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Abstract. The Susceptible Infected Susceptible (SIS) model is one of the basic models and it is
applied for different networks and services in telecommunications. For more detailed prediction of the
epidemic, it is necessary to examine the higher order moments, namely the variance of the number
of infected nodes. Also, the predictability of mean-field models depends on the variations around the
mean. However, the variance of epidemic spread on networks has so far received insufficient attention.
Epidemics spread in significantly different topologies - from power law to complete graphs, thus the
model should be independent of the underlying topology. We use the N-intertwined model which
captures the topology influences of the finite graph defined by adjacency matrix A to determine
the variance. We also determine upper and lower bounds on the variance as a function of effective
spreading rate τ and show that for some spreading conditions, the variance is highly dependent on
the degree distribution of the underlying network and not on other topological properties. Further,
we apply our findings to two types of graphs: complete and complete bipartite graphs. For the
complete bipartite graph, we derive the probability distribution function of the number of infected
nodes. Finally, we provide deeper understanding of the structural properties expressed via the second
smallest eigenvalue of the Laplacian matrix and link this parameter to our N-intertwined model.
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1. Introduction. Although the modeling of diseases is over three hundred years
old [1], the epidemic theory was first applied in telecommunication to the spread of
email viruses, worms and other computer malware by Kephart and White (KW) [2].
The KW model belongs to the homogeneous models of the SIS (Susceptible Infected
Susceptible) type and the network influence was represented by a fixed degree of
each node. Later, the regular graph assumption of the KW model was shown to
be inadequate for malware spreading. Pastor-Satorras and Vespignani [3] discuss
discrepancy between the data of virus spread on the Internet and theoretical results
of the SIS model for homogeneous networks. They introduce a model that takes into
account degree distribution heterogeneity of the underlying power-law networks, which
degree distribution follows a power law. At that point, the influence of topology in the
application of epidemic theory in networks became an important issue. Ganesh et al.

determine the influence of topological characteristic on the mean epidemic lifetime for
the SIS model [4] and the number of removed nodes in the SIR (Susceptible infected
Removed) model [5].

Except for virus spread in computer networks, SIS model is applied for distributed
systems [7]. Distributed and scalable algorithms based on the epidemic paradigm of
spreading were employed in order to retain scalability and reduce overload [6]. The
Erdős-Rėnyi graph or a hypercube were often used as topologies to represent networks.
An Erdős-Rėnyi graph is a graph in which an edge between two nodes exists with
probability p.

The adequate functioning of the epidemic algorithm in sensor and P2P networks
is responsible for the resilience of the network [7]. Propagation of faults and failures
is also one of the possible applications for epidemic models in telecommunication
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2 Epidemic Spreading in Networks

networks. One of the examples is the work of Coffman et al. [8], who models cascading
BGP failures on a fully connected topology .

Since the range of topologies appearing in applications varies significantly, an
epidemic model should not depend on a specific underlying topology, but should be
capable of modeling an epidemic process on any given finite graph. An extensive
overview of different epidemic models used in biology as well as in telecommunication
is given in [1], [9] and [10]. We concentrate on the SIS epidemic model, which is
one of the standard computer virus models. We will especially emphasize the topol-
ogy influence by using the N -intertwined model [11], that incorporates any topology
adequately.

In a SIS model, a node can be in one of two states: susceptible (S) or infected (I).
Infected nodes can infect other neighboring nodes, and each node can be randomly
cured. All cured nodes can be infected again. A peculiar aspect of the SIS model is
the oscillation of a nodal state between the infected and the susceptible states as long
as the epidemic persists. Clusters of infected nodes are appearing and disappearing,
expanding and shrinking. The persistence of an epidemic is another interesting aspect
of the SIS model. For a finite graph, the state with all healthy nodes is the absorbing
state - in which the system will eventually end. However, a large portion of nodes
can be infected for a very long, though finite time. The lifetime of this so-called
metastable state depends on the effective spreading rate τ = β

δ
, the infection rate β

per link divided by the curing rate δ per node. We can observe critical point behavior
for different effective spreading rates with very short lifetime on one side and very
long on the other.
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Fig. 1.1. The number of infected nodes in the metastable state for SIS model as a function of τ .

