
Chapter 6
Community Networks with Equitable
Partitions

Stefania Ottaviano, Francesco De Pellegrini, Stefano Bonaccorsi,
Delio Mugnolo and Piet Van Mieghem

A community structure is an important non-trivial topological feature of a complex
networks. Indeed community structures are a typical feature of social networks,
tightly connected groups of nodes in the World Wide Web usually correspond to
pages on common topics, communities in cellular and genetic networks are related
to functional modules [46].

Thus, in order to investigate this topological feature, we consider, in this chapter,
that the entire population is partitioned into communities (also called households,
clusters, subgraphs, or patches). There is an extensive literature on the effect of net-
work community structures on epidemics. Models utilizing this structure are com-
monly known as “metapopulation” models (see, e.g., [10, 125, 178]). Such models
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assume that each community shares a common environment or is defined by a specific
relationship.

Some of the most common works on metapopulation regard a population divided
into households with two level of mixing [31, 32, 220]. These models typically
assume that contacts, and consequently infections, between nodes in the same group
occur at a higher rate than those between nodes in different groups [35]. Thus,
groups can be defined, e.g., in terms of spatial proximity, considering that between-
group contact rates (and consequently the infection rates) depend in some way on
spatial distance. In this type of heterogeneous contact networks each node can be
theoretically infected by any other node. However, an underlying network contact
structure, where infection can only be transmitted by node directly linked by an edge,
may provide amore realistic approach for the study of the evolution of the epidemics,
[35]. In turn, an important challenge is how to consider a realistic underlying structure
and appropriately incorporate the influences of the network topology on the dynamics
of epidemics [33, 34, 98, 212, 270, 283].

6.1 Equitable Partitions

We consider the diffusion of epidemics over an undirected graph G = (V, E) with
edge set E and node set V . The order of G, denoted N , is the cardinality of V ,
whereas the size of G is the cardinality of E , denoted L . Connectivity of the graph
G is conveniently encoded in the N × N adjacency matrix A. We are interested in
the case of networks that can be naturally partitioned into n communities: they are
represented by a node set partition π = {V1, ..., Vn}, i.e., a sequence of mutually
disjoint nonempty subsets of V , called cells, whose union is V .

The dynamics of epidemic transmission is modeled by an SIS (susceptible-
infected-susceptible) model, where we consider the continuous-time mean-field ap-
proximation of the exact Markovian SIS model, NIMFA [274]. We consider a curing
rate δ equals for all nodes. Instead, compared to the homogeneous case, where the
infection rate is the same for all pairs of nodes, in this framework we consider two
infection rates: the intra-community infection rate β, for infecting individuals in the
same community, and the inter-community infection rate εβ, i.e., the rate at which
individuals among different communities get infected. We assume 0 < ε < 1, the
customary physical interpretation being that infection across communities occur at
a much smaller rate. Indeed the presence of communities generates a strong mix-
ing effect at local level (e.g., the rate of infection inside a community tends to be
homogeneous) as opposed to themuch lower speed of mixing (i.e., much larger inho-
mogeneity) within the whole population. Specifically, the contact newtork structure
that we consider has an equitable partition of its node set. The original definition of
equitable partition is due to Schwenk [234].

Definition 6.13 Let G = (V, E) be a graph. The partition π = {V1, ..., Vn} of the
node set V is called equitable if for all i, j ∈ {1, . . . , n}, there is an integer di j such
that
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Fig. 6.1 A sample graphs with equitable partition. a V = {V1, V2, V3, V4}, b Interconnected star
networks: V = {V 0
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di j = deg(v, Vj ) := #
{
e ∈ E : e = {v,w} , w ∈ Vj

}
.

independently of v ∈ Vi .

We shall identify the set of all nodes in Vi with the i-th community of the whole
population. Basically this means that all nodes belonging to the same community
have the same internal degree: the subgraph Gi of G(V, E) induced by Vi is regular
for all i’s (recall that π = {V1, ..., Vn} is a partition of the node set V , which is
assumed to be given a priori). Furthermore, for any two subgraphs Gi ,G j , each
node in Gi is connected with the same number of nodes in G j (see as examples
Fig. 6.1).

