
The Hopcount to an Anycast Group

Piet Van Mieghem

Delft University of Technology∗

Abstract

The probability density function of the number of hops to the most nearby member of the anycast
group consisting of m members (e.g. servers) is analysed. The results are applied to compute a
performance measure η of the efficiency of anycast over unicast and to the server placement problem.
The server placement problem asks for the number of (replicated) servers m needed such that any
user in the network is not more than j hops away from a server of the anycast group with a certain
prescribed probability. Two types of shortest path trees are investigated: the regular k-ary tree and
the irregular uniform recursive tree. Since these two types of trees indicate that the performance

measure η ≈ 1 − a logm where the real number a depends on the details of the tree, it suggests
that for trees in real networks (as the Internet) a same logarithmic law applies. An order calculus
on exponentially growing tree further supplies evidence for the conjecture that η ≈ 1− a logm for
small m.

1 Introduction

IPv6 possesses a new address type, anycast, that is not supported in IPv4. The anycast address is

syntactically identical to a unicast address. However, when a set of interfaces is specified by the same

unicast address, that unicast address is called an anycast address. The advantage of anycast is that

a group of interfaces at different location is treated as one single address. For example, often the

information on servers is duplicated over several secondary servers at different locations for reasons of

robustness and accessibility. Changes are only performed on the primary servers which are then copied

onto all secondary servers to maintain consistency. If both the primary and all secondary servers have

a same ’anycast’ address, a query from some source towards that anycast address is routed towards

the most nearby server of the group. Hence, instead of routing the packet to the root server (primary

server) anycast is more efficient.

In this article, the distribution of the number of hops to the most nearby server of the anycast

group is analyzed. The main focus is thus on quantifying the performance of the anycasting paradigm

rather than on discussing the implementation or protocol-related impact of anycast. Suppose there

are m (primary plus all secondary) servers and that these m servers are uniformly distributed over the

Internet. The number of hops from the querying device A to the most nearby server is the minimum

number of hops, denoted by hN (m), of the set of shortest paths from A to these m servers in a network

∗Faculty of Electrical Engineering, Mathematics and Computer Science, P.O Box 5031, 2600 GA Delft, The Nether-

lands. Email: P.VanMieghem@ewi.tudelft.nl

1



with N nodes. In order to solve the problem, the shortest path tree rooted at node A, the querying

device, needs to be investigated. We assume in the sequel that one of the m uniformly distributed

servers can possibly coincide with the same router to which the querying machine A is attached. In

that case, hN(m) = 0.

Clearly, ifm = 1, the problem reduces to the hopcount of the shortest path from A to one uniformly

chosen node in the network and we have that

hN (1) = hN ,

where hN is the hopcount of the shortest path in a graph with N nodes. The other extreme for m = N

leads to

hN (N) = 0

because all nodes in the network are servers. In between these extremes, there holds

hN (m) ≤ hN(m− 1)

since one additional anycast group member (server) can never increase the minimum hopcount to the

root.

The hopcount to an anycast group is a stochastic problem. Even if the network graph is exactly

known, an arbitrary node A views the network along a tree. Most often it is a shortest path tree

where the precise optimization criterion is here irrelevant. Although the sequel emphasizes ’shortest

path trees’, the presented theory is equally valid for any type of tree. The node A’s perception of

the network is very likely different from the view of another node A0. Nevertheless, shortest path
trees in a same graph possess to some extent related structural properties which allow us to treat the

problem by considering certain types or classes of shortest path trees. Hence, instead of varying the

arbitrary node A over all possible nodes in the graph and computing the shortest path tree at each

different node, we vary the structure of the shortest path tree rooted at A over all possible shortest

path trees of a certain type. Of course, the confinement of the analysis then lies in the type of tree that

is investigated. In this article, we will only consider the regular k-ary tree and the irregular uniform

recursive tree (URT). Earlier for multicast [17], we found that ’real’ shortest path trees in Internet

possess properties similar to these trees and that scaling laws observed in both these two types of trees

also apply to the Internet.

The presented analysis allows us to address at least two different issues. First, for a same class of

tree (or topologies), the efficiency of anycast over unicast defined in terms of a performance measure

η

η =
E [hN(m)]

E [hN(1)]
≤ 1

is quantified. The performance measure η indicates how much hops (or link traversals or bandwidth

consumption) can be saved, on average, by anycast. Alternatively, η also reflects the gain in end-to-end

delay or how much faster than unicast, anycast finds the desired information. Second, the so-called

server placement problem can be treated. More precisely, the question ”How many servers m are

needed to guarantee that any user request can access the information within k hops with probability

Pr [hN (m) > k] ≤ , where is a certain level of stringency” can be answered. The server placement

2



problem is expected to gain increased interest especially for real-time services where end-to-end QoS

(e.g. delay) requirements are desirable. In the most general setting of this server placement problem,

all nodes (routers) are assumed to be equally important in the sense that user requests are generated

equally likely at any router in the network with N nodes. The validity of this assumption has been

justified by Philips et al. [12] and later by Chalmers and Almeroth [4]. In this case of uniform user

requests, the best strategy is to place servers also uniformly over the network.

We start presenting a general analysis, valid in any graph, in section 3. As an example, two types

of shortest path trees are analyzed: the regular k-ary tree in section 4 and the irregular uniform or

recursive tree in section 5. An order calculus of the performance measure η in exponentially growing

graphs, that includes the graph of the Internet, is presented in section 6. Mathematical derivations

are found in [20].

