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Simple SIS model on networks 

•  Homogeneous birth (infection) rate β on all links 
between infected and susceptible nodes 

•  Homogeneous death (curing) rate δ for infected nodes 

Healthy 
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δ  

τ = β /δ : effective spreading rate	
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Infection and curing are independent Poisson processes 



SIS model on networks (1) 

•  Each node j can be in either of 
the two states: 
•  “0”: healthy 
•  “1”: infected 

•  Markov continuous time: 
•  infection rate β	

•  curing rate δ	


•  At time t: 
•  Xj (t) is the state of node j 
•  infinitesimal generator 
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SIS model on networks (2) 
•  Nodes are interconnected in 

graph: 
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q0 j t( ) = β ajkXk t( )
k=1

N

∑

where the infection rate is due all infected neighbors 
of node j:  
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and where the adjacency matrix of the graph is 

1 0 

q0j 

δ



SIS model on networks (3) 

•  Markov theory requires that the infinitesimal generator 
is a matrix whose elements are not random variables 

•  However, this is not the case in our simple model: 
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•  By conditioning to each possible combination of 
infected states, we finally arrive to the exact Markov 
continuous SIS model 

•  Drawback: this exact model has 2N states, where N is 
the number of nodes in the network.  

q0 j t( ) = β ajkXk t( )
k=1

N

∑



SIS Markovian process on a graph 
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for j ∉ I : I→ I  j{ }  at rate β aki +ε
k∈I
∑

for i∈ I : I→ I \ i{ }  at rate δ                 
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I: infected subgraph (containing infected nodes) 
ε: nodal self-infection 
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2N states! 

Exact SIS model 
N = 4 nodes 

Absorbing state 

P. Van Mieghem, J. Omic, R. E. Kooij, “Virus Spread in Networks”, 
IEEE/ACM Transaction on Networking, Vol. 17, No. 1, pp. 1-14, (2009). 



Governing SIS equation for node j 
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dE[Xj ]

dt
= E −δXj + (1− Xj )β akjXk

k=1

N

∑










if infected: 
probability of 
curing per 
unit time 

time-change of 
E[Xj] = Pr[Xj = 1], 
probability that  
node j is infected 

if not infected (healthy): 
probability of 
infection per 
unit time 

dE[Xj ]

dt
= −δE Xj

 +β akjE Xk[ ]
k=1

N

∑ −β akjE X jXk
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Joint probabilities 
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E. Cator and P. Van Mieghem, 2012, "Second-order mean-field susceptible 
-infected-susceptible epidemic threshold", Physical Review E, vol. 85,  
No. 5, May, p. 056111. 
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Next, we need the       differential equations for E[XiXjXk]... 
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In total, the SIS process is defined by 
linear equations  
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Markov Theory 
•  SIS model is exactly described as a continuous-time Markov 

process on 2N states, with infinitesimal generator QN. 
•  Drawbacks: 

•  no easy structure in QN 
•  computationally intractable for N>20 
•  steady-state is the absorbing state (reached after 

unrealistically long time) 
•  very few exact results... 

•  The mathematical community (e.g. Liggett, Durrett,...) uses: 
•  duality principle & coupling & asymptotics 
•  graphical representation of the Poisson infection and 

recovery events 
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NIMFA: N-intertwined mean-field approxim. 
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dE[Xj ]

dt
= −δE Xj

 +β akjE Xk[ ]
k=1

N

∑ −β akjE X jXk
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dE[Xj ]

dt
≤ −δE Xj

 +β akjE Xk[ ]
k=1

N

∑ −βE Xj
  akjE Xk[ ]

k=1

N

∑

E XjXk
 = Pr Xj =1,Xk =1 = Pr Xj =1 Xk =1 Pr Xk =1[ ]

E XiXk[ ] ≥ Pr Xi =1[ ]Pr Xk =1[ ] = E Xi[ ]E Xk[ ]

NIMFA (= equality above) upper bounds the prob. of infection 

Pr Xj =1 Xk =1 ≥ Pr Xj =1 and 

E. Cator and P. Van Mieghem, 2014, “Nodal infection in Markovian SIS  
and SIR epidemics on networks are non-negatively correlated,” 
Physical Review E, Vol. 89, No. 5, p. 052802. 