Thus, a network with an equitable partition of its node set posses a sort of in-
teresting symmetry properties, where with the word symmetry we refer to a certain
structural regularity of the graph connectivity. Such kind of network structure can
be observed, e.g., in the architecture of some computer networks where clusters of
clients connect to single routers, whereas the routers’ network has a connectivity
structure with nodes’ degree constrained by the number of ports. An other real-word
circumstance, that can bemodel by an equitable partition of the population, is the epi-
demics transmission between e.g. households, classes in a school or work offices in
the same department, i.e. small communities whose members know each other. This
framework can be modeled representing the internal structure of each community
by a complete graph. Moreover given two connected communities, all of their nodes
can be considered mutually linked, indeed each member of those two communities
may potentially come into contact.

Equitable partitions appears also in the study of synchrony and pattern formation
in coupled cell networks [108, 250] where they are named “balanced” partitions.
Equitable partitions have been used also to analyze the controllability of multi-agent
systems, for the case of a multi-leader setting [216], and for the leader-selection
controllability problem, in characterizing the set of nodes from which a given net-



114 S. Ottaviano et al.

worked control system (NCS) is controllable/uncontrollable [7]. These works show
interesting realistic scenarios for the use of equitable partitions. Since the size of
some real networks might pose limitations in our ability to investigate their spectral
properties, as we shall see, we can leverage on the structural regularity of network
with equitable partition to reduce the dimensionality of our system.

The macroscopic structure of a network with an equitable partition of its node
set can be described by a quotient graph G/π, which is a multigraph with cells
V1, . . . , Vn as vertices and kidi j edges between Vi and Vj . For the sake of explanation,
in the following we will identifyG/π with the (simple) graph having the same vertex
set, and where an edge exists between Vi and Vj if at least one exists in the original
multigraph. We shall denote by B the adjacency matrix of the graph G/π.

Remark 6.3 We use the notation lcm and gcd to denote the least common multiple
and greatest common divisor, respectively. We can observe that the partition of a
graph is equitable if and only if

di j = α
lcm(ki , k j )

ki

where α is an integer satisfying 1 ≤ α ≤ gcd(ki , k j ) and ki the number of nodes in
Vi , for all i = 1, ..., n.

Example 6.1 Let us assume that the adjacency matrix B of the quotient graph is
given and that, for any i, j ∈ {1, . . . , n}, bi j ̸= 0 implies di j = k j , i.e., each node
in Vi is connected with every node inside Vj . We can explicitly write the adjacency
matrix A in a block form. LetCVi = (ci j )ki×ki be the adjacencymatrix of the subgraph
induced by Vi and Jki×k j is an all ones ki × k j matrix; then

A =

⎡

⎢⎢⎢⎢⎣

CV1 εJk1×k2b12 . . εJk1×kn b1n
εJk2×k1b21 CV2 . . εJk2×kn b2n

. . . . .

. . . . .

. . . . CVn

⎤

⎥⎥⎥⎥⎦
(6.1)

We observe that (6.1) represents a block-weighted version of the adjacencymatrix
A. The derivation of NIMFA for the case of two different infection rates, considered
in this paper, results in the replacement of the unweighted adjacency matrix in the
NIMFA system (6.6) with its weighted version.

A matrix smaller than the adjacency matrix A, that contains the relevant information
for the evolution of the system, is associated with the quotient graph. Such a matrix
is the quotient matrix Q of the equitable partition.

The quotient matrix Q can be defined for any equitable partition: in view of the
internal structure of a graph with an equitable partition, it is natural to consider the
cell-wise average value of a function on the node set, that is to say the projection of
the node space into the subspace of cell-wise constant functions.
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Definition 6.14 Let G = (V, E) a graph. Let π = {Vi , i = 1, . . . , n} be any parti-
tion of the node set V , let us consider the n × N matrix S = (siv), where

siv =
{

1√|Vi | v ∈ Vi

0 otherwise.

The quotient matrix of G (with respect to the given partition) is

Q := SAST .

Observe that by definition SST = I .
In the case of equitable partitions, the expression for Q writes

Q = diag(dii )+ (
√
di j d jiεbi j )i, j=1,...n .

A key feature of the model is that the spectral radius of this smaller quotient
graph (which only captures the macroscopic structure of the community network)
is all we need to know in order to decide whether the epidemics will go extinct in a
reasonable time frame. Indeed, the spectral radius is related to the epidemic threshold
of the system. NIMFA determines the epidemic threshold for the effective spreading
rate β/δ as τ (1)

c = 1
λ1(A)

, where λ1(A) is the spectral radius of A and the superscript
(1) refers to the first-order meanfield approximation [50, 274]. Since Q and A have
the same spectral radii [267, art. 62] we can compute the spectral radius of Q in order
to estimate the epidemic threshold. This may lead to a significative computational
advantage in the calculation of τ (1)

c , since the order of Q is smaller than that of A
[50, Sect. 3.3].