2 Related Work.

The server placement problem as defined above is a probabilistic analogon of the ’cache location

problem’ [9], [11], [2] also known as ’(constrained) mirror placement’ [7]. Most articles on the cache

location problem assume that the underlying network topology G (N,E), where N are the number

of nodes and E the number of vertices, is known and propose an algorithm for the following graph

theoretical problem: ”Given G (N,E) and m servers (caches), place these m servers at a subset of

nodes of the graph G in order to optimize some criterion (and often subject to constraints, e.g. only at

given locations servers can be placed [7])”. The usual criterion is either a minimization of the round-

trip-time or of the maximum distance from a querying node to the most nearby server (Min K-center

algorithm) or it attempts to distribute the total server load as equal as possible over the m servers.

Unfortunately, the algorithm to the above mentioned graph theoretical problem is NP-complete which

naturally leads to the proposal of heuristics [7], [11] or to dynamic programming solutions [9]. Instead

of formulating the cache location problem into a graph theoretical framework, sometimes a cache

architecture or a strategy is proposed which is then evaluated by analysis or measurements in terms

of latency, bandwidth usage or load and disk space (see e.g. [13]).

While most of the literature concentrates on strategies to place the m servers optimally, our work

assumes uniform or random placement and targets to gain insight in how the performance measure

η, the gain (in hops) of using m servers instead of 1, scales with m and N in different trees. In

particular, our analysis suggests that, for large N and small m, the performance measure η obeys the

law η ≈ 1−a logm. Jamin et al. [7] showed quickly diminishing benefits of placing additional mirrors

(servers), which is a less precise and not quantified formulation of the our claimed law η ≈ 1−a logm.
Some of their figures that plot performance measures based on round-trip-time measurements versus

the number of mirrors m seem to decrease logarithmically in m.

The difficult and always debatable point in nearly all work concerns the assumption of the un-

derlying network topology. The Internet topology is not a static graph but continuously changing

over time. Usually random graphs (Waxman graphs [19]) or ”Internet-like” graphs are simulated or

measurements in (a particular part of) the Interent are presented. Although many measurements and

analyses (for references see [16]) have been and are still being performed, relatively little insight in

the topological properties of the Internet has been gained. For example, it would be desirable to have

3



the Internet graph categorized as a member of some particular class of graphs. Perhaps the most

cited paper is that of the Faloutsos et al. [5]. They show that the degree distribution of the Internet

graph follows a power law. However, if one constructs the shortest path tree based on trace-routes to

a small number m, that tree resembles a URT surprisingly well as shown below. That shortest path

tree which is the union of IP-traces measured by the trace-route utility from a root to m other nodes

is deemed relevant for the hopcount to an anycast group with relatively small m. Hence, the URT

models the hopcount and the degree of the shortest path deduced from trace-routes accurate enough

to deserve due analytic treatment as presented here. At last, together with the regular trees, the URT

seems one of the very few stochastic trees that permits analytic modeling as presented here.

3 General Analysis.

Let us consider a particular shortest path tree T rooted at node A. Denote by
n
X
(k)
N

o
the k-th level

set of T or the set of nodes in the tree T at hopcount k from the root A in a graph with N nodes and

by X
(k)
N the number of elements in the set

n
X
(k)
N

o
. Then, we have X(0)

N = 1 because the zeroth level

can only contain the root node A itself. For all k > 0, holds that 0 ≤ X
(k)
N ≤ N − 1 and that

N−1X
k=0

X
(k)
N = N (1)

Another consequence of the definition is that, if X(n)
N = 0 for some level n < N − 1, then all X(j)

N = 0

for levels j > n. Clearly, in such a case, the longest possible shortest path in the tree has a hopcount

of n. The level set

LN =
n
1,X

(1)
N ,X

(2)
N , . . . ,X

(N−1)
N

o
of a tree T is defined as the set containing the number of nodes X(k)

N at each level k. An example of

a tree organized per level is drawn in Figure 1.

1

36

18

2

22

117

5

Root

12 4 9 10 15

20 17

24

14

19

21

8

13 16

23 25

1)0( =NX

5)1( =NX

9)2( =NX

7)3( =NX

4)4( =NX

26

Figure 1: A tree with N = 26 organized per level 0 ≤ k ≤ 4.

Further, suppose that the result of uniformly distributing m anycast group members over the

graph leads to a number m(k) of those anycast group member nodes that are k hops away from the

root. These m(k) distinct nodes all belong to the set
n
X
(k)
N

o
. Similarly as for X(k)

N , some relations

4



are immediate. First, m(0) = 0 means that none of the m anycast group members coincides with the

root node A or m(0) = 1 means that one of them (and at most one) is attached to the same router A

as the querying device. Also, for all k > 0, holds that 0 ≤ m(k) ≤ X
(k)
N and that

N−1X
k=0

m(k) = m (2)

Given the tree T specified by the level set LN and the anycast group members specified by the set©
m(0),m(1), . . . ,m(N−1)ª, we will derive the lowest non-empty levelm(j), which is equivalent to hN (m).