NIMFA non-linear equations 
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dv1
dt

= (1− v1)β a1k
k=1

N

∑ vk −δv1

dv2
dt

= (1− v2)β a2k
k=1

N

∑ vk −δv2


dvN
dt

= (1− vN )β aNk
k=1

N

∑ vk −δvN
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vk t( ) = E[Xk (t)]= Pr Xk t( ) =1!" #$

where the viral probability of 
infection is 
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dV t( )
dt

= βA.V t( ) − diag vi t( )( ) βA.V t( ) + δu( )
where the vector uT =[1 1 ... 1] and VT = [v1 v2 ... vN] 

In matrix form: 

P. Van Mieghem, J. Omic, R. E. Kooij, “Virus Spread in Networks”, 
IEEE/ACM Transaction on Networking, Vol. 17, No. 1, pp. 1-14, (2009). 



Lower bound for the epidemic threshold  
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dvj (t)
dt

= −δvj +β akjvk
k=1

N

∑ −β akjE XiXk[ ]
k=1

N

∑ vk t( ) = E[Xk (t)]

Ignoring the correlation terms 

dV (t)
dt

≤ −δI +βA( )V (t)

If all eigenvalues of            are negative, vj tends exponentially  
fast to zero with t. Hence, if 

βA−δI

βλ1(A)−δ < 0 τ =
β
δ
<

1
λ1(A)

< τ c

The NIMFA epidemic threshold is precisely 

τ (1)c =
1

λ1(A)
< τ c τ (1)c =

1
λ1(A)

< τ (2)c =
1

λ1(H )
< τ c

V (t) ≤ e −δI+βA( )t V (0)



What is so interesting about epidemics? 
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τ c = 1
λ1 A( )

Epidemic threshold 

rumors (social nets)  

propagation errors 

self-replicating  
objects (worms) 

network protection 

epidemic algorithms  
(gossiping) 

cybercrime : network 
 robustnes & security 

max E D[ ] 1+
Var[D]

E[D]( )
2
, d

max
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Transformation          & principal eigenvector 
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s = 1
τ

dy∞(s)
ds s=λ1

= −
1
N

(x1) j
j=1

N

∑

(x1) j
3

j=1

N

∑

sc = λ1 
Van Mieghem, P., 2012, "Epidemic Phase  
Transition of the SIS-type in Networks",  
Europhysics Letters (EPL), Vol. 97, Februari, p. 48004. 
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Extensions of the NIMFA 

•  In-homogeneous: each node i has own βi and δi: 
P. Van Mieghem and J. Omic, 2008, “In-homogeneous Virus Spread in Networks”, (arxiv.org/
1306.2588) 

•  SAIS (Infected, Susceptible, Alert) and SIR instead of SIS: 
F. Darabi Sahneh and C. Scoglio, 2011,"Epidemic Spread in Human Networks”, 50th IEEE 
Conf. Decision and Contol, Orlando, Florida. 
"M. Youssef and C. Scoglio, 2011, An individual-based approach to SIR epidemics in contact 
networks” Journal of Theoretical Biology 283, pp. 136-144. 

•  GEMF: very general extension: m compartments (includes 
both SIS, SAIS, SIR,...): 

F. Darabi Sahneh, C. Scoglio, P. Van Mieghem, 2013, "Generalized Epidemic Mean-Field 
Model for Spreading Processes over Multi-Layer Complex Networks",, IEEE/ACM 
Transactions on Networking, Vol. 21, No. 5, pp. 1609-1620. 

•  Interdependent networks 
Wang, H., Q. Li, G. D'Agostino, S. Havlin, H. E. Stanley and P. Van Mieghem, 2013, "Effect of 
the Interconnected Network Structure on the Epidemic Threshold”, Physical Review E, Vol. 
88, No. 2, August, p. 022801. 
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Time-dependent rates in NIMFA for 
regular graphs 
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dv t( )
dt

= rβ t( )v t( ) 1− v t( )( )−δ t( )v t( )
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exp rβ u( )−δ u( ){ }du
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∫

v t( ) =
exp rβ −δ{ }t( )

1
v 0( )

+
1

1− 1
rτ{ }

exp rβ −δ{ }t( )−1( )

Classical case (constant rates): Kephart & White (1992) 

P. Van Mieghem, “SIS epidemics with time-dependent rates describing 
ageing of information spread and mutation of pathogens”, 
unpublished. 