6.1.1 Lower Bounds for the Epidemic Threshold

We can write Q = D + B̂, where D = diag(dii ) and B̂ = (
√
di j d jiεbi j )i, j=1,...n . By

the Weyl’s inequality [180] we have

λ1(Q) ≤ λ1(D)+ λ1(B̂) = max
1≤i≤n

dii + λ1(B̂). (6.2)

Since
τ (1)
c = 1/λ1(A) = 1/λ1(Q),

a lower bound for the epidemic threshold can be derived from (6.2)

τ (1)
c ≥ τ ⋆ = min

i

1

dii + λ1(B̂)
, (6.3)
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Fig. 6.2 Lower bound (6.3)
versus epidemic threshold:
comparison for different
values of k in a
40-communities network.
The internal structure of each
community is a ring and
di j = 2 for all
i, j = 1, . . . , n
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Moreover let us note that λ1(B̂) ≤ maxi
∑

j b̂i j [181, pp. 24–26], hence

τ (1)
c ≥ 1

maxi (dii +
∑

j b̂i j )
. (6.4)

Figure6.2 reports on the comparison of the lower bound (6.3) and the actual
threshold value: it refers to the case of a sample equitable partition composed of
interconnected rings for increasing values of the community order.

We observe that obtaining a lower bound for τ (1)
c is meaningful because τ (1)

c is
itself a lower bound for the epidemic threshold τc of the exact stochastic model, i.e.,
τc = ατ (1)

c with α ≥ 1 [61, 274]. In fact, smaller values of the effective spreading
rate τ , namely δ > β/τ (1)

c , correspond, in the exact stochastic model, to a region
where the infectious dies out exponentially fast for sufficiently large times [106,
262, 269, 273]. Thus, in applications, when designing or controlling a network, τ ∗

(or the more conservative bound in (6.4)) can be adopted to determine a safety region
{τ ≤ τ ⋆} for the effective spreading rate that guarantees the extinction of epidemics
in a reasonable time frame (above the threshold, the overall-healthy state is only
reached after an unrealistically long time).

Equality can be attained in (6.3): consider for instance the graph described by the
adjacency matrix A in (6.1). Furthermore, we may require that all Vi ’s have the same
number of nodes ki = k and same internal degree dii = d, i = 1, . . . , n. In this case
Q = d Idn + B̂, where B̂ := (kεbi j )i, j=1,...n , and

λ1(Q) = d + kελ1(B),

which is the exact value of λ1(A) and consequently of τ (1)
c .
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Remark 6.4 Let us underline that if we remove edges between the communities, or
inside the communities, in a network whose set nodes has an equitable partition, the
lower bound (6.3) still holds. This because the spectral radius of an adjacency matrix
is monotonically non increasing under the deletion of edges.

6.1.2 Infection Dynamics for Equitable Partitions

The NIMFA model describes the process of diffusion of epidemics on a graph by
expressing the time-change of the probability pi that node i is infected.

Thus, node i obeys a following differential equation [274]

dpi (t)
dt

= β
N∑

j=1

ai j p j (t)(1 − pi (t)) − δi (t), i ∈ {1, . . . , N } (6.5)

The time-derivative of the infection probability of node i consists of two compet-
ing processes:

1. while healthy (with probability 1 − pi (t)), all infected neighbors, whose average
number is si (t), try to infect node i at rate β;

2. while node i is infected (with probability pi (t)) it is cured at rate δ.

The following matrix representation of (6.5) holds

dP(t)
dt

= (βA − δ I )P(t) − β diag(pi (t))AP(t). (6.6)

where P(t) = ( p1(t) p2(t) . . . pN (t) )T and diag(pi (t)) is the diagonal matrix with
elements p1(t), p2(t), . . . , pN (t). Clearly we study the system for (p1, . . . , pN ) ∈
IN = [0, 1]N . It can be shown that the system (6.6) is positively invariant in IN , i.e.
if P(0) ∈ IN then P(t) ∈ IN for all t > 0 [163, Lemma 3.1].

