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The Probability Distribution of the Hopcount to an
Anycast Group

P. Van Mieghem

Abstract—The probability density function of the number of
hops to the most nearby member of the anycast group consisting
of m members (e.g. servers) is analysed. The results are applied
to compute a performance measure η of the efficiency of anycast
over unicast and to the server placement problem. The server
placement problem asks for the number of (replicated) servers
m needed such that any user in the network is not more than j
hops away from a server of the anycast group with a certain pre-
scribed probability. Two types of shortest path trees are investi-
gated: the regular k-ary tree and the irregular uniform recursive
tree. Since these two types of trees indicate that the performance
measure η ≈ 1 − a logm where the real number a depends on
the details of the tree, it suggests that for trees in real networks
(as the Internet) a same logarithmic law applies. An order calcu-
lus on exponentially growing tree further supplies evidence for the
conjecture that η ≈ 1− a logm for smallm.

Index Terms—Anycast, shortest path tree, server (cache) place-
ment problem, performance analysis on graphs.

I. INTRODUCTION

IPv6 possesses a new address type, anycast, that is not sup-
ported in IPv4. The anycast address is syntactically identical to
a unicast address. However, when a set of interfaces is speci-
fied by the same unicast address, that unicast address is called
an anycast address. The advantage of anycast is that a group of
interfaces at different location is treated as one single address.
For example, often the information on servers is duplicated over
several secondary servers at different locations for reasons of
robustness and accessibility. Changes are only performed on
the primary servers which are then copied onto all secondary
servers to maintain consistency. If both the primary and all
secondary servers have a same ’anycast’ address, a query from
some source towards that anycast address is routed towards the
most nearby server of the group. Hence, instead of routing the
packet to the root server (primary server) anycast is more effi-
cient.

In this article, the distribution of the number of hops to the
most nearby server of the anycast group is analyzed. The main
focus is thus on quantifying the performance of the anycast-
ing paradigm rather than on discussing the implementation or
protocol-related impact of anycast. Suppose there are m (pri-
mary plus all secondary) servers and that these m servers are
uniformly distributed over the Internet. The number of hops
from the querying device A to the most nearby server is the
minimum number of hops, denoted by hN (m), of the set of
shortest paths from A to these m servers in a network with
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N nodes. In order to solve the problem, the shortest path tree
rooted at node A, the querying device, needs to be investigated.
We assume in the sequel that one of the m uniformly distributed
servers can possibly coincide with the same router to which the
querying machine A is attached. In that case, hN (m) = 0.

Clearly, if m = 1, the problem reduces to the hopcount of
the shortest path from A to one uniformly chosen node in the
network and we have that

hN (1) = hN ,

where hN is the hopcount of the shortest path in a graph with
N nodes. The other extreme for m = N leads to

hN (N) = 0

because all nodes in the network are servers. In between these
extremes, there holds

hN (m) ≤ hN (m− 1)
since one additional anycast group member (server) can never
increase the minimum hopcount to the root.

The hopcount to an anycast group is a stochastic problem.
Even if the network graph is exactly known, an arbitrary node
A views the network along a tree. Most often it is a shortest
path tree where the precise optimization criterion is here irrele-
vant. Although the sequel emphasizes ’shortest path trees’, the
presented theory is equally valid for any type of tree. The node
A’s perception of the network is very likely different from the
view of another node A0. Nevertheless, shortest path trees in a
same graph possess to some extent related structural properties
which allow us to treat the problem by considering certain types
or classes of shortest path trees. Hence, instead of varying the
arbitrary node A over all possible nodes in the graph and com-
puting the shortest path tree at each different node, we vary the
structure of the shortest path tree rooted at A over all possible
shortest path trees of a certain type. Of course, the confinement
of the analysis then lies in the type of tree that is investigated.
In this article, we will only consider the regular k-ary tree and
the irregular uniform recursive tree (URT). Earlier for multicast
[18], we found that ’real’ shortest path trees in Internet possess
properties similar to these trees and that scaling laws observed
in both these two types of trees also apply to the Internet.

The presented analysis allows us to address at least two dif-
ferent issues. First, for a same class of tree (or topologies), the
efficiency of anycast over unicast defined in terms of a perfor-
mance measure η

η =
E [hN (m)]

E [hN (1)]
≤ 1
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is quantified. The performance measure η indicates how much
hops (or link traversals or bandwidth consumption) can be
saved, on average, by anycast. Alternatively, η also reflects the
gain in end-to-end delay or how much faster than unicast, any-
cast finds the desired information. Second, the so-called server
placement problem can be treated. More precisely, the question
”How many servers m are needed to guarantee that any user re-
quest can access the information within k hops with probability
Pr [hN (m) > k] ≤ �, where � is a certain level of stringency”
can be answered. The server placement problem is expected to
gain increased interest especially for real-time services where
end-to-end QoS (e.g. delay) requirements are desirable. In the
most general setting of this server placement problem, all nodes
(routers) are assumed to be equally important in the sense that
user requests are generated equally likely at any router in the
network with N nodes. The validity of this assumption has
been justified by Philips et al. [13] and later by Chalmers and
Almeroth [4]. In this case of uniform user requests, the best
strategy is to place servers also uniformly over the network.

We start presenting a general analysis, valid in any graph, in
section III. As an example, two types of shortest path trees are
analyzed: the regular k-ary tree in section IV and the irregular
uniform or recursive tree in section V. An order calculus of the
performance measure η in exponentially growing graphs, that
includes the graph of the Internet, is presented in section VI.
Mathematical derivations are found in the Appendices.

II. RELATED WORK.
The server placement problem as defined above is a prob-

abilistic analogon of the ’cache location problem’ [10], [12],
[2] also known as ’(constrained) mirror placement’ [8]. Most
articles on the cache location problem assume that the under-
lying network topology G (N,E), where N are the number of
nodes and E the number of vertices, is known and propose an
algorithm for the following graph theoretical problem: ”Given
G (N,E) and m servers (caches), place these m servers at a
subset of nodes of the graph G in order to optimize some cri-
terion (and often subject to constraints, e.g. only at given lo-
cations servers can be placed [8])”. The usual criterion is ei-
ther a minimization of the round-trip-time or of the maximum
distance from a querying node to the most nearby server (Min
K-center algorithm) or it attempts to distribute the total server
load as equal as possible over the m servers. Unfortunately, the
algorithm to the above mentioned graph theoretical problem is
NP-complete which naturally leads to the proposal of heuristics
[8], [12] or to dynamic programming solutions [10]. Instead of
formulating the cache location problem into a graph theoretical
framework, sometimes a cache architecture or a strategy is pro-
posed which is then evaluated by analysis or measurements in
terms of latency, bandwidth usage or load and disk space (see
e.g. [14]).

While most of the literature concentrates on strategies to
place the m servers optimally, our work assumes uniform or
random placement and targets to gain insight in how the perfor-
mance measure η, the gain (in hops) of using m servers instead
of 1, scales with m and N in different trees. In particular, our
analysis suggests that, for large N and small m, the perfor-
mance measure η obeys the law η ≈ 1 − a logm. Jamin et al.

[8] showed quickly diminishing benefits of placing additional
mirrors (servers), which is a less precise and not quantified for-
mulation of the our claimed law η ≈ 1 − a logm. Some of
their figures that plot performance measures based on round-
trip-time measurements versus the number of mirrors m seem
to decrease logarithmically in m.

The difficult and always debatable point in nearly all work
concerns the assumption of the underlying network topology.
The Internet topology is not a static graph but continuously
changing over time. Usually random graphs (Waxman graphs
[20]) or ”Internet-like” graphs are simulated or measurements
in (a particular part of) the Interent are presented. Although
many measurements and analyses (for references see [17]) have
been and are still being performed, relatively little insight in the
topological properties of the Internet has been gained. For ex-
ample, it would be desirable to have the Internet graph catego-
rized as a member of some particular class of graphs. Perhaps
the most cited paper is that of the Faloutsos et al. [5]. They
show that the degree distribution of the Internet graph follows
a power law. However, if one constructs the shortest path tree
based on trace-routes to a small number m, that tree resembles
a URT surprisingly well as shown below. That shortest path
tree which is the union of IP-traces measured by the trace-route
utility from a root to m other nodes is deemed relevant for the
hopcount to an anycast group with relatively small m. Hence,
the URT models the hopcount and the degree of the shortest
path deduced from trace-routes accurate enough to deserve due
analytic treatment as presented here. At last, together with the
regular trees, the URT seems one of the very few stochastic
trees that permits analytic modeling as presented here.

III. GENERAL ANALYSIS.
Let us consider a particular shortest path tree T rooted at

node A. Denote by
n
X
(k)
N

o
the k-th level set of T or the set

of nodes in the tree T at hopcount k from the root A in a graph
with N nodes and by X

(k)
N the number of elements in the setn

X
(k)
N

o
. Then, we have X(0)

N = 1 because the zeroth level can
only contain the root node A itself. For all k > 0, holds that
0 ≤ X

(k)
N ≤ N − 1 and that

N−1X
k=0

X
(k)
N = N (1)

Another consequence of the definition is that, if X(n)
N = 0 for

some level n < N − 1, then all X(j)
N = 0 for levels j > n.

