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Abstract

In this paper we study the covariance structure of the number of nodes k and l
steps away from the root in random recursive trees. We give an analytic expression
valid for all k, l and tree sizes N . The fraction of nodes k steps away from the
root is a random probability distribution in k. The expression for the covariances
allows us to show that the total variation distance between this (random) probability
distribution and its mean converges in probability to zero.
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1 Introduction

A random recursive tree of size N is a random tree that starts from node 1 (the root)
and where at each stage a new node is attached at random to one of the existing nodes
until the total number of nodes is equal to N . The depth D1,N is the number of links
between the root 1 and a randomly chosen destination (chosen uniformly from all nodes
{1, 2, . . . , N}). The research of random recursive trees started in the seventies of last
century by Moon [7], Meir and Moon [5], and was continued by others, see [8] and the
references therein. In [8], the authors use the definition d1,n for the depth of the nth node
in the tree, which is related to our definition D1,N as D1,N = d1,N+1 − 1. For our purpose,
D1,N is more appropriate as will be clarified below. We define the distribution of D1,N by

P(D1,N = k) = p(k)

N , 0 ≤ k ≤ N − 1, (1)
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with corresponding generating function

ϕN (x) =

N−1∑
k=0

p(k)

N xk. (2)

Szymanśki [9] was the first to identify the law of D1,N as

p(k)

N =
(−1)N−1−kS(k+1)

N

N !
, 0 ≤ k ≤ N − 1, (3)

where S(k)

N denote the (signed) Stirling numbers of the first kind (cf. [1, 24.1.3]). Therefore,

ϕN(x) =
Γ(N + x)

Γ(N + 1)Γ(x+ 1)
. (4)

For large N , the distribution of D1,N is close to the Poisson distribution with mean logN
and hence also to the normal distribution with identical mean and variance given by logN .
In fact, Dobrow and Smythe [3] show that the total variation distance between the law of
D1,N and the Poisson distribution with mean λN = E[D1,N ], is at most C/ logN .

We define the level k-set to be the set of all nodes k steps from the root and X (k)

N to
be its size, with the understanding that X (k)

N = 0, k /∈ {0, 1, . . . , N − 1}. Then

p(k)

N =
E
[
X (k)

N

]
N

. (5)

In this paper, we focus on the covariance between the two level sizes X (k)

N and X (l)

N . More
precisely, we study

sN [k, l] = E
[
X (k)

N X (l)

N

]
, 0 ≤ k, l ≤ N − 1. (6)

In the first part of Section 2, we will prove Lemma 2.1, which shows that X
(k)
N is equal

in law to X
(k−1)
N1

+ X
(k)
N−N1

, where N1 is uniform on {1, 2, . . . , N − 1} and X
(k−1)
N1

and

X
(k)
N−N1

are independent given N1. In fact, the equality in law is even true simultaneously
for all k. From this we obtain the following recurrence formula for sN [k, l]. For k, l ≥ 0,

sN [k, l] =
1

N − 1

N−1∑
m=1

{E [X (k−1)

m X (l−1)

m ] + E
[
X (k)

N−mX
(l)

N−m

]}
+

1

N − 1

N−1∑
m=1

{E [X (k−1)

m ]E
[
X (l)

N−m

]
+ E

[
X (k)

N−m

]
E [X (l−1)

m ]}

=
1

N − 1

N−1∑
m=1

{sm[k − 1, l − 1] + sN−m[k, l]}+ aN [k, l], (7)

where

aN [k, l] =
1

N − 1

N−1∑
m=1

(
E [X (k−1)

m ]E
[
X (l)

N−m

]
+ E [X (k)

m ]E
[
X (l−1)

N−m

])

=
(−1)N−k−l−1

(N − 1)!