The fraction y∞ of infected nodes in the metastable state as a function of effective
spreading rate τ is computed in Figure 1.1 based on the N -intertwined model, which
was proposed and analyzed in [11] and reviewed in Section 2. The critical effective
spreading rate is denoted with τc. Below this threshold τ < τc, the epidemic will
extinct and above the threshold τ > τc, a certain percentage of the nodes will stay
infected infinitely long. The infinite lifetime is an artefact of the mean-field theory
applied in the N -intertwined model as explained in Section 2. The real epidemic also
shows a threshold behavior, but with two thresholds τc and τ∗

c . Below the first one
τ < τc, the lifetime of the epidemic is of the order O(log(N)), where N is the number
of nodes in the network [4]. Above the second threshold τ > τ∗

c , the lifetime of the
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metastable state is of the order1 Ω(eNα

), for α > 0 [4]. For example, suppose that
we are above the threshold τ∗

c , that the units of β and δ are sec−1 and N = 1000,
then the lifetime of an epidemic on the network would be of order Ω(e1000) seconds
= Ω(10326) years which is considerably more than the life time of the universe (4 · 109

years).
Between the two thresholds τc and τ∗

c the lifetime of an epidemic increases. This
time depends on the effective spreading rate τ and is closely related to the variation
of the fraction of infected nodes around the mean value y∞. If the variations are
large and the mean is small, the time to extinction decreases. The rate with which
the states change are of order of curing and infecting rate δ and β. The average
number of infected nodes, the variance of this number and the expected life time of
an epidemic are closely related. We show this using the second smallest eigenvalue
of the Laplacian matrix, which influences the lifetime of an epidemic [4] and the
variance of the number of infected nodes. Although the variance of the number of
infected nodes plays an important role in determining the lifetime and the survival
of an epidemic as well as in the predictability of mean-field models, this subject was
not studied extensively in literature. Crepey et al. in [12] examine this problem by
means of event driven simulations.

We study the variance of the number of infected nodes as a function of the nodal
degree and of the effective spreading rate τ . For large τ , we show that the degree
distribution alone determines the steady-state. Further, we apply our findings on two
type of graphs: complete and complete bipartite graphs. For important structure
in telecommunication networks, namely the complete bipartite graph, we derive the
probability distribution function of the number of infected nodes.

2. N-intertwined continuous Markov chains with 2 states. This section
reviews the homogeneous N -intertwined model [11].

By separately observing each node, we will model the virus spread in a bidirec-
tional (connected) network specified by a symmetric adjacency matrix A. Every node
i at time t in the network can be in two states: infected with probability Pr[Xi (t) = 1]
and healthy with probability Pr[Xi (t) = 0]. At each moment t, a node can only be
in one of two states, thus Pr[Xi(t) = 1] + Pr[Xi(t) = 0] = 1. The state of a node
i is specified by a Bernoulli random variable Xi ∈ {0, 1}: Xi = 0 for a susceptible
node and Xi = 1 for a infected node. We assume that the curing process is a Poisson
process with rate δ, and that the infection rate per link is a Poisson process with rate
β.

If we apply Markov theory, the infinitesimal generator Qi (t) of this two-state
continuous Markov chain is,

Qi (t) =

[

−q1;i q1;i

q2;i −q2;i

]

with q2;i = δi and

q1;i =

N
∑

j=1

βjaij1{Xj(t)=1}

where the indicator function 1x = 1 if the event x is true else it is zero. The coupling of
node i to the rest of the network is described by an infection rate q1;i that is a random

1Ω is a lower asymptotic bound with definition: for a given real function g(x), we denote Ω(g(x))
as the set of functions such that Ω(g(x)) = {f(x), ∃x0, ∃c > 0| 0 ≤ cg(x) ≤ f(x), ∀x ∈ R, x > x0}.
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variable, which essentially makes the process doubly stochastic. This observation is
crucial. For, using the definition of the infinitesimal generator [16, p. 181],

Pr[Xi(t + ∆t) = 1|Xi (t) = 0] = q1;i∆t + o(∆t)

the continuity and differentiability shows that this process is not Markovian anymore.
The random nature of q1;i is removed by an additional conditioning to all possible
combinations of rates, which is equivalent to conditioning to all possible combinations
of the states Xj(t) = 1 (and their complements Xj(t) = 0) of the neighbors of node
i. Hence, the number of basic states dramatically increases. Eventually, after condi-
tioning each node in such a way, we end up with the exact 2N– state Markov chain,
studied in [11].

