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ABSTRACT

A strategy of how to divide a network into peer
groups is discussed. The work is inspired by the
ATM Forum’s PNNI specification. The proposed
strategy relies on two pillars, a symmetry criterion
and the concept of strongly connected components
in graph theory.

The hierarchy, which offers network scalability, is
without doubt the most advanced feature in PNNI.
However, the construction of this hierarchy is still a
topic of a current research. This article investigates
a first phaze in building the hierarchy (how to
combine nodes to form a peer group or subnet)
while the second phaze, the information
condensation, is discussed elsewhere (Van Mieghem,
1998a). Finally, for the routing in a hierarchy, we
refer to Van Mieghem (1998a).

INTRODUCTION

The division of a large network into peer groups is
necessary to build a hierarchical structure of the
network. The hierarchy furnishes scalability (Van
Mieghem, 1997). Scalability will become an
increasingly attractive feature in future networks
because the network intelligence functions, such as
routing, flooding, ..., tend to grow in complexity as
the number of nodes and links in the network
increases. The complexity in network functions
augments because the services are demanding more
quality of service (QoS).

In particular, where best-effort, unreliable delivery
(as in the current Internet) only requires a shortest
path routing function with a complexity roughly

quadratic in the number of nodes, QoS-aware
networks are confronted with QoS routing (multi-
parameter routing subject to QoS requirements). In
principle, QoS routing has a non-polynomial
complexity when the number of nodes and links
increase (Wang and Crowcroft, 1996). Interestingly,
also for QoS routing, very efficient algorithms can be
designed such as TAMCRA (Tunable Accuracy
Multiple Constraint Routing Algorithm) proposed in
De Neve and Van Mieghem (1998).

There are many factors that may influence the
division of a large network into peer groups. Without
pretending to be complete, we list the more important
ones. First, the topology itself is determined by
geographic and demographic aspects. For instance, a
large population on a small area may give rise to
many strongly interconnected nodes. Further, a
network may extend over country boundaries.
Differences in legal and financial (taxes,...)
regulations may encourage an operator to divide his
network per country. But, even in a same country, a
large network may be owned by various operators
who want to control their part of the network. The
separation of the network may be based on policy
agreements.

In the sequel, we only consider how one, large
topology, entirely owned and controlled by one single
authority can be divided into peer groups. Hence, we
assume that legal, policy and country factors have
already been taken into account. We dispose, so to
say, of a large homogeneous network where each
node is equally important. Thus, only topological
considerations are invoked to propose a strategy to
divide the large network into peer groups (or
subnets).
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By the best of our knowledge, network planning
aspects in hierarchies as discussed here have not been
discussed earlier.

The division of a network into peer groups is the first
step to build the hierarchy. The following process is
information condensation (see e.g. Van Mieghem,
1998), i.e. node and link aggregation, where each
peer group on a lower level in the hierarchy, say k, is
represented by one complex (or logical) node on level
k+1.

After the information condensation, we obtain a
reduced network view on level k+1. At that level,
again a division process is needed to combine these
complex nodes in level k+1 peer groups, that, in a
next information condensation cycle lead to the
network view on level k+2.

Recursively applying the topology condensation and
‘division into peer groups’ processes, yields the
eventual hierarchical structure of the network, as
shown in Figure 1.
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Figure 1. A hierarchical structure based on the specifications of PNNI where a subnet is coined a peer group, denoted as
PG(.).

STRATEGY

The proposed strategy to separate a network
into peer groups draws on two pillars.

On the one side, our earlier dimensioning study
(Van Mieghem, 1997) shows the optimal
hierarchical structure of a PNNI topology and
gives clear indications how to obtain it. In
particular, the results demonstrate that
symmetry should be aimed at in the sense that
all peer groups on a certain level k should
contain a same number of nodes. We refer to
this first guideline as the symmetry criterion.

In addition, the analysis demonstrated that, for
an increasing hierarchical level k, the number of
(logical) nodes on that level k (which equals

the number of peer groups on level k-1)
seriously grows, a result somewhat unexpected
and opposed to what is shown in Figure 1,
where, on the average, a lower level contains
more nodes than a higher one.