Let us denote by ej the event that all first j + 1 levels are not occupied by an anycast group

member,

ej =
n
m(0) = 0

o
∩
n
m(1) = 0

o
∩ . . . ∩

n
m(j) = 0

o
The probability distribution of the minimum hopcount, Pr [hN(m) = j|LN ], is then equal to the prob-

ability of the event ej−1∩
©
m(j) > 0

ª
. Since the event

©
m(j) > 0

ª
= not

©
m(j) = 0

ª
, using the condi-

tional probability yields

Pr [hN (m) = j|LN ] = Pr
hn

m(j) > 0
o
|ej−1

i
Pr [ej−1]

=
³
1− Pr

hn
m(j) = 0

o
|ej−1

i´
Pr [ej−1] (3)

Since ej = ej−1 ∩
©
m(j) = 0

ª
, the probability of the event ej can be decomposed as

Pr [ej ] = Pr
hn

m(j) = 0
o
|ej−1

i
Pr [ej−1] (4)

The assumption that all m anycast group members are uniformly distributed enables us to compute

Pr
£©
m(j) = 0

ª |ej−1¤ exactly. Indeed, by the uniform assumption, the probability equals the ratio of

the favorable possibilities over the total possible. The total number of ways to distribute m items over

N−Pj−1
k=0X

(k)
N positions (the latter constraints follows from the condition ej−1), equals

¡N−Pj−1
k=0X

(k)
N

m

¢
.

Likewise, the favorable number of ways to distribute m items over the remaining levels higher than j,

leads to

Pr
hn

m(j) = 0
o
|ej−1

i
=

¡
N−Pj

k=0X
(k)
N

m

¢¡N−Pj−1
k=0X

(k)
N

m

¢ (5)

The recursion (4) needs an initialization, given by Pr [e0] = Pr
£
m(0) = 0

¤
= 1 − m

N , which follows

from Pr
£
m(0) = 0

¤
=
(N−1m )
(Nm)

and equals Pr
£©
m(0) = 0

ª |e−1¤ (although the event e−1 is meaningless).
Observe that Pr

£
m(0) = 1

¤
= m

N holds for any tree such that

Pr [hN(m) = 0] =
m

N

By iteration of (4), we obtain

Pr [ej ] =

jY
s=0

¡N−Ps
k=0X

(k)
N

m

¢¡N−Ps−1
k=0X

(k)
N

m

¢ = ¡
N−Pj

k=0X
(k)
N

m

¢¡N
m

¢ (6)

where the convention in summation is that
Pb

k=a fk = 0 if a > b. Finally, combining (3) with (5)

and (6), we arrive at the general (conditional) probability for the minimum hopcount to the anycast

5



group,

Pr [hN (m) = j|LN ] =

¡
N−Pj−1

k=0X
(k)
N

m

¢− ¡N−Pj
k=0X

(k)
N

m

¢¡
N
m

¢ (7)

Clearly, while Pr [hN(0) = j|LN ] = 0 since there is no path, we have for m = 1,

Pr [hN(1) = j|LN ] =
X
(j)
N

N

It directly follows from (7) that

Pr [hN(m) ≤ n|LN ] = 1−
¡N−Pn

k=0X
(k)
N

m

¢¡N
m

¢ (8)

If N −Pn
k=0X

(k)
N < m or, equivalently,

PN−1
k=n+1X

(k)
N < m, then (8) shows that Pr [hN (m) > n|LN ] =

0. The maximum possible hopcount of a shortest path to an anycast group strongly depends on the

specifics of the shortest path tree or the level set LN . Yet, a general result is worth mentioning,

Theorem 1 For any graph holds that

Pr[hN(m) > N −m] = 0

In words, the longest shortest path to an anycast group with m members can never possess more

than N −m hops.

Proof. This general Theorem 1 follows from the fact that the line topology is the tree with longest

hopcount (N−1) and only in case all m last positions (with respect to the source or root) are occupied

by the m anycast group members, the maximum hopcount is N −m.

For the URT in Sec. 5, Pr[hN (m) = N −m] is computed exactly in (17).

Corollary 2 For any graph holds that

Pr[hN (N − 1) = 1] = 1

N

Proof. This Corollary follows from Theorem 1 and the law of total probability. Alternatively, if

there are N − 1 anycast members in a network with N nodes, the shortest path can only consist of 1

hop if none of the anycast members coincides with the root node. This chance is precisely 1
N .

Since for any discrete random variable Y holds that E [Y ] =
P∞

k=0 Pr [Y ≥ k], it is immediate from

(8) that

E [hN (m)|LN ] =
1¡N
m

¢ N−2X
n=0

µ
N −Pn

k=0X
(k)
N

m

¶
(9)

from which we find,

E [hN(1)|LN ] =
1

N

N−1X
k=1

kX
(k)
N

Thus, given LN , a performance measure η for anycast over unicast can be quantified as

η =
E [hN (m)|LN ]

E [hN(1)|LN ]
≤ 1

6



Using the law of total probability, the distribution of the minimum hopcount to the anycast group

is

Pr [hN(m) = j] =
X
all LN

Pr [hN (m) = j|LN ] Pr [LN ] (10)

or,

Pr [hN (m) = j] =
X

PN−1
k=1 xk=N−1

¡PN−1
k=j xk
m

¢− ¡PN−1
k=j+1 xk
m

¢¡
N
m

¢ Pr
h
X
(1)
N = x1,X

(2)
N = x2, . . . ,X

(N−1)
N = xN−1

i
where xk ≥ 0 for all k. This expression explicitly shows the importance of the level structure LN

of the shortest path tree T . The level structure LN entirely determines the shape of the tree T .

