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Abstract

The weight of a multicast shortest path tree in the complete graph with exponential link weights
is expressed as a random variable. The new framework elegantly allows the computation of the
average multicast weight.

1 Introduction

We consider the problem of computing the cost of multicasting information from a source tom different

nodes in a network containing N + 1 nodes. We assume that the multicast tree rooted at the source,

which we label by 0, is the shortest path tree to the m different nodes. In addition, these m multicast

member nodes are supposed to be uniformly distributed among the N nodes (different from the source)

in the network. Both assumptions are realistic and have been justified earlier [2].

We further confine to a complete graph KN+1 with exponentially distributed link weights with

mean 1. The present note is an extension of [3] where the weight WN (m) to all m = N possible

multicast members is shown to tend to a Gaussian,

√
N (WN (N)− ζ (2))

d→ N
¡
0, σ2SPT

¢
,

where σ2SPT = 4ζ (3). In addition, we recompute the average weight of the multicast tree E[WN (m)]

(see eq. (10)) more elegantly than in our previous work [1]. Beside the novel mathematical framework,

the work is motivated by the new peer-to-peer protocol HMTP that attaches users to the tree in order

to minimize the total cost WN (m). Moreover, in IPTV, an operator is businesswise interested in the

cost difference WN (m+ k) − WN (m) by adding k additional customers to a TV channel, given a

multicast tree of that TV channel with m multicast members. The number of hops to the nearest of

m peers is analyzed in [4].

2 The weight of the SPT to m nodes

The shortest path tree in the complete graph with exponential link weight is a uniform recursive tree.

A uniform recursive tree (URT) of size N is a random tree rooted at node 0 where at each stage of the

growth process a new node is attached uniformly to one of the existing nodes until the total number
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of nodes is equal to N . The nice properties of the shortest path search process in the complete graph

with exponential link weights are explained in [5, Chapter 16]. The path search or discovery process

can be described as a Markov process. From the Markov discovery process , the discovery time to the

kth discovered node from the root equals

vk =
kX

n=1

τn, (1)

where the inter-attachment times τ1, τ2, · · · , τk are independent, exponentially distributed random
variables with parameter λn = n(N + 1 − n) for 1 ≤ n ≤ k. An arbitrary uniform recursive tree

consisting of N + 1 nodes and with the root labeled by zero can be represented as

(0←− 1) (N2 ←− 2) . . . (NN ←− N)

where (Nj ←− j) means that the jth discovered node is attached to node Nj ∈ {0, . . . , j − 1}. Hence,
Nj is the predecessor of j and this relation is indicated by ←−. The weight WN (m) of the SPT from

the root 0 to m other nodes is with (1) and v0 = 0 and N1 = 0,

WN (m) =
NX
j=1

(vj − vNj )1j∈Tm =
NX
j=1

1j∈Tm

jX
n=Nj+1

τn,

where Tm is the subtree of the complete SPT to the m uniform nodes. In the URT, the integers Nj

for 1 ≤ j ≤ N , are independent and uniformly distributed over the interval {0, . . . , j − 1}. Following
the analysis in [3], it is more convenient to use a discrete uniform random variable on {1, . . . , j} which
we define as Aj = Nj + 1 such that

WN(m) =
NX
j=1

1j∈Tm

jX
n=Aj

τn =
NX
j=1

1j∈Tm

jX
n=1

1{Aj≤n}τn

The set {Aj}1≤j≤N are independent random variables with P [Aj = k] = 1
j for k ∈ {1, 2, . . . , j}. If we

denote the m uniformly chosen multicast member nodes by U1, . . . , Um, then node j is an element of

Tm precisely when there exists an i = 1, . . . ,m such that Ui ∈ T (N)j , where T (N)j is the subtree of the

complete uniform recursive tree rooted at j. We write Um ∩ T (N)j 6= ∅ for the event that there exists
an i = 1, . . . ,m such that Ui ∈ T (N)j . Then, we have

WN(m) =
NX
j=1

1{Um∩T (N)j 6=∅}

jX
n=1

1{Aj≤n}τn =
NX
n=1

τn

⎛⎝ NX
j=n

1{Um∩T (N)j 6=∅}1{Aj≤n}

⎞⎠ .

The indicator 1{Um∩T (N)j 6=∅} depends on the random variables U1, . . . , Um, which are independent of

{Aj}1≤j≤N and of the tree T (N)j . Since the nodes 1, 2, . . . , j are attached before the tree T (N)j starts

growing at node j, the indicator 1{Um∩T (N)j 6=∅} is independent of A1, . . . , Aj , but not of Aj+1, . . . , AN .