Clearly, in such a case, the longest possible shortest path in the
tree has a hopcount of n. The level set

LN =
n
1,X

(1)
N ,X

(2)
N , . . . ,X

(N−1)
N

o
of a tree T is defined as the set containing the number of nodes
X
(k)
N at each level k. An example of a tree organized per level

is drawn in Figure 1.
Further, suppose that the result of uniformly distributing m

anycast group members over the graph leads to a number m(k)

of those anycast group member nodes that are k hops away
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Fig. 1. A tree with N = 26 organized per level 0 ≤ k ≤ 4.

from the root. These m(k) distinct nodes all belong to the setn
X
(k)
N

o
. Similarly as for X(k)

N , some relations are immediate.
First, m(0) = 0 means that none of the m anycast group mem-
bers coincides with the root node A or m(0) = 1 means that
one of them (and at most one) is attached to the same router
A as the querying device. Also, for all k > 0, holds that
0 ≤ m(k) ≤ X

(k)
N and that

N−1X
k=0

m(k) = m (2)

Given the tree T specified by the level set LN and
the anycast group members specified by the set©
m(0),m(1), . . . ,m(N−1)ª, we will derive the lowest

non-empty level m(j), which is equivalent to hN (m).
Let us denote by ej the event that all first j +1 levels are not

occupied by an anycast group member,

ej =
n
m(0) = 0

o
∩
n
m(1) = 0

o
∩ . . . ∩

n
m(j) = 0

o
The probability distribution of the minimum hopcount,
Pr [hN (m) = j|LN ], is then equal to the probability of the
event ej−1∩

©
m(j) > 0

ª
. Since the event

©
m(j) > 0

ª
=

not
©
m(j) = 0

ª
, using the conditional probability yields

Pr [hN (m) = j|LN ] = Pr
hn

m(j) > 0
o
|ej−1

i
Pr [ej−1]

=
³
1− Pr

hn
m(j) = 0

o
|ej−1

i´
×Pr [ej−1] (3)

Since ej = ej−1 ∩
©
m(j) = 0

ª
, the probability of the event ej

can be decomposed as

Pr [ej ] = Pr
hn

m(j) = 0
o
|ej−1

i
Pr [ej−1] (4)

The assumption that all m anycast group mem-
bers are uniformly distributed enables us to compute
Pr
£©
m(j) = 0

ª |ej−1¤ exactly. Indeed, by the uniform
assumption, the probability equals the ratio of the favorable
possibilities over the total possible. The total number of ways
to distribute m items over N − Pj−1

k=0X
(k)
N positions (the

latter constraints follows from the condition ej−1), equals¡
N−P j−1

k=0X
(k)
N

m

¢
. Likewise, the favorable number of ways to

distribute m items over the remaining levels higher than j,
leads to

Pr
hn

m(j) = 0
o
|ej−1

i
=

¡
N−P j

k=0X
(k)
N

m

¢¡
N−P j−1

k=0X
(k)
N

m

¢ (5)

The recursion (4) needs an initialization, given by Pr [e0] =
Pr
£
m(0) = 0

¤
= 1− m

N , which follows from Pr
£
m(0) = 0

¤
=

(N−1m )
(Nm)

and equals Pr
£©
m(0) = 0

ª |e−1¤ (although the event

e−1 is meaningless). Observe that Pr
£
m(0) = 1

¤
= m

N holds
for any tree such that

Pr [hN (m) = 0] =
m

N

By iteration of (4), we obtain

Pr [ej ] =

jY
s=0

¡
N−Ps

k=0X
(k)
N

m

¢¡
N−Ps−1

k=0X
(k)
N

m

¢
=

¡
N−P j

k=0X
(k)
N

m

¢¡
N
m

¢ (6)

where the convention in summation is that
Pb

k=a fk = 0 if
a > b. Finally, combining (3) with (5) and (6), we arrive at the
general (conditional) probability for the minimum hopcount to
the anycast group,

Pr [hN (m) = j|LN ] =
¡
N−P j−1

k=0X
(k)
N

m

¢− ¡N−P j
k=0X

(k)
N

m

¢¡
N
m

¢
(7)

Clearly, while Pr [hN(0) = j|LN ] = 0 since there is no path,
we have for m = 1,

Pr [hN (1) = j|LN ] = X
(j)
N

N

It directly follows from (7) that

Pr [hN (m) ≤ n|LN ] = 1−
¡
N−Pn

k=0X
(k)
N

m

¢¡
N
m

¢ (8)

If N −Pn
k=0X

(k)
N < m or, equivalently,

PN−1
k=n+1X

(k)
N < m,

then (8) shows that Pr [hN (m) > n|LN ] = 0. The maxi-
mum possible hopcount of a shortest path to an anycast group
strongly depends on the specifics of the shortest path tree or the
level set LN . Yet, a general result is worth mentioning,

Theorem 1: For any graph holds that

Pr[hN (m) > N −m] = 0
In words, the longest shortest path to an anycast group with

m members can never possess more than N −m hops.
Proof: This general Theorem 1 follows from the fact that

the line topology is the tree with longest hopcount (N − 1)
and only in case all m last positions (with respect to the source
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or root) are occupied by the m anycast group members, the
maximum hopcount is N −m.

For the URT in Sec. V, Pr[hN (m) = N −m] is computed
exactly in (16).

Corollary 2: For any graph holds that

Pr[hN (N − 1) = 1] = 1

N
Proof: This Corollary follows from Theorem 1 and the

law of total probability. Alternatively, if there are N−1 anycast
members in a network with N nodes, the shortest path can only
consist of 1 hop if none of the anycast members coincides with
the root node. This chance is precisely 1

N .
Since for any discrete random variable Y holds that E [Y ] =P∞
k=0 Pr [Y ≥ k], it is immediate from (8) that

E [hN (m)|LN ] = 1¡
N
m

¢ N−2X
n=0

µ
N −Pn

k=0X
(k)
N

m

¶
(9)

from which we find,

E [hN (1)|LN ] = 1

N

N−1X
k=1

kX
(k)
N

Thus, given LN , a performance measure η for anycast over uni-
cast can be quantified as

η =
E [hN (m)|LN ]
E [hN (1)|LN ] ≤ 1

Using the law of total probability, the distribution of the min-
imum hopcount to the anycast group is

Pr [hN (m) = j] =
X

all LN

Pr [hN (m) = j|LN ] Pr [LN ] (10)

or,

Pr [hN (m) = j] =
X

PN−1
k=1 xk=N−1

¡PN−1
k=j xk
m

¢− ¡PN−1
k=j+1 xk
m

¢¡
N
m

¢
×Pr

h
X
(1)
N = x1,X

(2)
N = x2,

. . . ,X
(N−1)
N = xN−1

i
where xk ≥ 0 for all k. This expression explicitly shows
the importance of the level structure LN of the shortest path
tree T . The level structure LN entirely determines the shape
of the tree T . Unfortunately, a general form for Pr [LN ] or
Pr [hN (m) = j] is difficult to obtain.

IV. THE k-ARY TREE.
For regular trees explicit expressions are possible because the

summation in (10) simplifies considerably. For example, for the
k-ary tree,

X
(j)
N = kj

Provided the set LN only contains these values of X(j)
N for each

j, we have that Pr [LN ] = 1, else it is zero (because then LN is

not consistent with a k-ary tree). Summarizing, for the k-arry
tree with N = kD+1−1

k−1 and D levels, the distribution of the
minimum hopcount to the anycast group is

Pr [hN (m) = j] =

¡
N− kj−1

k−1
m

¢− ¡N− kj+1−1
k−1
m

¢¡
N
m

¢ (11)

Extension of the integer k to real numbers in the formula (11)
is expected to be of value as suggested by previous work [18]
where we have computed the gain in the number of used links
in multicast as compared to unicast. When a k-ary tree was
used to fit corresponding Internet multicast measurements, we
found that a remarkably accurate agreement was obtained for
the value k ≈ 3.2, which is about the average degree of the
Internet graph. Hence, if we were to use the k-ary tree as model
for the hopcount to an anycast group, we expect that k ≈ 3.2
is the best value for Internet shortest path trees. However, we
feel we ought to mention that the hopcount distribution of the
shortest path between two arbitrary nodes is definitely not a k-
ary tree, because Pr [hN (1) = j] increases with the hopcount j
which is in conflict with Internet trace-route measurements (see
e.g. [9]).
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Fig. 2. The distribution function of h500(m) versus the hops j for various
sizes of the anycast group in a k-ary tree with k = 3 and N = 500

Figure 2 displays Pr [h(m) ≤ j] for a k-ary with outdegree
k = 3 possessing a number of nodes equal to N = 500. This
type of plot allows us to solve the ’server placement problem’.
For example, assuming that the k-ary tree is a good model and
the network consists of N = 500 nodes, Figure 2 shows that at
least m = 10 servers are needed to assure that any user is not
more than four hops separated from an arbitrary server of the
anycast group with a probability of 93%. More precisely, the
equation Pr[h500(m) > 4] < 0.07 is obeyed if m ≥ 10.

Figure 3 gives an idea how the performance measure η de-
creases with the size of the anycast group in k-ary trees (all
with outdegree k = 3), but with different size N . For small m,
we observe that η decreases logarithmically in m, which is in
agreement with the law η ≈ 1− a logm.
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Fig. 3. The performance measure η for several size of k-ary trees (with k = 3)
as a function of the ratio of anycast nodes over the total number of nodes.

V. THE UNIFORM RECURSIVE TREE (URT).
A uniform recursive tree (URT) of size N is a random tree

that starts from the root A and where at each stage a new node
is attached uniformly to one of the existing nodes until the total
number of nodes is equal to N .

