
ROUTING IN A HIERARCHICAL STRUCTURE

Piet Van Mieghem

AReNA
Alcatel Corporate Research

Francis Wellesplein 1, B-2018 Antwerp (BELGIUM)

mieghemp@rc.bel.alcatel.be

ABSTRACT

Routing in a given hierarchical structure is discussed. The
work is inspired by the ATM Forum’s PNNI specification.
As a general conclusion, we argue that any routing
problem that has a solution in a single (flat) network, is
also tractable and feasible in a hierarchy.

INTRODUCTION

Let us assume that we are able to construct a hierarchical
structure of a network topology (see Van Mieghem,
1998b). A hierarchical structure is just another topological
representation of the original network with some
additional features.

The most important property of a hierarchy is the level-
structure that draws on information condensation (node
and link aggregation) to yield scalablility. Each level k in
a hierarchical structure represents the complete original
network, however, in a different degree of detail. Hence, if
the hierarchy contains N levels, then the hierarchical
structure exhibits in some sense a N-fold redundancy. The
lowest level (k = 0) is but the original network, already
divided into subnets (or in the language of PNNI (ATMF,
1996) peer groups). The subsequent levels (k>0) are
condensed forms of the underlying levels. In particular,
each subnet on a lower level is represented by a single
item, that is called a complex (or logical) node in PNNI.

A B C

A.1

A.2

A.3

B.1

B.2

B.3

B.4
C.1

C.2

A.1.1

A.1.2

A.1.3

A.1.4

PG(A)

PG(B)

PG(C)

Highest-level Peer Group
Logical Link

Figure 1. A hierarchical structure based on the specifications of PNNI where a subnet is coined a peer group, denoted as PG(.).

That complex node is the parent of each node in the
underlying lower level subnet (or peer group). More
general, complex nodes on higher levels are ancestors of
the nodes on different levels they represent. Earlier (Van
Mieghem, 1997, 1998b), we have given estimates how to
divide an original network into peer groups and how many
hierarchical levels a network is about to have.

Here, we will concentrate on how to route in a
hierarchical structure. We have already shown (Van
Mieghem, 1997) that important savings in computational
effort can be achieved when we dispose of a hierarchical
structure of the original network. These earlier estimates
motivate a deeper and more concrete discussion.

THE PRINCIPLE

Suppose a path is to be found between a source A and a
destination B. The basic routing principle in a hierarchy
consists of top-down level routing as follows:

(1) Search for that level k where the ancestor of A and the
ancestor of B belong to one logical subnet.

(2) Construct at that level k the path, Pk, over complex
nodes from A’s ancestor to B’s ancestor.

(3) Specify path Pk in ever greater detail by descending in
the hierarchy to lower levels until the physical level
(k=0) is reached.

We will demonstrate that this principle holds in general.
Whatever routing problem, i.e. QoS (source) routing,
multicast routing or hop by hop routing, is considered, the
above recipe is applicable. Before concentrating to its
details, we present a different approach inspired by the
way the PNNI specification determines the designated
transfer list (DTL), which is a hierarchical representation
of the path from A→B. In particular, the routing is
established using the view point of a level k=0 node in a
hierarchy.

A.1.1

A.1.2

A.1.4

A.1.3
A.2

A.3
B C

Figure 2. The world view according to physical node A.1.4 is called the ‘projected’ topology of A.1.4.

The world according to such a physical node consists of
all its own ancestors on all levels. For instance, in Figure
1, the view point of the physical node A.1.4 is the union of
its own peer group A.1, that of its parent peer group
PG(A) and the highest level peer group that overviews -
albeit condensed - the complete topology.

The idea then is to route in the ‘projected’ topology that is
obtained by placing all physical and complex ancestor
nodes into one topology. The ‘projected’ topology of the
world view of A.1.4 is drawn in Figure 2 which exhibits
the projection of the higher hierarchical levels onto the
physical level k=0. The uplink information is useful for
the construction of this ‘projected’ topology. This method
of routing, which I call ‘projected’ topology routing
focuses on how each node individually perceives the
network (in a hierarchically distributed environment).
Two disadvantages are immediate.