Mutations 
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SIS epidemics on the complete graph 

j-1 j j+1 0 
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λ j = β j +ε( ) N − j( )
µ j = δ j
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Birth-death processes quadratic in state j 

E. Cator and P. Van Mieghem, 2012, “SIS epidemics on the complete  
graph and the star graph: exact analysis”, PRE, vol. 87, p. 012811. 



Average Time to Absorption (Survival time) 
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E T[ ] =O ebN
a( )

Ganesh,Massoulie,Towsley (2005): 

Complete graph KN: −ζ =
1
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+O N 2 logN
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Hitting time (on KN) for all τ: E T[ ] = F τ( )

Mountford et al. (2013): 
(regular trees w. bounded degree) 

E T[ ] =O ecN( )

E T[ ] ≤ 1
δ
logN +1
1−τλ( )1

E T[ ] ≅ 1
ζ

τ < τ c

τ > τ c

P. Van Mieghem, “Decay towards the overall-healthy state in SIS epidemics 
on networks”, arxiv1310.3980 (2013).  

with 

F τ( ) = 1
δ

N − j + r( )!
j N − j( )!r=0

j−1

∑
j=1

N

∑



Average survival time in KN 
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E T[ ] = F τ( ) = 1
δ

N − j + r( )!
j N − j( )!r=0

j−1

∑
j=1

N
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Second smallest eigenvalue Q in graphs 
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ζ ≈
1

E T[ ]



Pdf survival time in K100 
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Black dotted τ = τc 

fT t | β = 0( ) = δI 1− e−δt( )
I−1
e−δt (Max I i.i.d. exp.) 
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Epidemic times are not exponential 
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C. Doerr, N. Blenn and P. Van Mieghem, “Lognormal infection times of 
Online information spread”, PLOS ONE, Vol. 8, No. 5, p. e64349, 2013 
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Non-Markovian infection times 

b = 1

βΓ 1+ 1
α
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Same mean 
E[T]: 

T is the time to infect a neighboring node 

Weibull pdf 
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Non-Markovian epidemic threshold 

ER-graph 
N = 500 
p = 2 pc 

Non-exponential infection time has a dramatic influence! 
P. Van Mieghem and R. van de Bovenkamp, “Non-Markovian infection spread 
Dramatically alters the SIS epidemic threshold”, Physical Review Letters,  
vol. 110, No. 10, March, p. 108701. 



GSIS: SIS with general infection times 
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NIMFA is valid provided the effective infection rate τ = β/δ is  
replaced by the averaged number E[M] of infection events  
during a healthy period: 

E[M ]= 1
2πi

φT (z)φR (−z)
1−φT (z)c−i∞

c+i∞
∫ dz

z
φX (z) = E[e

−zX ]

Generalized criterion for the epidemic threshold: E[Mc ]=
1
λ1

Scaling law for large N 
When infection time T is Weibullian: τ c =

q(α)
λ
1
α
1

E. Cator, R. van de Bovenkamp and P. Van Mieghem, “SIS epidemics on  
networks with general infection and curing times”, Physical Review E,  
Vol. 87, No. 6, p. 062816, 2013.  

q(α) =O(1)



GSIS: E[M] gives the right scaling 
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Pdf survival time K100 (Weibull) 
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finfection time t( ) =
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Increasing α	


E[M]=0.014 



Challenges for SIS epidemics on nets 

•  Tight upper bound of the epidemic threshold (for any 
graph) 

•  A general mean-field criterion that specifies the graphs 
for which NIMFA is accurate 

•  Time-dependent analysis of SIS epidemics 
•  Epidemics on evolving and adaptive networks 
•  Competing and mutating viruses on networks 
•  Measurements of epidemics (e.g. fraction of infected 

nodes) in real-world networks are scarce 
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More to read 
General overviews 
•  P. Van Mieghem, Performance Analysis of Complex Networks and 

Systems, Cambridge University Press, 2014 (Chapter 17: Epidemics in 
Networks) 

•  R. Pastor-Satorras, C. Castellano, P. Van Mieghem and A. Vespignani, 
“Epidemic processes in complex networks”, Review of Modern Physics, 
2014 

 
Specialized recent topics (see my website): 
•  Adaptive SIS on networks 
•  Competing viruses 
•  Average survival time of a virus in a network (decay time towards 

absorption) 
•  SIS Epidemics in (two-level) communities 
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Books 

Articles:   http://www.nas.ewi.tudelft.nl 
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