
Chapter 8
Adaptive Networks

Huijuan Wang, Stojan Trajanovski, Dongchao Guo and Piet Van Mieghem

We have so far concentrated on networks, which do not change over time. In reality, a
network may change over time in an independent process from the epidemic spread.
Such networks, where the topology changes according to some rule or pattern, are
known as evolving networks. The epidemic threshold in evolving networks has been
studied in the past [214, 280]. Adaptive networks possess more complex proper-
ties than evolving networks, such that the topology is modified based on epidemic
processes.

An adaptive model over the standard SIS model has been considered by Gross
et al. [116]. This model is based on fixed probability of an infected nodes to infect
and incident susceptible node and a fixed recovery probability of an infected node.
Similarly, a link between a susceptible and an infected node is broken with a fixed
probability and subsequently, a connection is established between the susceptible
node and another susceptible node at random, which is an example of a rewiring
process. Moreover, Gross et al. [116] have found a bifurcation pattern between the
healthy, endemic and bi-stable states in their model. Related model to the model of
Gross et al. have been studied by Marceau et al. [177] and Risau-Gusmán [299],
while Lagorio et al. [162] have considered a discrete variant of Susceptible-Infected-
Recovered (SIR) model in a combination with a rewiring process.
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Separate link-activation and link-deactivation strategies, different from link-
rewiring, involving SIR model has been studied by Valdez et al. [261]. This model is
discrete and an infected node can infect a susceptible neighbor with a certain proba-
bility, otherwise a link is broken for a constant time period. After this time, the link
is established again. Following the SIR concept, an infected node becomes suscep-
tible after a fixed time. The model of Valdez et al. [261] differs from the global link
rewiring concept of Gross et al. [116] that its dynamic relies on local information and
the infectious state of the neighbors of a node. The existence of epidemic threshold
was discovered in the model of Valdez et al. [261]. A related model based on the SIS
was proposed by Tunc et al. [260].

The majority of these models assume mean-field approximations, thus neglecting
the high-order correlations and the local connectivity. Theoutlookof thefinal network
topologywhen ameta-stable state is achieved,mean degree [218], degree distribution
[116, 290] or concentration of susceptible and infected nodes into loosely connected
clusters have not been thoroughly studied.

In this chapter, we will introduce two adaptive spreading processes on networks:
the Adaptive Susceptible-Infected-Susceptible (SIS) epidemic model (ASIS) and
the adaptive information diffusion (AID) model. The epidemic dynamic in the two
models is the some,while the topology dynamic is opposite. In the former, an existing
link is broken if one of its end-nodes is infected and the other susceptible; while in the
later a link is established between an infected and a susceptible node. Furthermore, a
link is established between two susceptible nodes in ASIS model, while an existing
link is broken between two such nodes in AID model. ASIS models a process of
isolation and distancing from infected nodes, while straightening the susceptible
part of the networks, while AID aims to capture the spreading in information and
social networks where nodes tend to connect with the information hubs, while the
interest in less popular or information lacking nodes diminishes.Wewill firstly focus
on theASISmodel, using both analytical and numerical results to reveal the epidemic
threshold, the prevalence and topological features in the metastable-state in relation
to ASIS dynamics. Afterwards, we will compare these two models showing that the
models have different, but surprisingly not opposite characteristics.

8.1 Adaptive SIS Model

Assuming infection rate β and recovery rate δ, the continuous SIS model drives the
epidemic dynamic in ASIS model. The link-dynamic is determined by the adjacency
matrix A(t) at time t . The existence of a link between two nodes i and j is spec-
ified by ai j (t) ∈ {0, 1} of this adjacency matrix. Each ai j (t) is a Bernoulli random
variable, such that ai j (t) = 1 with probability Pr[ai j (t) = 1], while a link absence
(ai j (t) = 0) happens with probability 1 − Pr[ai j (t) = 1]. The link-breaking and -
creating (Fig. 8.1a), visualized in Fig. 8.1a and b, processes are based on viral states
of the involved nodes and they are independent from one another. First, if exactly one
of nodes i and j is infected and the other susceptible and a link is present between
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(a) (b)

Fig. 8.1 (Color online) Changes of the link states based on the viral states of two nodes. a link
breaking between a susceptible and an infected node; b link creation between two susceptible nodes

them (ai j (0) = 1), the link can be deactivated with a Poisson rate ζ. Second, a non
existing link can be created between two susceptible nodes i and j with a Poisson
rate ξ.