The following theorem shows under which conditions the matrix Q can be used
in order to express the epidemic dynamics introduced in (6.6). This allows us to
describe the time-change of the infection probabilities by a system of n differential
equations instead of N . For the proof we refer to [50].

Theorem 6.10 Let G = (V, E) a graph and π = {Vj , j = 1, . . . , n} an equitable
partition of the node set V . Let G j be the subgraph of G = (V, E) induced by cell
Vj . If ph(0) = pw(0) for all h, w ∈ G j and for all j = 1, . . . , n, then ph(t) = pw(t)
for all t > 0. In this case we can reduce the number of equations representing the
time-change of infection probabilities using the quotient matrix Q.

Basically the theorem shows that the following subset of IN , defined by restricting
nodes in the same community to have the same state
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M =
{
P ∈ [0, 1]N |p1 = . . . = pk1 = p1, pk1+1 = . . . = pk1+k2 = p2,

. . . , p(k1+..kn− 1+1) = . . . = pN = pn
}

is a positively invariant set for the system (6.6).
Thus, let us consider P(0) ∈ M and P = (p1, . . . , pn), we can write

d p j (t)

dt
= β(1 − p j (t))

n∑

m=1

εb jmd jm pm(t) (6.7)

+ βd j (1 − p j (t))p j (t) − δ p j (t), j = 1, . . . , n

After some manipulations we arrive to the following matrix representation of
(6.7)

dP(t)
dt

= β
(
In − diag(p j (t))

)
Q̃P(t) − δP(t), (6.8)

where Q̃ = diag
(

1√
k j

)
Q diag(

√
k j ). It is immediate to observe thatσ(Q) = σ(Q̃).
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Fig. 6.3 Dynamics of infection probabilities for each community of the network in Fig. 6.1: sim-
ulation versus numerical solutions of (6.8); τ = β/δ < τ (1)c = 0.3178, with β = 0.29 and δ = 1,
ε = 0.3. At time 0 the only infected node is node 1
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Fig. 6.4 Dynamics of infection probabilities for each community of the network in Fig. 6.1: sim-
ulation versus numerical solutions of (6.8); τ = β/δ > τ (1)c = 0.3178, with β = 1.5 and δ = 0.3,
ε = 0.3; initial conditions as in Fig. 6.3

In Figs. 6.3 and 6.4 we provide a comparison between the solution of the reduced
ODE system (6.8) for the graph in Fig. 6.1 and the averaged 50 × 104 sample paths
resulting from a discrete event simulation of the exact SIS process. The discrete
event simulation is based on the generation of independent Poisson processes for
both the infection of healthy nodes and the recovery of infected ones. We observe
that, as expected, NIMFA provides an upper bound to the dynamics of the infection
probabilities.

Figure6.5 depicts the same comparison in the case of a network with eighty nodes
partitioned into four communities; each community is a complete graph and all
nodes belonging to two linked communities are connected. The agreement between
NIMFAand simulations improves compared to Fig. 6.4. This is expected, because the
accuracy ofNIMFA is known to increasewith network order N , under the assumption
that the nodes’ degree also increases with the number of nodes. Conversely, it is less
accurate, e.g., in lattice graphs or regular graphs with fixed degree not depending on
N [264, 274].
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Fig. 6.5 Infection probabilities for each community in a network with N = 80, dii = ki − 1 = 19
and di j = 20, for all i, j = 1, .., 4: simulation versus numerical solutions of (6.8); τ = β/δ >

τ (1)c = 0.0348, with β = 5 and δ = 2, ε = 0.3; at time 0 all nodes of the 1-st community are
infected

6.1.3 Steady State

Corollary 6.5 When τ > τ (1)
c the metastable state P∞ of the system (6.6) belongs

to M − {0}.