Instead of conditioning, we replace the actual, random infection rate by an effec-
tive or average infection rate, which is basically a mean field approximation,

E [q1;i] = E





N
∑

j=1

βjaij1{Xj(t)=1}



 (2.1)

In general, we may take the expectation over the rates βi, the network topology via the
matrix A and the states Xj(t). Since we assume that both the infection rates βi = β
(homogeneous setting) and the network are constant and given, we only average over
the states. Using E [1x] = Pr [x] (see e.g. [16]), we replace q1;i by

E [q1;i] = β

N
∑

j=1

aij Pr[Xj(t) = 1]

which results in an effective infinitesimal generator,

Qi(t) =

[

−E [q1;i] E [q1;i]
δi −δi

]

The effective Qi(t) allows us to proceed with Markov theory. Denoting vi (t) =
Pr[Xi(t) = 1] and recalling that Pr[Xi(t) = 0] = 1 − vi (t), the Markov differential
equation for state Xi(t) = 1 turns out to be nonlinear

dvi (t)

dt
= β

N
∑

j=1

aijvj (t) − vi (t)



β

N
∑

j=1

aijvj (t) + δ



 (2.2)

Each node obeys a nonlinear differential equation as (2.2),






























dv1(t)
dt

= β
∑N

j=1 a1jvj (t) − v1 (t)
(

β
∑N

j=1 a1jvj (t) + δ
)

dv2(t)
dt

= β
∑N

j=1 a2jvj (t) − v2 (t)
(

β
∑N

j=1 a2jvj (t) + δ
)

...
dvN (t)

dt
= β

∑N
j=1 aNjvj (t) − vN (t)

(

β
∑N

j=1 aNjvj (t) + δ
)

Written in matrix form, with V (t) =
[

v1 (t) v2 (t) · · · vN (t)
]T

, we arrive at

dV (t)

dt
= βAV (t) − diag (vi (t)) (βAV (t) + δu) (2.3)
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where u is the all-one vector and diag(vi (t)) is the diagonal matrix with elements
v1 (t) , v2 (t) , . . . , vN (t).

The time-dependent evolutional equation (2.3) explicitly shows the dependence
on the network via the adjacency matrix A. The nonlinearity introduced by the
mean field approximation (2.1) gives rise to the so-called metastable state, where the
probability distribution of the number of infected nodes is of temporary stability [11],
[4]. One of the main results in [11] is the rigorous establishment of the threshold for
the effective spreading rate τc = 1

λ1(A) , where λ1 (A) is the largest eigenvalue of the

adjacency matrix A. In the metastable state and above this threshold τ > τc, the
infection persists and a nonzero fraction of the nodes remains infected, whereas below
the threshold τ < τc, all network nodes are healthy.

The steady-state infection probabilities, defined by vi∞ = limt→∞ vi (t) and where
dvi(t)

dt
= 0, follow for each node 1 6 i 6 N from (2.2) as

vi∞ =
β

∑N
j=1 aijvj∞

β
∑N

j=1 aijvj∞ + δ

The fraction of infected nodes y(t) at any given time t is defined by

y(t) =
1

N

N
∑

j=1

vj(t) (2.4)
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Fig. 2.1. Normalized variance and fraction of infected nodes as a function of effective spreading
rate τ for the N-intertwined model. Dashed line represents the variance and full line is fraction of
infected nodes. Square marks the point for which τ = 2

dav
.

