of (4.2) with the simulation results for the average
link density from Figure 15 and added the results to Figure 14. For small N , the average hopcount is
well above 1 and the probability of finding a shortest path of at least 3 hops is not negligible. Since
equation (4.2) has assumed large N , the correspondence in Figure 14 improves for increasing N .

4.3 Link density

The number of allocated links in the network is directly proportional to the number of flows currently
in the network. The allocation of a flow consumes the (full) capacity of the links on the path, making
the links unavailable for future requests until the links are released. The ratio of allocated links by
the total number of links relates to the link density as p = 1 − E[Lallocated]

Ltotal
. The number of allocated

links equals the sum of the length (in hops) of all the flows in the network,

E [Lallocated(t)] =
NS(t)∑

j=1

Hj

where Hj equals the number of hops of flow j. After taking the expectation of both sides, invoking
Wald’s identity [11, pp. 34] and assuming that each Hj is i.i.d. as HN and that NS(t) is independent
from Hj , we obtain

E [Lallocated(t)] = E [NS(t)] E [HN ]
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Figure 14: Simulation results of the average hopcount of the shortest path between any two nodes for
networks of various sizes during steady state (dots). Computations of (4.2) have been added where
the link density is used from the results in Figure 15 (line).

Since Lavailable = Ltotal − Lallocated and E [Lavailable] = pLtotal, the link density becomes

p = 1− E [NS ] E [HN ]
Ltotal

Using the average hopcount (4.3), the steady state link density converts to

p ≈ 2− Ltotal

Ltotal − E [NS ]
(4.4)

Figure 15 shows the link density as a function of the number of nodes in steady state. Computations
of (4.4) have been added using E[NS ] data from Figure 10. Figure 15 illustrates that the first order
estimate (4.4) agrees well. Equation (4.4) slightly overestimates the simulations for small N , which
is caused by disregarding the probability of paths longer than 2 hops and the assumption that Hj is
independent of NS(t). As the size N of the network grows, the probability of longer paths decreases:
Figure 15 shows that (4.4) better matches the simulations.

The link density is important as it inherently determines the blocking probability within the
network. If the link density reaches beyond a critical value, the graph is almost surely disconnected
and virtually each flow is blocked. Comparing the network with the E-R random graph, facilitates to
express the critical link density pc as a function of the network size N : pc(N) ≈ 1

N log N . Computations
of the critical link density have been added to Figure 15.

Although the average link density is well above the critical threshold, the network still experiences
blocking. Figure 16 explains this phenomenon. For a single sample path, i.e. a single network real-
ization, the link density is plotted on the left axis and the number of rejected requests on the right

14
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Figure 15: The link density in steady state. The simulations (dots) are compared with computations
(solid line) of (4.4) using E[NS ] results from Figure 10. The link density threshold for the E-R random
graph pc has been added to the figure. Below pc(N) the E-R random graph is a.s. disconnected.

axis as a function of time. Figure 16 shows that the average link density is well above the random
graph’s critical density. However, rejections still take place due to the high variations in the traffic.
A few short periods of strongly increased arrivals contribute most to the rejections by the network.
This observation implies that, beside the mean, also the tail probabilities are crucial.

In addition to the link density, we have also monitored the degree D(t) and degree distribu-
tion Pr[D(t) = k] during the same simulation as that in Figure 16. At each time step, the degree is
sampled for a different, arbitrary node. The result is displayed in Figure 17. The right-hand side of
Figure 17 shows D(t), while the left-hand side presents the probability distribution function of D(t)
(on lin-log-scale).

4.4 Blocking probability

When a flow is rejected by the network, the network lacks resources (capacity) to accommodate the
flow. With respect to the M/M/1/K model, this is analogous to the situation where the buffer is
full. Hence, the rejection rate in the network can be approximated by (3.2). The average rejection
rate r in steady state is displayed in Figure 18. The average rejection rate has been computed by
first computing the ratio of average rejected requests by total requests as a function of time and then
averaging over an interval of 104 arrivals during steady state. Figure 18 also shows computations
of (3.2) with ρ = 0.99, K = β

(
N
2

)
and β = 0.42.