The result above is proved in [48]. Basically, Corollary 6.5 says that one can
compute the n × 1 vector, P∞, of the reduced system (6.8) in order to obtain the
N × 1 vector, P∞, of (6.6): indeed pz∞, . . . , px∞ = p j∞, for all z, x ∈ G j and
j = 1, . . . , n. This provides a computational advantage by solving a system of n
equations instead of N . Moreover, since P∞ is a globally asymptotically stable
equilibrium in I N − {0}, the trajectories starting outside M will approach those
starting in M − {0}, as time elapses. The same holds clearly for trajectories starting
in I N and in M when τ ≤ τ (1)

c . Numerical experiments in Fig. 6.6 depict this fact.
We focus now on the computation of the steady-state P∞ =

(
pi∞

)
i=1,...,N of

system (6.6). To this aim, by Corollary 6.5, we can compute the steady-state P∞ =(
p j∞

)
j=1,...,n of the reduced system (6.8) and obtain
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Fig. 6.6 Comparison between the dynamics of the original system (6.6) for each of the nodes
belonging to V3 in Fig. 6.1, for different initial conditions and the dynamics of the reduced system
(6.8). In the latter case the initial conditions for each node are the mean value of the pi (0)s. a
case below the threshold: β = 0.29, δ = 1, ε = 0.3 b case above the threshold: β = 1.5, δ = 0.3,
ε = 0.3

β(1 − p j∞)

n∑

m=1

(
k j

km

)− 1/2

q jm pm∞ − δ p j∞ = 0, j = 1, . . . , n

whence

p j∞ = 1 − 1

1+ τ
∑n

m=1

(
k j

km

)− 1/2
q jm pm∞

= 1 − 1

1+ τg j
(
P

) (6.9)

where

g j
(
P

)
:=

(

d j j + ε
n∑

m=1

(
k j

km

)− 1/2 √
d jmdmj

)

−
n∑

m=1

(
k j

km

)− 1/2

q jm(1 − pm∞).

By introducing 1 − pm∞ = 1

1+ τ
∑n

z=1

(
km
kz

)− 1/2
qmz pz∞

in (6.9), we can express p j∞

as a continued fraction iterating the formula

x j,s+1 = f (x1;s, .., xn;s) = 1 − 1
1+ τg j (x1;s, .., xn;s)

,

As showed in [274], after a few iterations of the formula above, one can obtain a
good approximation of p j∞, with a loss in the accuracy of the calculation around
τ = τc.
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Fig. 6.7 Steady-state average fraction of infected nodes, for different values of τ : comparison
between the approximation (6.10) and the exact computation through (6.6); a the graph is the one
considered in Fig. 6.1a and b the one considered in Fig. 6.5

If we consider a regular graphwhere communities have the same number of nodes,
then

p j∞ = 1 −
(

1/τ

(

d j j + ε
n∑

m=1

(
k j

km

)− 1/2 √
d jmdmj

))

is the exact solution of (6.9).

Now let r j = d j j + ε
∑n

m=1

(
k j

km

)− 1/2 √
d jmdmj and r(1) = min j r j ; relying on

the estimate p j∞ ≈1 −
(
1/τr j

)
we can express the steady-state average fraction of

infected nodes y∞(τ ) = (1/N )
∑n

j=1 k j p j∞(τ ) by

y∞(τ ) ≈1 − 1
τN

n∑

j=1

k j
1

d j j + ε
∑n

m=1

(
k j

km

)− 1/2 √
d jmdmj

. (6.10)

According to the analysis reported in [274], approximation (6.10) becomes the
more precise the more the difference r(2) − r(1) is small, where r(2) is the second
smallest of the r j ’s (Fig. 6.7).
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6.1.4 Clique Case

A clique of a graph is a set of vertices that induces a complete subgraph of that graph.
Here we consider the specific case, analyzed in [49], where we have a clique cover
of the graph, i.e., a set of cliques that partition its vertex set.

Thus, basically, all elements in a community are connected, i.e, dii = ki − 1 for all
i = 1, ..., n.Moreoverwe assume that all nodes belonging to two linked communities
i and j are connected, i.e., di j = k j and d ji = ki . A sample graph is depicted in
Fig. 6.8.

In [49] sufficient conditions for the extinction of epidemics have been found
explicitly in terms of the dimension of the communities, their connectivity, and the
parameters of themodel. In the followingwe report themain results (for the derivation
of the results see [49]).

Theorem 6.11 Let G = (V, E) be a graph with partition π = {Vi , i = 1, ..., n},
such that all Vi ’s induce a complete subgraph Gi of G, and all Vi ’s have the same
order ki = k. Moreover let us consider that whenever a node of Gi is connected
with a node in G j , then it is connected with all nodes in G j . Therefore a sufficient
condition for the uniqueness of the zero steady-state is the following:

dmaxεβ + (1 − 1
k )β

δ
<

1
k
,

where dmax = maxi di , and di is the number of communities with which the i-th is
connected.