N−1∑
m=1

(
N − 2

m− 1

)(
S(k)

m S(l+1)

N−m + S(k+1)

m S(l)

N−m

)
. (8)
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Equation (7) is the starting point of our analysis. In Section 2, we will solve the
recurrence relation, and obtain a formula for sN [k, l] valid for all k, l, N . This formula
reads, for k ≤ l,

E
[
X (k)

N X (l)

N

]
=

1

(N − 1)!

k∑
j=0

(−1)N−j−l+1

(
2j + l − k

j + l − k

)
S(j+l+1)

N . (9)

Putting k = l, we obtain the second moment

E

[(
X (k)

N

)2]
=

1

(N − 1)!

k∑
j=0

(−1)N−j−k+1

(
2j

j

)
S(j+k+1)

N . (10)

Using (3) and (5), we see that (9) is equivalent to

E
[
X (k)

N X (l)

N

]
=

k∑
j=0

(
2j + l − k

j + l − k

)
E
[
X (j+l)

N

]
. (11)

It would be of interest to find a probabilistic interpretation of (11). We will prove (9) in
Section 2 by computing and inverting the moment generating function

∑
k,l≥0 sN [k, l]x

kyl.
Recursive trees are used to model all sorts of phenomena such as spread of epidemics,

pyramid schemes, etc. (see e.g. [8] for an extensive list of examples). Our interest in
recursive trees was triggered by the hopcount problem in the Internet: “What is the
distribution of the number of hops (or traversed routers) along the shortest path between
two arbitrary nodes in the Internet?” (cf. [6]). As initial model, we concentrated on the
random graph of the class Gp(N) (see e.g. [2]) consisting of all graphs with N nodes in
which the edges (links) are chosen independently and with probability p. The links are
further specified by independent exponentially distributed random weights with mean 1
and the shortest path between two arbitrary nodes minimizes the sum of the weights of the
path between these two nodes. We have shown that the shortest path in a complete graph
(p = 1) is equal to the depth D1,N from the source to an arbitrary node in a recursive tree
of size N .1 In [4], we have extended this result asymptotically for large N to Gp(N) for
p = pN < 1: the law of the hopcount of the shortest path in Gp(N) with exponentially
distributed link weights is close (as N → ∞) to the law of D1,N . We have proved this
fact in [4] under the condition that NpN/(logN)3 → ∞. Computer simulations confirm
the limit law even when NpN → ∞ at a slower rate. In the simulations we have used
p̂(k)

N = X (k)

N /N, 0 ≤ k ≤ N − 1, as an unbiased estimator for the probability vector
p(k)

N and we noticed that this estimator was close to p(k)

N (for all the realizations in the
simulation). This suggests that p̂(k)

N is close to p(k)

N almost surely. See also Figure 1 in
Section 4.

In Section 3, we set forth to prove convergence of p̂(k)

N to p(k)

N . We show that the
estimator p̂(k)

N = X (k)

N /N, 0 ≤ k ≤ N − 1, is consistent in the sense that the total variation
distance

dTV(p̂N , pN) =
1

2

N−1∑
k=0

|p̂(k)

N − p(k)

N |, (12)

1This is the reason why we study D1,N rather than d1,N .
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converges to 0 in probability. This result is similar to the above quoted result of Dobrow
and Smythe, who showed that the total variation distance of pN and a Poisson random
variable with mean λN is small. Consequently, our result also implies that

1

2

∞∑
k=0

∣∣p̂(k)

N − e−λN
λk

N

k!

∣∣, (13)

converges to 0 in probability. However, note that our total variation distance is random,
since the estimator p̂N = X (k)

N /N, 0 ≤ k ≤ N − 1, is actually a random measure. The
proof of (12) uses the second moment of X (k)

N in (10).
In Section 4, we use (9) to compute the variance of the moment generating function

of p̂N . Remarkably, this variance is not small compared to the square of its first moment,
as one could expect when p̂N is close to pN . Moreover, there is an interesting change of
behavior when the parameter substituted in the moment generating function exceeds 2,
where the variance divided by the first moment squared tends to infinity. This indicates
that even when p̂N is close to pN , the tails of p̂N tend to be heavier than those of pN .

Some technical lemmas concerning Stirling numbers are proved in Appendix I, and
moderate deviation results concerning the probability distribution pN in Appendix II.

2 The solution of the recursion relation for sN [k, l].

Before presenting Lemma 2.1, the key ingredient for the recursionrelation, some properties
of recursive trees are reviewed.

When N = 2, the unique recursive tree of size 2 consists of a single edge between
the root 1 and the second node, denoted here by 2. The larger recursive trees are now
generated by attaching nodes to this tree recursively. Recursive trees are determined by
the unlabeled tree, together with the labeling of the nodes of the unlabeled tree, indicating
the order in which each of the nodes is attached. Therefore, recursive trees are a subset
of all labeled trees. Not all labeled trees can arise as a recursive tree though, since the
vertices that are further away from the root must have larger labels. This follows from
the way a recursive tree is obtained by adding the numbered vertices recursively, and
explains why there are only (N − 1)! recursive trees, whereas there are NN−1 labeled
trees. Uniform recursive trees are now obtained by choosing one of the recursive trees
uniformly.