2.1. Beyond the mean field approximation. The time-dependent Bernoulli
random variable Xi(t) ∈ {0, 1} can change from 1 to 0 with curing rate δ and from 0

to 1 with infecting rate β
∑N

j=1 aijXj(t), that depends on the other Bernoulli random
variables. We can write

Xi(t + ∆t) − Xi(t)

∆t
= β(1 − Xi(t)

N
∑

j=1

aijXj(t) − δXi(t)
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After taking the expectation of both sides with E[Xi(t)] = Pr[Xi(t) = 1] = vi(t) and
the limit ∆t → 0, we obtain

dvi(t)

dt
= β

N
∑

j=1

aijvj(t) − β

N
∑

j=1

aijE[Xj(t)Xi(t)] − δvi(t)

The existence of an infected node in the neighborhood cannot decrease the probability
that a node is infected, hence

cij(t) = Pr[Xj(t) = 1|Xi(t) = 1] > Pr[Xj(t) = 1] = vj(t)

For dependent Bernoulli random variables Xj(t) and Xi(t), the expectation is

E[Xj(t)Xi(t)] = Pr[Xj(t) = 1, Xi(t) = 1]

= Pr[Xj(t) = 1|Xi(t) = 1] Pr[Xi(t) = 1]

= cij(t)vi(t) > vi(t)vj(t) (2.5)

Finally,

dvi (t)

dt
= β

N
∑

j=1

aijvj (t) − vi (t)



β

N
∑

j=1

aijcij (t) + δ





Comparison with (2.2) shows that the only approximation of N -intertwined model
lies in cij = vj , which implies that the random variables Xj and Xi are implicitly
assumed to be independent. Therefore, the N -intertwined model upper bounds the
exact probability vi (t) of an infection.

3. The variance of the number of infected nodes in the N-intertwined

model. For the Bernoulli random variable Xi (t), we have

E[Xi(t)] = vi(t)

Var[Xi(t)] = vi(t)(1 − vi(t)) (3.1)

Although the states of nodes X1, X2, ..XN are not independent random variables,
the only approximation of the N -intertwined model leads to Pr[Xi(t) = 1, Xj(t) =
1] = Pr[Xi(t) = 1] Pr[Xj(t) = 1] which means that the random variables Xi, Xj are
assumed to be independent. Within this independence approximation, the variance
of a sum of independent random variables I(t) =

∑N
i=1Xi(t),

Var[I(t)] =

N
∑

i=1

Var[Xi(t)] =

N
∑

i=1

(1 − vi(t))vi(t) (3.2)

Since 0 ≤ vi ≤ 1, the maximum in (3.2) is obtained when vi (t) = 1
2 , for each

node i, such that the variance of the number of infected nodes in the N -intertwined
model is bounded by Var[I(t)] ≤ N

4 . In the worst case, the N -intertwined model can
only predict a maximum variance not higher than 0.25N .

The consequence of the mean field approximation underestimates the real vari-
ance. In case the Bernoulli random variables Xi (t) and Xj (t) are dependent, the
variance of the number of infected nodes in the steady state is [16, p. 30]

Var[I∞] =

N
∑

i=1

Var[Xi(t)] + 2

N
∑

i=1

i−1
∑

j=1

Cov[Xi∞, Xj∞] (3.3)
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where, using (2.5),

Cov[Xi∞, Xj∞] = E [Xi∞Xj∞] − E [Xi∞] E [Xj∞]

= cij∞vi∞ − vi∞vj∞

The joint probability Pr[Xi∞ = 1, Xj∞ = 1] = E [Xi∞Xj∞] can be calculated by
introducing the correlation model also known as the moment closure model or the
pair approximation model. The survey of the pair approximation model is given by
Rand [21]. However, the correlation model is numerically more demanding.

The covariance of two random variables is bounded by

Cov[Xi∞, Xj∞] ≤
√

Var [Xi∞] Var [Xj∞]

=
√

vi∞(1 − vi∞)vj∞(1 − vj∞)

The covariance thus tends to zero for very large and very small τ , namely when
vi∞ tends to zero, or vj∞ tends to one. The process of curing is independent of the
underlying topology and a node to be cured is randomly chosen among all infected
nodes, such that the states of nodes are not correlated. By analogy and excluding
the cases of short living epidemics, one may claim that the covariance of the epidemic
with a small number of infected nodes should be equal to the case with a small number
of susceptible nodes. However, the problem is not symmetric because the infection
process is graph dependent while the homogeneous curing process is not. This implies
that the largest covariance can be expected in the region above the threshold τc, where
a small to medium portion of nodes is infected.