Another useful result is the explicit expression
of the number of hierarchical levels N, when the
lowest level peer groups all contain x > 2
(physical) nodes and the total number of
physical nodes is M (i.e. the total number of
nodes on the lowest level of the hierarchy k =
0), as

N = [log2 (1 + log2 M/log2 (x/2))]

where [y] denotes the integer smaller than (or
equal to) y. However, these results are based on
the following assumptions:
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(1) the optimization criterion is the worst case
routing complexity C, (2) the routing
complexity is additive and (3) the worst case
complexity only depends on the number of
nodes (as is, e.g., the case for the Dijkstra
algorithm where C = O(M2)). These
assumptions are quite valid if we can construct
the original network (and its hierarchy) from
scratch on. In most cases, a network is given
and defined by a topology consisting of M
nodes and E links. In order to take the existing
interconnectivity into account, modifications of
our previous analysis (Van Mieghem, 1997) are
needed, reflected by a second pillar.

This second pillar relies on strongly connected
components in graph theory (Cormen et al.,
1990, sec. 23.5). A strongly connected
component of a directed graph G(V,E) with E
links (edges) and V nodes (vertices) is a
maximal set of vertices U such that every pair
of vertices u  and v in U are reachable from
each other. The problem of finding the strongly
connected components of a directed graph is
related to the problem of determining the
ergodic subchains and transient states of a
Markov chain. There exists an algorithm due to
Tarjan (1972), based on depth first search, that
computes the strongly connected components in
linear-time, i.e. O(V+E). In other words, no
matter how large the original topology, a
separation in strongly connected components is
always best feasible.

The determination of strongly connected
components relies on the underlying (given)
topology, while the symmetry criterion is
deduced from optimizing the worst case routing
complexity. The latter makes abstraction of the
underlying topology and only takes the number
of nodes into account. Clearly, the pursue of
both objectives, may lead to conflicts. Indeed,
based on the original topology, the different
strongly connected components may widely
vary in the number of nodes so that the peer
groups are asymmetrical with respect to the
number of nodes. Hence,  on the first optimality
directive, the resulting hierarchical structure
will be suboptimal. In case of conflicts, there
are two choices.

Either change the underlying topology, which is
rather drastic and usually impossible or
combine smaller strongly connected
components into one peer group so that the
symmetry criterion is more or less satisfied.
Hence, we may summarize the strategy as
follows:

1. Compute the strongly connected
components of the directed graph G(V,E).

2. If the number of nodes in the strongly
connected components are about the same,
call these strongly connected components
the peer groups and we are done.

3. else, assign smaller strongly connected
components (adjacent to each other) to one
peer group so that the symmetry criterion is
obeyed as closely as possible.

There remains to explain how step 3 in the
strategy must be performed. Replace each
strongly connected component by one node,
coined a “strongly connected component node”
or scc-node and reduce the number of links
connecting a pair of scc-nodes to one. Omit
those scc-nodes corresponding to large strongly
connected components of about the same size.
Determine in this condensed and reduced
topology again the strongly connected
components. The resulting “second order”
strongly connected components (i.e. strongly
connected components of scc-nodes) surely
contain more original (or physical) nodes.
Check whether these “second order” strongly
connected components are of the same size (in
terms of number of physical nodes) as the “first
order” components that we have omitted. If so,
assign the latter strongly connected components
to peer groups else, repeat the process. We
believe it very unlikely that the process needs a
third iteration.

How suboptimal the hierarchical structure is
when neglecting the symmetry criterion is a yet
unanswered question. It is an interesting issue
for further study. In case symmetry is only a
weak requirement, the strategy above will
simplify considerably (only step 1 is needed).
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ADDITIONAL CONSIDERATIONS

The proposed link and node strategy (Van
Mieghem, 1998) is fine-tuned for this strategy
because on each level of the hierarchy two
complex nodes are connected by only one link.
This makes that the strongly connected
components on higher hierarchical levels are
similarly computed than on the physical level.
On the other hand, assigning strongly connected
components to peer groups has the advantage
that the peer groups are internally strongly
connected, but less with other peer groups,
reflecting the original purpose of the notion of
“peer group”.

This also means that the number of border
nodes is likely to be smaller than the number of
internal nodes. As only these border nodes have
connectivity with other peer groups, they are
crucial in the node and link aggregation.

The lower the number of border nodes, the
simpler both node and link aggregation (also
called topology condensation) is. Hence, the
concept of strongly connected components
seems both advantageous for topology
condensation and for the ‘division into peer
groups’ process.
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