Of course, the entire recursive tree is independent of the sequence τ1, τ2, . . . , τN .

To simplify the notation, we define Zj (m) as the number of elements that the vector Um has in

common with the random set T (N)j ,

Zj (m) = |Um ∩ T (N)j |, j = 1, 2, . . . , N, (2)
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where we use the notation |G| for the number of elements of the set G. We define for n ∈ {1, . . . ,N}
the random variables

Bn(m) =
NX
j=n

1{Um∩T (N)j 6=∅}1{Aj≤n} =
NX
j=n

1{Zj(m)>0}1{Aj≤n}, (3)

to obtain

WN(m) =
NX
n=1

Bn(m)τn. (4)

The n random variables B1(m), B2(m), . . . , Bn(m) are dependent, but independent from the inter-

attachment times {τj}1≤j≤N . Hence, the average weight of the multicast shortest path tree is

E[WN (m)] =
NX
n=1

E[Bn(m)]

n(N + 1− n)
. (5)

We can also express the variance (and any other moment)

Var [WN (m)] =
NX
n=1

(E[Bn (m)])
2

(n(N + 1− n))2
+ 2

NX
n=1

NX
l=n

Cov [Bn (m) , Bl (m)]

n (N + 1− n) l (N + 1− l)
(6)

but, we did not succeed so far in computing Cov [Bn (m) , Bl (m)].

3 The average weight E[WN(m)]

The average weight E[WN (m)] requires the computation of E[Bn(m)] in which the size of the subtree

T (N)j rooted at an arbitrary node j plays an important role. We first note that

P [Zj (m) > 0] = 1− P
h
Um ∩ T (N)j = ∅

i
= 1− E

"
(N − |T (N)j |) · · · (N + 1−m− |T (N)j |)

N · · · (N + 1−m)

#

= 1− (N −m)!

N !
E
h
(N − |T (N)j |) · · · (N + 1−m− |T (N)j |)

i
(7)

since the event Um∩T (N)j = ∅ requires that each of the uniformly chosen multicast member nodes Ui,

for i = 1, . . . ,m, should not lie in T (N)j . Therefore, the mean of the random variable Bn(m) follows

from (3) with P [Aj ≤ n] = n
j as

E [Bn(m)] =
NX
j=n

E
h
1{Aj≤n}

i
P [Zj (m) > 0] = n

NX
j=n

P [Zj (m) > 0]

j

= n
NX
j=n

1

j

µ
1− (N −m)!

N !
E
h
(N − |T (N)j |) · · · (N + 1−m− |T (N)j |)

i¶
. (8)

In [1], we have shown1 that, for j > 0,

P
h
|T (N)j | = n

i
=

j(N − j)!(N − n)!

N !(N − j − n+ 1)!
.

1The number of nodes N and node label j in [1] should be replaced here by N + 1 and by j + 1.

3



Since j is never equal to the root 0, it means that the largest subtree tree |T (N)j | is of size N , but never
smaller than |T (N)j | = 1 (namely the node j itself). The probability generating function ϕ|T (N)j | (z) of

|T (N)j | is

ϕ|T (N)j | (z) = E
∙
z|T

(N)
j |

¸
=

NX
n=1

P
h
|T (N)j | = n

i
zn =

j(N − j)!

N !

NX
n=1

(N − n)!

(N − j − n+ 1)!
zn

=
j(N − j)!

N !

N−1X
k=0

k!

(k − (j − 1))!z
N−k

Thus,

E
h
(N − |T (N)j |) · · · (N + 1−m− |T (N)j |)

i
=

dm

dzm
E

∙
zN−|T

(N)
j |

¸¯̄̄̄
z=1

=
dm

dzm
E

∙
zNϕ|T (N)j |

¡
z−1

¢¸¯̄̄̄
z=1

=
j(N − j)!

N !

N−1X
k=0

k!

(k − (j − 1))!
dm

dzm
E
h
zk
i¯̄̄̄
z=1

=
j(N − j)!

N !

N−1X
k=0

k!

(k − (j − 1))!
k!

(k −m)!

Substituted in (8) gives

E [Bn(m)] =
NX
j=n

n

j

Ã
1− (N −m)!j(N − j)!

(N !)2

N−1X
k=0

(k!)2

(k − (j − 1))!(k −m)!