For simplicity and we introduce the following notation:

t̃ = tδ, ζ̃ = ζ

δ
, ξ̃ = ξ

δ
, τ = β

δ
, ω = 2ζ

ξ
(8.1)

such that τ and ω are the effective infection and link-breaking rates, respectively,
while the variable t̃ is the time t scaled by the curing rate δ. For simplicity, in what
follows, we will drop ˜notation and continue with these dimensionless parameters.
The governing equation of the ASIS dynamics is the following

d
dt

E[Xi ] = E

⎡

⎣−Xi + (1 − Xi )τ
N∑

j= 1

ai j X j

⎤

⎦ (8.2)

d
dt

E[ai j ] = ai j (0) · (8.3)

E
[
−ζai j

(
Xi − X j

)2 + ξ
(
1 − ai j

)
(1 − Xi )(1 − X j )

]

How this general model is related to previously introduced ones can be found
in [118]. We restrict our analysis in the complete graph KN in the starting moment
t = 0, because only for a complete graph KN , an exact analysis is possible.
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8.1.1 The Metastable State of ASIS

The metastable state The meta-stable state is the value of empirically determined
time point of the plateau of the average number of infected nodes [62]. The obstacle
of this approach is the presence of uncertainty in the choice of the time moment to
calculate the value of the meta-stable state value, which depends on the spreading
rates and the network topology. On the other hand, the metastable state can be deter-
mined by ε-SIS model [272] and finding its stable state. The ε-SIS model [272] is a
generalized version of the SIS model, introducing a small self-infection rate ε < δ

N .
This assumption contributes to diminishing the absorbing state and a steady-state is
always present for a positive ε. If ε = 0, ε-SIS model boils down to the SIS model.
Extending the ε-SIS model with appropriate link dynamics as defined before leads
to adaptive ε-SIS model (ε-ASIS model). In such a model and for a small ε, it is
possible to calculate the average steady-state values for many metrics, including the
number of infected nodes on average or the number of links.

It has been shown [118] that the steady-state in ε-ASIS model resembles the
metastable state of the ASIS model.

8.1.2 The Average Metastable-State Fraction of Infected
Nodes

The fraction of infected nodes is defined as Z = 1
N

∑
i Xi , while the average fraction

of infected nodes in the metastable state is denoted as y = E[Z∗]. Here, we employ
the notion of Z∗ for the fraction of infected nodes and subsequently, similar is done
for other metrics. Assuming a complete graph as an initial topology, we have the
following Theorem 8.1.

Theorem 8.1 For a complete graph KN as an initial topology and the average
metastable-state of infected nodes y = E [Z∗], using (8.2 ) and (8.3 ), the following
quadratic equation holds

y2 − 2V y + H = 0 (8.4)

such that

V = 1 − 1
2N

+ ω − 1
2τN

(8.5)

and

H = 1 − 1
N

+ Var
[
Z∗] − E

⎡

⎣ 1
N 2

N∑

j= 1

d∗
j

(
1 − X∗

j

)
⎤

⎦ (8.6)

The solution of the quadratic equation (8.4 ) is given by



8 Adaptive Networks 151

0.8

0.6

0.4

0.2

0.0

y

2.01.51.00.50.0
τ

Complete Graph N=40,δ=1,ξ=1,ε=10
−3

 ω=0.25  ω=0.5
 ω=1  ω=2  ω=4

(Hollow markers are simulations. 
Solid lines are theoretical solutions.)