We will use the following identity in law for the sequence {X (k)

N }k≥0. In the statement,

we denote by
d
= equality in distribution.

Lemma 2.1 Let {Y (k)

N }k,N≥0 and {Z (k)

N }k,N≥0 be two independent copies of the vector of
level sets of two sequences of independent recursive trees. Then

{X (k)

N }k≥0
d
= {Y (k−1)

N1
+ Z (k)

N−N1
}k≥0, (14)

where on the right-hand side the random variable N1 is uniformly distributed over the set
{1, 2, . . . , N − 1}.

Proof: The recursive tree is divided into two subtrees, namely, the tree of nodes which
are in graph distance closest to node 1, and the ones that are closer to node 2. We will
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Figure 1: Decomposition of the tree T into the two subtrees R1, R2 and the necessary
relabeling to obtain the recursive trees T1, T2 for N = 10.

call these trees the subtrees rooted at 1, respectively 2, and will denote these trees by R1

and R2. Clearly, the labels of R1 and R2 together are 1, . . . , N . Denote the size of R2

by N1. Then the size of R1 is N − N1. We now relabel each of the vertices of the trees
R1 and R2 to obtain new trees T1 and T2. This relabeling is done in such a way that
T1 obtains labels 1, . . . , N − N1 and T2 obtains labels 1, . . . , N1. Moreover, the order of
the labels the vertices of Ti is preserved compared to Ri. Consequently, as illustrated in
Figure 1, T1 and T2 are recursive trees.

We will now prove that T1 and T2 are independent given N1, and that N1 is uniform
on the set {1, 2, . . . , N − 1}. That proves Lemma 2.1.

Let t1 be a recursive tree of size of size m, and t2 a recursive tree of size N −m. We
note that since T is a uniform recursive tree, we have

P(T1 = t1, T2 = t2, N1 = m) =
1

(N − 1)!
#{T : T1 = t1, T2 = t2}, (15)

i.e., the probability that T1 = t1, T2 = t2, N1 = m is just 1
(N−1)!

times the number of
recursive trees T for which the relabeling of the trees rooted at 1 and 2 are t1 and t2
respectively. Moreover,

#{T : T1 = t1, T2 = t2} = (N − 2)!

(m− 1)!(N − 1−m)!
, (16)

since this is just the number of orders in which we can attach m− 1 vertices to the tree
rooted at 1 and N −1−m vertices to the tree rooted at 2. Indeed, since t1 and t2 contain
the information of the labeling of each vertex of t1 and t2, we can reconstuct R1 and
R2, and hence T , from t1, t2 and the order in which each of the vertices of t1 and t2 are
attached to the tree rooted at 1, respectively, 2.

Therefore,

P(T1 = t1, T2 = t2, N1 = m) =
1

N − 1

1

(N −m− 1)!

1

(m− 1)!
. (17)

This proves the claim, as we can identify the right hand side as

P(N1 = m)P(T1 = t1|N1 = m)P(T2 = t2|N1 = m), (18)
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so that indeed N1 is uniform over the set {1, 2, . . . , N − 1}, and the trees T1 and T2 are
conditionally independent given N1. This in particular implies that the level sets of the
trees T1 and T2 are independent.

�
We now come to our main result identifying the cross moments of the level sizes.

Theorem 2.2 For k ≤ l, the solution of (7), with initial conditions sN [k, 0] =

(−1)N−k−1 S
(k+1)
N

(N−1)!
, is

E[X (k)

N X (l)

N ] = sN [k, l] =
1

(N − 1)!

k∑
j=0

(−1)N−j−l+1

(
2j + l − k

j + l − k

)
S(j+l+1)

N . (19)

Proof: Define the generating functions

χN (x, y) =
N−1∑
k,l=0

sN [k, l]x
kyl, AN(x, y) =

N−1∑
k,l=0

aN [k, l]x
kyl.

Multiply both sides of the recursion (7) by xkyl and sum over k, l ∈ {0, 1, . . . , N − 1}, to
get

(N − 1)χN(x, y) = (1 + xy)

N−1∑
m=1

χm(x, y) + (N − 1)AN(x, y).