Unfortunately, a general form for Pr [LN ] or Pr [hN (m) = j] is difficult to obtain.

1.0

0.8

0.6

0.4

0.2

0.0

Pr
[h

(m
) <

= 
j]

543210

j

N = 500, k = 3

m = 1

m = 2

m = 5

m = 10

m = 50

Figure 2: The distribution function of h500(m) versus the hops j for various sizes of the anycast group

in a k-ary tree with k = 3 and N = 500

4 The k-ary tree.

For regular trees explicit expressions are possible because the summation in (10) simplifies considerably.

For example, for the k-ary tree,

X
(j)
N = kj

Provided the set LN only contains these values of X(j)
N for each j, we have that Pr [LN ] = 1, else it

is zero (because then LN is not consistent with a k-ary tree). Summarizing, for the k-arry tree with

N = kD+1−1
k−1 and D levels, the distribution of the minimum hopcount to the anycast group is

Pr [hN (m) = j] =

¡N−kj−1
k−1
m

¢− ¡N−kj+1−1
k−1
m

¢¡N
m

¢ (11)

Extension of the integer k to real numbers in the formula (11) is expected to be of value as suggested

by previous work [17] where we have computed the gain in the number of used links in multicast as

7



compared to unicast. When a k-ary tree was used to fit corresponding Internet multicast measure-

ments, we found that a remarkably accurate agreement was obtained for the value k ≈ 3.2, which
is about the average degree of the Internet graph. Hence, if we were to use the k-ary tree as model

for the hopcount to an anycast group, we expect that k ≈ 3.2 is the best value for Internet shortest
path trees. However, we feel we ought to mention that the hopcount distribution of the shortest path

between two arbitrary nodes is definitely not a k-ary tree, because Pr [hN (1) = j] increases with the

hopcount j which is in conflict with Internet trace-route measurements (see e.g. [8]).

Figure 2 displays Pr [h(m) ≤ j] for a k-ary with outdegree k = 3 possessing a number of nodes

equal to N = 500. This type of plot allows us to solve the ’server placement problem’. For example,

assuming that the k-ary tree is a good model and the network consists of N = 500 nodes, Figure 2

shows that at least m = 10 servers are needed to assure that any user is not more than four hops

separated from an arbitrary server of the anycast group with a probability of 93%. More precisely,

the equation Pr[h500(m) > 4] < 0.07 is obeyed if m ≥ 10.
Figure 3 gives an idea how the performance measure η decreases with the size of the anycast group

in k-ary trees (all with outdegree k = 3), but with different size N . For small m, we observe that η

decreases logarithmically in m, which is in agreement with the law η ≈ 1− a logm.

1.0

0.8

0.6

0.4

0.2

0.0

η

2 3 4 5 6 7 8 9
0.1

2 3 4 5 6 7 8 9
1

m/N

k = 3

N = 100

N = 500

N = 5000

N = 106

N = 105

Figure 3: The performance measure η for several size of k-ary trees (with k = 3) as a function of the

ratio of anycast nodes over the total number of nodes.

5 The uniform recursive tree (URT).

A uniform recursive tree (URT) of size N is a random tree that starts from the root A and where at

each stage a new node is attached uniformly to one of the existing nodes until the total number of

nodes is equal to N .

8



5.1 Motivation.

The interest in URTs is four-fold. First, as mentioned above, the URT is the prototype of an irregular

tree. Second, we have demonstrated earlier [15] that the shortest path tree in a connected random

graph Gp(N) (and also in the Waxman graph [19]) with independent and uniformly or exponentially

distributed link weights is a URT. As mentioned in [18],[15],[16] the law of the hopcount hN = hN (1)

of the shortest path between two arbitrary nodes is, for 0 ≤ k ≤ N − 1,

Pr [hN = k] =
E
h
X
(k)
N

i
N

=
(−1)N−1−kS(k+1)N

N !
, (12)

where S
(k)
N denote the Stirling numbers of the first kind [1, 24.1.3] with corresponding generating

function

ϕN (z) =
N−1X
k=0

Pr [hN = k] zk =
Γ(N + z)

Γ(N + 1)Γ(z + 1)
(13)

Third, from the hopcount distribution of paths in the Internet deduced from trace-route measurements,

we found [8] that this distribution is reasonably well modeled by that of the URT given by (12). Fourth

and last motivation, a more striking agreement with the URT is shown by the degree law [8]: for small

multicast groups (m around about 50) from a root to uniformly spread users the measured multicast

tree possesses a degree distribution close to the Pr [deg = k] ∼ 2−k of the URT (for large N) [10].

(At the time of writing, this correspondence with the URT is further studied in order to understand

the transition from an exponential degree law (small m) towards a power law degree law observed in

Internet (see e.g. [5]) if m increases)

These arguments motivate that the URT is believed to provide a reasonable, first order estimate

for the hopcount problem to an anycast and multicast group in Internet.

5.2 Recursion for Pr [h(m) = j]

Usually, a combinatorial approach such as (10) is seldom successful for URTs while structural proper-

ties often lead to results. Previously, we have proved in [18] that,

Lemma 3 Let {Y (k)N }k,N≥0 and {Z(k)N }k,N≥0 be two independent copies of the vector of level sets of
two sequences of independent URTs. Then

{X(k)
N }k≥0 d

= {Y (k−1)N1
+ Z

(k)
N−N1}k≥0, (14)

where on the right-hand side the random variable N1 is uniformly distributed over the set {1, 2, . . . , N−
1}.