A. Motivation.
The interest in URTs is four-fold. First, as mentioned above,

the URT is the prototype of an irregular tree. Second, we have
demonstrated earlier [16] that the shortest path tree in a con-
nected random graph Gp(N) (and also in the Waxman graph
[20]) with independent and uniformly or exponentially distrib-
uted link weights is a URT. As mentioned in [19],[16],[17] the
law of the hopcount hN = hN (1) of the shortest path between
two arbitrary nodes is, for 0 ≤ k ≤ N − 1,

Pr [hN = k] =
E
h
X
(k)
N

i
N

=
(−1)N−1−kS(k+1)N

N !
, (12)

where S
(k)
N denote the Stirling numbers of the first kind [1,

24.1.3] with corresponding generating function

ϕN (z) =
N−1X
k=0

Pr [hN = k] zk =
Γ(N + z)

Γ(N + 1)Γ(z + 1)
(13)

Third, from the hopcount distribution of paths in the Internet
deduced from trace-route measurements, we found [9] that this
distribution is reasonably well modeled by that of the URT
given by (12). Fourth and last motivation, a more striking agree-
ment with the URT is shown by the degree law [9]: for small
multicast groups (m around about 50) from a root to uniformly
spread users the measured multicast tree possesses a degree dis-
tribution close to the Pr [deg = k] ∼ 2−k of the URT (for large
N ) [7][11]. (At the time of writing, this correspondence with
the URT is further studied in order to understand the transition

Root

k nodes

N-k nodes

R1

i anycast 
members

m-i anycast 
members

T1

T2

Root

k nodes

N-k nodes

R1

i anycast 
members

m-i anycast 
members

T1

T2

Fig. 4. A uniform recursive tree consisting of two subtrees T1 and T2 with k
and N − k nodes respectively. The first clusters contains i anycast members
while the cluster with N − k nodes contains m− i anycast members.

from an exponential degree law (small m) towards a power law
degree law observed in Internet (see e.g. [5]) if m increases)

These arguments motivate that the URT is believed to provide
a reasonable, first order estimate for the hopcount problem to an
anycast and multicast group in Internet.

B. Recursion for Pr [h(m) = j]

Usually, a combinatorial approach such as (10) is seldom
successful for URTs while structural properties often lead to
results. Previously, we have proved in [19] that,

Lemma 3: Let {Y (k)
N }k,N≥0 and {Z(k)N }k,N≥0 be two inde-

pendent copies of the vector of level sets of two sequences of
independent URTs. Then

{X(k)
N }k≥0 d

= {Y (k−1)
N1

+ Z
(k)
N−N1

}k≥0, (14)

where on the right-hand side the random variable N1 is uni-
formly distributed over the set {1, 2, . . . , N − 1}.

This Lemma 3, applied to the anycast minimum hop prob-
lem, is illustrated in Figure 4.

Figure 4 shows that any URT can be separated into two sub-
trees T1 and T2 with size k and N − k respectively. More-
over, Lemma 3 states that each subtree is independent of
the other and again an URT. Consider now a specific sep-
aration of an URT T into T1 = t1 and T2 = t2, where
the tree t1 contains k nodes and i of the m anycast mem-
bers and t2 possesses N − k nodes and the remaining m − i
anycast members. The event {hT (m) = j} equals the union
of all possible sizes N1 = k and subgroups m1 = i of
the event {ht1(i) = j − 1} ∩ {ht2(m− i) ≥ j} and the event
{ht1(i) > j − 1} ∩ {ht2(m− i) = j},
{hT (m) = j} = ∪k ∪i {{ht1(i) = j − 1} ∩ {ht2(m− i) ≥ j}}

∪ {{ht1(i) > j − 1} ∩ {ht2(m− i) = j}}
Because hN (0) is meaningless, the relation must be modified
for the case i = 0 to

{hT (m) = j} = {ht2(m) = j}
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and for the case i = m to

{hT (m) = j} = {ht1(m) = j − 1}
This decomposition holds for any URT T1 and T2, not only for
the specific ones t1 and t2. The transition towards probabilities
becomes

Pr [hT (m) = j] =
X

all t1,t2,k,i

(Pr [ht1(i) = j − 1]

×Pr [ht2(m− i) ≥ j]

+Pr [ht1(i) ≥ j − 1] Pr [ht2(m− i) = j])

×Pr [T1 = t1, T2 = t2, N1 = k,m1 = i]

Since T1 and T2 and also m1 are independent given N1, the last
probability l simplifies to

l = Pr [T1 = t1, T2 = t2,N1 = k,m1 = i]

= Pr [T1 = t1|N1 = k]

×Pr [T2 = t2|N1 = k]

×Pr [m1 = i|N1 = k]

×Pr [N1 = k]

Lemma 3 states that N1 is uniformly distributed over the set
with N − 1 nodes such that Pr [N1 = k] = 1

N−1 . The fact that
i out of the m anycast members, uniformly chosen out of N
nodes, belong to the recursive subtree T1 implies that m − i
remaining anycast members belong to T2. Hence, analogous to
a combinatorial problem outlined by Feller [6, pp. 43] that lead
to the hypergeometric distribution, we have

Pr [m1 = i|N1 = k] =

¡
k
i

¢¡
N−k
m−i

¢¡
N
m

¢
because all favorable combinations are those

¡
k
i

¢
to distribute i

anycast members in T1 with size k multiplied by all favorable¡
N−k
m−i

¢
to distribute the remaining m−i in T2 containing N−k

nodes. The total way to distribute m anycast members over N
nodes is

¡
N
m

¢
. At last, we remark that the hopcount of the short-

est path to m anycast members in a recursive tree (or random
graph) only depends on its size. This means that the sum over
all t1 of Pr [T1 = t1|N1 = k], which equals 1, disappears and
likewise also the sum over all t2. Combining the above leads to

Pr [hN (m) = j] =
N−1X
k=1

m−1X
i=1

(Pr [hk(i) = j − 1]

×Pr [hN−k(m− i) ≥ j]

+Pr [hk(i) > j − 1]
×Pr [hN−k(m− i) = j])

×
¡
k
i

¢¡
N−k
m−i

¢
(N − 1)¡Nm¢ +

N−1X
k=1

Pr [hN−k(m) = j]

¡
N−k
m

¢
(N − 1)¡Nm¢

+Pr [hk(m) = j − 1]
¡
k
m

¢
(N − 1)¡Nm¢

By substitution of k0 = N −k and m0 = m− i, this expression
simplifies to the recursion for Pr [hN (m) = j] in the URT,

Pr [hN (m) = j] =

N−1X
k=1

m−1X
i=1

(Pr [hk(i) = j − 1] + Pr [hk(i) = j])

×
¡k
i

¢¡N−k
m−i

¢
(N − 1)¡N

m

¢ N−k−1X
q=j

Pr [hN−k(m− i) = q]

+

N−1X
k=1

(Pr [hk(m) = j] + Pr [hk(m) = j − 1])

×
¡ k
m

¢
(N − 1)¡N

m

¢ (15)

This recursion (15) is solved numerically for N = 20.
The result is shown in Figure 5 which demonstrates that
Pr [hN (m) > N −m] = 0 or, the path with the longest hop-
count to an anycast group of m members consists of N − m
links.

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Pr
[h

(m
) =

 j]

20151050

j

N = 20

Fig. 5. The pdf of hN (m) in a recursive tree with N = 20 nodes for all
possible m. Observe that Pr[hN (m) > N −m] = 0. This relation connects
the various curves to the value for m.

Since there are (N − 1)! possible URTs [19] and there is
only one line tree with N − 1 hops where each node has pre-
cisely one child node, the probability to have precisely N − 1
hops from the root is 1

(N−1)! (which also is Pr [hN = N − 1]
given in (12)). The longest possible hopcount from a root to
m anycast members occurs in the line tree where all m anycast
members occupy the last m positions. Hence, the probability
for the longest possible hopcount equals

Pr [hN (m) = N −m] =
m!

(N − 1)!¡Nm¢ (16)

because there are m! possible ways to distribute the m anycast
members at the m last positions in the line tree while there are¡
N
m

¢
possibilities to distribute m anycast members at arbitrary

places in the line tree.
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C. Analysis of the recursion relation.
The product of two probabilities in the double sum in (15) seriously complicates a possible analytic treatment. A relation for a

generating function of Pr [hN (m) = j] and other mathematical results are derived in the Appendices.
Therefore, some partial results are presented.
(a) Let us check Pr [hN (m) = 0] = m

N . Using Pr [hk(i) ≥ −1] = 1, Pr [hk(i) = −1] = 0 and Pr [hN−k(m− i) = 0] = m−i
N−k ,

the right hand side of (15), denoted by r, simplifies to

r =
1

(N − 1)¡Nm¢
N−1X
k=1

mX
i=0

m− i

N − k

µ
k

i

¶µ
N − k

m− i

¶

=
1

(N − 1)¡Nm¢
N−1X
k=1

m−1X
i=0

µ
k

i

¶µ
N − 1− k

m− 1− i

¶

=
1

(N − 1)¡Nm¢
N−1X
k=1

µ
N − 1
m− 1

¶
=

m

N

(b) Observe that Pr [hN (N) = j] = 0 for j > 0.
(c) For m = 1,

Pr [hN = j] =
1

N − 1
N−1X
k=1

(Pr[hk = j] + Pr [hk = j − 1]) k
N

Multiplying both sides by zj , summing over all j leads to the recursion for the generating function (13)

(N + 1)ϕN+1(z) = (z +N)ϕN(z)

from which (13) and (12) follows.
(d) The case m = 2 is solved in Appendix IX and the result is given in (34). In [19] we have demonstrated that the covariance

between the number of nodes at level r and j for r ≤ j in the URT is

E
h
X
(r)
N X

(j)
N

i
=
(−1)N−1
(N − 1)!

rX
k=0

(−1)k+j
µ
2k + j − r

k

¶
S
(k+j+1)
N

For j − r = 1, the last term in (34) is recognized as
E
h
X
(j−1)
N X

(j)
N

i
(N2 )

. Since
¡
2k−1
k

¢
=1
2

¡
2k
k

¢
, the first sum in (34) is

2(−1)N−1
N !(N − 1)

jX
k=1

(−1)j+k+1
µ
2k−1
k

¶
S
(k+j+1)
N = −

E

·³
X
(j)
N

´2¸
2
¡
N
2

¢ +
2(−1)N−j−1
(N − 1)

S
(j+1)
N

N !

