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Abstract—The recent widespread of the new Mexi-
can flu and SARS show the high dependency on con-
temporary traveling patterns. The air transport net-
work is recognized as an important channel of epi-
demic propagation for different diseases. In order to
predict epidemic spreading and the influence of pro-
tection measures, a mathematical model of the Sus-
ceptible - Infected - Susceptible (SIS) type is used.
We compare three different networks, namely the air
transport network (in the USA and Europe), Erdös-
Rényi (ER) graphs and complete bi-partite networks
in the light of graph theoretical results based on the
N-intertwined model. Using the spreading param-
eters of the Mexican flu estimated in Mexico City,
we determine the necessary speed of countermeasures
such that the epidemic is stopped. Restructuring of
the air transport in the case of the USA transport
network does not improve protection, while in the
case of the European transport network the number
of infected nodes is reduced for 10%.
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1 Introduction

When an epidemic spreads across a large region, a con-
tinent or even planetary, it is called a pandemic. Some
widely known examples are the Black Death (plague) in
Europe in the 1300s, the smallpox in the New World in
the 1500s [1], measles and diphtheria.

Influenza is one of the most common human and ani-
mal diseases which can easily become a pandemic. In
our recent history, several different influenza pandemics
emerged [29]: ’Spanish’ influenza (1918), ’Asian’ (1957),
’Hong Kong’ (1968) and the ’Russian’ influenza (1977).
Finally, we were witnesses of the pandemic of the Mexi-
can flu [2].

In order to predict epidemic spreading and the influence
of protection measures, mathematical models are applied.
The mathematical theory of epidemics has evolved from
simple models with two states (Susceptible Infected Sus-
ceptible (SIS)) or three states (Susceptible Infected Re-
moved (SIR)) described by deterministic equations with
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homogeneous mixing assumption [10] to highly complex,
multiscale models [3]. The additional complexity caused
by traveling patterns and social structures has introduced
different approaches such as diseases realism, metapop-
ulation grouping and agent-based numerical simulations
[7]. Unfortunately, the power of analysis decreases with
increased complexity. We will use simplified assumptions
in order to keep the model analytically tractable.

Population movement is the main cause of pandemics.
The recent widespread of the new Mexican flu and of
SARS show the high dependency on contemporary trav-
eling patterns. Due to changes in life stile, namely in-
creased travel volumes and global shift of population to
urban centers, pandemics are becoming a realistic threat
to human society [33].

One of the most important novelties in epidemic mod-
eling is the introduction of a network of contacts and
traveling patterns. The homogeneous mixing assumption
was shown not to be adequate [20]. Great attention is
given to epidemics on different networks from random
graphs [4], small-world graphs [28], to scale-free networks
[31]. Generalization of the epidemic modeling to any net-
work structure was recently proposed by Ganesh et al. in
[15] and Newman [30]. Social networks as well as trans-
portation networks exhibit a non-local, small-world ef-
fect, which makes these network an excellent propagation
media [17], [14], [19].

From the first research by Rvachev and Longini [32] and
Baroyan et al. [5], the air transport network is recog-
nized as an important channel of epidemic propagation
for different diseases from influenza [17], the recent pan-
demic of the Mexican flu [21] to HIV [14]. The worldwide
air transportation network is found to be scale-free and
small-world [18]. It was shown that contrary to the pre-
diction of scale-free models the most connected cities are
not the most central in the sense of shortest path be-
tweenness. Several authors have studied the reduction
of disease spreading using air line restrictions [13], [23],
[16]. Due to the multicommunity structure of the network
with hubs not being the most central nodes, the optimal
strategy for flight cancellation is not the removal of nodes
(cities), but the removal of intercommunity flights, which
introduced an increase in spreading time [23] by 81%
for the SI model. The international travel restrictions



showed to introduce a delay of maximum 3 weeks [13]
for the Susceptible Exposed Infected Recovered (SIER)
model. The robustness of the air transportation network
against virus spread is a complex problem and the net-
work as a whole has to be considered.

Large population centers are ideal for the spread of dis-
ease. The deployment of vaccines in large areas can ex-
ceed 6 or 8 months [8] and for some diseases, a vaccine
does not exist. Thus, it is interesting to consider applica-
tions of quarantine and similar measures to stop or slow
down the spread. If the disease spread is stopped in one
city by the means of quarantine, new carriers of infection
can still arrive to the city infecting the susceptible pop-
ulation. The effectiveness of quarantine and of similar
defenses depends on the introduction of new carriers in
the population. We model a city as a node which can have
infection introduced over the air transportation network
from other cities with rate β per link and the deployment
of protection measures can stop the spread after some ex-
ponentially distributed random time with rate δ per city.
For this scenario, a SIS model is adequate, which has
some theoretical results similar to the SIR model.