(a)

0.8

0.6

0.4

0.2

0.0

H

2.01.51.00.50.0
τ

Complete Graph N=40,δ=1,ξ=1,ε=10
−3

 ω=0.25  ω=0.5
 ω=1  ω=2  ω=4

(b)

Fig. 8.2 a Numerically determined values (in the solid red lines) from (8.7) compared to the
simulation results (with blue markers) show a good agreement for the average fraction of infected
nodes y in the metastable state as a function of τ . The initial topology is a complete graph. b The
corresponding values of H in (8.6)

y =
(
1 − 1

2N
+ ω − 1

2τN

)
⎛

⎜⎜⎝1 ±

√√√√√√1 −
1 − 1

N + Var [Z∗] − E
[

1
N2

∑N
j= 1 d

∗
j

(
1 − X∗

j

)]

(
1 − 1

2N + ω−1
2τN

)2

⎞

⎟⎟⎠ . (8.7)

Var[Z∗] is the variance of the fraction of infected nodes, while nodal degree of j is
denoted by d∗

j , such that d
dt E

[
2L
ξ − (ω−1)N

β Z
]
= 0.

Although the Eq. (8.7) formally has two solution, only one is physically possible.
In a case of τ → ∞ with finite ω, the solution with plus sign in (8.7) is physically
valid, while in the opposite case, the solution with minus sign in (8.7) is relevant. If
there is no link dynamics i.e. ω → 0, (8.4) boils down to an equation for a complete
graph [60] independent from the time t .

In addition, for several values of effective link-breaking rates ω and given ink-
creating rate ξ, Theorem8.1has been confirmedby simulations. The solution, given in
(8.7), is calculated numerically by applying the values of Var[Z∗] and E

[∑
j d

∗
j X

∗
j

]

that are taken from the simulations. Figure8.2a show that this solution of (8.7),
obtained numerically, is in accordance with the simulation results for multiple cases.
The values of H in (8.6) is smaller than 1, and this has been verified in Fig. 8.2b.
Figure8.3a and b depict the behavior of y and H as a function of the rateω. Addition-
ally, Theorem 8.1 and the fact that H < 1 are reaffirmed again. The average fraction
of infected nodes in the metastable state decreases as a function of the effective link-
breaking rate ω, thus the topology adaptation contributes to the suppression of the
virus spread.

Epidemic Threshold

Theorem 8.2 In ASIS model on KN , for the epidemic threshold holds

τc (ω; ξ) =
ω − 1

N
(
h (ω; ξ) − 2+ 1

N

) (8.8)
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Fig. 8.3 (Color online)aNumerically determinedvalues (in the solid red lines) from (8.7) compared
to the simulation results (with blue markers) show a good agreement for the average fraction of
infected nodes y in the metastable state as a function of ω. The initial topology is a complete graph.
b The corresponding values of H in (8.6)

such that h (ω; ξ) = limy↓0 H
y is a positive, but slowly changing function such that

1 ≤ h (ω; ξ) ≤ 2+ 1
N

⎛

⎝ 1
∂τc(ω;ξ)

∂ω

∣∣∣
ω→∞

− 1

⎞

⎠

for all ω > 0 and h (1; ξ) = 2 − 1
N .

According to Theorem 8.2, the epidemic threshold τc behaves as a linear function in
ω since the function h(ω; ξ) changes very slowly inω. This trend ismostly noticeable
for large ω.

The function h(ω; ξ) = H(τc)
yc

and the epidemic threshold are obtained experimen-
tally. Figure8.4b explains that h(ω; ξ) is slowly changing inω. In particular, the inset
of Fig. 8.4b shows that h(ω; ξ) is stable and close to a constant for large ω, while
Fig. 8.4a depicts that τc is close to a linear function in ω. These two observations are
in accordance to Theorem 8.2.

8.1.3 Metastable-State Topology

Impact of the Disease Dynamics on the Metastable-State Topology

In this section, we study several topological metrics such as: the modularity (as
expressed in [275]), the assortativity [276], the connectivity (expressed as a prob-
ability of the that the graph being connected), the average number of compo-
nents, the biggest component size and the number of links in the metastable state
of ASIS. We consider E[2L∗]/(N (N − 1)) the average number of links in the
metastable state scaled by the maximum number of links ( N (N−1)