The covariance of two nodes is smaller than the probabilities of infection of each
node and therefore the total covariance is never larger than the squared number of
infected nodes in the network.

V ar[I∞] ≤ N/4 + I2 (3.4)

This bound is relevant only for a small number of infected nodes I, because the
covariance and variance tends to zero for large τ .

3.1. The variance on the number of infected nodes as a function of τ .
In this section, we will estimate variance as a function of τ using upper and lower
bounds on probability of infection of a node.

Theorem 3.1. For τ > τc in the metastable state, the variance of the number of

infected nodes is bounded as






























0 6 V ar[Xi] < bi(1 − bi), τ 6
1
di

0 < V ar[Xi] 6 0.25, 1
di

6 τ 6
1

dmin

ai(1 − ai) < V ar[Xi] 6 0.25, 1
dmin

6 τ 6
1

2dmin

(1 +

√
d2

i
+4d2

min

di
)

bi(1 − bi) < V ar[Xi] 6 0.25, 1
2dmin

(1 +

√
d2

i
+4d2

min

di
) 6 τ 6

1
di

+ 1
dmin

bi(1 − bi) 6 V ar[Xi] 6 ai(1 − ai), τ >
1
di

+ 1
dmin

(3.5)
where

ai = 1 − 1

1 + di

dmin

(τdmin − 1)

bi = 1 − 1

1 + τdi
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Proof. If τ > τc, the variable vi∞ is bounded by ai and bi

ai 6 vi∞ 6 bi (3.6)

where the upper and lower bounds ai, bi for the infection probability vi∞ are derived
in [11].

The lower bound does not belong to the probability range ai /∈ [0, 1] for values
τ < 1

dmin

. The variance of the number of infected nodes is a concave function of
vi∞ with a maximum at vi∞ = 0.5. For bi 6 0.5 the variance of the number of
infected nodes is upper-bounded by bi(1 − bi). After the maximum of bi is reached,
the variance is upper bounded by the total maximum 0.25. Because the variance is a
concave function, the lower bound of vi will become the upper bound of the variance.

When the two curves intersect for τp = 1
2dmin

(1 +

√
d2

i
+4d2

min

di
), the variance is lower-

bounded by bi(1− bi). The variance is upper bounded by the lower bound of vi after
the maximum of the lower bound is reached for τ = 1

di
+ 1

dmin

. Therefore we can write
(3.5).
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Fig. 3.1. Upper and lower bound of the variance of node infection as a function of τ .

In Figure 3.1, the variance of node infection is calculated using upper and lower
bounds for the infection probability vi. It was deduced in [11] that the N -intertwined
model is accurate for large values of τ . We also have that ai → bi if τ → ∞, which
implies that the variance, for a large τ , mainly depends on the degree distribution,
not on other structural properties of the network like the diameter, or the clustering
coefficient. Because the curing process is not topology dependent, for large τ , there
is a small percentage of susceptible nodes and they are isolated. In this region of τ ,
the probability of infection depends on the degree of randomly chosen nodes.

Corollary 3.2. For the effective spreading rate τ >
2

dmin

the variance of the

number of infected nodes of the N -intertwined model is tightly bounded by

N
∑

i=1

diτ

(1 + diτ)2
≤ Var[I(t)] ≤

N
∑

i=1

di

dmin

(τdmin − 1)
(

1 + di

dmin

(τdmin − 1)
)2
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Proof. Using the last inequality from Theorem 3.1 and summing over all i, we
obtain the bounds.

Corollary 3.3. For the effective spreading rate τ > 2
µN−1

and large N , where

µN−1 is the second smallest eigenvalue of the Laplacian matrix, the infection proba-

bility for individual nodes, as well as the variance of infection, is tightly bounded with

the nodal degree.

Proof. The bounds from [11] and Corollary 3.2 imply that, for τ >
2

dmin

, the
infected fraction and the variance of infection depend mostly on the node degree.
Using Grone and Merris’ bound [19] on the second smallest eigenvalue of the Laplacian
matrix, µN−1 ≤ dmin, we have 2

dmin

≤ 2
µN−1

.