The routing is computed based on a ‘heterogeneous’
topology where (complex) nodes of a different level have
different meaning and accuracy. The routing does not rely
on the quality of the information condensation (Van
Mieghem, 1998a) and it ignores the hierarchical
structuring of the topology information. Second, routing is
again performed in a large topology while it was shown
previously (Van Mieghem, 1997) that hierarchy
substantially enhances scalability in routing. Hence the
routing complexity will be larger than in the top-down
level routing outlined above. Finally, since the idea of
using the ‘projected’ topology is found of a less conceptual
beauty and since it is far from obvious how to use this
method in multicast routing, we will not dwell on it in the
sequel.

UNICAST ROUTING

The above principle is invoked to compute the path
between source A and a destination B in a hierarchical
structure with a single metric, say delay for example (see
Figure 1).

The first action is to determine that level where both
ancestors of A and B are peers. This brings us to the
identifier representation in a hierarchical structure. The
identifiers of (logical) nodes are not necessarily the same
as the addresses of the (logical) nodes. Just as in the
original network, there is a one-to-one relation between a
(logical) node and its identifier

subnet S on level j-1

aN. aN-1 . aN-2. aj

aN. aN-1 . aN-2. aj . aj-1

aN. aN-1 . aN-2. aj . bj-1

p1 p5

p2

p3

p4

ββαα

γγ

δδ εε

aN. aN-1 . aN-2. aj . bj-1

subnet αα on level j-2

p1

e3

e2

e3

e2

e1

e1

Figure 3. The subnet S on level j-1 containing the ancestor of A and B , denoted as α and β. Further, the other peer nodes are denoted by
Greek letters and the port numbers along the path P are represented by the set {pj}. The squares denote in- or egresses of the subnet

under consideration. Not all port numbers are still in- or egresses when viewed on a next higher level. The shortest path P between their
nuclei is P = {(α, p1), (p2,γ, p3), (p4,δ, p43), (p5,β)}. These port numbers are physical nodes (already defined on level k=0 as illustrated in

the specification of the complex node α).

.

Identifiers.

In order to obtain an efficient identifier representation, the
properties of the hierarchy must be exploited. As
illustrated in Figure 1 (and conform to PNNI), a good
identifier scheme reflects immediately the place of the
logical node in the hierarchy. We refer to this scheme as
the PNNI identifier scheme. For a physical node (on level
k=0), A0, we have precisely N+1 identifier coefficients or
we can say that A0 is decomposed (denoted as
decomp(A0)) as

decomp(A0) = aN . aN-1 . aN-2 . ..a2 . a1 . a0

In general, a (logical) node on level k, Ak, is decomposed
as

decomp(Ak) = aN . aN-1 . aN-2 . ..ak+2 . ak+1 . ak

where all identifier coefficients ai for i<k are zero (and
not shown in the decomposition).

With this identifier scheme, we find the level where both
ancestors of A and B are peers as follows. Since A and B
are physical nodes, their address decomposition is
decomp(A) = aN . aN-1 . aN-2 . ..a2 . a1 . a0 and decomp(B) =
bN . bN-1 . bN-2 . ..b2 . b1 . b0 respectively, with of course, aN

= bN because at the highest level there is but one complex
node.

The level of interest appears as the lowest index j of the
identifier coefficients where holds that aj = bj and aj-1 ≠
bj-1. Although simple, this identifier scheme is clearly not
that efficient because for each node in the hierarchy, we
need to store N+1 integers. An alternative scheme based
on a polynomial transform of the identifier coefficients
into one identifier is proposed in the appendix.

In summary, the first step in the routing principle has an
efficient and relatively simple solution.

The path on level j-1.

From the knowledge of j determined above or via (1) in
the appendix, the particular subnet, say S, in which we
have to consider the routing between the ancestor of A and
B is found via the identifier coefficient aj = bj = [V*/ xj].
Recall that the identifier of a subnet equals the identifier
of its complex node on the next higher level. Thus, the
polynomial transform of the identifier (see appendix) of
that subnet equals S* = aN xN + aN-1 x

N-1 + aN-2 x
N-2 + ... +

aj+1 xj+1 + aj xj. This means that the routing must be
performed on level j-1 in subnet S between the ancestor
nodes of A and B distinguished by their identifier
coefficient aj-1= [A*/ xj-1] and bj-1= [B*/ xj-1] with the
respective identifiers S* + aj-1 x

j-1 and S* + bj-1 x
j-1.