Subtraction of NχN+1(x, y)− (N − 1)χN(x, y), yields

NχN+1(x, y)− (N + xy)χN(x, y) = NAN+1(x, y)− (N − 1)AN(x, y). (20)

We denote FN(x, y) = NAN+1(x, y)− (N − 1)AN(x, y) and rewrite (20) as

χN(x, y) =
N − 1 + xy

N − 1
χN−1(x, y) +

1

N − 1
FN−1(x, y). (21)

We use χ1(x, y) = 1, to obtain, by iteration,

χN(x, y) =
Γ(xy +N)

(N − 1)!Γ(xy + 1)
+
Γ(xy +N)

(N − 1)!

N−1∑
q=1

Fq(x, y)(q − 1)!

Γ(xy + q + 1)
. (22)

Substituting (50) into (22), we end up with

χN (x, y) =
Γ(xy +N)

(N − 1)!Γ(xy + 1)
+
Γ(xy +N)

(N − 1)!

N−1∑
q=1

Γ(x+ y + q)

Γ(x+ y)Γ(xy + q + 1)

=
Γ(xy +N)

(N − 1)!Γ(x+ y)

N−1∑
q=0

Γ(x+ y + q)

Γ(xy + q + 1)
. (23)

Now, using Lemma 5.4 with a = x+ y and b = xy + 1,

χN (x, y) =
Γ(xy +N)

(N − 1)!Γ(x+ y)

1

(x+ y − xy)

(
Γ(x+ y +N)

Γ(xy +N)
− Γ(x+ y)

Γ(xy)

)

=
Γ(x+ y +N)

(N − 1)!(x+ y − xy)Γ(x+ y)
− Γ(xy +N)

(N − 1)!(x+ y − xy)Γ(xy)
, (24)
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and finally from Γ(z+n)
Γ(z)

=
∑n

j=0(−1)n−jS(j)
n zj (cf. [1, 1.24.3]),

χN(x, y) =
N∑

j=0

(−1)N−jS(j)

N

(N − 1)!

(x+ y)j

(x+ y − xy)
−

N∑
j=0

(−1)N−jS(j)

N

(N − 1)!

(xy)j

(x+ y − xy)

=

N∑
j=0

(−1)N−jS(j)

N

(N − 1)!

(
(x+ y)j − (xy)j

x+ y − xy

)
. (25)

To obtain the coefficients of χN , write

(x+ y)j − (xy)j

x+ y − xy
= (xy)j−1

(
x+y
xy

)j

− 1

x+y
xy

− 1
= (xy)j−1

j−1∑
i=0

(
x+ y

xy

)i

=

j−1∑
i=0

i∑
m=0

(
i

m

)
xj−m−1ym−i+j−1,

so that

∑
0≤k,l≤N−1

sN [k, l]x
kyl =

1

(N − 1)!

N∑
j=0

(−1)N−jS(j)

N

j−1∑
i=0

i∑
m=0

(
i

m

)
xj−m−1ym−i+j−1.

Taking k = j −m − 1 and l = m − i + j − 1, or m = j − k − 1 and i = 2j − k − l − 2,
we obtain that 0 ≤ m ≤ i is equivalent to j ≥ max(k + 1, l + 1) and 0 ≤ i ≤ j − 1 is
equivalent to (k + l)/2 + 1 ≤ j ≤ k + l + 1, implying for k ≤ l,

E
[
X (k)

N X (l)

N

]
= sN [k, l] =

1

(N − 1)!

k+l+1∑
j=max(k,l)+1

S(j)

N (−1)N−j

(
2j − k − l − 2

j − k − 1

)

=
1

(N − 1)!

k∑
j=0

(−1)N−j−l−1S(j+l+1)

N

(
2j − k + l

j − k + l

)
.

�

3 Convergence in probability

In this section, we will show the following theorem.