2 in a complete
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Fig. 8.4 (Color online) a Epidemic threshold τc as a function of ω for an initial complete graph
with 40 nodes. The trend of τc for larger values of ω is shown in the inset. Based on the method
from Sect. 8.1.2, simulations are conducted and are shown with blue circles. b The corresponding
function of h(ω; ξ) in ω. The trend of h(ω; ξ) for larger values of ω is shown in the inset

graph). E[2L∗]/(N (N − 1) in the metastable state has a small value for small τ as
shown in Fig. 8.5a. The reason behind is that effective infection rate contributes for
the links to break. However, for E[2L∗]/(N (N − 1)) slowly increases with τ (e.g.,
τ ∈ [0, 1500]) as shown in the inset of Fig. 8.5a. The value of E[2L∗]/(N (N − 1))
could easily reach a maximum value of 1 if τ is very high, because all the nodes
will be infected very fast, there will be not enough time for healing or link breaking
and subsequently no link will be broken once all are infected. There is also a strong
correlation with the number of links with different metrics like the size of the biggest
component or the connectivity. For example, the connectivity is shown in Fig. 8.5b,
where if ω = 2ζ/ξ > 1 is high, the network is likely to be disconnected. Moreover
for high enough ω > 1, a common phenomena is that the network is partition into
one big cluster (component) with almost all the nodes and few components with very
small number of nodes. Gross et al. [116] reported that the inclusion of some mod-
erate link-dynamics can introduce correlation in the network, which is also observed
in this work. Figure8.5f shows that the modularity and assortativity demonstrates a
strong correlation, which was earlier observed by Van Mieghem et al. [275] in dif-
ferent networks. The process of breaking links contributes to a network separation
into twoweakly inter-connected components, namely a component of predominantly
susceptible node (named as S component) and the other of mostly infected nodes
(named as I component). On the other hand, the process of link-creation contributes
to strengthening the S component and the connectivity between its nodes. The effect
is opposite for the infection and curing rates, where both try to destroy the sepa-
ration into S and I components. The epidemic and link dynamics are in “persistent
competition”, for example once the assortativity achieves a maximum value, it starts
decreasing due to the increase of the infection rates. This can be observed in Fig. 8.5e.
Something similar happens with the modularity (Fig. 8.5f). The presence of S and I
components that weakly connected has also been observed in other models [116].
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Fig. 8.5 (Color online) The effect of the effective infection rate τ on the topology in the metastable
state. a E[2L∗]

N (N−1) the average number of links in the metastable state scaled by the maximum number

of links ( N (N−1)
2 in a complete graph) as a function of τ . The effect of large values of τ is shown in

the inset. b The probability of the graph being connected in the metastable state as a function of τ .
c E[G∗

c ]
N the normalized average size of the biggest component in the metastable state as a function

of τ . d The average number of components in the metastable state as a function of τ . eAssortativity
value on average E[ρ∗

D] in the metastable state as a function of τ . f Modularity value on average
E[M∗] in the metastable state as a function of τ

The Effect of the Link Dynamics on the Topology in the Metastable State

In a similar way, all these metastable stable network properties can be shown in
relation to the effective link-breaking rate ω, which characterizes the link dynamics.
It has been observed that as ω increases, the network becomes sparser, disconnected
with a higher probability intomore components, both the assortativity andmodularity
increase first and decline afterwards. More details can be found in [118].

Structure of the Topology in the Metastable State

Figure8.6b presents an overview of the modularity as a function in effective rates τ
andω for δ = 1 and ξ = 1. Themodularity in theASISmodel is high and it appears to
show “half-open”, “elliptical-like” curves. The explanation behind high modularity
lies in the fact (a) there is a clear separation between the susceptible and infected
nodes and (b) the sizes of the S and I components are similar. This can be explained
as follows. A high modularity means (i) that the infected nodes and the susceptible
nodes are well separated, and (ii) that the I component is comparable in size to the
S component. Such high values of modularity can be achieved for moderate values
of τ and ω such that the epidemic can be spread it fast enough (the role of high
enough/moderate τ ) and it will not be suppressed (the role of moderate ω) and this
can be achieved for several values of τ and ω thus forming “half-open”, “elliptical-
like” curves. On the other hand, similar low values of modularity can be achieved for
either small τ with highω or high τ with smallω. In the former, the epidemic spread is
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Fig. 8.6 (Color online) The contour lines of the modularity contours depending on τ and ω for
three different values of link-creating rate ξ: a ξ = 0.1, b ξ = 1, and c ξ = 10