Figure 18 confirms that the M/M/1/K queue is a suitable model to clarify network rejections.
The good match again underlines the importance of the relationship K = β

(
N
2

)
between the network

capacity and the number of links in the network, as explained in the previous section.
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4.5 Lifetime

In Figure 19 the flow lifetime distribution is given for stationary networks. The average lifetime for the
various networks has been added in square brackets. Figure 19 reveals that the lifetime distribution
is not exponential, which is explained by the service process. The flows are serviced in random order
and as a result, the probability a particular flow is served next, decreases with the number of flows
in the network. Hence, we see that the lifetime distribution exhibits a longer tail as compared to the
M/M/1 FIFO queue [2].

4.6 Conclusions

A general conclusion is that the M/M/1/K queue appears to be suitable to model the network behavior.
The (transient) solutions for the M/M/1/K queue can be applied to describe network behavior and
provide insight into the loading of the network as well as blocking. A new finding is the linear
relation K = β

(
N
2

)
between the number of links in the network and the buffer capacity K. The origin

of the scaling factor β and the sensitivity to network scaling, e.g. increasing the number of channels
per link so that more flows are allowed per link, deserve further investigation. The meaning of β

can be explained as the “efficiency” with which the links are allocated. By allocating links, parts of
the network become mutually unreachable, compromising the maximum number of sustainable flows.
Additionally, we can conjecture that the network capacity K (and therefore also β) is not determined
by the traffic load. The network capacity in KN seems embedded in the topological properties and
does not change with the traffic load.

Furthermore, we have observed that the average hopcount can be explained if we model the network
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size and the system time for the M/M/1 queue are shown in square brackets.

as an E-R random graph. Open challenges in this perspective are studies on how this assumption will
hold when we consider other topological structures than the full mesh as initial network. Finally,
we conclude by noting that the traffic fluctuations are indeed of importance when evaluating and
modeling the network performance. When only the mean is considered, important aspects of network
dynamics are missed as illustrated in Figure 9 and Figure 16. Even though the mean link density
would plead for negligible blocking probability, the burstiness of the traffic may still induce rejections.

5 Network Capacity Approximation and Degree Distribution

In Section 4 we have studied the capacity of a network with continuously arriving and departing
flows. In this section, the average number of flows that can be allocated in a network before rejection
occurs, is addressed. Additionally, we are interested in the effect of removing paths in the graph. More
precise, we analyze the evolution of the connectivity and the rejection rate as flows are allocated in the
network. Starting from the complete graph with unit link weights, we choose two nodes uniformly and
compute the shortest path using Dijkstra’s algorithm. The main difference with the previous sections
is that the path is allocated for an infinite duration, which is equivalent to removing the path’s links
from the graph. We repeat the process of choosing nodes and removing links until the graph becomes
disconnected and the simulation ends. The graph after removal of j paths is denoted by Ĝ(j, N).
Figure 20 presents the meta-code of the subsequent steps to construct Ĝ(j, N).

Our aim is to compute the average number of paths that is allocated before Ĝ(j, N) becomes dis-
connected. Additionally, the degree distribution and average hopcount are studied and compared with
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the Erdös-Rényi random graph Gp(N). The degree distribution of Gp(N) is the binomial distribution
with mean p(N − 1). The average hopcount of Gp(N) for p > pc, approximated by (4.2), can be
written as

E [H(p)] ≥ 2− p + ε (5.1)

where (5.1) follows from (4.2) for large N and ε is the correction for ignoring paths of more than 2
hops.