Theorem 3.1 As N → ∞,

E

[
N−1∑
k=0

(p̂(k)

N − p(k)

N )2

]
=

2− π2/6

4
√
π(logN)3

+O((logN)−5/2). (26)

Consequently, for all ε > 0,

lim
N→∞

P(dTV(p̂N , pN) > ε) = 0. (27)
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In words, (27) shows that the total variation distance between the random probability
vector (p̂(k)

N )N−1
k=0 and its expectation (p(k)

N )N−1
k=0 converges to zero in probability. Equation

(26) will be used to prove (27). However, it is interesting on its own, as it shows that p̂N

converges to a normal density in L2-sense. Indeed, define

q̂(y)

N =
√
logNp̂(�log N+y

√
log N�)

N ,

and let q(y)

N = E
[
q̂(y)

N

]
. Then (26) implies that with ‖ · ‖2 denoting the L2-norm, we have

E
[‖q̂N − qN‖2

2

]
=

2− π2/6

4
√
π logN

+O((logN)−2). (28)

To see (28), we write

E
[‖q̂N − qN‖2

2

]
= E

[∫ ∞

−∞
(q̂(y)

N − q(y)

N )2dy

]
= (logN)1/2

E

[
N−1∑
k=0

(p̂(k)

N − p(k)

N )2

]
. (29)

Furthermore, by the triangle inequality, we have that with

q(y) =
e−y2/2

√
2π

, y ∈ R, (30)

denoting the standard Gaussian density,

E
[‖q̂N − q‖2

2

]1/2 ≤ E
[‖q̂N − qN‖2

2

]1/2
+ ‖qN − q‖2. (31)

In [3] it is shown that the total variation distance between pN and the Poisson with mean
λN tends to zero. This result implies that ‖qN − q‖2

2 → 0. Therefore, q̂N converges in L2

to q.

Proof: We first show that (27) follows from (26) together with Lemma 6.1 proved in
Appendix II.

Invoking the Markov inequality we get

P(dTV(p̂N , pN) > ε) ≤ 1

2ε
E

[
N−1∑
k=0

|p̂(k)

N − p(k)

N |
]
.

Hence for the convergence in probability it suffices to show that

lim
N→∞

E

[
N−1∑
k=0

|p̂(k)

N − p(k)

N |
]
= 0. (32)

We will split the sum over k into two parts, depending on whether |k−logN | ≤ cN
√
logN ,

for some sequence cN → ∞, or not. Denote

KN = {k : |k − logN | ≤ cN
√
logN}.

The first part, where |k − logN | > cN
√
logN , we handle as follows. We first bound

E

[ ∑
k∈Kc

N

|p̂(k)

N − p(k)

N |
]
≤ E

[ ∑
k∈Kc

N

p̂(k)

N + p(k)

N

]
= 2

∑
k∈Kc

N

p(k)

N .
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In Lemma 6.1 in Appendix II, it is proved that for cN = o(
√
logN),

∑
k∈Kc

N

p(k)

N ≤ 8 exp

{
−c

2
N

2

(
1− cN√

logN

)}
.

This deals with the first part (k ∈ Kc
N). For the second part, we use Cauchy-Schwarz,

together with |KN | ≤ 2cN
√
logN + 1, to bound

E

[∑
k∈KN

|p̂(k)

N − p(k)

N |
]
≤
[
E

∑
k∈KN

(p̂(k)

N − p(k)

N )2

]1/2

(2cN
√
logN + 1)1/2.

Therefore, (27) follows once we prove (26). We next prove (26).
Since E

[
p̂(k)

N

]
= p(k)

N , we have

E

[
N−1∑
k=0

(p̂(k)

N − p(k)

N )2

]
=

N−1∑
k=0

E

[(
p̂(k)

N

)2]− N−1∑
k=0

(
p(k)

N

)2
. (33)

We will start with the second sum on the right hand side of (33).
According to the Parseval relation (cf. [11]) and the generating function ϕN in (2) we

find

N−1∑
k=0

(
p(k)

N

)2
=

1

2πΓ2(N + 1)

∫ π

−π

∣∣∣∣Γ(N + eiθ)

Γ(1 + eiθ)

∣∣∣∣
2

dθ. (34)

We first use that ∣∣∣∣ Γ(N + eiθ)

Γ(N + cos θ)

∣∣∣∣
2

= 1 +O(N−1) (35)

(cf. [1, 6.1.47]). As a first approximation we again use [1, 6.1.47] to obtain, for large N
and all θ ∈ (−π, π),

Γ(N + cos θ)

Γ(N + 1)
= N cos θ−1(1 +O(N−1)). (36)

Denote εN = ε(logN)−1/4. An upper bound for the integral outside the interval (−εN , εN),
where ε > 0 is small enough, is obtained by combining (35) with

1

2π

∫
(−π,π)\(−εN ,εN )

Γ2(N + 1 + (cos θ − 1))

Γ2(N + 1)
dθ ≤ N2(cos εN−1)(1 +O(N−1)) ≤ e−

ε2

2

√
log N .