!

and in (5)

E[WN (m)] =
NX
n=1

1

N + 1− n

NX
j=n

1

j

Ã
1− (N −m)!j(N − j)!

(N !)2

N−1X
k=0

(k!)2

(k − (j − 1))!(k −m)!

!

The first sum is, after reversal of the summations and using the identity
PN

j=1
1
j

PN
k=N+1−j

1
k =PN

k=1
1
k2 proved [3, Appendix], equal to

NX
n=1

1

(N + 1− n)

NX
j=n

1

j
=

NX
k=1

1

k2

The second sum is

Ym =
(N −m)!

(N !)2

NX
n=1

1

N + 1− n

NX
j=n

(N − j)!
N−1X
k=0

(k!)2

(k − (j − 1))!(k −m)!

=
(N −m)!

(N !)2

NX
n=1

1

N + 1− n

N−1X
k=0

(k!)2

(k −m)!

NX
j=n

(N − j)!

(k − (j − 1))!

Application of the identity

mX
j=n

(a− j)!

(b− j)!
=

1

a+ 1− b

½
(a− n+ 1)!

(b− n)!
− (a−m)!

(b−m− 1)!

¾
(9)
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gives

Ym =
(N −m)!

(N !)2

NX
n=1

N−1X
k=0

(k!)2 (N − n)!(N − k − 1)!
(k −m)!(k + 1− n)!(N − k)!

=
(N −m)!

(N !)2

N−1X
k=0

(k!)2

(k −m)!(N − k)

NX
n=1

(N − n)!

(k + 1− n)!

Again, using (9) yields

Ym =
(N −m)!

N !

N−1X
k=0

k!

(k −m)!(N − k)2

=
(N −m)!

N !

NX
k=1

(N − k)!

(N −m− k)!k2
=

1¡N
m

¢ NX
k=1

µ
N − k

m

¶
1

k2

Hence, we arrive at

E[WN (m)] =
NX
k=1

1

k2
− Y =

NX
k=1

¡N
m

¢
−
¡N−k

m

¢¡
N
m

¢ 1

k2
(10)

=
mX
j=1

1

N + 1− j

NX
k=j

1

k
(11)

where the last formula (11) was found in [1]. Equality of both formulae is proved in Appendix A.
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A Proof that (10) equals (11)

Writing the difference in Y as ∆Y = Ym − Ym−1 = −∆W ,

∆Y =
1

N !

NX
k=1

∙
(N −m)!

(N −m− k)!
− (N −m+ 1)!

(N −m+ 1− k)!

¸
(N − k)!

k2

and with

B =
(N −m)!

(N −m− k)!
− (N −m+ 1)!

(N −m+ 1− k)!
=

−(N −m)!k

(N −m+ 1− k)!

we see that

∆Y =
−(N −m)!

N !

NX
k=1

(N − k)!

(N −m+ 1− k)!

1

k

=
−(N −m)!

N !

N−m+1X
k=1

(N − k)!

(N −m+ 1− k)!

1

k

Using the identity

bX
j=n

1

j

(a− j)!

(b− j)!
=

a!

b!

bX
j=n

1

j
− a!

(b− n)!

a−b−1X
q=0

1

a− b− q

(a− q − n)!

(a− q)!

which is valid for all integers a, b and n, gives

N−m+1X
j=1

1

j

(N − j)!

(N −m+ 1− j)!
=

N !

(N −m+ 1)!

N−m+1X
j=1

1

j
− N !

(N −m)!

m−2X
q=0

1

m− 1− q

1

(N − q)

Since

m−2X
q=0

1

m− 1− q

1

(N − q)
=

1

N −m+ 1

m−2X
q=0

1

m− 1− q
− 1

N −m+ 1

m−2X
q=0

1

(N − q)

=
1

N −m+ 1

m−1X
j=1

1

j
− 1

N −m+ 1

NX
j=N−m+2

1

j

we have

∆Y = − 1

(N −m+ 1)

N−m+1X
j=1

1

j
+

1

N −m+ 1

m−1X
j=1

1

j
− 1

N −m+ 1

NX
j=N−m+2

1

j

= − 1

N −m+ 1

NX
j=m

1

j

From the original expression (11), we immediately find that ∆W = 1
N+1−m

PN
k=m

1
k which proves

equality in the differences since ∆Y = −∆W . Equality of (11) and (10) then follows since for m = N ,

both expressions are equal. ¤
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