In the initial phase of the evolution of Ĝ(j, N), the average length of the computed paths equals
one with high probability and single links are removed independently from the graphs. Hence, Ĝ(j, N)
agrees precisely with Gp(N). The agreement with Gp(N) facilitates to find an upper-bound for the
link density in Ĝ(j, N) as a function of j and the total initial number of links Ltotal. By definition
of the link density p[j], the average number of links of Ĝ(j, N) is E [L[j]] = Ltotalp[j]. The initial
conditions for p[j] are p[0] = 1 and p[1] = 1 − 1

Ltotal
. Using (5.1) with ε = 0, the average number of

links at stage j + 1 can be written as

E [L[j + 1]] = Ltotalp[j]− E [H (p[j])] (5.2)

≤ Ltotalp[j]− (2− p[j])

This difference equation converts to

p[j + 1] =
(

1 +
1

Ltotal

)
p[j]− 2

Ltotal
(5.3)

Solving (5.3) yields

p[j] ≤ 2−
(

1 +
1

Ltotal

)j

(5.4)

Equation (5.4) forms a tight upper-bound for the true link density, because it follows from (5.1) that
E [H(p[j])]ε=0 > E [H(p[j])]ε>0 and consequently from (5.2) it follows that p[j]ε=0 ≥ p[j]ε>0, ∀j.

5.1 Simulations

For various N ranging from 25 to 100 we compare (5.4) with simulations. Figure 21 shows that
Ĝ(j, N) agrees very well with Gp(N) and (5.4) perfectly matches the simulations, implying a strong
resemblance between Ĝ(j, N) and Gp(N). The effect of removing paths, instead of links, becomes

1 INITIALIZE(KN )
2 while Ĝ(j,N) is connected
3 do node v ← RANDOM-NODE(Ĝ(j, N))
4 node u ← RANDOM-NODE(Ĝ(j, N))
5 path P ← DIJKSTRA(Ĝ(j,N), v, u)
6 remove P from Ĝ.

Figure 20: Meta-code for the construction of Ĝ(j, N).
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visible when we consider the connectivity threshold of Ĝ(j, N). The maximum number of paths, jmax,
that can be removed from Ĝ(j, N) before becoming disconnected, is a stochastic variable and may
differ for each realization of Ĝ(j, N). The link density threshold p[jmax] then corresponds to the link
density at which Ĝ(jmax, N) is precisely disconnected. We have plotted Pr [jmax = x] in Figure 22
and fitted the result with the Gumbel distribution [11, pp. 54],

Pr [X = x] =
1
a

exp
(

x− b

a

)
exp

(
− exp

(
x− b

a

))
(5.5)

where a and b are referred to as the “scale” and “location” parameter, respectively. The Gumbel
distribution fits very well. The mean and standard deviation for the Gumbel distribution equal
µ = b+0.5772a and σ = aπ√

6
, respectively. From the fits in Figure 22 we can deduce that the standard

deviation is very small as compared to mean and therefore the mean E [jmax] sufficiently describes the
random variable jmax.

Since Pr[jmax = x] very likely follows the Gumbel distribution and while using (5.4), which is a
monotonously decreasing function for j, we can write the following,

Pr [p[jmax] ≤ x] = 1− Pr [jmax ≤ y(x)] = exp
(
− exp

(
y(x)− b

a

))
(5.6)

where y(x) = p−1(x) is the inverse of (5.4), thus y(x) = ln(2−x)

ln(1+ 1
L) . Equation (5.6) then becomes,

Pr [p[jmax] ≤ x] = exp

(
− exp

(
− b

a

)
(2− x)

1

a ln(1+ 1
L)

)
(5.7)
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simulations (dots) have been fitted with the Gumbel distribution from equation (5.5) (line).

Apart from a shift, the probability density function (5.7) follows the Weibull-distribution [11, pp. 55].
The result for Pr [p[jmax] = x] is shown in Figure 23. By definition of jmax, there holds that

Pr [p[jmax] ≤ x] = Pr
[
Ĝ(j, N) is connected at p[j] = x

]
(5.8)

Figure 24 compares (5.8) with the connectivity of Gp(N) as a function of the link density. Computa-
tions of Pr [Gp(N) is connected] are obtained from [11, pp. 334–337],

Pr [Gp(N) is connected] ≈
(
1− (1− p)N−1

)N
(5.9)

≈ exp−N exp−p(N−1)

The dependencies between the links have a clear effect on the connectivity threshold of Ĝ(j,N). Not
only is the critical density higher, the transition region is also wider. Figure 24 can be explained when
considering the nodal degree. Revisiting [11, pp. 337] we see that Pr [G is connected] = Pr [Dmin ≥ 1]
a.s., where Dmin = minall nodes∈G D is the minimal nodal degree in G.