(37)

When θ ∈ [−εN , εN ], we obtain from (36) and the expansion of θ �→ cos θ,

Γ2(N + cos θ)

Γ2(N + 1)
= e2(cos θ−1) log N(1 +O(N−1)) = e−θ2 log N

(
1 +

θ4 logN

12
+O(θ6 logN)

)
.
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Now we calculate the integral on the right-hand side of (34), where we again use that∣∣∣ Γ(N+eiθ)
Γ(N+cos θ)

∣∣∣2 = 1 +O(N−1) and |Γ(1 + eiθ)| = |Γ(eiθ)|,

1

2π

∫ π

−π

∣∣∣∣ Γ(N + eiθ)

Γ(N + 1)Γ(1 + eiθ)

∣∣∣∣
2

dθ =
1

2π

∫ π

−π

∣∣∣∣Γ(N + cos θ)

Γ(N + 1)

∣∣∣∣
2

·
∣∣∣∣ Γ(N + eiθ)

Γ(N + cos θ)Γ(1 + eiθ)

∣∣∣∣
2

dθ

=
1

2π

∫ εN

−εN

∣∣∣∣ Γ(N + eiθ)

Γ(N + cos θ)

∣∣∣∣
2

·
∣∣∣∣ Γ(N + cos θ)

Γ(N + 1)Γ(1 + eiθ)

∣∣∣∣
2

dθ +O(e−
ε2

2

√
log N)

=
1 +O(N−1)

2π

∫ εN

−εN

∣∣∣∣ Γ(N + cos θ)

Γ(N + 1)Γ(1 + eiθ)

∣∣∣∣
2

dθ +O(e−
ε2

2

√
log N)

=
1

2π

∫ εN

−εN

e−θ2 log N

|Γ(eiθ)|2
(
1 +

θ4 logN

12
+O(θ6 logN)

)
dθ +O(e−

ε2

2

√
log N ). (38)

In the above, we have absorbed error terms bounded by O(N−1) into the error term

O(e−
ε2

2

√
log N). On the right hand side we will can go to the full integral over (−∞,∞),

since ∫
(−∞,∞)\(−εN ,εN )

e−θ2 log N

|Γ(eiθ)|2
(
1 +

θ4 logN

12
+O(θ6 logN)

)
dθ = O(e−

ε2

2

√
log N).

Therefore, we end up with

1

2π

∫ π

−π

∣∣∣∣ Γ(N + eiθ)

Γ(N + 1)Γ(1 + eiθ)

∣∣∣∣
2

dθ =
1

2π

∫ ∞

−∞

e−z2
dz√

logN
+

a

2π

∫ ∞

−∞

z2e−z2
dz

(logN)3/2
(39)

+
1/12

2π

∫ ∞

−∞

z4e−z2
dz

(logN)3/2
+O

(
1

(logN)5/2

)
,

where a equals

a =
1

2

d2

dθ2

1

|Γ(eiθ)|2
∣∣∣
θ=0

=
π2

6
− γ,

and γ is Euler’s constant. Hence,

N−1∑
k=0

(
p(k)

N

)2
=

1

2
√
π logN

+
(π2

6
− γ + 1

8
)

4
√
π(logN)3

+O
(

1

(logN)5/2

)
. (40)

We next derive the asymptotics of the first sum. We first use (10) to write it as

N−1∑
k=0

E

[(
p̂(k)

N

)2]
=

1

N

N−1∑
k=0

k∑
j=0

(
2j

j

)
p(k+j)

N . (41)

We then rewrite

N−1∑
k=0

k∑
j=0

(
2j

j

)
p(k+j)

N =

∞∑
k=0

k∑
j=0

(
2j

j

)
p(k+j)

N =

∞∑
l=0

∑
2j≤l

(
2j

j

)
p(l)

N

=

∞∑
k=0

[p(2k)

N + p(2k+1)

N ]

k∑
j=0

(
2j

j

)
,

10



where we use the change of variables l = k + j.
We next use Wallis’ formula (cf. [1, 6.1.49]),(

2j

j

)
=

22j+1

π

∫ π
2

0

cos2j(θ) dθ.