Corollary 3.3 provides a deeper understanding of the structural properties of a
graph. A graph with a larger µN−1 is more strongly interconnected (see [20]) and a
lower value of the effective spreading rate is enough for the infection probability of a
node to depend more on the degree than on the hopcount or the structure of a graph.
Similarly, for a small µN−1, it takes a larger effective spreading rate τ to enlarge the
probability of uniformly spreading the infection among all separable clusters. Since
the second smallest eigenvalue of the Laplacian determines the bound on the standard
isoperimetric constant 1

η(G) ≤ 2
µN−1(Q) , it determines the life-time of an epidemic [4].

To summarize, for τ > 2
µN−1

the life-time of an epidemic is of order Ω(eN ) and the

variance can be expressed as a function of the node degrees and effective infection
rate.

The variance of the number of infected nodes as a function of τ is given in Figure
3.2. Numerical results from N -intertwined model indicate that the maximum of the
variance of the number of infected nodes is reached approximately for τ ' 2

dav
for

considered graphs (complete bipartite, power-law, regular graphs, random graphs
(Erdős-Rėnyi). This observation implies that the graphs with the same link density
2 p = L

(N

2 )
) will have a maximal variance for the same effective spreading rate τ . We

ought to emphasize that only the epidemics in the metastable state are considered.
For two structurally different graphs with the same dav, namely the star topology
and the line topology the maximum of the variance of the number of infected nodes
is reached for the same value of τ , although the thresholds τc are different, as shown
in Figure 3.2. Among all graphs, the line graph has the largest hopcount and the
star the shortest. In the steady-state, the N -intertwined model for these two special
graphs, shows that the variance of the number of infected nodes is indeed maximal
for τ ≈ 2

dav
≈ 1.

If we use the KW model [2] with k = dav, half of the nodes will be infected for
τ = 2

dav
. Numerical calculation of the N -intertwined model in Figure 2.1 suggests

that the maximum of the variance is reached for τ ' 2
dav

and that the fraction of
infected nodes is close to half.

Lemma 3.4. For the effective spreading rate τ ≤ 1
dav

, the fraction of infected

nodes is bounded by y∞ ≤ 1
2

Proof. For every node i, it holds that vi ≤ 1− 1
1+τdi

. After summing over all i and

dividing by N we have y∞ ≤ 1− 1
N

N
∑

i=1

1
1+τdi

. Using the harmonic-geometric-arithmetic

2In any graph, the average degree da = 2L
N

, where L is the number of links in the graph.
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Fig. 3.2. Variance as a function of τ . Dashed line denotes a star topology and the full line
denotes a line graph. N = 20.

mean inequality valid for ∀ai > 0

N
N
∑

i=1

1
ai

≤ N

√

N
∏

i=1

aj ≤ 1

N

N
∑

i=1

ai (3.7)

we have

1 − 1

N

N
∑

i=1

1

1 + τdi

≤ 1 − N
N
∑

i=1

(1 + τdi)

≤ 1 − 1

1 + τdav

We can now deduce that, if τ ≤ 1
dav

, the fraction of infected nodes is y∞ ≤ 1
2 .

The fraction of infected nodes (2.4) is estimated [11] as y∞ ≈ 1 − 1
τN

N
∑

i=1

1
di

.

Invoking (3.7), we have that y∞ = 1/2 is reached for

τ ≈ 2

N

N
∑

i=1

1

di

>
2

dav

4. Examples: Complete bipartite graph Km,n and complete graph. In
this section, we will consider complete graph and complete bi-partite graph as an
examples of the model presented. We will first discus the complete graph. Due to the
symmetry, the set of N equations in the steady state reduces to only one equation.

v∞ =
τ(N − 1) − 1

(N − 1)τ
(4.1)

The variance as a function of τ (eq. 3.2)

Var[I] =
(τ(N − 1) − 1)N

(N − 1)2τ2
(4.2)
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The maximum variance is reached for τ = 2
dav