In Figure 25 the degree distribution is shown for N = 50 and various j. Results for N = 25
and N = 100 are placed in Section B of the Appendix. Figure 25 reveals that the degree distribution
increasingly deviates from the binomial distribution of Gp(N) as more paths are allocated. The degree
distribution has a higher variance as a result of the correlation that exists between links when removing
multi-hop paths from Ĝ(j, N) (as opposed to the removal of single, independent link in the case of
Gp(N)). The links removed in Ĝ(j,N) are correlated because they belong to the same path. The
degree of intermediate nodes along the path is decreased by two, while the source and destination
nodes only loose a single neighbor. Nodes are not treated identically and consequently dependencies
are introduced and aggravated during the removal process. The increased variance implies a higher
probability of disconnectedness of Ĝ(j, N) as compared to Gp(N) at equal average degree value. Since
the degree distribution is wider, the transition region in Figure 24 is also wider.

Using the average link density p[j] from Figure 21, the computations of expected hopcount (4.2)
are compared with simulation results of Ĝ(j, N). The result is displayed in Figure 26. The dispersion
in the tails in Figure 26 stems from the stochastic nature of the hopcount. The number of samples that
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is available to compute the mean hopcount is determined by jmax. Because jmax is a random variable,
less samples are available at the tail, yielding a higher variance. The increase of the mean hopcount
is evident from (4.2); as more paths are allocated, the number of remaining links are decreased and
the probability of finding a direct link, or a short path, between source and destination decreases. We
realize that the degree distribution alone is not a sufficient measure to fully investigate graph behavior,
yet it gives insight into important issues as connectivity. Section 6 directly relates clustering, rejection
and connectivity through the graph’s average degree. Section A will elaborate on the dependence of
the degree distribution and gives an analytic approximation for a similar process as that in Figure 25.

6 Rejection Rate and Disconnectedness

The previous Section 5 has focussed on connectivity of Ĝ(j,N) and its relation with the nodal degree.
In this section we study the blocking probability of Ĝ(j, N) in more detail. The graph Ĝ(j, N) is
defined as the graph that evolves after j random, minimum-hop paths have been removed from the
complete graph KN . In addition to Ĝ(j, N), we define G∗(p[j], N) as the graph that evolves after
an arbitrary number of random, minimum-hop paths have been removed, such that the final link
density is p. Figure 27 presents the meta-code for the construction of G∗(p[j], N). The difference
between Ĝ(j, N) and G∗(p[j], N) is that the latter does not require connectedness.

When a graph is disconnected, it is fragmented into groups of nodes, which are referred to as
“clusters”. For two nodes to be connected in any graph, they must belong to the same cluster. If the
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Figure 26: The average hopcount of Ĝ(j,N) as function of j compared with computations of (4.2).

nodes are uniformly chosen, then the probability that one belongs to a cluster with size N ′, equals

Pr[A node belongs to a cluster of N ′ nodes] = S =
N ′

N
(6.1)

The probability that both nodes belong to the same cluster, is S2. Hence, the probability that a
source and destination node are not connected equals the rejection rate,

r = 1− Pr[Source node in N ′]Pr[Destination node in N ′]

= 1− S2 (6.2)

Clustering in the E-R random graph has been studied in detail by Janson et al. [6]. The transition
from a group of solitaire nodes to a connected cluster is very steep for increasing link density. The
majority of the nodes belongs to a single cluster, which is called the “giant component” (GC). The
remaining nodes are clustered in groups of size O(log N). The size of GC (SGC) in the E-R random
graph, is found as (see [12]),

SGC(DGp(N)) = 1− e−DGp(N)

∞∑

n=0

(n + 1)n

(n + 1)!
(DGp(N)e

−DGp(N))n (6.3)

where DGp(N) = p(N −1) is the mean nodal degree of Gp(N). For N sufficiently large, we can assume
that two random nodes in the network are connected if they belong to GC.