In the simple case with a single metric as considered here,
the path is readily found invoking a shortest path
algorithm (e.g. Dijkstra, see Cormen et al., 1995). The
presentation of that path follows from Figure 3. The path
starts in the nucleus of the ancestor node of A and travels
to the egress port of that complex node. From thereon, the
path moves over the non-ancestor nodes and specifies both
the complex node ID (or address) and the corresponding
ingress and egress port ID. Finally, the path ends in the
nucleus of the ancestor node of B which it has penetrated
via the appropriate ingress port.

Further Specifying the path.

In order to further specifying the path found on level j-1,
we descend one level. Clearly, the ancestor subnets with
the identifier given above need special treatment. Let us
focus on the ancestor subnet of A with identifier S* + aj-1

xj-1. In that subnet we search for the path from the node
with identifier S* + aj-1 xj-1+ aj-2 xj-2 to the egress port
node determined at the previous higher level (e.g. port 1
in Figure 3). The situation for the ancestor subnet is
analogous. For the intermediate subnets on level j-2, we
specify the path between ingress port and egress port, also
determined above (e.g. (p2,γ, p3), (p4,δ, p43) in Figure 3).

Notice that the port ID’s are always physical node
numbers as follows from the construction of a hierarchy
(Van Mieghem, 1998a). Again, the result of these path
searches are of the same form as explained above. Hence,
the cycle is completely described and the process stops on
level k=0.

MULTICAST ROUTING

Although routing in a hierarchy has been explained only
for unicast routing, other types of routing are fairly
analogous. For example, let us briefly concentrate on an
instance of static multicast routing (see Figure 4).

We are to find a suitable spanning tree for the multicast
session between t (known) terminals Ti on level k=0. The
common ancestor subnet on level j that contains each
ancestor of terminal Ti is readily found by pairwise
comparison of the result of (1) and by maintaining the
maximum. This demands t(t-1)/2 times an execution of (1)
leading to the desired level j .

In the common ancestor subnet, say S, a spanning tree
algorithm provides us with a tree over complex nodes and
their corresponding ingress and egress ports. For the
detailing to lower levels, two cases must be distinguished.
First, if all terminals have distinct ancestor complex nodes
in the common ancestor subnet S on level j-1, then the
further specifications of the branches of this tree proceeds
precisely as in the unicast case because each tree can be
regarded as a path from terminal to branch point (e.g.
subnet ε in Figure 4). Second, if two or more terminals
(e.g. α.1 and α.2 in Figure 4) have a same ancestor
complex node (e.g. α in Figure 4) in the common ancestor
subnet S at level j-1, the spanning tree at that level j-1
cannot distinguish between these terminals. Therefore,
(and further referring to Figure 4), the subnet with
identifier corresponding to the ancestor complex node α
must be consulted at level j-2 to clarify the relations
between these terminals α.1 and α.2 and how they are
linked to the rest of the multicast group (typically via ports
such as p1 and e1, that are determined by the spanning tree
computed at level j-1). This implies that in subnet α at
level j-2, again a spanning tree must be computed. From
then on, the process can be iterated until the level k=0 is
reached. In summary, the route computation of a multicast
tree in a hierarchy, needs both a spanning tree and a
shortest path algorithm. Both of them may be alternatively
used depending on the topology and set of terminals, as
explained above.

In actual (non-static) multicast sessions, the number of
terminals may vary over time and in most of the current
multicast protocols, the terminals (sources or receivers)
have no knowlegde about all members in a multicast
group. Terminals are added to the tree usually not in an
optimal fashion (because (1) the minimal Steiner tree
(mst) problem is NP-complete and (2) the mst may
fundamentally change by adding of removing one terminal
leading to instability on short time scales).