. For τ = 2
dav

, the average number

of infected nodes is N
2 . We compare this formula with the event driven simulations

in section (5).
A complete bi-partite graph KM,N consists of two disjoint sets S1 and S2 con-

taining respectively M and N nodes, such that all nodes in S1 are connected to all
nodes in S2, while within each set no connections occur. Figure 4.1 gives an example
of a complete bi-partite graph on 6 nodes.

s

s

s

s

s

s

�
�

�

���

HHH

@
@

@

���

HHH

Fig. 4.1. Complete bi-partite graph K2,4

Notice that (core) telecommunication networks often can be modeled as a com-
plete bi-partite topology. For instance, the so-called double-star topology (i.e. KM,N

with M = 2) is quite commonly used because it offers a high level of robustness
against link failures. For example, the Amsterdam Internet Exchange (see www.ams-
ix.net), one of the largest public Internet exchanges in the world, uses this topology
to connect its four locations in Amsterdam to two high-density Ethernet switches.
Sensor networks are also often designed as complete bi-partite graphs.

Due to the symmetry, for complete bi-partite graph the set of N equations for
N -intertwined model reduces to only two [17], [11].

vN =
τ2MN − 1

Nτ(Mτ + 1)
; vM =

τ2MN − 1

Mτ(Nτ + 1)
(4.3)

Applying (3.2) to the complete bi-partite graph yields

Var[I] =
(τ2MN − 1)(1 + Mτ)

Mτ2(Nτ + 1)2
+

(τ2MN − 1)(1 + Nτ)

Nτ2(Mτ + 1)2
(4.4)

By substituting M = rNtot

r+1 and N = Ntot

r+1 , where Ntot is the total number of

nodes in bipartite graph and r ∈ ( 1
Ntot

, 1), the expression for the number of infected

nodes simplify and it can be shown that for τ = 2
dav

the percent of infected nodes
is in the range (0.5, 0.52). The variance is also close to the maximum V ar[I] ∈
(0.25Ntot, 0.023Ntot).

Because the steady state probabilities depend only on the effective spreading rate
the steady state probability Pr[IN , IM ] satisfies [17]

Pr[IN = x, IM = y] =

(

N

x

)

ix∞(1 − i∞)N−x

(

M

y

)

jy
∞(1 − j∞)M−y (4.5)

From the joined probability distribution (4.5), we can derive the probability dis-
tribution of the number of infected nodes for the whole network Pr[I∞]. We will
compare this formula (4.5) with the event driven simulations in section (5).
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5. Simulation results. In this section, we will compare the theoretical results
for epidemic variance from previous sections and event driven simulations. We will cal-
culate the variance as a function of the effective spreading rate using the N -intertwined
model, equation (3.2) and test its accuracy with event driven simulations of a spread-
ing process.

The results are presented for the complete bipartite, complete, and line graph
with N = 100 nodes. Small networks of N = 100 are enough to demonstrate our
results. The variance V ar[I∞] as a function of τ is shown in the Figure 5.1.

We have also conducted a set of event driven simulations for N = 100 and com-
pared them to the calculations. We have conducted 104 simulations with 2 initially
infected nodes and τ > τ∗

c = 2
dav

. For the values of τ < τ∗
c , a large portion of the

epidemics dies out during the initial phase, which prevents a good estimation of the
variance in the steady state.

The virus spread is a stochastic process and during the transition phase some
of the infections can die out, even though the effective spreading rate is above the
threshold τc. These extinctions have been excluded from calculations for the expected
number of infected nodes in the steady state.

0 1 2 3 4 5
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20

25

30

35

τ

V
ar

[I]

Bipartite graph

N−intertwined model
Simulation data

Fig. 5.1. Variance as a function of τ . Model results compared with the event driven simulations
for the bipartite graph (N = 100, m = 10), and the full mesh. N = 100.

The large variance observable in line graph for τ ∼ 2
dav

can be explained by the
fact that the infected nodes are forming clusters and the covariance of two infected
nodes is large. In [11], it was shown that the N -intertwined model gives better
predictions for large N .

In the interval τ ∈ (τc, τ
∗
c ) the model predicts a decrease of variance as τ decreases

towards τc, but in this interval the covariance increases which implies that the variance
can also increase. The fact that the variance is increasing means that an extinction
may take place more often. If the variations are larger than the mean value in the
steady state, the infection will extinct very quickly. The event driven simulations also
show that the variance grows larger and the extinction is more probable as τ ↓ τc.