Hence, since 2(−1)N−1−j
N ! S

(j+1)
N = 2Pr [hN = j], we obtain

Pr [hN (2) = j] =
2N

N − 1 Pr [hN = j] +
E
h
X
(j−1)
N X

(j)
N

i
¡
N
2

¢ −
E

·³
X
(j)
N

´2¸
2
¡
N
2

¢ +
2(−1)N−1
N !(N − 1)

jX
k=1

µ
j + k

k

¶
(−1)k+jSk+jN

It would be of interest to find an interpretation for the last sum.
Without proof1, we mention the following exact results:

NX
m=1

µ
N

m

¶
Pr [hN (m) = N − 2] =

N−1X
m=1

µ
N − 1
m

¶
Pr [hN−1(m) = N − 3]

N − 1 +
1

(N − 2)!
For m ≤ N − 3 holds that

Pr [hN (m) = N −m− 1] = m!

(N − 1)!¡Nm¢
"µ

N

2

¶
+ (m− 1)(m/2 + 1) + (m+ 1)

mX
k=2

1

k

#

The complexity of the few analytic results mentioned only reveals that the remaining expressions are very likely to be more
complicated and, hence, difficult to interpret. In addition, an asymptotic approach or solution of (15) for large N , would be
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Fig. 6. The probability that the hopcount to an anycast group of size m exceeds ln(N), the average number of hops.

desirable because (a) exact results fail to provide insight and (b) numerical evaluation of the recursion (15) is limited to N around
150 (on a PC).

Figure 6 plots the overflow probability that the hopcount to an anycast group exceeds ln(N) hops, which is about the average
number of hops from the root to an arbitrary anycast member. The average number of hops follows from (13) E [hN (1)] =
ϕ0N (1) = ln(N) + γ − 1 + o(1), where the Euler constant is γ = 0.5772....If the URT is an acceptable model, this plot allows
to choose the number of servers m such that the probability that any user exceeds the average number of hops (ln(N)) is smaller
than some quality level, say 10−4. The strong difference in structure between a k-ary tree and a URT is also exemplified by this
Figure 6 and Figure 2, which makes a comparison difficult.

D. Numerical approximation for Pr [hN (m) = j] and for η.
Only for m = 1 with (12) and for m = 2 via (34), large values of the number of nodes N can be computed as shown in Figure

7. The similar shape between m = 1 and m = 2 suggests that Pr [hN (2) = j] is close to a Poisson density because it is shown in
[17] that for large N , Pr [hN (1) = j] ∼ (E[hN (1)])

j

Nj! . By curve fitting, we found very accurately for N > 50 that

E [hN (2)] = −0.7390 + 0.85317 ln(N)
Figure 5 further suggests that for small values of m, the shape of Pr [hN (m) = j] versus j is similar. Likely, for large N and
small m, we assert that

Pr [hN (m) = j] ∼ (E [hN (m)])
j

j!
e−E[hN (m)]

with
E [hN (m)] = am + bm ln(N) (17)

where am < am−1 and bm < bm−1. By solving the recursion (15) up to N = 150 for 1 ≤ m ≤ 10, we found that all E [hN (m)]
follow the scaling law (17) very close for N ≥ 30. Curve fitting as illustrated in Figure 8 yields

am ≈ −0.423− 0.402 lnm ≈ (γ − 1) (1− lnm)
bm ≈ 1− 0.253 lnm+ 0.0418 ln2m

These guesses of the asymptotic behavior (large N ) are about as far as we currently can go. From a practical point of view, it
allows us to compute rather easily and sufficiently accurate the target addressed in this paper.

The performance measure η is plotted in Figure 9. The legend shows the best linear fits (ignoring the point m = 1 for which
η = 1) which approximately suggest that η ≈ − log(

m
N )

N0.4 . The approximate asymptotic analysis gives

η ≈ am + bm ln(N)

a1 + b1 ln(N)

1By substitution into the recursion (15), one may verify these relations.
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Fig. 8. The coefficient am and bm together with their fit as function of m.

and for large N and small m, η ≈ bm ≈ 1− 0.253 lnm+ 0.0418 ln2m. The fit of bm does not happen to be entirely linear on a
lin-log plot which explains the small correction (the quadratic term in ln (m)).

E. Approximate Analysis.
Since the general solution (10) is in many cases difficult to compute as shown for the URT in section V, we consider a simplified

version of the above problem where each node in the tree has equal probability p = m
N to be a server. Instead of having

precisely m servers, the simplified version considers on average m servers and the probability that there are precisely m servers
is
¡
N
m

¢
pm(1− p)N−m. In the simplified version, the associated equations to (5) and (4) are

Pr
hn

m(j) = 0
o
|ej−1

i
= Pr

hn
m(j) = 0

oi
= (1− p)X

(j)
N

Pr [ej ] =

jY
l=0

Pr
hn

m(j) = 0
oi

= (1− p)
P j−1

l=0 X
(l)
N
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Fig. 9. The performance measure η for several sizes N of recursive trees as a function of the ratio m/N. The dotted line present the approximation for η where
E[hN (m)] is computed as E[ehN (m)] but E[hN (1)] by its exact value.

which implies that the probability that there are no servers in the tree is (1− p)N . Since in that case, the hopcount is meaningless,
we consider the conditional probability (3) of the hopcount given the level set contains at least one server (which is denoted byehN(m)) is

Pr
hehN (m) = j|LN

i
=

³
1− (1− p)X

(j)
N

´
(1− p)

P j−1
l=0 X

(l)
N

1− (1− p)
N

Thus,

Pr
hehN (m) ≤ n|LN

i
=
1− (1− p)

Pn
l=0X

(l)
N

1− (1− p)N

Finally, to avoid the knowledge of the entire level set LN , we use E
h
X
(l)
N

i
= N Pr [hN (1) = l] as the best estimate for each

X
(l)
N and obtain the approximate formula

Pr
hehN (m) = j

i
=

µ
1− (1− p)

E
h
X
(j)
N

i¶
(1− p)

P j−1
l=0 E

h
X
(l)
N

i

1− (1− p)
N

(18)

In dotted lines in Figure 9, we have added the approximate result for the URT where E [hN (m)] is computed based on (18), but
where E[hN (1)] is computed exact. For m = 1, the approximate analysis (18) is not wel suited: Figure 9 illustrates this deviation
in the fact that ηappr(1) = E

hehN (1)i /E [hN (1)] < 1. For higher values of m we observe a fairly good correspondence. We
found that the probability (18) reasonably approximates the exact result plotted on a linear scale. Only the tail behavior (on
log-scale) and the case for m = 1 deviate significantly. In summary for the URT, the approximation (18) for Pr [hN (m) = j] is
much faster to compute than the exact recursion and it seems appropriate for the computation of η for m > 1. However, it is less
adequate to solve the server placement problem that requires the tail values Pr [hN (m) > j].

VI. THE PERFORMANCE MEASURE η IN THE EXPONENTIALLY GROWING TREES.
In this section, we present an order estimate that supports our claimed law η ≈ 1 − a logm for a much larger class of trees,

namely the class of exponentially growing trees to which both the k-ary tree and the URT belong. Also most trees in the Internet are

exponentially growing trees. A tree is said to grow exponentially in the number of nodesN with degree κ if limj→∞
³
X
(j)
N

´1/j
=

κ or, equivalently, X(j)
N ∼ κj , for large j. As explained earlier [18], the fundamental problem with this definition is that it

only holds for infinite graphs N = ∞. For real (finite) graphs, there must exists some level j = l for which the sequence
X
(l+1)
N ,X

(l+2)
N , · · · ,X(N−1)

N ceases to grow because
PN−1

j=0 X
(j)
N = N < ∞. This boundary effect complicates the definition

of exponential growth in finite graphs. The second complication is that even in the finite set X(0)
N ,X

(1)
N , · · · ,X(l)

N not necessary
all X(j)

N with 0 ≤ j ≤ l need to obey X
(j)
N ∼ κj , but ’enough’ should. Without the limit concept, we cannot specify the precise
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conditions of exponential growth in a finite shortest path tree. If we assume in finite graphs that X(j)
N ∼ κj for j ≤ l, thenPl

j=0X
(j)
N = αN with 0 < α < 1. Indeed, for κ > 1, the highest hopcount level l possesses by far the most nodes since

κl+1−1
κ−1 ≈ κl which cannot be larger than a fraction αN of the total number of nodes.
We now present an order calculus to estimate η for exponentially growing trees based on relation (9). Let us denote

y =

¡
N−x
m

¢¡
N
m

¢ =
m−1Y
j=0

µ
1− x

N − j

¶
For large N and fixed m,

log y =
m−1X
j=0

log

µ
1− x

N − j

¶
= −

∞X
k=1

xk

k

m−1X
j=0

1

(N − j)k

= −x
m−1X
j=0

1

(N − j)
+O

µ³ x

N

´2¶
and

m−1X
j=0

1

(N − j)
=

1

N

m−1X
j=0

µ
1− j

N

¶−1
=
1

N

m−1X
j=0

µ
1 +

j

N
+O

¡
N−2

¢¶
=

m

N
+O

¡
N−2

¢
Hence, log y = −xm

N +O
³¡

x
N

¢2´ or, for x = o (N)

y = exp
³
−xm

N

´
(1 + o (1))