In most multicast protocols, the problem of multicast
routing even reduces to a simpler problem of finding the
shortest path from the new terminal to some node
(determined via the specifics of the protocol) that already
belongs to the multicast tree.

subnet S on level j-1

p1

p5

p2

p3

p4

ββαα

γγ

δδ εε

subnet αα on level j-2

e3

e2 e1

p1

e3

e2

e1

p5

subnet εε on level j-2

α.1α.1 α.2α.2

ε.1ε.1

Figure 4. In the same hierarchy as in Figure 3 a static multicast tree is constructed. At level j-1 three complex nodes α, y and ε are
member of the multicast group while at level j-2, subnet α contains two members α.1 and α.2 whereas subnet ε only has one member

ε.1. At level j-1, the multicast spanning tree comprises the branches α→γ and α→ε. At a lower level, the situation for subnet α is
clearly different than for subnet ε. In subnet ε, it is sufficient to compute a shortest path between port p5 and the nucleus of ε.1. In subnet

α, on the other hand, a spanning tree connecting the ports p1 and e1 and the nuclei of α.1 and α.2 needs to be calculated.

CONCLUSIONS

We have demonstrated that the hierarchy poses no
additional problems for unicast and multicast routing.
Moreover, we argue that every routing problem, solvable
in single topology (one subnet), also has a solution in a
hierarchy, that is feasible and tractable. Intuitively,
routing in a hierarchy seems complicated, but, if one bears
in mind that the hierarchical structure is nothing else than
a pre-processing of the original network (to exploit scaling
advantages), it is easier to accept that all routing
problems have a solution in that hierarchy.

Due to the information condensation, the path computed
in the hierarchy is likely to be different than the exact path
computed in the original network. The accuracy of the
‘hierarchical path’ strongly depends on the methodology
used to calculate the hierarchical structure. Therefore, the
largest difficulty with the hierarchy lies in the problem of
how to construct the hierarchy rather than in routing.

At last, the principle described here is closely related to
the DTL as defined in PNNI. Contrary to the ‘projection’
view (where a bottom-up routing is used), the hierarchical
principle computes paths via a top-down approach.

ACKNOWLEGDEMENTS

We thank Y. T’joens for his valuable discussion where he
mentioned the alternative picture for routing which I have
called ‘projected’ topology routing and H. De Neve for his
instructive inputs.

APPENDIX: ALTERNATIVE IDENTIFIER
SCHEME

Fortunately, from the PNNI identifier scheme an
alternative with optimal efficiency, in the sense that only
one integer is needed per node, can be deduced. Let x be
an integer such that x > max(am) and consider the
polynomial1,

A* = aN xN + aN-1 x
N-1 + ... + a2 x

2 + a1 x + a0

With this definition, the identifier of node A equals A* >
0. Moreover, the identifier decreases with increasing level
and the possible range varies from xN (the identifier of the
highest level subnet that comprises the whole original
network) to the integer smaller than xN+1. Thus, the PNNI
scheme requires to store (N+1) identifier coefficients of
the order of x while the polynomial transform scheme just
needs one integer of the order of xN+1.

Notice, however, that the binary representation of
numbers, needs (N+1) log2 x bits for both schemes.

The identifier coefficients immediately follow by
decomposition of A* in base x. Explicitly, the identifier
coefficients are found from the integer A* via the short
algorithm

1. initialise: k = N and Z * = A*

2. do until k = 0:

1 As an intermezzo at this stage, we would like to point out that the same
principle - using an integer polynomial transformation - can be applied to
represent paths in a single network. Indeed, each path between two nodes,
say A and B, defined by a node list P = {n1, n2, n3,.., np} where A = n1 and B
= np, maximally consists of p ≤ M-1 integers ni lying between 1 ≤ ni ≤ M,
where M is the number of nodes in that network. Hence, we choose x =
M+1. Further, denoting the path-transform analogously as above by a star
P*, we observe that (M+1)M-1 ≤ P*≤ (M+1)M. Although this range of P*
rapidly increases with the number of nodes, this transform may be useful to
quickly compare two different paths. Performing operations (e.g.
subtractions) between two path-transforms (similar to (1), but not entirely
the same) will give at once the number of common (and vice-versa different)
nodes visited by the paths. This knowledge can be of interest for re-routing
problems.