Theorem 6.12 Let G = (V, E) be a graph with partition π = {Vi , i = 1, ..., n},
such that all Vi ’s induce a complete subgraph Gi of G, each of arbitrary order ki .
Moreover let us consider that whenever a node of Gi is connected with a node in
G j , then it is connected with all nodes in G j . Therefore a sufficient condition for the
uniqueness of the zero steady state is the following:

Fig. 6.8 Interconnected
cliques. A link between two
cliques means that each node
in one clique is linked with
all nodes in the other clique
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Fig. 6.9 a Fraction of infected nodes for different values of k as a function of τ = β/δ, with fixed
the ratio ε = 1/2 and the value δ = 1. The network of the communities is a regular graph with
degree 10; the number of nodes is N = 500. The inserted plot represents the root mean square error
between the simulated and the approximated fraction of infected nodes. b The corresponding value
of the epidemic threshold for the NIMFA and the exact a-SIS model

∀ i = 1, . . . , n :
di εβ + (1 − 1

ki
)β

δ
<

1
ki
.

Our NIMFA-like approximation is validated here by comparison with the exact
SISmodel. From the operative standpoint, we compareNIMFAwith the a-SISmodel
[133, 271] where a nodal self-infection is allowed, at rate a. This model has no
absorbing state and its stationary distribution, that can be computed for explicitly,
can be made arbitrarily close to the quasi-stationary distribution of the original SIS
model, by considering appropriate and small values of a > 0 [172, 271]. For a
detailed explanation on the simulation process see [172].

Effect of community dimension. We depict first, in Fig. 6.9a, the impact of the
community dimension k on the fraction of infected nodes in the steady-state, and
compare the results of our model to the a-SIS model. The epidemic threshold of
the a-SIS model is measured as the value of τ where the second derivative of the
steady-state fraction of infected nodes equals zero. We consider a range for τ = β/δ,
for constant ratio ε = 1/2 and fixed δ = 1.

The sample network, representing the connections between the communities, has
constant degree d = 10. The total number of nodes is N = 500. The number of
elements k is the same for all communities: curves are drawn for increasing values of
k (k = 1, 2, 5, 10), where k = 1 denotes the absence of local clusters. The threshold
effect is well visible in the graphs depicted in Fig. 6.9a. As can be further observed,
our model and the exact SIS model are in good agreement and the root mean square
error between them decreases as k increases.

In Fig. 6.9b the corresponding value of the epidemic threshold for the NIMFA and
the a-SIS model is reported. As expected from Theorem 6.11, the critical threshold
above which a persistent infection exists decreases with the dimension of the com-
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Fig. 6.10 Difference "τ

between the epidemic
threshold in the case of
homogeneous cluster
distribution and
inhomogeneous cluster
distribution for different
values of k (5, 10, 15), being
fixed the ratio ε = 1/8. The
difference was obtained
averaging over 300 instances
of tree graphs of 10 clusters,
the level of confidence is set
to 98%
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munities. Thus, for large values of the community dimension, a very small value of τ
is sufficient to cause epidemic outbreaks, irrespective of the actual network structure.

Effect of the heterogeneity of the community dimension.
One interesting question that concerns the two-scale epidemic model is the in-

fluence of the community dimension distribution onto the epidemic threshold. In
general, it is not obvious whether, fixing all remaining system’s parameters, a con-
stant community dimension will lead to a lower or larger epidemic threshold for the
same network.

In Fig. 6.10 we performed a test using a set of 300 sample tree graphs for depicting
the connectivity of the communities. Each graph is the spanning tree of an Erdős-
Rényi graph of order n = 10 and p = 0.3. The ratio ε is set to 1/8. The plot draws the
difference"τ , obtained averaging over the 300 sample graphs, between the epidemic
thresholdmeasured for homogeneous cluster distribution, and the epidemic threshold
measured in the case of inhomogeneous cluster distribution.
In particular, for each sample tree, we considered different values of the average
cluster dimension k = 5, 10, 15. In the case of heterogeneous cluster distribution
half of the communities have dimension 2 and half of them have dimension 2k − 2.