In case the tree is exponentially growing for j ≤ l as X(j)
N = βjκ

j with βj some slowly varying sequence, only very few levels
∆l (bounded by a fixed number) around l holds that

Pn
k=0X

(k)
N = O(N) where n ∈ [l − ∆l, l], while for all j > l, we havePn

k=0X
(k)
N = µnN with some sequence µn < µn+1 < µmaxn = 1. Applied to (9) where x =

Pn
k=0X

(k)
N < N ,

E [hN (m)|LN ] ≈ (1 + o (1))
lX

n=0

exp
³
−m
N
βnκ

n
´
+

N−2X
n=l+1

¡
(1−µn)N

m

¢¡
N
m

¢
If there are only a few levels more than l, the last series is much smaller than 1. In the extreme case of a line topology from level
l on, we have that µn = µl +

n
N and

(1−µl)NX
n=1

µ
(1− µl)N − n

m

¶
=

(1−µl)N−1X
k=0

µ
k

m

¶
=

µ
(1− µl)N

m+ 1

¶
which again shows that the last series in E [hN (m)|LN ] can be omitted. Since the slowly varying sequence βn is unknown, we
approximate βn = β and

lX
n=0

exp
³
−m
N
βnκ

n
´
≈

Z l

0

exp
³
−m
N
βκn

´
dn =

1

log κ

Z m
N βκl

m
N β

e−u

u
du

≈ 1

log κ

Z ∞
m
N β

e−u

u
du− e−m

m log κ

=
1

log κ

µ
−γ − e−m

m
− log m

N
β +O

³m
N

´¶
where in the last step a series [1, 5.1.11] for the exponential integral is used. Thus,

η ≈ (1 + o (1))

µ
1 +

−γ− e−m
m −logm−log β
logN +O

¡
m
N

¢¶
³
1− γ+e−1+log β

logN +O
¡
1
N

¢´
= (1 + o (1))

Ã
1− logm

logN
− e−1 − e−m

m

logN
+O

µ
1

log2N

¶!
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Since by definition η = 1 for m = 1, we finally arrive at

η ≈ 1− logm
logN

− e−1 − e−m
m

logN
+O

µ
1

log2N

¶
which supplies evidence for the conjecture η ≈ 1 − a logm that exponentially growing graphs (such as the Internet) possess a
performance measure η that logarithmically decreases in m, which is rather slow.

Measurement data in Internet seem to support this logm-scaling law. Apart from the correspondence with Figures in the work
of [8], Figure 6 in Krishnan et al. [10] shows that the relative measured traffic flow reduction decreases logarithmically in the
number of caches m.

VII. DISCUSSION AND CONCLUSIONS.
The probability density function of the hopcount to the nearest member of an anycast group has been analysed. Two types of

trees, the k-ary tree and the URT have been computed. The exact and simple results for the k-ary tree enable the computation
of Pr [hN(m) = j] for any reasonable size N . The computation of Pr [hN (m) = j] for the URT is, unfortunately, much more
complex. Although an exact recursion is presented as well as exact results for m = 1 and m = 2, only Poissonean asymptotics
for large N (and more realistic sizes) and small m are deduced from numerical computations.

Our results may shed some quantitative insight in the performance of anycast. At least two applications, the efficiency of
anycast over unicast and the server placement problem have been targeted. In both types of trees, the performance measure
η = E[hN (m)]

E[hN(1)]
decreases proportional with logm. More generally, an order calculus on exponentially growing graphs such as the

Internet supports the conjecture that η ≈ 1 − a logm for small m. The law η ≈ 1 − a logm means that, if an anycast group
consists of m > 1 servers, adding a few more servers does not significantly improve the performance measure expressed in the
number of hops. Other studies seem to indicate that this anycast law also holds for performance measures such as delay and traffic
reduction.

Computations of Pr [hN (m) > j] < � for given strigency � and hop j, allow to determine the minimum number m of servers.
The solution of this server placement problem may be regarded as an instance of the general quality of service (QoS) portofolio of
an network operator. When the number of servers for a major application offered by the service provider are properly computed,
the service provider may announce levels � of QoS (e.g. via Pr [hN (m) > j] < �) and accordingly price the use of the application.
More potential applications are envisaged as anycast is still in an embryonic state.

Finally, the focus on the URT as reasonable model for realistic trees can be motivated. Only very few classes of trees, including
the URT, make analytic computations possible. Apart from this computational argument, it [9] was found that measured trees in
the Internet are fairly well modeled by a URT. In ad-hoc networks with uniformly distributed mobile users, the URT may also
model the tree from one mobile user to the others. Recent work on peer-to-peer networks indicates that some of these networks
(such as Gnutella) possess properties well described by random graphs. Present results on the URT may also have value in the
context of peer-to-peer networking. For example, if the RIPE measurement boxes [9] are considered as peers, the distribution of
the peer-to-peer delay seems roughly exponentially distributed. In the complete graph (each peer has a connection to any other)
with exponentially distributed weights, the shortest path tree is a URT [16], [17].
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Appendix
VIII. GENERATING FUNCTIONS FOR Pr[hN (m) = j] IN THE URT.

A. A differential equation.
We will transform the discrete recursion (15) into a relation for a generating function. Let u(i, k, j) =

¡
k
i

¢
Pr [hk(i) = j], then

the relation (15) becomes

u(m,N, j) =
1

N − 1
N−1X
k=1

m−1X
i=1

(u(i, k, j − 1) + u(i, k, j))
N−k−1X
q=j

u(m− i,N − k, q)

+
1

N − 1
N−1X
k=1

u(m, k, j − 1) + u(m,k; j) (19)

Let U(i, k, z) =
P∞

j=0 u(i, k, j)z
j which is convergent for |z| < R(i, k). Conversely, u(i, k, j) = 1

2πi

R
C(0)

U(i,k,w)
wj+1 dw, then

U(m,N, z) =
1

N − 1
N−1X
k=1

m−1X
i=1

∞X
j=0

(u(i, k, j − 1) + u(i, k, j))
N−k−1X
q=j

u(m− i,N − k, q)zj

+
(z + 1)

N − 1
N−1X
k=1

U(m,k, z)

Denote by r

r =
∞X
j=0

[u(i, k, j − 1) + u(i, k, j)]
N−k−1X
q=j

u(m− i,N − k, q)zj

=
∞X
j=0

[u(i, k, j − 1) + u(i, k, j)] zj
∞X
q=j

1

2πi

Z
C3(0)

U(m− i,N − k,w)

wq+1
dw

=
∞X
j=0

[u(i, k, j − 1) + u(i, k, j)] zj
1

2πi

Z
C

U(m− i,N − k,w)dw

wj(w − 1)

=
1

2πi

Z
C

¡
1 + z

w

¢
(w − 1) U(m− i,N − k,w)U

³
i, k,

z

w

´
dw

where the contour C lies in the w-plane between |w| < R(m− i,N − k) and
¯̄
z
w

¯̄
< R(i, k). The approach is due to Hadamard

[15, sec. 4.6]. Hence, the recursion for u(i, k, j) is equivalent to the functional equation for the generating function U(i, k; z),

U(m,N, z) =
1

2πi (N − 1)
N−1X
k=1

m−1X
i0=1

Z
C

(z +w)

w(w − 1)U(m− i0,N − k,w)U
³
i0, k,

z

w

´
dw +

(z + 1)

N − 1
N−1X
k=1

U(m,k, z)

Denote V (x,N, z) =
P∞

m=0 U(m,N, z)xm, then we obtain after multiplying by xm and summing over all m ≥ 0,

V (x,N, z) =
1

2πi (N − 1)
N−1X
k=1

Z
C

(z +w)

w(w − 1)V (x,N − k,w)V
³
x, k,

z

w

´
dw +

(z + 1)

N − 1
N−1X
k=1

V (x, k, z)

or
(N − 1)V (x,N, z) =

1

2πi

N−1X
k=1

Z
C

(z +w)

w(w − 1)V (x,N − k,w)V
³
x, k,

z

w

´
dw + (z + 1)

N−1X
k=1

V (x, k, z)

Finally, denote W (x, y, z) =
P∞

N=0 V (m,N, z)yN then,

y
∂W (x, y, z)

∂y
− 1 + zy

1− y
W (x, y, z) =

1

2πi

Z
C

(z + w)

w(w − 1)W (x, y,w)W
³
x; y;

z

w

´
dw

We can write the left hand side as a contour integral,

y
∂W (x, y, z)

∂y
=

y

2πi

Z
C(y)

W (x,w, z)

(w − y)2
dw
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If we can assume that the contour C(y) can be deformed to the contour C, we obtain, 1
2πi

R
C
f(w)dw = 0, where

f(w) =
(z + w)

w(w − 1)W (x, y, w)W
³
x; y;

z

w

´
− yW (x,w, z)

(w − y)2
+
1 + zy

1− y

W (x, y, w)

(w − z)

In other words, f(w) is an analytic function in w inside C and f(w) = f(σ + it) satisfies the Cauchy-Riemann equations,

∂Re f(σ + it)

∂σ
=

∂ Im f(σ + it)

∂t
∂Re f(σ + it)

∂t
= −∂ Im f(σ + it)

∂σ

From this set of partial differential equations,

W (x, y, z) =
X
m≥0

X
N≥0

X
j≥0

u(m,N, j)xmyNzj

may be found in principle.