negligible and will be suppressed fast enough, thus leaving noticeable S component;
while in the later the epidemic is spread very fast and cannot be suppressed, thus
forming significant I component. Both cases lead to similar low modularity values
also formingwider “half-open”, “elliptical-like” curves. The connectivity also shows
very similar “half-open”, “elliptical-like” curves in a plane with τ andω dependence,
but opposite to modularity i.e. high connectivity leads to low modularity and vice
versa. The degree distribution for the all nodes and separately for the infected and
susceptible nodes have been discussed in more details in [118]. It has been shown
that when the infection process is faster than the link dynamics, the final degree
distribution is binomial-like, while in the opposite case there are multiple peaks in
the degree distribution.

Determing the Bi-Stability in the ASIS Model

We explore the distribution Pr[Z∗] of the fraction Z∗ of infected nodes in the
metastable-state instead of the average y = E[Z∗]. Figure8.7 shows the Pr[Z∗]
for diverse effective infection rates τ and fixed link dynamic rates ξ and ζ. When
τ = 0.15 is low, the meta-stable state approaches the healthy state. When τ = 3 is
high, the meta-stable state is the endemic state. The fraction Z∗ of infected nodes
in the meta-stable state is either close to 0 or a non-zero positive value for some
other cases (for example, the τ = 1 case in Fig. 8.7). When τ = 1, the probability
Pr[Z∗ = 0] approximates the probability Pr[Z∗ = c]), where c is positive and depen-
dent on τ . This implies that themetastable state is likely stable at the two dramatically
different infection states, a seemingly bi-stability phenomenon. Such phenomenon
in epidemic spreading on adaptive networks was reported by Gross et al. in [116].
The bistable state is a metastable state where the infection persists or there is no
infection in the ASIS model.

A bifurcation-like behavior is illustrated in Fig. 8.8. The probability Pr[Z∗ = 0] is
comparable with the probability Pr[Z∗ = c] for a certain τ in value. The metastable
state of the ASIS model is possibly stable in either of the two states. It seems that
the metastable state changes from the healthy state, to the bi-stable state and to the
endemic state as τ increases.
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Fig. 8.7 (Color online) The
fraction of infected nodes Z∗

in the metastable state

Fig. 8.8 (Color online) The
bifurcation diagram of the
fraction of infected nodes in
metastable state. The
metastable state is the
healthy state when the
effective infection rate
0 ≤ τ ≤ 0.3), the bi-stable
infection state when
0.3 ≤ τ ≤ 1.6 and the
endemic state when τ ≥ 1.6
in sequence as τ increases

8.1.4 Summary

We proposed an adaptive network model ASIS to characterize the interplay and
co-evolution between the dynamics on a network (e.g. disease spreading) and the
dynamics of the network (i.e. dynamics of the link state). This model includes a
Poissonion link-breaking process with rate ζ and a Poissonion link-creating process
with rate ξ in the classic Susceptible-Infected-Susceptible (SIS) model. When the
initial topology of an adaptive network is a complete graph, the average fraction of
infected nodes in metastable state has been derived (see Theorem 8.1). Moreover,
we have proved and illustrated a linear law between the epidemic threshold τc and
the effective link-breaking rate ω = 2ζ/ξ We have also verified experimentally (see
Theorem 8.2) that the phase transition that a disease can persist in the presence of
link dynamics for the effective infection rate τ > τc, and the linear function τc(ω).

Our simulations point out how the co-evolution of the disease and link dynamics
promotes the emergent features of the adaptive network with respect to the connec-
tivity, the number of links, the biggest component size, the associativity and modu-
larity . Nodes group into two loosely inter-connected clusters according to their viral
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states, i.e. the I (infectious) component and the S (susceptible) component, based
on which the modularity is calculated. When the disease dynamics is faster than
the link-breaking process and the link-creating process in rate, the network evolves
towards no apparent community structure and disassortative-mixing. When the epi-
demic spreading is slower than the link dynamics, the topology becomes slightly but
clearly modular and assortative. A universal contour-line pattern can be observed in
the modularity diagram as a function of τ and ω. A high link-breaking rate ω or a low
infection rate τ may lead to disassortative networks with lowmodularity. In contrast,
a low connectivity tend to contribute to a high modularity in network topologies.