This Lemma 3, applied to the anycast minimum hop problem, is illustrated in Figure 4.

Figure 4 shows that any URT can be separated into two subtrees T1 and T2 with size k and

N − k respectively. Moreover, Lemma 3 states that each subtree is independent of the other and

again an URT. Consider now a specific separation of an URT T into T1 = t1 and T2 = t2, where

the tree t1 contains k nodes and i of the m anycast members and t2 possesses N − k nodes and

the remaining m − i anycast members. The event {hT (m) = j} equals the union of all possible

9



Root

k nodes

N-k nodes

R1

i anycast 
members

m-i anycast 
members

T1

T2

Root

k nodes

N-k nodes

R1

i anycast 
members

m-i anycast 
members

T1

T2

Figure 4: A uniform recursive tree consisting of two subtrees T1 and T2 with k and N − k nodes

respectively. The first clusters contains i anycast members while the cluster with N−k nodes contains
m− i anycast members.

sizes N1 = k and subgroups m1 = i of the event {ht1(i) = j − 1} ∩ {ht2(m− i) ≥ j} and the event
{ht1(i) > j − 1} ∩ {ht2(m− i) = j},

{hT (m) = j} = ∪k ∪i {{ht1(i) = j − 1} ∩ {ht2(m− i) ≥ j}}
∪ {{ht1(i) > j − 1} ∩ {ht2(m− i) = j}}

Because hN(0) is meaningless, the relation must be modified for the case i = 0 to

{hT (m) = j} = {ht2(m) = j}

and for the case i = m to

{hT (m) = j} = {ht1(m) = j − 1}
This decomposition holds for any URT T1 and T2, not only for the specific ones t1 and t2. The

transition towards probabilities becomes

Pr [hT (m) = j] =
X

all t1,t2,k,i

(Pr [ht1(i) = j − 1] Pr [ht2(m− i) ≥ j]

+Pr [ht1(i) ≥ j − 1] Pr [ht2(m− i) = j]) Pr [T1 = t1, T2 = t2, N1 = k,m1 = i]

Since T1 and T2 and also m1 are independent given N1, the last probability l simplifies to

l = Pr [T1 = t1, T2 = t2, N1 = k,m1 = i]

= Pr [T1 = t1|N1 = k] Pr [T2 = t2|N1 = k] Pr [m1 = i|N1 = k] Pr [N1 = k]

Lemma 3 states that N1 is uniformly distributed over the set with N−1 nodes such that Pr [N1 = k] =
1

N−1 . The fact that i out of the m anycast members, uniformly chosen out of N nodes, belong to the

recursive subtree T1 implies that m− i remaining anycast members belong to T2. Hence, analogous to

10



a combinatorial problem outlined by Feller [6, pp. 43] that lead to the hypergeometric distribution,

we have

Pr [m1 = i|N1 = k] =

¡k
i

¢¡N−k
m−i

¢¡N
m

¢
because all favorable combinations are those

¡k
i

¢
to distribute i anycast members in T1 with size k

multiplied by all favorable
¡N−k
m−i

¢
to distribute the remaining m− i in T2 containing N −k nodes. The

total way to distribute m anycast members over N nodes is
¡N
m

¢
. At last, we remark that the hopcount

of the shortest path to m anycast members in a recursive tree (or random graph) only depends on

its size. This means that the sum over all t1 of Pr [T1 = t1|N1 = k], which equals 1, disappears and

likewise also the sum over all t2. Combining the above leads to

Pr [hN(m) = j] =
N−1X
k=1

m−1X
i=1

(Pr [hk(i) = j − 1] Pr [hN−k(m− i) ≥ j]

+Pr [hk(i) > j − 1] Pr [hN−k(m− i) = j])

¡k
i

¢¡N−k
m−i

¢
(N − 1)¡Nm¢ +

N−1X
k=1

Pr [hN−k(m) = j]

¡
N−k
m

¢
(N − 1)¡Nm¢ +Pr [hk(m) = j − 1]

¡
k
m

¢
(N − 1)¡Nm¢

By substitution of k0 = N−k andm0 = m−i, this expression simplifies to a recursion for Pr [hN(m) = j]

in the URT,

Pr [hN (m) = j] =
N−1X
k=1

m−1X
i=1

(Pr [hk(i) = j − 1] + Pr [hk(i) = j])

¡k
i

¢¡N−k
m−i

¢
(N − 1)¡Nm¢

N−k−1X
q=j

Pr [hN−k(m− i) = q]

+
N−1X
k=1

(Pr [hk(m) = j] + Pr [hk(m) = j − 1])
¡
k
m

¢
(N − 1)¡Nm¢ (15)

For m = 1, the recursion (15) reduces to

Pr [hN = j] =
1

N − 1
N−1X
k=1

(Pr[hk = j] + Pr [hk = j − 1]) k
N

Multiplying both sides by zj , summing over all j leads to the recursion for the generating function

(13)

(N + 1)ϕN+1(z) = (z +N)ϕN (z)

from which (13) and (12) follows.