B. A difference equation recursive in m.

The difference equation (19) can be rewritten as

(N − 1)u(m,N, j) =
N−1X
k=1

[u(m, k, j − 1) + u(m, k, j)] + t(m,N, j)

where

t(m,N, j) =
N−1X
k=1

m−1X
i=1

(u(i, k, j − 1) + u(i, k; j))
N−k−1X
q=j

u(m− i,N − k, q) (20)

only contains terms in u(m0, N, j) with m0 < m. Subtracting (N − 1)u(m,N, j) − (N − 2)u(m,N − 1, j) and writing
f(m,N, j) = t(m,N, j)− t(m,N − 1, j) yields

(N − 1)u(m,N, j)− (N − 1)u(m,N − 1, j)− u(m,N − 1, j − 1) = f(m,N, j) (21)

Define as above the generating function U(m,N, z) =
P∞

j=0 u(m,N, j)zj and F (m,N, z) =
P∞

j=0 f(m,N, j)zj . Making the
transition in (21) to generating functions gives

(N − 1)U(m,N, z)− (N − 1 + z)U(m,N − 1, z) = F (m,N, z) (22)

By iterating (22) q-times, we obtain

U(m,N, z) = U(m,N − q, z)

qY
n=1

(N − n+ z)

(N − n)!
+

q−1X
k=0

F (m,N − k, z)

N − k − 1
kY

n=1

N − n+ z

N − n

with the convention that
Qb

n=a = 1 if a > b. Recall that Pr [hN (N) = j] = δj0, where δmn is the Kronecker delta which
is δmn = 1 if m = n, else δmn = 0. Applied to u(m,N, j) =

¡
N
m

¢
Pr [hN (m) = j] implies that u(m,m, j) = δj0 and

U(m,m, z) = 1. Thus, after q = N −m iterations, we arrive at

U(m,N, z) =
N−mY
n=1

(N − n+ z)

(N − n)!
+

N−m−1X
k=0

F (m,N − k, z)

N − k − 1
kY

n=1

N − n+ z

N − n

=
Γ(N + z)

(N − 1)!
(m− 1)!
Γ(m+ z)

+
Γ(N + z)

(N − 1)!
N−m−1X
k=0

(N − k − 2)!F (m,N − k, z)

Γ(N − k + z)

Slightly rewritten, the solution of (22) is

U(m,N, z) =
Γ(N + z)

(N − 1)!
(m− 1)!
Γ(m+ z)

+
Γ(N + z)

(N − 1)!
NX

k=m+1

(k − 2)!F (m, k, z)

Γ(k + z)
(23)
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This expression can be written as

U(m,N, z) =
Γ(N + z)

(N − 1)!
NX

k=m

(k − 2)!F (m, k, z)

Γ(k + z)
(24)

Indeed, the explicit expression for f(m,N, j) is,

f(m,N, j) = t(m,N, j)− t(m,N − 1, j) (25)

=
m−1X
i=1

N−1X
k=1

(u(i, k; j − 1) + u(i, k; j))
N−k−1X
q=j

u(m− i,N − k; q)

−
N−2X
k=1

(u(i, k; j − 1) + u(i, k; j))
N−k−2X
q=j

u(m− i,N − 1− k; q)


If j = 0, then

f(m,N, 0) =
m−1X
i=1

"
N−1X
k=1

u(i, k; 0)
N−k−1X
q=0

u(m− i,N − k; q)−
N−2X
k=1

u(i, k; 0)
N−k−2X
q=0

u(m− i,N − 1− k; q)

#

=
m−1X
i=1

"
N−1X
k=1

µ
k

i

¶
i

k

µ
N − k

m− i

¶N−k−1X
q=0

Pr [hN−k(m− i) = q]

−
N−2X
k=1

µ
k

i

¶
i

k

µ
N − k − 1
m− i

¶N−k−2X
q=0

Pr [hN−k−1(m− i) = q]

#

=
N−1X
k=1

m−2X
i=0

µ
k − 1
i

¶µ
N − k

m− 1− i

¶
−

N−2X
k=1

m−2X
i=0

µ
k − 1
i

¶µ
N − k − 1
m− 1− i

¶
Recall [1, 24.1.1.B] that

Pm−1
i=0

¡
A
i

¢¡
B

m−1−i
¢
=
¡
A+B
m−1

¢
and,

m−2X
i=0

µ
k − 1
i

¶µ
N − k

m− 1− i

¶
=

m−1X
i=0

µ
k − 1
i

¶µ
N − k

m− 1− i

¶
−
µ
k − 1
m− 1

¶
=

µ
N − 1
m− 1

¶
−
µ
k − 1
m− 1

¶
Hence2,

f(m,N, 0) =

µ
N − 1
m− 1

¶
(N − 1)−

N−1X
k=1

µ
k − 1
m− 1

¶
−
µ
N − 2
m− 1

¶
(N − 2) +

N−2X
k=1

µ
k − 1
m− 1

¶
= (N − 1)

·µ
N − 1
m− 1

¶
−
µ
N − 2
m− 1

¶¸
or

f(m,N, 0) = (N − 1)
µ
N − 2
m− 2

¶
(26)

For j > 0 and using Theorem 1, we can write

f(m,N, j) =
m−1X
i=1

N−2X
k=1

(u(i, k; j − 1) + u(i, k; j))

 ∞X
q=j

(u(m− i,N − k; q)− u(m− i,N − 1− k; q))

 (27)

Now, if m = N , using Theorem 1, relation (27) reduces to

f(m,m, j) =
m−1X
i=1

m−2X
k=1

(u(i, k; j − 1) + u(i, k; j))

i−kX
q=j

(u(m− i,m− k; q)− u(m− i,m− 1− k; q))


2As a check, the left hand side of (21) for j = 0 is

L = (N − 1)u(m,N, 0)− (N − 1)u(m,N − 1, 0)

= (N − 1)
·
m

N

³N
m

´
− m

N − 1
³N − 1

m

´¸
= (N − 1)

³N − 2
m− 2

´
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The bounds in the q-sum indicate that i ≥ k + j, while Theorem 1 applied to the k-sum learns that i ≤ k + 1 − j or, that
f(m,m, j) = 0 for all j > 0, except for j = 0. In that case, relation (26) applies with result f(m,m, 0) = m − 1. Thus,
F (m,m, z) = m− 1 and this proves the expression (24).

All difficulties are contained in F (m,k, z) and it seems that, due to the sum of products u(i, k, j)u(i0, k0, j0) in f(m,N, j),
a further explicit solution for general m is hard to find. By gradually solving first the case for m = 1, then m = 2 and so on,
U (m,N, z) and u(m,N, j) can be found if the generating F (m,N, z) can be found. This approach is followed for m = 2 in
Sec. IX below.

Since the Stirling numbers that appear in the case m = 1 are integers, we deduce from the above recursion (23) that (N −
1)!u(m,N, j) are integers and consequently, that Pr [hN (m) = j] is rational.

IX. THE PROBABILITY DISTRIBUTION Pr [hN (2) = j] IN THE URT.
For m = 2, the generating function (23) reads

U(2, N, z) =
Γ(N + z)

(N − 1)!Γ(2 + z)
+
Γ(N + z)

(N − 1)!
NX
q=3

(q − 2)!Fq(z)
Γ(q + z)

(28)

while (20) reduces with (12) to

t(2, N, j) =
N−1X
k=1

(−1)k−j
³
S
(j)
k − S

(j+1)
k

´
(k − 1)!

N−k−1X
q=j

(−1)N−k−1−qS(q+1)N−k
(N − k − 1)!

In order to proceed, we must concentrate further on t(2, N, j), which can be rewritten using properties of the Stirling Numbers
[1, 24.1.3] as

t(2, N, j) =

N−1X
q=j

(−1)N−j−1−q
(N − 2)!

N−q−1X
k=j

³N − 2
k − 1

´
S
(j)
k S

(q+1)
N−k −

N−1X
q=j

(−1)N−j−1−q
(N − 2)!

N−q−1X
k=j+1

³N − 2
k − 1

´
S
(j+1)
k S

(q+1)
N−k

Using the identity proved in [19],

N−q−1X
k=j

³N − 2
k−1

´
S
(j)
k S

(q+1)
N−k = (−1)j+q

³j+q − 1
j−1

´ N−1X
k=j+q

(−1)k
³ k−1
j+q − 1

´
S
(k)
N−1

yields

t(2, N, j) =
(−1)N−1
(N − 2)!

N−1X
q=j

³j+q − 1
j−1

´ N−1X
k=j+q

(−1)k
³ k−1
j+q − 1

´
S
(k)
N−1 +

(−1)N−1
(N − 2)!

NX
q=j+1

³j+q − 1
j

´ N−1X
k=j+q

(−1)k
³ k−1
j+q − 1

´
S
(k)
N−1

=
(−1)N−1
(N − 2)!

³2j−1
j−1

´ N−1X
k=2j

(−1)k
³ k−1
2j−1

´
S
(k)
N−1 +

(−1)N−1
(N − 2)!