Figure 6.10 exemplifies that heterogeneity of communities’ dimension lowers the
epidemic threshold compared to the case of constant dimension. This observation
agrees with the theory, indeed from the inequality [265, (3.34) on p. 47]:

λ1 ≥ 2L
N

√

1+ Var[d]
(E[d])2 ,

where λ1 is the spectral radius of a given graph with N nodes and L links, and d is
the degree of a randomly chosen node in the graph, we have
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Fig. 6.11 The epidemic
threshold in the case of
homogeneous cluster
distribution and
inhomogeneous cluster
distribution for different
values of k, where the
network of the communities
is a spanning tree of an
Erdős-Rényi graph of order
n = 10 and p = 0.3. Both
the NIMFA and the a-SIS
thresholds are shown
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τ (1)
c = 1

λ1
≤ N
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1

√
1+ Var[d]

(E[d])2

implying that, the larger the variance in the degree d, the lower the NIMFA epidemic
threshold τ (1)

c . Unfortunately, since τ (1)
c ≤ τc, we cannot conclude that an increase

in Var[d] also always lowers the exact epidemic threshold τc.
Figure6.11 shows the epidemic thresholdmeasured for homogeneous community

dimension and the epidemic threshold measured for inhomogeneous community
dimension, by considering one instance of the previous set of spanning trees of an
Erdős-Rényi graph. We report both the results obtained for our model and the results
obtained for the a-SIS model: the NIMFA epidemic threshold well estimates the
a-SIS epidemic threshold in both community dimension distributions.

6.2 Almost Equitable Partions

In this section we consider graphs where the partition of the vertex set is almost
equitable.

Definition 6.15 The partition π = {V1, ..., Vn} is called almost equitable if for all
i, j ∈ {1, . . . , n} with i ̸= j , there is an integer di j such that for all v ∈ Vi , it holds

di j = deg(v, Vj ) := #
{
e ∈ E : e = {v,w} , w ∈ Vj

}

independently of v ∈ Vi .

The difference between equitable and almost equitable partitions is that, in the
former case, subgraphGi ofG induced by Vi has regular structure, whereas the latter
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definition does not impose any structural condition into Gi . Ideally we can think of
a network G̃ whose node set has an almost equitable partition as a network G with
equitable partition where links between nodes in one or more communities have been
added or removed.

The objective is to obtain lower bounds on threshold τ (1)
c , useful in determining a

safety region for the extinction of epidemics. We start assuming that links are added
only.

To this aim, let us consider two graphs G = (V, E) and G̃ = (V, Ẽ) with the
same partition {V1, . . . , Vn}, but different edge sets E ! Ẽ , and assume G to have
an equitable partition but G̃ to have merely an almost equitable partition. Then if Ã
and A are the adjacency matrices of G̃ and G respectively it holds

Ã = A + R,

where R = diag(R1, . . . , Rn); the dimension of Ri is ki × ki for i = 1, ..., n, as
before ki is the order of Gi and n is the number of the communities.

The theorem of Weyl can be applied to Ã = A + R and then it yields

λ1( Ã) ≤ λ1(A)+ λ1(R). (6.11)

Proposition 6.26 Let G = (V, E) and G̃ = (V, Ẽ) be two graphs and consider a
partition {V1, . . . , Vn} of the set of vertices V ; we shall denote by Gi = (Vi , Ei )

and G̃i = (Vi , Ẽi ) the subgraph of G and G̃ induced by the cell Vi , respectively, for
i = 1, ...n. Assume this partition to be equitable for G and almost equitable for G̃.
Let E ⊂ Ẽ with

Ẽ \ E =
n⋃

i=1

(Ẽi \ Ei )

(i.e., the edge sets can only differ within cells) and denote by R the adjacency matrix
corresponding to a graph with Ẽ \ E as edge set. Finally, let us denote by GC

i the
graph with edge set Ẽi \ Ei and whose node set is simply the set of endpoints of its
edges (i.e., no further isolated nodes).

1. If "(GC
i ) denotes the maximal degree in GC

i , i = 1, . . . , n, then

λ1(R) ≤ max
1≤i≤n

min

{√
2ei (ki − 1)

ki
,"(GC

i )

}

,

where ei is the number of edges added to Gi , i.e., ei = (|Ẽi | − |Ei |), and ki is
the number of nodes in Vi .

2. If additionally GC
i is connected for each i = 1, . . . , n, then

λ1(R) ≤ max
1≤i≤n

min
{√

2ei − k ′
i + 1,"(GC

i )

}
,
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where k ′
i is the number of nodes of G

C
i .