For m = 2, the recursion (15) is solved in [20] resulting in

Pr [hN(2) = j] =
2(−1)N−1−j

N !
S
(j+1)
N +

2(−1)N−1
N !(N − 1)

jX
k=1

(−1)j+k+1
µ
2k−1
k

¶
S
(k+j+1)
N

+
2(−1)N−1
N !(N − 1)

j−1X
k=0

·µ
j + k + 1

j

¶
−
µ
2k + 1

k

¶¸
(−1)k+j+1Sk+j+1

N (16)

Since there are (N − 1)! possible URTs [18] and there is only one line tree with N − 1 hops where
each node has precisely one child node, the probability to have precisely N − 1 hops from the root is

11



1
(N−1)! (which also is Pr [hN = N − 1] given in (12)). The longest possible hopcount from a root to m

anycast members occurs in the line tree where all m anycast members occupy the last m positions.

Hence, the probability for the longest possible hopcount equals

Pr [hN(m) = N −m] =
m!

(N − 1)!¡Nm¢ (17)

because there are m! possible ways to distribute the m anycast members at the m last positions in

the line tree while there are
¡N
m

¢
possibilities to distribute m anycast members at arbitrary places in

the line tree.

In [20], we have studied the recursion (15) in detail. For other values of m than those listed above,

we did not succeed to solve the recursion (15) exactly but we have presented tight approximations. The

recursion (15) is solved numerically for N = 20. The result is shown in Figure 5 which demonstrates

that Pr [hN (m) > N −m] = 0 or, the path with the longest hopcount to an anycast group of m

members consists of N −m links. Figure 5 allows us to solve the ’server placement problem’. For

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Pr
[h

(m
) =

 j]

20151050

j

N = 20

Figure 5: The pdf of hN(m) in a recursive tree with N = 20 nodes for all possible m. Observe that

Pr[hN(m) > N −m] = 0. This relation connects the various curves to the value for m.

example, consider the scenario in which a network operator announces that any user request will

reach a server of the anycast group in no more than j = 4 hops in 99.9% of the cases. Assuming

his network has N = 20 routers and the shortest path tree is an URT, the network operator has to

compute the number of anycast servers m he has to place uniformly spread over the N = 20 routers

by solving Pr [h20 (m) > 4] < 10−3. Figure 5 shows that the crosspoint of the line j = 4 and the

line Pr [h20 (m) = 4] = 10−3 is the curve for m = 7. Since the curves for m ≥ 7 are exponentially
decreasing, Pr [h20 (m) > 4] is safely1 approximated by Pr [h20 (m) = 4] which leads to the placing of

m = 7 servers. When following the line j = 4, we also observe that the curves for m = 5, 6, 7, 8

lie near to that of m = 7. This means that placing a server more does not considerably change the

situation. It is a manifestation of the law η ≈ 1− a logm which tells us that by placing m servers the

1 If more precision is desired, Pr [h20 (m) > j] curves are easily computed from Figure 5.

12



gain measured in hops with respect to the single server case is slowly, more precisely logarithmically,

increasing. The performance measure η for the URT is drawn for several sizes N in Figure 6.

1.0

0.8

0.6

0.4

0.2

0.0

η

2 3 4 5 6 7 8 9
0.1

2 3 4 5 6 7 8 9
1

m/N

 N = 10 : η = -0.404 ln(m/N)
 N = 20 : η = -0.295 ln(m/N)
 N = 30 : η = -0.252 ln(m/N)
 N = 50 : η = -0.210 ln(m/N)

Figure 6: The performance measure η for several sizes N of recursive trees as a function of the ratio

m/N. The dotted line present the approximation for η where E[hN(m)] is computed as E[ehN(m)] but
E[hN(1)] by its exact value.

5.3 Approximate Analysis.

Since the general solution (10) is in many cases difficult to compute as shown for the URT in section 5,

we consider a simplified version of the above problem where each node in the tree has equal probability

p = m
N to be a server. Instead of having precisely m servers, the simplified version considers on average

m servers and the probability that there are precisely m servers is
¡N
m

¢
pm(1−p)N−m. In the simplified

version, the associated equations to (5) and (4) are

Pr
hn

m(j) = 0
o
|ej−1

i
= Pr

hn
m(j) = 0

oi
= (1− p)X

(j)
N

Pr [ej ] =

jY
l=0

Pr
hn

m(j) = 0
oi
= (1− p)

Pj−1
l=0 X

(l)
N

which implies that the probability that there are no servers in the tree is (1− p)N . Since in that case,

the hopcount is meaningless, we consider the conditional probability (3) of the hopcount given the

level set contains at least one server (which is denoted by ehN(m)) is
Pr
hehN(m) = j|LN

i
=

³
1− (1− p)X

(j)
N

´
(1− p)

Pj−1
l=0 X

(l)
N

1− (1− p)N

Thus,

Pr
hehN(m) ≤ n|LN

i
=
1− (1− p)

Pn
l=0X

(l)
N

1− (1− p)N

13



Finally, to avoid the knowledge of the entire level set LN , we use E
h
X
(l)
N

i
= N Pr [hN (1) = l] as the

best estimate for each X
(l)
N and obtain the approximate formula

Pr
hehN (m) = j

i
=

µ
1− (1− p)

E
h
X
(j)
N

i¶
(1− p)

Pj−1
l=0 E

h
X
(l)
N

i

1− (1− p)N
(18)

In dotted lines in Figure 6, we have added the approximate result for the URT where E [hN (m)]

is computed based on (18), but where E[hN(1)] is computed exact. For m = 1, the approxi-

mate analysis (18) is not wel suited: Figure 6 illustrates this deviation in the fact that ηappr(1) =

E
hehN (1)i /E [hN(1)] < 1. For higher values of m we observe a fairly good correspondence. We found

that the probability (18) reasonably approximates the exact result plotted on a linear scale. Only the

tail behavior (on log-scale) and the case for m = 1 deviate significantly. In summary for the URT,

the approximation (18) for Pr [hN(m) = j] is much faster to compute than the exact recursion and it

seems appropriate for the computation of η for m > 1. However, it is less adequate to solve the server

placement problem that requires the tail values Pr [hN (m) > j].