1 INITIALIZE(KN )
2 while linkdensity[G∗(p[j], N)] > p

3 do node v ← RANDOM-NODE(G∗(p[j], N))
4 node u ← RANDOM-NODE(G∗(p[j], N))
5 path P ← DIJKSTRA(G∗(p[j], N), v, u)
6 if length[P ] > 0
7 remove path P from G∗(p[j], N).

Figure 27: Meta-code for the construction of G∗(p[j], N).
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6.1 Simulations

We computed the blocking probability for Gp(N) and G∗(p[j], N) for N = 25 and N = 50 through
simulations. We have generated 106 different realizations of Gp(N) and G∗(p[j], N) for each combina-
tion of N and p. For each realization we tried to route a path between uniformly chosen source and
destination nodes. The ratio of average failed attempts by the total number of attempts gives us the
rejection rate,

r =
E [

∑
failed attempts]∑
total attempts

The results are combined in Figure 28, which also contains computations of (6.2), where the cluster
size is computed through (6.2). The results in Figure 28 are in conformance with the results in the
previous Section 5. The rejection rate of G∗(p[j], N) is higher than Gp(N), which directly implies
that G∗(p[j], N) becomes disconnected at higher values of p. At an early stage in the evolution
of G∗(p[j], N), a solitary node disconnects from the graph such that rejection already takes place at
higher density values. The explanation for this can be derived from Figure 25, as has been done
previously in Section 5.1. When the link density further decreases, the giant component steadily
reduces as small groups of nodes detach from the giant cluster, causing a gradual increase in the
rejection rate of G∗(p[j], N). Finally, for extreme low link densities, the giant cluster in G∗(p[j], N)
has vanished and the remaining clusters are similar to those of Gp(N). Likewise, the rejection rate
of G∗(p[j], N) converges with Gp(N). In addition, Figure 28 reveals that the rejection rate is still
reasonably low at pc, which is explained by the fact that nodes are still connected as long as they
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Figure 29: The probability that a node belongs to a cluster of size s is plotted against the link density
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enhance the readability.

reside within the same cluster. Figure 28 also shows that the phase transition for the E-R random
graph is more abrupt than for G∗(p[j], N). The transition region is more narrow due to the smaller
variance of the nodal degree distribution of Gp(N) as compared to G∗(p[j], N). To get a better
understanding of the clustering occurring in the network, we have plotted the clustersize distribution
in G∗(p[j], N) at various link densities in Figure 29. In Figure 29 we have plotted the evolution of
the clustering process for a network of 25 nodes. Each line shows the portion of nodes that belong
to a cluster of size s. Several lines have been omitted for clarity. Figure 29 confirms our assumption
that the network becomes disconnected because of some solitary node instead of the formation of two
large clusters. Steadily, the giant cluster reduces and more isolated nodes and small clusters emerge.
Until finally the giant cluster has vanished and the network is divided into a multitude of clusters and
solitary nodes.

7 Conclusions

The results from Section 4 show that modeling the network by the M/M/1/K queue provides remark-
able insights into the relation between the “network capacity” and the number of nodes. For the
scenarios we have studied, we have found the linear relation K = β

(
N
2

)
. The value of β is the outcome

of various network properties and the interaction of processes during the network operation, e.g. the
routing process, the selection of source and destination nodes and of course topological properties.
Simulations with different traffic intensities suggest that β seems not affected by the traffic load. We
can regard β as the “efficiency” with which the network can be utilized. With β ≈ 0.42, the maximum
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number of links that is used during operation is only 42 percent of the total.
Another interpretation on the “network capacity” has been introduced in Sections 5 and 6, where

we have studied the number of flows we can accommodate in a network before rejection occurs or
before the network becomes disconnected. We have found that the maximum number of flows that
can be allocated in a connected network is distributed according a Gumbel distribution (5.5). The
maximum number of flows that can be allocated, is a counting process of the number of allocated
paths. The allocation of paths can be considered as a sequence of i.i.d. random variables, such that
the distribution follows the Gumbel distribution [11, pp. 107]. The link density of the network just
before disconnectedness then follows a Weibull distribution.