Thus, by using estimate (6.2) and Proposition 6.26, we can derive a lower bound
for the epidemic threshold, actually

τ (1)
c = 1

λ1( Ã)
≥ τ ⋆ = 1

max
1≤i≤n

λ1(CVi )+ λ1(B̂)+ max
1≤i≤n

min
{√

2ei (ki− 1)
ki

,"(GC
i )

} .

(6.12)
Now let us consider the case where we remove edges, inside the communities,

in a network whose set nodes has an equitable partition, thus because the spectral
radius of an adjacency matrix is monotonically non increasing under the deletion of
edges, we have

λ1( Ã) ≤ λ1(A)

whence
1

λ1( Ã)
≥ 1

λ1(A)
≥ min

i

1

dii + λ1(B̂)
.

The bounds developed so far support the design of community networks with
a safety region for the effective spreading rate, that guarantees the extinction of
epidemics. E.g. if we consider some Gi , i = 1, . . . , n, it is possible to connect them
such in a way to form a graph G̃ = (V, Ẽ) with an almost equitable partition. Now,
any subgraph obtained from G̃, by removing edges inside the communities, will have
smaller spectral radius than G̃ and, consequently, a larger epidemic threshold. Thus
the lower bound in (6.12) still holds.

6.3 Heterogenous SIS on Networks

Several analytic studies in the literature have determined the conditions for the ap-
pearance of endemic infectious states over a population under the assumptions of
homogeneous infection and recovery rates.

However, in many real situations, e.g., in social, biological and data commu-
nications networks, homogeneity is a demanding assumption and it appears more
appropriate to consider instead an heterogeneous setting [263]. A concise overview
on the literature considering heterogeneous populations can be found in [215, 289].

To this aim, we report some results in [50], where heterogeneous infection and
curing rates have been included.

Thus, hereafter, we denote by βi j the infection rate of node j towards node i , and
we exclude self-infection phenomena, i.e., βi i = 0. Thus, we include the possibility
that the infection rates depend on the connection between two nodes, covering a
much more general case, than e.g. in [263], where a node i can infect all neighbors
with the same infection rate βi . Basically we allow for the epidemics to spread over a
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directed weighted graph. Moreover each node i recovers at rate δi , so that the curing
rate is node specific.

As for the homogeneous case, the SIS model with heterogeneous infection and
recovery rates is a Markovian process as well. The time for infected node j to infect
any susceptible neighbor i is an exponential random variable with mean β− 1

i j . Also,
the time for node j to recover is an exponential random variable with mean δ− 1

j . In
the same way as in the homogeneous setting, we provide the NIMFA approximation.
The NIMFA governing equation for node i in the heterogeneous setting writes as

dpi (t)
dt

=
N∑

j=1

βi j p j (t) −
N∑

j=1

βi j pi (t)p j (t) − δi pi (t), i = 1, . . . , N . (6.13)

Let the vector P = (p1, . . . , pN )T and let A = (ai j ) be the matrix defined by
ai j = βi j when i ̸= j , and aii = − δi ; moreover let F(P) be a column vector whose
i-th component is − ∑N

j=1 βi j pi (t)p j (t). Thenwe can rewrite (6.14) in the following
form:

dP(t)
dt

= AP(t)+ F(P). (6.14)

Let
r(A) = max

1≤ j≤N
Re(λ j (A))

be the stability modulus [163] of A, where Re(λ j (A)) denotes the real part of the
eigenvalues of A, j = 1, . . . , N . We report a result from [163] that lead us to extend
the stability analysis of NIMFA in [50] to the heterogeneous case (see [163, Theorem
3.1] for the proof).

Theorem 6.13 If r(A) ≤ 0 then P = 0 is a globally asymptotically stable equilib-
rium point in IN = [0, 1]N for the system (6.14), On the other hand if r(A) > 0 then
there exists a constant solution P∞ ∈ IN − {0}, such that P∞ is globally asymptot-
ically stable in IN − {0} for (6.14).

Finally, in [205] we have defined the equitable partitions for the case of a directed
weighted networks, and we have extended the analysis in [50] to this framework. For
the purpose of modeling, nodes of the quotient graph can represent communities,
e.g., villages, cities or countries. Link weights in the quotient graph in turn provide
the strength of the contacts between such communities. In particular, the weight of
a link may be (a non-negative) function of the number of people traveling per day
between two countries; in fact, the frequency of contacts between them correlates
with the propensity of a disease to spread between nodes.