6 The performance measure η in the exponentially growing trees.

In this section, we present an order estimate that supports our claimed law η ≈ 1−a logm for a much

larger class of trees, namely the class of exponentially growing trees to which both the k-ary tree and

the URT belong. Also most trees in the Internet are exponentially growing trees. A tree is said to

grow exponentially in the number of nodesN with degree κ if limj→∞
³
X
(j)
N

´1/j
= κ or, equivalently,

X
(j)
N ∼ κj , for large j. As explained earlier [17], the fundamental problem with this definition is

that it only holds for infinite graphs N = ∞. For real (finite) graphs, there must exists some level
j = l for which the sequence X(l+1)

N ,X
(l+2)
N , · · · ,X(N−1)

N ceases to grow because
PN−1

j=0 X
(j)
N = N <∞.

This boundary effect complicates the definition of exponential growth in finite graphs. The second

complication is that even in the finite set X(0)
N ,X

(1)
N , · · · ,X(l)

N not necessary all X(j)
N with 0 ≤ j ≤ l

need to obey X
(j)
N ∼ κj , but ’enough’ should. Without the limit concept, we cannot specify the

precise conditions of exponential growth in a finite shortest path tree. If we assume in finite graphs

that X(j)
N ∼ κj for j ≤ l, then

Pl
j=0X

(j)
N = αN with 0 < α < 1. Indeed, for κ > 1, the highest

hopcount level l possesses by far the most nodes since κl+1−1
κ−1 ≈ κl which cannot be larger than a

fraction αN of the total number of nodes.

We now present an order calculus to estimate η for exponentially growing trees based on relation

(9). Let us denote

y =

¡N−x
m

¢¡N
m

¢ =
m−1Y
j=0

µ
1− x

N − j

¶
For large N and fixed m,

y = exp
³
−xm

N

´
(1 + o (1))

In case the tree is exponentially growing for j ≤ l asX(j)
N = βjκ

j with βj some slowly varying sequence,

only very few levels ∆l (bounded by a fixed number) around l holds that
Pn

k=0X
(k)
N = O(N) where

14



n ∈ [l − ∆l, l], while for all j > l, we have
Pn

k=0X
(k)
N = µnN with some sequence µn < µn+1 <

µmaxn = 1. Applied to (9) where x =
Pn

k=0X
(k)
N < N ,

E [hN (m)|LN ] ≈ (1 + o (1))
lX

n=0

exp
³
−m
N
βnκ

n
´
+

N−2X
n=l+1

¡(1−µn)N
m

¢¡N
m

¢
If there are only a few levels more than l, the last series is much smaller than 1 and can be omitted.

Since the slowly varying sequence βn is unknown, we approximate βn = β and

lX
n=0

exp
³
−m
N
βnκ

n
´
≈

Z l

0
exp

³
−m
N
βκn

´
dn =

1

logκ

Z m
N
βκl

m
N
β

e−u

u
du

≈ 1

log κ

Z ∞

m
N
β

e−u

u
du− e−m

m log κ

=
1

log κ

µ
−γ − e−m

m
− log m

N
β +O

³m
N

´¶
where in the last step a series [1, 5.1.11] for the exponential integral is used. Thus,

η ≈ (1 + o (1))

µ
1 +

−γ− e−m
m
−logm−log β
logN +O

¡
m
N

¢¶
³
1− γ+e−1+log β

logN +O
¡
1
N

¢´
= (1 + o (1))

Ã
1− logm

logN
− e−1 − e−m

m

logN
+O

µ
1

log2N

¶!

Since by definition η = 1 for m = 1, we finally arrive at

η ≈ 1− logm
logN

− e−1 − e−m
m

logN
+O

µ
1

log2N

¶
which supplies evidence for the conjecture η ≈ 1 − a logm that exponentially growing graphs (such

as the Internet) possess a performance measure η that logarithmically decreases in m, which is rather

slow.

Measurement data in Internet seem to support this logm-scaling law. Apart from the correspon-

dence with Figures in the work of [7], Figure 6 in Krishnan et al. [9] shows that the relative measured

traffic flow reduction decreases logarithmically in the number of caches m.

7 Discussion and conclusions.

The probability density function of the hopcount to the nearest member of an anycast group has been

analysed. Two types of trees, the k-ary tree and the URT have been computed. The exact and simple

results for the k-ary tree enable the computation of Pr [hN (m) = j] for any reasonable size N . The

computation of Pr [hN(m) = j] for the URT is, unfortunately, much more complex.

Our results may shed some quantitative insight in the performance of anycast. At least two appli-

cations, the efficiency of anycast over unicast and the server placement problem have been targeted.

In both types of trees, the performance measure η = E[hN (m)]
E[hN (1)]

decreases proportional with logm.