The removal of paths from the network results in a wider degree distribution as compared the
E-R random graph. The difference is introduced by the correlation that exists between the links
of each path. The degree of intermediate nodes in a path, is decreased by two, while the degree
of the endpoints is only decreased by one. The nodes are treated differently and their distribution
increasingly deviates from the binomial distribution of the E-R random graph. The increased variance
in the degree distribution manifests itself when considering the rejection rate and connectivity: the
transition from no rejection (full connectivity) to full rejection (no connectivity) as a function of the
link density is less step for G∗(p[j], N) as compared to Gp(N).
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[9] L. Takács. Introduction to the Theory of Queues. Oxford University Press, New York, 1962.

[10] A. M. K. Tarabia. Transient analysis of an M/M/1/N queue - an alternative approach. Tamkang Journal of Science

and Engineering, 3(4):263–266, 2000.

[11] P. Van Mieghem. Performance Analysis of Communications Networks and Systems. Cambridge University Press,

2006.

[12] P. Van Mieghem and S. van Langen. Influence of the link weight structure on the shortest path. Physical Review

E, 71(056113), May 2005.

A The Degree Distribution in KN after Removing Links

In this section we examine the effect of removing correlated links on the nodal degree distribution.
To understand why a small deviation of the E-R model may lead to large differences observed in
Section 5, we assume that any path between two random nodes consists of two links. We consider the
process where, at each stage j, precisely two links of an arbitrary node in the complete graph KN are
removed. We compute the degree D [j] of an arbitrary node at stage j in the thinned complete graph
KN . From that process, we derive a recursion relation

D [j] = D [j − 1] 1no link removed + (D [j − 1]− 1) 11 link removed + (D [j − 1]− 2) 12 links removed (A.1)

and D [0] = N − 1. Ignoring the boundary restrictions1 when D[j] = 1 and D[j] = 0, the probability
density function of D [j] obeys the equation

Pr [D [j] = k] = Pr [D [j − 1] = k] Pr [no link removed]+

+ Pr [D [j − 1] = k + 1] Pr [1 link removed]+

+ Pr [D [j − 1] = k + 2] Pr [2 links removed]

1These seriously complicate the analysis and prevent the derivation of analytic expressions
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with p1 = Pr [1 link removed] = 2
N , p2 = Pr [2 links removed] = 1

N and Pr [no link removed] = 1− 3
N .

The corresponding probability generating function

ϕD[j] (z) =
N−1∑

k=0

Pr [D [j] = k] zk

obeys the functional equation

ϕD[j] (z) =
(

1− 3
N

)
ϕD[j−1] (z) +

2
N

N−1∑

k=0

Pr [D [j − 1] = k + 1] zk +
1
N

N−1∑

k=0

Pr [D [j − 1] = k + 2] zk

After simplification, we obtain

ϕD[j] (z) =
((

1− 3
N

)
+

2
Nz

+
1

Nz2

)
ϕD[j−1] (z)−

(
2

Nz
+

1
Nz2

)
ϕD[j−1] (0)− Pr [D [j − 1] = 1]

Nz2

Since ϕD[j] (1) = 1, it follows that both Pr [D [j − 1] = 1] = ϕ′D[j−1] (0) = 0 and Pr [D [j − 1] = 0] =
ϕD[j−1] (0) = 0. The functional equation reduces to

ϕD[j] (z) =
(N − 3) z2 + 2z + 1

Nz2
ϕD[j−1] (z)

With the initial condition ϕD[0] (z) = E
[
zD[0]

]
= zN−1, the solution is

ϕD[j] (z) =
(

(N − 3) z2 + 2z + 1
Nz2

)j

zN−1 (A.2)

The mean and the variance of D [j] are most efficiently computed from LD[j] (z) = log ϕD[j] (z) as
(see [11])

E [D [j]] = L′D[j] (1) = N − 1− 4j

N

Var [D [j]] = L′′D[j] (1) + L′D[j] (1) =
2j (3N − 8)