Finally, our investigation on the distribution of the fraction of infected nodes in
the metastable state shows that between the healthy state and the endemic state, a
bi-stable state may exist where the fraction of infected nodes is stable either around
0 (the healthy state) or around a positive non-zero value (the endemic state).

8.2 Comparison of the ASIS and AID Model

8.2.1 The AID Model

Both theASIS andAID are based on the SIS epidemic spreadingmodel. However, the
dynamics of the topology evolution in these two coevolutionmodels are opposite. The
Poissonian link-breaking and link-creating processes with rates ζ and ξ respectively,
govern the evolution of the network topology. In the AID model, a link is created
between a node pair when only one node but not both has the information. An existing
link is removed between a node pair, when both nodes do not have the information,
and if the two nodeswere not connected in the original network. For the link existence
probability E

[
ai j (t)

]
= Pr

[
ai j (t) = 1

]
, we have the following governing equation

d
dt

E[ai j ] = (1 − ai j (0))E
[

− ζai j (1 − Xi )(1 − X j )

+ ξ(1 − ai j )
(
Xi − X j

)2 ]
. (8.9)

We consider the simple case where the initial network is an empty graph with N
isolated nodes and without any link. When both i and j have the information (Xi =
X j = 1), the link is preserved, i.e. dE[ai j]

dt = 0. The link dynamics, thus, tend to
increase (decrease) the degree of a node with (without) information.

The AID model has be verified to be realistic by using the Facebook wall posts
dataset [117].
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Table 8.1 Comparison of AID and ASIS models
Property/model ASIS AID

Metastable state Always stable Unstable (τ ,ω) regions

Threshold τc(ω) Linear (mostly) constant

Topological metrics “half-elliptical” Rotated “half-elliptical”
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Fig. 8.9 a and b demonstrate the instability in AID. c demonstrates the stability in ASIS

8.2.2 Comparison

We are going to illustrate the striking difference that emerges from AID and ASIS.
The most important difference is that instability and non-existence of the metastable
state are observed in the AID but not the ASIS model. Key differences between the
two models are given in Table8.1, which will be further explained.

8.2.3 The Prevalence

Exact expressions for the fraction of infected nodes and the epidemic threshold for
the AID model has as well been derived in [117]. Although these relations are not
of closed-form, they can well explain the existence of the metastable state and the
stability of the prevalence for bothmodels.Wedenote the prevalence in themetastable
state by Z∗ = 1

N

∑N
j= 1 X

∗
j and its average by y = E [Z∗] where N is the number of

nodes in the network.We further denote T (N ) = E
[∑N

i= 1 d
∗
i (1−X∗

i )
]

N 2 , which is bounded
by

0 ≤ T (N ) ≤
E

[∑N
j= 1 d

∗
j

]

N 2
= E [2L∗]

N 2
≤ N (N − 1)

N 2
< 1.

In the AID model,



8 Adaptive Networks 159

y = 1
2

(
1+ ω − 2

2τN

) (

1 ±
√
1 − 4Var [Z∗]+ 2ωT (N )

(
1+ ω−2

2Nτ

)2

)

, (8.10)

where Var[Z∗] is the variance of the prevalence and d∗
j is the degree of node j .

Importantly, the argument under the square root in (8.10) is possibly negative, leading
to the non-existence of the metastable state. Consider a large network, where N →
∞. In this case, (8.10) can be simplified to

y = 1
2

(
1 ±

√
1 −

(
2ωT∞ + 4Var [Z∗]

))
. (8.11)

The metastable state does not exist, if 4Var [Z∗]+ 2ωT∞ > 1. Therefore,

Var
[
Z∗] >

1
4

is sufficient to lead to the non-existence of the metastable state. Furthermore, an
upper bound for the link-breaking rate can be derived from (8.11):

ω ≤ 1 − 4Var [Z∗]
2T∞

≤ 1
2T∞

,

otherwise, a metastable state solution does not exist. These findings in theory are
confirmed by simulations. As shown in Fig. 8.9a and b, the metastable state does not
exist in certain regions of (τ ,ω). The instability area reveals a “sand clock” shape:
as τ and ω increase, the area narrows first and then widens. The area vanishes for
large enough τ and ω.