15



More generally, an order calculus on exponentially growing graphs such as the Internet supports the

conjecture that η ≈ 1− a logm for small m. The law η ≈ 1− a logm means that, if an anycast group

consists of m > 1 servers, adding a few more servers does not significantly improve the performance

measure expressed in the number of hops. Other studies seem to indicate that this anycast law also

holds for performance measures such as delay and traffic reduction.

Computations of Pr [hN (m) > j] < for given strigency and hop j, allow to determine the

minimum number m of servers. The solution of this server placement problem may be regarded as an

instance of the general quality of service (QoS) portofolio of an network operator. When the number

of servers for a major application offered by the service provider are properly computed, the service

provider may announce levels of QoS (e.g. via Pr [hN (m) > j] < ) and accordingly price the use of

the application. More potential applications are envisaged as anycast is still in an embryonic state.

Finally, the focus on the URT as reasonable model for realistic trees can be motivated. Only

very few classes of trees, including the URT, make analytic computations possible. Apart from this

computational argument, it [8] was found that measured trees in the Internet are fairly well modeled

by a URT. In ad-hoc networks with uniformly distributed mobile users, the URT may also model the

tree from one mobile user to the others. Recent work on peer-to-peer networks indicates that some

of these networks (such as Gnutella) possess properties well described by random graphs. Present

results on the URT may also have value in the context of peer-to-peer networking. For example, if the

RIPE measurement boxes [8] are considered as peers, the distribution of the peer-to-peer delay seems

roughly exponentially distributed. In the complete graph (each peer has a connection to any other)

with exponentially distributed weights, the shortest path tree is a URT [15, 16].

References

[1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover, 1968.

[2] P. Barford, J.-Y. Cai and J. Gast, ”Cache Placement Methods Based on Client Demand Cluster-

ing”, IEEE INFOCOM 2002.

[3] B. Bollobas, Random Graphs, Cambridge University Press, second edition, 2001.

[4] R. C. Chalmers and K. C. Almeroth, " On the Topology of Multicast Trees, IEEE/ACM Trans.

on Networking, vol. 11, No. 1, pp. 153-165, 2003.

[5] M. Faloutsos, P. Faloutsos and C. Faloutsos , ”On power-law relationships of the Internet Topology

”, Proceedings of ACM SIGCOMM’99, Cambridge, Massachusetts, pp. 251-262, 1999.

[6] W. Feller, An Introduction to Probability Theory and Its Applications, vol. 1, John Wiley & Sons,

1970.

[7] S. Jamin, C. Jin, A. R. Kurc, D. Raz and Y. Shavitt, ”Constrained Mirror Placement on the

Internet”, IEEE INFOCOM 2001.

[8] M. Janic, F. Kuipers, X. Zhou and P. Van Mieghem, ”Implications for QoS provisioning based

on traceroute measurements”, Proceedings of 3nd International Workshop on Quality of Future

16



Internet Services, QofIS2002 [edited by B. Stiller et al. in Springer Verlag LNCS 2511], Zurich,

Switzerland, October 16-18, pp. 3-14.

[9] P. Krishnan, D. Raz and Y. Shavitt, ”The Cache Location Problem”, IEEE/ACM Transactions

on Networking, vol. 8, No. 5, pp. 586-582, 2000.

[10] H. S. Na and A. Rapoport, ”Distribution of Nodes of a Tree by Degree”, Mathematical Bio-

sciences, vol. 6, pp. 313-329, 1970.

[11] L. Qiu, V. N. Padmanabhan and G. M. Voelker, ”On the Placement of Web Server Replicas”,

IEEE INFOCOM2001.

[12] G. Phillips, S. Shenker and H. Tangmunarunkit, ”Scaling of Multicast Trees: Comments on the

Chuang-Sirbu scaling law.”, Proc. ACM Sigcomm 1999.

[13] P. Rodriguez, C. Spanner and E. W. Biersack, ”Analysis of Web Caching Architectures: Hier-

archical and Distributed Caching”, IEEE/ACM Transactions on Networking, vol. 9, No. 4, pp.

404-418, 2001.

[14] E.T. Titchmarsh, The Theory of Functions, Oxford University Press, 1964.

[15] R. van der Hofstad, G. Hooghiemstra and P. Van Mieghem, "First Passage Percolation on the

Random Graph", Probability in the Engineering and Informational Sciences (PEIS), vol. 15, pp.

225-237, 2001.

[16] P. Van Mieghem, G. Hooghiemstra and R. van der Hofstad, ”A Scaling Law for the Hopcount in

Internet”, report 2000125 (http://www.nas.ewi.tudelft.nl/people/piet/teleconference.html)

[17] P. Van Mieghem, G. Hooghiemstra and R. van der Hofstad, ”On the efficiency of multicast”,

IEEE/ACM Transactions on Networking, vol. 9, No. 6, pp. 719-732. 2001.

[18] R. van der Hofstad, G. Hooghiemstra and P. Van Mieghem , ”On the covariance of the level sizes

in random recursive trees”, to be published in Random Structures and Algorithms, 2002.

[19] P. Van Mieghem, ”Paths in the simple random graph and the Waxman Graph”, Probability in

the Engineering and Informational Sciences (PEIS), vol. 15, pp. 535-555, 2001.

[20] P. Van Mieghem, "The Probability Distribution of the Hopcount to an Anycast Group ", report

2003605 (http://www.nas.ewi.tudelft.nl/people/piet/teleconference.html)

17