N−1X
q=j+1

³j+q
j

´ N−1X
k=j+q

(−1)k
³ k−1
j+q − 1

´
S
(k)
N−1

Then,

f(2, N, j) = t(2, N, j)− t(2, N − 1, j)

=
1

(N − 1− 2j)!j!(j − 1)! + (−1)
N−1

³2j−1
j−1

´ N−2X
k=2j

(−1)k
³ k−1
2j−1

´ S
(k−1)
N−2

(N − 2)! +

+(−1)N−1
N−1X
q=j+1

³j+q
j

´ N−2X
k=j+q

(−1)k
³ k−1
j+q − 1

´ S
(k−1)
N−2

(N − 2)! +
N−2X
q=j+1

³j+q
j

´³ N − 2
j+q − 1

´ 1

(N − 2)!

Using the identity (38) derived in the Appendix

N−1X
k=j+q

(−1)k
µ

k−1
j+q − 1

¶
S
(k−1)
N−2 = (−1)j+qS(j+q)N−1 (29)

leads to

f(2, N, j) = (−1)N−1
µ
2j−1
j−1

¶
S
(2j)
N−1

(N − 2)! +
N−1X
q=0

µ
q + 2j + 1

j

¶
(−1)N+qS(q+2j+1)N−1

(N − 2)! (30)
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Or again applying the above identity (29),

f(2, N, j) = (−1)N
µ
2j−1
j

¶
S
(2j)
N−1

(N − 2)! +
(−1)N+j+1S(j+1)N

(N − 2)! +

2j−1X
q=j

µ
q

j

¶
(−1)q+NS(q)N−1
(N − 2)! (31)

The generating function F (2, Nz) corresponding to (31) is, recalling with (36) that
PN−1

j=0 (−1)N+j+1S(j+1)N zj = Γ(N+z)
Γ(z+1) ,

(N − 2)!F (2,Nz) =
Γ(N + z)

Γ(z + 1)
+ (−1)N

N−1X
j=1

Ã
2j−1
j

!
S
(2j)
N−1z

j + (−1)N
N−1X
j=0

j−1X
q=0

Ã
q + j

j

!
(−1)q+jS(q+j)N−1 z

j (32)

The first term F1 =
Γ(N+z)
Γ(z+1) in (32) contributes to U(2,N, z) as

U1(2, N, z) =
Γ(N + z)

Γ(z + 1)(N − 1)! (N − 2)

For the second term in (32),

F2 = (−1)N
N−1X
j=0

µ
2j − 1

j

¶
S
(2j)
N−1z

j

the contribution to U(2, N, z) is

U2(2,N, z) =
Γ(N + z)

(N − 1)!
NX
q=3

(−1)q
Γ(q + z)

q−1X
j=1

µ
2j−1
j

¶
S
(2j)
q−1z

j

=
Γ(N + z)

(N − 1)!
N−1X
q=1

(−1)q+1
Γ(q + z + 1)

qX
j=1

µ
2j−1
j

¶
S(2j)q zj

=
Γ(N + z)

(N − 1)!
N−1X
j=1

µ
2j−1
j

¶
zj

N−1X
q=j

(−1)q+1S(2j)q

Γ(q + z + 1)

Invoking Lemma 6 yields

U2(2, N, z) =
(−1)N
(N − 1)!

∞X
m=0

N−1X
j=1

(−1)m
µ
2j−1
j

¶
S
(2j+m+1)
N zj+m

Let p = j +m, then from 0 ≤ p− j ≤ ∞ it follows that

U2(2, N, z) =
(−1)N
(N − 1)!

∞X
p=1

 pX
j=1

(−1)p−j
µ
2j−1
j

¶
S
(j+p+1)
N

 zp

We now concentrate on

F3 = (−1)N
N−1X
j=0

j−1X
q=0

µ
q + j

j

¶
(−1)q+jS(q+j)N−1 z

j

= z(−1)N
N−2X
j=0

jX
q=0

µ
q + j + 1

j + 1

¶
(−1)q+j+1S(q+j+1)N−1 zj

= z(−1)N
N−2X
q=0

N−2X
j=q

µ
q + j + 1

j + 1

¶
(−1)q+j+1S(q+j+1)N−1 zj
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The contribution to U(2, N, z) is

U3(2, N, z) =
Γ(N + z)z

(N − 1)!
NX
q=3

(−1)q
Γ(q + z)

q−2X
k=0

q−2X
j=k

µ
k+j + 1

j + 1

¶
(−1)k+j+1S(k+j+1)q−1 zj

=
Γ(N + z)z

(N − 1)!
N−2X
q=1

qX
k=0

qX
j=k

µ
k+j + 1

j + 1

¶
(−1)k+j(−1)q+1S(k+j+1)q+1

Γ(q + z + 2)
zj

=
Γ(N + z)z

(N − 1)!
N−2X
q=0

qX
k=0

qX
j=k

µ
k+j + 1

j + 1

¶
(−1)k+j(−1)q+1S(k+j+1)q+1

Γ(q + z + 2)
zj

+
Γ(N + z)z

(N − 1)!Γ(z + 2)
The triple sum, denoted by S3 needs further attention. Reversing the q-sum with the k-sum and j-sum yields,

S3 =
Γ(N + z)z

(N − 1)!
N−2X
k=0

N−2X
j=k

µ
k+j + 1

j + 1

¶
(−1)k+jzj

N−2X
q=j

(−1)q+1S(k+j+1)q+1

Γ(q + z + 2)

Invoking Lemma 6 in S3 gives

S3 =
(−1)N−1z
(N − 1)!

∞X
m=0

N−2X
k=0

N−2X
j=k

µ
k+j + 1

j + 1

¶
(−1)k+j+mzj+mSk+j+m+2N

=
(−1)N−1z
(N − 1)!

∞X
m=0

N−2X
j=0

Ã
jX

k=0

µ
k+j + 1

j + 1

¶
(−1)k+j+mSk+j+m+2N

!
zj+m

Let p = j +m, then 0 ≤ p ≤ ∞ and from 0 ≤ p−m ≤ N − 2, it follows that

S3 =
(−1)N−1z
(N − 1)!

∞X
p=0

pX
m=0

Ã
p−mX
k=0

µ
k+p−m+ 1

p−m+ 1

¶
(−1)k+pSk+p+2N

!
zp

and let q = p−m,

S3 =
(−1)N−1z
(N − 1)!

∞X
p=0

pX
q=0

qX
k=0

µ
k+q + 1

q + 1

¶
(−1)k+pSk+p+2N zp

=
(−1)N−1z
(N − 1)!

∞X
p=0

pX
k=0

 pX
q=k

µ
k+q + 1

q + 1

¶ (−1)k+pSk+p+2N zp

Now
pX

q=k

µ
k+q + 1

q + 1

¶
=

pX
q=k

1

2πi

Z
C(0)

(1 + x)k+q+1

xq+2
dx

=
1

2πi

Z
C(0)

dx
(1 + x)k+1

x2

pX
q=k

µ
1 + x

x

¶q

=
1

2πi

Z
C(0)

dx
(1 + x)k+1

x2

µ
1 + x

x

¶k p−kX
q=0

µ
1 + x

x

¶q
= − 1

2πi

Z
C(0)

dx
(1 + x)2k+1

xk+1
+
1

2πi

Z
C(0)

dx
(1 + x)p+k+2

xp+2

= −
µ
2k + 1

k

¶
+

µ
p+ k + 2

p+ 1

¶
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At last,

U3(2, N, z) =
(−1)N−1
(N − 1)!

∞X
p=0

pX
k=0

·µ
p+ k + 2

p+ 1

¶
−
µ
2k + 1

k

¶¸
(−1)k+pSk+p+2N zp+1 +

Γ(N + z)z

(N − 1)!Γ(z + 2)

Substituting all contributions in (28) yields

U(2, N, z) =
Γ(N + z)

(N − 2)!Γ(z + 1) +
(−1)N
(N − 1)!

∞X
p=1

 pX
j=1

(−1)p−j
µ
2j−1
j

¶
S
(j+p+1)
N

 zp

+
(−1)N−1
(N − 1)!

∞X
p=0

pX
k=0

·µ
p+ k + 2

p+ 1

¶
−
µ
2k + 1

k

¶¸
(−1)k+pSk+p+2N zp+1

The expansion of the first term follows from (36) as

Γ(N + z)

(N − 2)!Γ(z + 1) =
(−1)N−1
(N − 2)!

N−1X
p=0

S
(p+1)
N (−1)pzp

Finally, we arrive at the power series of the generating function U(2, N, z),

U(2, N, z) = (N − 1) + (−1)
N−1

(N − 1)!
N−1X
p=1

(N − 1)S(p+1)N (−1)p +
pX

j=1

(−1)p+1+j
µ
2j−1
j

¶
S
(j+p+1)
N

 zp

+
(−1)N−1
(N − 1)!