The maximal variance for the bipartite graph is smaller than for the line and
complete graph. The reason is a significant degree diversity in the bipartite graph.
The degree diversity has as a consequence that not all the nodes will have vi∞ = 0.5
for the same τ .

The figure 5.3 shows that the worst prediction is given for the line graph which
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Fig. 5.2. Variance as a function of τ . Model results compared with the event driven simulations
for the complete graph. N = 100.

has the largest diameter. A small number of neighbors induces high dependency on
the state of a neighbor. The N -intertwined model gives worst prediction in the region
of 2

dav
< τ 6

2
dmin

(Figure 5.3).
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Fig. 5.3. Variance as a function of τ . Model results compared with the event driven simulations
for the line graph with correction for covariance. N = 100.

We conducted event driven simulations for the complete bipartite graphs K10,990,
K250,750 and K500,500 with different effective spreading rates τ . We have assumed that
the system is in the steady state from t = 6000 time units onwards. The probability
distribution for the number of infected nodes in steady state is compared with the
probability distribution given by Eq. (4.5). In Figures 5.4, 5.5 and 5.6 dashed lines
represent event driven simulations, full lines represent theoretical predictions. It is
possible that virus dies out during the evolution of the epidemic and the probabilities
for different effective spreading rates are given.

We conclude from the simulations that Eq. (4.5) predicts the probability distri-
bution of the number of infected nodes in steady-state very well for large values of
the effective spreading rate τ .
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Fig. 5.4. Probability distribution of the number of infected nodes in the steady state for K500,500,
τ ∈ {0.003, 0.004, 0.015} with the average number of infected I∞ ∈ {333.33, 500, 866.66} respectively.
The probability of extinction during the initial phase of simulations Pr[I∞ = 0] ∈ {0.14, 0.038, 0}
respectively.
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Fig. 5.5. Probability distribution of the number of infected nodes in the steady state for K250,750,
τ ∈ {0.0035, 0.005, 0.015} with the average number of infected I∞ ∈ {299.83, 483.04, 802.21} re-
spectively. The probability of extinction during the initial phase of simulations Pr[I∞ = 0] ∈
{0.2, 0.034, 0.002} respectively.

6. Conclusions. The SIS model is especially interesting for its so-called metastable
state and dynamic behavior. Motivated by the importance of the underlaying inter-
action structure on epidemic spreading, we have explored the variance of the number
of infected nodes in SIS model for a fixed topology defined by a symmetric adjacency
matrix A. Using the N -intertwined model, we have calculated the variance of the
number of infected nodes and shown the model limitations for variance estimation.
The implicit formula and application regions are also given. We have shown that for
τ > 1

di
+ 1

dmin

the variance is highly dependent on the degree distribution and not on
the distance between nodes or other topological properties. Further, we have exempli-
fied the general theory by two specific graphs, namely complete and complete bipartite
graphs. For complete bipartite graphs, we have derived the probability distribution
of the number of infected nodes.
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Fig. 5.6. Probability distribution of the number of infected nodes in the steady state for K10,990,
τ ∈ {0.045, 0.15, 0.5} with the average number of infected I∞ ∈ {301.2, 601.22, 834.63} respectively.
The probability of extinction during the initial phase of simulations Pr[I∞ = 0] ∈ {0.16, 0.006, 0}
respectively.

In the previous work [11], we have established the relation between the largest
eigenvalue of the adjacency matrix A and the threshold. In this paper, we have
related the spreading process to the second smallest eigenvalue of the Laplacian matrix
(Corollary 3.3). Regarding the second smallest eigenvalue of the Laplacian matrix,
we have discussed the relation between the variance of the number of infected nodes
and the lifetime of an epidemic.

Finally, we have conducted event driven simulations that confirm results and
indicate that the maximum variance for the N -intertwined model is reached for τ ≈

2
dav

.
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[4] A. Ganesh, L. Massouliė and D. Towsley, ”The Effect of Network Topology on the Spread
of Epidemics”, Proc. IEEE INFOCOM2005, 2005.
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