In SIS and SIR models, epidemics can be stopped if
the application of measures against the virus are faster
than the reproduction of the virus. The epidemic thus ex-
hibits threshold behavior. The threshold can be defined
as follows: for effective spreading rates τ (rate of spread
divided by rate of protection τ = β/δ) below some crit-
ical value τc the virus in the network with N nodes dies
out before a large population is infected with a mean epi-
demic lifetime of order O(log N). For effective spreading
rates above the critical value τc, the epidemic persists and
the number of infected nodes is large, with a mean epi-
demic lifetime [15] of order O(eNα

) for SIS model. The
epidemic threshold is equal to the largest eigenvalue of
the adjacency matrix of the underlying topology [15] and
similar results exist for the SIR model [12], [10].

We will examine the influence of the air transport network
on epidemic spreading in the light of graph theoretical
results based on the N -intertwined model [26].

2 Epidemic model

We will model the epidemic spread using the N -
intertwined SIS model introduced and discussed in [26].

An air transport network with N cities is modeled as a
connected graph specified by a symmetric adjacency ma-
trix A. We will model a city population as a single node
in the network, such that it is assumed to be in an in-
fected state, if there are carriers of infection among the
population. If the infection is isolated from the rest of
the population, the city is assumed to be susceptible, be-
cause new carriers can enter the city. The probability of
infection is denoted by vi(t) = Pr[Xi = 1], and that of

the susceptible state by 1 − vi(t). The sum of the prob-
abilities of being infected and susceptible are equal to 1
because a node can only be in one of these two states.
The state of a city i is specified by a Bernoulli random
variable Xi ∈ {0, 1}: Xi = 0 for a susceptible node and
Xi = 1 for an infected node. We assume that the cur-
ing process per node i is a Poisson process with rate δ,
and that the infection rate per link is a Poisson process
with rate β which is imminent for all nodes and thus con-
stant in the network. For a node i, we can formulate the
following differential equation

dvi(t)

dt
= β(1 − vi(t))

N∑

j=1

aijvj(t) − δvi(t)

where aij is the element of the adjacency matrix A and it
is equal to 1 if the nodes i and j are connected, otherwise
it is 0. A node is not considered connected to itself, i.e.,
aii = 0. The probability of a city being infected depends
on the probability that it is not infected (1 − vi(t)) mul-
tiplied with the probability that a neighbor j is infected
aijvj(t) and that it tries to infect the city i with the rate
β. Detailed derivations are given in [26] and [25].

In the steady-state, where dvi(t)
dt

= 0 and lim
t→∞

vi(t) =

vi∞, for each node 1 ≤ i ≤ N , we have that

vi∞ =

β
N∑

j=1

aijvj∞

β
N∑

j=1

aijvj∞ + δ

(1)

The model has a threshold value τc = β
δ

below which the
epidemic extincts and the number of infected nodes in
the meta-stable steady-state is 0. The threshold [26] is
equal to

τc =
1

λmax(A)

where λmax(A) is the maximal eigenvalue of the matrix
A. If τ < τc, the epidemic will eventually be stopped,
and for τ > τc the infection will persist with the average

number of infected cities equal to y∞ = 1
N

N∑
j=1

vj∞.

For example, the largest eigenvalue of a path graph
(nodes on a line) is λmax(A) ≃ 2, while that of a star
topology (all the nodes are connected to one central node)
is λmax(A) =

√
N − 1. These two graphs are interest-

ing examples, as both have the same number of links
L = N − 1. Thus, a star topology is much more prone to
an epidemic than a path graph.

For a general epidemic SIR model, similar threshold re-
sults exist [11], [12], [10]. If the ratio of the death to



infection rate is larger than the largest eigenvalue of the
adjacency matrix of the graph λmax(A), and the initial
infected population is small, then the final infected pop-
ulation is also small. If the ratio is smaller than λmax(A),
the final population size is large.

3 Results and discussion

One of the most exciting facts about the threshold is that,
if the curing ratio δ is increased such that the threshold
is reached, the epidemic can be stopped. The thresh-
old of an epidemic depends on the underlying network of
contacts and travel patterns. The spreading effectiveness
depends on the spreading and protection ratio. To illus-
trate the influence of traveling patterns on virus spread,
we have used the direct airport-to-airport American traf-
fic network maintained by the U.S. Bureau of Transporta-
tion Statistics and the European direct airport-to-airport
traffic network obtained from the European commission
for statistics Eurostat. The networks are not weighted;
however, the model is extendable to heterogeneous set-
tings [25]. The USA network consists of N = 2188 air-
ports and L = 31331 connections or links. The European
network consists of N = 1247 airports and L = 22830
connections or links. The N -intertwined model can be
applied to many other air transport networks used in epi-
demiological research, as well.