∞X
p=1

p−1X
k=0

·µ
p+ k + 1

p

¶
−
µ
2k + 1

k

¶¸
(−1)k+p+1Sk+p+1N zp

from which,

u (2, N, j) =
(−1)N−1−j
(N − 2)! S

(j+1)
N +

(−1)N−1
(N − 1)!

jX
k=1

(−1)j+k+1
µ
2k−1
k

¶
S
(k+j+1)
N

+
(−1)N−1
(N − 1)!

j−1X
k=0

·µ
j + k + 1

j

¶
−
µ
2k + 1

k

¶¸
(−1)k+j+1Sk+j+1N (33)

For j = 0, we indeed have u(2,N, 0) = N−1, the constant term U(2, N, 0) in the power series of U(2, N, z). Since u (2, N, j) =¡
N
2

¢
Pr [hN (2) = j], we finally arrive at

Pr [hN (2) = j] =
2(−1)N−1−j

N !
S
(j+1)
N +

2(−1)N−1
N !(N − 1)

jX
k=1

(−1)j+k+1
µ
2k−1
k

¶
S
(k+j+1)
N (34)

+
2(−1)N−1
N !(N − 1)

j−1X
k=0

·µ
j + k + 1

j

¶
−
µ
2k + 1

k

¶¸
(−1)k+j+1Sk+j+1N

X. IDENTITIES FOR STIRLING NUMBERS OF THE FIRST KIND.
From the generating function of the Stirling Numbers of the first kind [1, 24.1.3],

Γ(x+ 1)

Γ(x+ 1− n)
=

nX
k=0

S(k)n xk (35)

or, after putting x = −z
Γ(z + n)

Γ(z)
=

nX
j=0

S(j)n (−1)n−jzj (36)

we have that
S(k)n =

1

2πi

Z
C(0)

Γ(x+ 1)dx

Γ(x+ 1− n)xk+1
(37)
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Lemma 4:

S
(j+1)
n+1 =

nX
k=j

(−1)k−j
µ
k

j

¶
S(k)n (38)

Proof: Let x = u+ w in (35), then

Γ(u+ w + 1)

Γ(u+ w + 1− n)
=

nX
k=0

S(k)n (u+ w)k =
nX

k=0

S(k)n

kX
j=0

µ
k

j

¶
uk−jwj

After reversal of the summations, we obtain

Γ(u+ w + 1)

Γ(u+ w + 1− n)
=

nX
j=0

 nX
k=j

µ
k

j

¶
S(k)n uk−j

wj

If u = −1, the left hand side becomes with (35)

Γ(w)

Γ(w − n)
=
Γ(w + 1)

wΓ(w − n)
=

n+1X
k=1

S
(k)
n+1w

k−1 =
nX
j=0

S
(j+1)
n+1 wj

Equating the corresponding powers in w in both expression yields the identity (38).

Lemma 5: If

T (a, b; c; z) =
N−1X
k=c

(−1)kzk
Γ(a+ k)Γ(b− k)

(39)

then

T (a, b; c; z) =
1

a− 1 + z(b− 1)
µ

(−1)N−1zN
Γ(a+N − 1)Γ(b−N)

− (−1)c−1zc
Γ(a+ c− 1)Γ(b− c)

¶
(40)

Proof: Write

T (a− 1, b; c; z) =
N−1X
k=c

(−1)kzk
Γ(a− 1 + k)Γ(b− k)

=
N−1X
k=c

(a− 1 + k)(−1)kzk
Γ(a+ k)Γ(b− k)

= (a− 1)
N−1X
k=c

(−1)kzk
Γ(a+ k)Γ(b− k)

+
N−1X
k=c

k(−1)kzk
Γ(a+ k)Γ(b− k)

= (a− 1)T (a, b; c; z) +
N−1X
k=c

k(−1)kzk
Γ(a+ k)Γ(b− k)

Alternatively,

T (a− 1, b; c) =
N−1X
k=c

(−1)kzk
Γ(a− 1 + k)Γ(b− k)

= −z
N−2X
k=c−1

(−1)kzk
Γ(a+ k)Γ(b− 1− k)

= −z
N−2X
k=c−1

(b− 1− k)(−1)kzk
Γ(a+ k)Γ(b− k)

= −z(b− 1)
N−2X
k=c−1

(−1)kzk
Γ(a+ k)Γ(b− k)

+ z
N−2X
k=c−1

k(−1)kzk
Γ(a+ k)Γ(b− k)

= −z(b− 1)T (a, b; c; z) + (c− b)(−1)c−1zc
Γ(a+ c− 1)Γ(b− c+ 1)

+
(b−N)(−1)N−1zN

Γ(a+N − 1)Γ(b−N + 1)
+

N−1X
k=c

k(−1)kzk
Γ(a+ k)Γ(b− k)

Equating both yields

(a− 1)T (a, b; c; z) = −z(b− 1)T (a, b; c; z) + (c− b)(−1)c−1zc
Γ(a+ c− 1)Γ(b− c+ 1)

+
(b−N)(−1)N−1zN

Γ(a+N − 1)Γ(b−N + 1)
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or

(a− 1 + z(b− 1))T (a, b; c) = (c− b)(−1)c−1zc
Γ(a+ c− 1)Γ(b− c+ 1)

+
(b−N)(−1)N−1zN

Γ(a+N − 1)Γ(b−N + 1)

From which (40) follows.
Lemma 6: For integers j, k and N and any complex number z such that |z| < 1 holds that,

N−2X
q=j

(−1)q+1S(k+j+1)q+1

Γ(q + z + 2)
=
(−1)N−1
Γ(z +N)

∞X
m=0

(−z)mSk+j+m+2N (41)

Proof: Denoting the left-hand side by Θ and invoking (37), we have

Θ =
1

2πi

Z
C(0)

Γ(x+ 1)dx

xk+j+2

N−2X
q=j

(−1)q+1
Γ(q + z + 2)Γ(x− q)

=
1

2πi

Z
C(0)

Γ(x+ 1)dx

xk+j+2

N−1X
q=j+1

(−1)q
Γ(q + z + 1)Γ(x+ 1− q)

Invoking Lemma 5, the sum equals

T (z + 1, x+ 1; j + 1; 1) =
1

z + x

µ
(−1)N−1

Γ(z +N)Γ(x+ 1−N)
− (−1)j
Γ(z + j + 1)Γ(x− j)

¶
such that

Θ =
(−1)N−1

2πiΓ(z +N)

Z
C(0)

Γ(x+ 1)dx

xk+j+2Γ(x+ 1−N)

1

z + x
− (−1)j
2πiΓ(z + j + 1)

Z
C(0)

Γ(x+ 1)dx

xk+j+2Γ(x− j)

1

z + x

Further, for |z| < |x| < 1,
1

z + x
=

1

x
¡
1 + z

x

¢ = ∞X
m=0

(−1)m zm

xm+1

The bound on |x| is derived from the condition on the contour C(0) not to encircle a pole of Γ(x + 1) at x = −k for k > 0.
Hence,

Θ =
(−1)N−1

2πiΓ(z +N)

∞X
m=0

(−z)m
Z
C(0)

Γ(x+ 1)dx

xk+j+m+3Γ(x+ 1−N)
− (−1)j
2πiΓ(z + j + 1)

∞X
m=0

(−z)m
Z
C(0)

Γ(x+ 1)dx

xk+j+m+3Γ(x− j)

=
(−1)N−1
Γ(z +N)

∞X
m=0

(−z)mSk+j+m+2N − (−1)j
Γ(z + j + 1)

∞X
m=0

(−z)mSk+j+m+2j+1

=
(−1)N−1
Γ(z +N)

∞X
m=0

(−z)mSk+j+m+2N

since k + j +m+ 2 > j + 1.

XI. ABOUT THE DEGREE OF THE URT.

The RIPE measurement configuration and the details of the measurements are explained elsewhere [9]. We have constructed
a graph G1 which is the union of m path trees where a path tree consists of the union of the most dominant non-erroneous
traceroutes from a root to m other destinations. Figure 10 shows that the probability density function (pdf) of the node degrees in
G1 is exponentially decreasing in the node degree with rate -0.668 over nearly the entire range.

Let us denote by
n
D
(k)
N

o
the set of nodes with degree k in a graph with N nodes and by D

(k)
N the cardinality (the number of

elements) of this set
n
D
(k)
N

o
. We can prove the following result:

Theorem 7: In the URT, the average number of degree k nodes is given by

E
h
D
(k)
N

i
=

N

2k
+
(−1)N+k−1 S(k)N−1

(N − 1)! +
(−1)N

2k (N − 1)!
k−1X
j=1

S
(j)
N−1 (−2)j (42)
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Fig. 10. The pdf of the degree of the graph G1, the union of most dominant traces from a source to m (around 30) anycast members.

and E
h
D
(k)
N

i
obeys the recursion

E
h
D
(k)
N+1

i
=

N − 1
N

E
h
D
(k)
N

i
+

E
h
D
(k−1)
N

i
N

(43)
For large N and using [1, 24.1.3.III], the asymptotic law is

E
h
D
(k)
N

i
N

=
1

2k
+O

Ã
logk−1N

N2

!
(44)

The ratio of the average number of nodes with degree k over the total number of nodes decreases exponentially fast with rate ln 2.
Na and Rapoport [11] claim to have an exact formula for E

h
D
(k)
N

i
, but they only present an iterated version of the recursion (43).

In an entirely different context, Gastwirth [7] derives the asymptotic law (44) (without order term) using probabilistic estimates.

For large N ,
E
h
D
(k)
N

i
N is very close to Pr[degree = k], the probability that an arbitrary node has degree k. Hence, the decay rate

of the pdf of the node degrees in the URT equals ln 2 ' 0.693. In summary, the pdf of the node degrees in G1 follows almost the
same law as that in the URT.

This intriguing agreement needs additional comments. It is not difficult to see that, in general, the union of two or more trees
(a) is not a tree and (b) has most degrees larger than that appearing in one tree. Hence, the close agreement points to the fact
that the intersection of the path trees rooted at a RIPE measurement box towards any other box is small (which has been verified)
such that the graph G1 is ’close’ to a URT. The discrepancy with the results of Faloutsos et al. [5], who have reported a power
law for the degrees in the graph of the Internet, is mainly due to the number of test boxes m (and path trees) considered in the
RIPE configuration where m varies from 30 to 40 which is small compared to the number of nodes. If m grows or more trees are
considered (as we did), the pdf of the degree starts bending from an exponential (URT) to a power law regime. Indeed, for small
m, the tree is an overlay (subtree) of the underlying Internet graph and only includes a fraction of the possible links.