3. ak = [Z*/ xk]

4. Z *<-- Z*- ak x
k (the right hand side is

equivalent to Z* mod xk)

5. k <-- k-1

The verification of the algorithm is instructive because it
will emphasise the role of the integer x. Since a mod b = a
- [a/b] b, where the integral part operator [y] denotes the
largest integer smaller (or equal to) y, step 3 means that

Z*/ xN = aN + aN-1 x
-1 + ... + a2 x

2-N + a1 x
1-N + a0 x

-N

Since we have required that x > max(am) for all m or
equivalent am ≤ x-1, it holds that

aN-1 x
-1 + aN-2 x

-2 + ... + a2 x
2-N + a1 x

1-N + a0 x
-N

≤ (x-1)(x-1 + x-2 + ... + x-N)

< (x-1)(x-1 + x-2 + ...) =(x-1)(1/(1-1/x)-1) = 1

and taking the integral part of the left hand side leads to
aN. The remaining steps are obvious. Now, in order to
reduce the size of the address A*, it is important to find
the smallest possible value of x .

Suppose the original network contains M physical nodes.
Then, the maximal number of nodes in a hierarchy is 2M.
Indeed, the minimal condensation equivalent to a
maximal number of logical nodes, occurs in case every
complex node combines precisely 2 lower level nodes.

Then, on level k = 0, there are M nodes, on level k = 1,
there are about M/2 nodes, on level k = 2, there are about
M/4 nodes, and so on. In total over the N levels, we have
M(1+1/2+1/4+1/8+...+2-N) < 2M. Thus, we have at most
M logical nodes and, in addition, the maximum number of
levels is not higher than N < log2M. On the other hand,
we clearly have that M = (number of nodes in subnet 1 on
level 0) + (number of nodes in subnet 2 on level 0) + ... +
(number of nodes in subnet p on level 0). The requirement
on x implies x > maxi(number of nodes in subnet i on
level 0) with 1 ≤ i ≤ p. In addition, the number of nodes
on level 1 precisely equals p (as follows from the
construction of a hierarchical structure). Again, x > p.
But, the number of nodes on level 2 can never exceeds p
implying that higher level considerations are irrelevant for
the determination of x. Hence, we conclude,

x = max[p, max1 ≤ i ≤ p(number of nodes in subnet i on level
0)]

The presented analysis also demonstrates that the desired
level j is related to the difference

V* = A*-B* = (aj-1 -bj-1)x
j-1 + (aj-2-bj-2) x

j-2 + ... +
(a2-b2) x

2 + (a1-b1) x + a0-b0

Moreover, since V*/ xm = xj-1-m (aj-1 -bj-1 + e) with | e| < 1
implying that (aj-1 -bj-1 + e) < x, we have that logx (V*/ xm

) = j-1-m + logx(aj-1 -bj-1 + e) = j-m + e* with | e*| < 1
and that the desired level j is the solution m=j-1 of the
equation [logx (V*/ xm)] = 0. But, this equation is readily
rewritten as [logx (V*)- m] = 0 which brings us to our final
result that

j = 1+[logx (V*)] = 1+[ln(V*)/ln(x)] (1)

REFERENCES

ATMF, 1996, Private Network Network Interface,
specification version 1.

Cormen, T. H., C. E. Leiserson and R. L. Rivest, 1995,
Introduction to Algorithms, MIT Press, Cambridge,
Massachusetts.

Van Mieghem, P., 1997, “Estimation of an Optimal PNNI
Topology”, Proceedings of the IEEE ATM’97 Workshop,
May 26-28, Lisboa, Portugal, pp. 570-577.

Van Mieghem, P., 1998a, “Node and Link Aggregation in
a Hierarchy”, submitted to IEEE/ACM Transactions on
Networking.

Van Mieghem, P., 1998b, “Dividing a Network into Peer
Groups to Build a Hierarchical Structure”, submitted to
the First International Workshop on the Design of
Reliable Communication Networks, DRCN 98, Brugge,
May 18-20.