In contrast, the metastable state always exists in the ASIS according to (8.7).
Consider the combination of all the four parameters of the AID model. When the

link breaking rate is higher than the creating rate but both are large and the spreading
rate is small, a small fraction of nodes possessing the information are unlikely to
stay long nor can be considered as a metastable state. In this case, both the number
of links and infected nodes change dramatically over time, as shown in Fig. 8.10a.
Whereas in other combinations of the parameters, there is usually a critical mass of
links and nodes that possess the information, forcing of the epidemic to reach an
equilibrium, i.e. the metastable state (see Fig. 8.10b).

8.2.4 Epidemic Threshold τc

We have shown that the epidemic threshold (8.8) in the ASIS model is linear in ω.
The threshold in the AID model is, however, the quotient of two linear functions,

which approaches a constant if ω is large,
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Fig. 8.10 (Color online) The numbers of links and infected nodes as functions of time in the
AID model, whereN = 40, ζ = 0.32, ξ = 0.1, δ = 1, ε = 10−3 and different spreading rates β are
considered. The points of instability/stability are in accordance to Fig. 8.9a

Fig. 8.11 (Color online)
Threshold τc versus effective
link-breaking rate ω for
N = 40 (the inset: large
range of ω)
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τc (ω; ξ) =
ω − 2

2N (hAID (ω; ξ) − 1)
, (8.12)

where hAID (ω; ξ) ≤ 1+max{1, 1+ ω−2
2Na } and a = limω→∞

∂hAID(ω;ξ)
∂ω is approxi-

mately a constant. If ω > 2, hAID (ω; ξ) is almost a linear function of ω, obeying
hAID (2; ξ) = 1.

Figure8.11 illustrates the relation between the epidemic threshold and ω and the
epidemic threshold is almost a constant when ω is large. The epidemic threshold in
Fig. 8.11 is relatively noisy, a fingerprint of the instability in the AID model.

8.2.5 Topological Properties

Figure8.12 depicts the contour plot of the network modularity in the metastable state
in the (τ ,ω)-plane, for both ASIS andAIDmodels. Interestingly,for a given effective
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Fig. 8.12 (Color online) Modularity in (τ ,ω)-plane in the stable region for ξ = 0.1

infection rate τ , small and large effective link-breaking rates ω may lead to the same
modularity. The ASIS and AID models differ in the order of the contour lines: “the
inner contour” lines show higher (lower) modularity in ASIS (AID) but have similar
shape, though rotated, in the contour lines.

In the (τ ,ω)-plane, the instability area, which has “sand-clock” shape (Fig. 8.9a),
exists only The instability area for the AID model, is close to the center of the
coordinate system in the (τ ,ω)-plane and bellow the “half-ellipses” extremal node.

The metastable state (when it exists) topologies in the AID model are random
graphs. In the metastable state of the ASIS model, the networks have, however,
two clusters that are sparsely connected. One cluster is composed of the susceptible
nodes, which are almost fully connected and the other is composed of the infected
nodes, connected like a random graph.

8.3 Conclusion

The two process and network coevolving models ASIS and AID share the same
epidemic spreading process but different topology dynamics. Via our theoretical
analysis and extensive simulation, we have observed and explained their differences
from the following perspectives:

1. Instability of the metastable state exists in the AID but not the ASIS model.
2. The epidemic threshold τc tends to be independent of the effective link-breaking

rate ω when ω is large in the AID model, whereas linearly increases with ω in
the ASIS model.

3. Topological features such as the modularity of both models exhibit concentric
half-ellipses in the (τ ,ω)-plane. The two models differ in the order rotation of
the contours.