N2

The mean E [D [j]] follows from the general law for the degree

N∑

n=1

dn [j] = 2L [j] = 2
((

N

2

)
− 2j

)
(A.3)

and the definition of the mean E [D [j]] = 1
N

∑N
n=1 dn [j] resulting again in E [D [j]] = N − 1 − 4j

N .
However, the requirement that ϕ′D[j−1] (0) = 0 and ϕD[j−1] (0) = 0 implies that N − 2− 2j > 0 or that
N−2

2 > j. The major reason for this artifact is the neglect of the boundary equations.
By expanding the probability generating function in a Taylor series around z = 0, the probability

density function Pr [D [j] = k] can be obtained. In general, the power series of
(
z2 + bz + c

)n with
n ∈ N is derived as,

(
z2 + bz + c

)n =
n∑

j=0

(
n

j

)
cn−j

(
z2 + bz

)j =
n∑

j=0

(
n

j

)
cn−j

j∑

k=0

(
j

k

)
bj−kzk+j
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01 INITIALIZE(KN ).
02 while KN is connected
03 do node v ← RANDOM-NODE(KN )
04 link l1 ← RANDOM-LINK(v)
05 remove l1 from KN

06 if degree[v] > 0
07 then link l2 ← RANDOM-LINK(v)
08 remove l2 from KN

Figure 30: Meta-code for simulating effect of path removal on graph properties.

Let m = k + j, then 0 ≤ m ≤ 2n and, from 0 ≤ j = m− k ≤ n, it follows that k ≤ m. Hence,

(
z2 + bz + c

)n =
2n∑

m=0

m∑

k=0

(
n

m− k

)(
m− k

k

)
cn−m+kbm−2kzm (A.4)

Using (A.4) with b = 2
N−3 , c = 1

N−3 and n = j leads to

ϕD[j] (z) =
(

N − 3
N

)j (
z2 +

2
N − 3

z +
1

N − 3

)j

zN−1−2j

=
1

N j

2j∑

m=0

(
2m

m∑

l=0

(
j

m− l

)(
m− l

l

)(
N − 3

4

)l
)

zm+N−1−2j

=
1

N j

N−1∑

m=N−1−2j

(
2m−N+1+2j

m−N+1+2j∑

l=0

(
j

m−N + 1 + 2j − l

)
×

×
(

m−N + 1 + 2j − l

l

) (
N − 3

4

)l
)

zm

from which it follows that

Pr [D [j] = k] =
2k−N+1+2j

N j

k−N+1+2j∑

l=0

(
j

k −N + 1 + 2j − l

)
×

×
(

k −N + 1 + 2j − l

l

)(
N − 3

4

)l

(A.5)

Unfortunately, we cannot evaluate the above sum. We have performed simulations to test the validity
of (A.5).

Figure 30 presents the meta-code of the simulation. First the complete graph KN is initialized.
While KN remains connected, a random node is chosen uniformly and two of its links are removed
from the graph. The simulation results for N = 50 are presented in Figure 31, which illustrates
that deviations appear for increasing k due to the fact that the analysis above only applies for small
j < N−2

2 . Figure 31 is “similar” to Figure 25.

B Degree Distribution of Ĝj(N) as function of j
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Figure 31: The probability density function of D [j] for N = 50 and various j. The line that connects
dots are simulations, while the other line are computations of (A.2).

31



0.25

0.20

0.15

0.10

0.05

0.00

Pr
[D

[j
]=

k]

2520151050

k

j=100j=150

j=50
N = 25

(a) N=25

0.12

0.10

0.08

0.06

0.04

0.02

0.00

Pr
[D

[j
]=

k]

100806040200

k

j=1200j=1800j=2400 j=600j=3000

N = 100

(b) N=100

Figure 32: Degree distribution of Ĝ(j, N) for various N and j. As a reference, the degree distribution
for the random graph has been added for each result with mean identical to the simulation. The dotted
lines are simulation results, the normal lines are computations of the E-R graph degree distribution.
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