The model gives a prediction for the threshold of a spe-
cific network structure. A network can be restructured
such that it performs better with respect to virus spread.
In order to estimate the air transport network’s perfor-
mance, we have compared the threshold for 3 different
graphs with the same number of nodes and a similar
number of links: namely, the air transport network (Eu-
ropean, USA), the ER random graph and the complete
bipartite graph. For large number of nodes, the ER ran-
dom graph [6] is close to a regular graph, where all the
nodes have the same number of neighbors. The complete
bi-partite graph consists of two sets of nodes with 15 and
2173 for the USA network and 9 and 1238 for the Euro-
pean, which are connected to all of the nodes from the
opposite set and not inside the set. Therefore, we com-
pare the air transport network with a non-hierarchical
structure and with a highly hierarchical structure. The
epidemic threshold is given in the Tables 1 and 2.

In order to stop the pandemic spread over the air trans-
portation network with τc = 6 · 10−3, measures applied
against the virus need to be 6 · 10−3 faster than the in-
fection process.

In the case of the recent the Mexican flu, parameters
of the spread were estimated for Mexico City [9]. The
spreading rate per contact, when recalculated for the N -
intertwined model and applied to the air transport net-
work is estimated to be β = 0.0199 day−1, while the
recovery rate is γ = 0.33 day−1. If the epidemic is left

without intervention (γ = δ) it can quickly spread with
effective spreading rate of τ = β

γ
= 0.0603. In the case of

the USA network, 30% of the cities will have the infec-
tion introduced, while for the same parameters the ER
network will have 35% and the complete bi-partite graph
45%. The restructuring of the air transportation network
into the bi-partite and the ER random graph would not
help in the case of the USA network. In the Europe air
transport network, 25% of the nodes are infected, while
only 16% of the nodes are infected for the same parame-
ters in the ER graph and 33% in the complete bi-partite
graph. In order to stop the epidemic spread through air
transport networks, either flights need to be reorganized
- restructuring the network such that the threshold τc

increases or faster measures need to be applied. Van
Mieghem et al. show in [27] that disassortative degree-
preserving rewiring increase the threshold. In case of
the Mexican flu, the curing rate has to be higher than
δ = 199 day−1, which is a reaction of the order of a couple
of minutes. In the case of a more homogeneous network
structure as a ER random graph, the curing rate can be
up to 10 times lower.

The largest eigenvalue of a graph λmax(A) is always larger
than the average degree dav. In case of a regular graph,
λmax(A) is equal to the average degree [24]. This means
that the smallest possible eigenvalue is equal to 2 for a
cycle, while the largest possible threshold τc for any con-
nected graph is equal to 0.5. From the point of view
of an epidemiologist, the reduction of the air transport
graph to a path graph is an excellent way to stop the
pandemic, however, economists and tourists would dis-
agree. A combined method of flight restriction hand in
hand with efficient protection strategies seems to be the
right way to address the problem. If additional measures
are applied, they have to be fast.

Figures 1 and 2 show the number of infected nodes in
the steady-state as a function of the effective spreading
rate τ for the three different networks. Although the air
transportation network has a low threshold, the number
of infected nodes grows much more slowly with τ , than
in case of the other two networks. Therefore, it is wise
to be careful and take the whole range of the effective
spreading rate τ into account when restructuring [22].

4 Conclusion

We have presented the N -intertwined epidemic model for
pandemic spread over an air transport network. Based on
the parameters estimated in the case of the Mexican flu in
Mexico City [9], we have discussed whether an epidemic
threshold can be reached and how a pandemic can be
stopped. Because of the very small threshold and the ne-
cessity of traveling in contemporary world, a combination
of flight restrictions together with an introduction of effi-
cient protection strategies seems to be the best strategy



Air transport Random ER Complete bi-partite

N 2188 2188 2188
L 31331 31298 32595
dav 28.6389 28.6088 29.7943
λmax(A) 144.6112 29.5880 180.5409
τc 0.0069 0.0338 0.0055

Table 1: Networks comparison, USA air transportation network.

Air transport Random ER Complete bi-partite

N 1247 1247 1247
L 22830 22786 22284
dav 18.3079 18.2727 17.8701
λmax(A) 80.9576 19.3552 105.5557
τc 0.0124 0.0517 0.0095

Table 2: Networks comparison, European air transportation network.
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Figure 1: USA air transportation network compared with
complete bi-partite and ER random graph topologies.

to reach the threshold. Further, we compare the thresh-
old of two air transport networks with 2 structurally dif-
ferent networks, namely the ER random graph and the
complete bi-partite graph with the same number of nodes
and a similar number of links. Although, the ER network
is more robust against epidemic spreading for values of
effective spreading rate τ close to the threshold τc, for
larger values of τ it exhibits worse behavior than the air
transport network.
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