We split the integral into two parts, corresponding to 0 ≤ θ ≤ π
3
and π

3
≤ θ ≤ π

2
. We start

with the latter, which is an error term. We use that cos2 θ ≤ 1
2
, so that this contribution

is bounded as

1

N

∞∑
k=0

[p(2k)

N + p(2k+1)

N ]

k∑
j=0

22j+1

π

∫ π
2

π
3

2−j dθ =
1

6N

∞∑
k=0

(2k+1 − 1)[p(2k)

N + p(2k+1)

N ]. (42)

We further bound this term, using (4), by

1

N

∞∑
l=0

2
l
2p(l)

N ≤ 1

N
ϕN(

√
2) = O(N

√
2−2).

We proceed with the main term, due to 0 ≤ θ ≤ π
3
. We will use that

∞∑
k=0

zkp(2k)

N =
1

2
[ϕN (

√
z) + ϕN(−

√
z)],

∞∑
k=0

zkp(2k+1)

N =
1

2
√
z
[ϕN(

√
z)− ϕN(−

√
z)].

(43)

This yields:

1

N

N−1∑
k=0

k∑
j=0

(
2j

j

)
p(k+j)

N =
2

πN

∫ π
3

0

N−1∑
k=0

[p(2k)

N + p(2k+1)

N ]
(4 cos2 θ)k+1 − 1

4 cos2 θ − 1
dθ +O(N

√
2−2) (44)

=
1

πN

∫ π
3

0

4 cos2 θ[ϕN(2 cos θ) + ϕN(−2 cos θ)]
4 cos2 θ − 1

dθ

+
1

πN

∫ π
3

0

2 cos θ[ϕN(2 cos θ)− ϕN(−2 cos θ)]− 2

4 cos2 θ − 1
dθ +O(N

√
2−2)

=
1

πN

∫ π
3

0

(2 cos θ + 4 cos2 θ)ϕN (2 cos θ)

4 cos2 θ − 1
dθ

− 1

πN

∫ π
3

0

(2 cos θ − 4 cos2 θ)ϕN(−2 cos θ) + 2

4 cos2 θ − 1
dθ +O(N

√
2−2).

Since (2 cos θ−4 cos2 θ)ϕN (−2 cos θ)+2
4 cos2 θ−1

is bounded on [0, π
3
], the second integral on the right

hand side of (44) is O(N−1).
As before,

ϕN(2 cos θ) =
Γ(N + 2 cos θ)

Γ(N + 1)

1

Γ(1 + 2 cos θ)
.

From [1, 16.1.47], and using Maple for large N and θ → 0,

Γ(N + 2 cos θ)

N Γ(N + 1)
= N2 cos θ−2(1 +O(N−1)) = N−θ2+ θ4

12 (1 +O(N−1)),

(Γ(1 + 2 cos θ))−1 =
1

2
+

(
3

4
− γ

2

)
θ2 +O(θ4),

2 cos θ + 4 cos2 θ

4 cos2 θ − 1
= 2 + θ2 +O(θ4).

11



Hence,

1

πN

∫ π
3

0

(2 cos θ + 4 cos2 θ)ϕN (2 cos θ)

4 cos2 θ − 1
dθ

=
1

π

∫ π
3

0

N−θ2+ θ4

12

(
1

2
+

(
3

4
− γ

2

)
θ2

)(
2 + θ2

)
dθ +O((logN)−5/2)

=
1

π

∫ π
3

0

e−θ2 log N

(
1 + (2− γ) θ2 +

θ4 logN

12

)
dθ +O((logN)−5/2)

=
1

2
√
π logN

+
2− γ + 1

8

4
√
π(logN)3

+O((logN)−5/2).

Together with (40) this shows (26). �

4 The variance of the moment generating function

Define the random generating function of p̂N to be

ϕ̂N(r) =

N−1∑
k=0

rkp̂(k)

N .

Clearly, ϕ̂N(0) = p̂(0)

N = 1/N , and ϕ̂N(1) = 1.
We compute the variance of the above random generating function, using (24),

Var(ϕ̂N(r)) =
1

N2
cov

(
N−1∑
k=0

rkX (k)

N ,

N−1∑
l=0

rlX (l)

N

)
(45)

=
1

N2

N−1∑
k=0

N−1∑
l=0

rk+lcov
(
X (k)

N , X (l)

N

)

=
χN(r, r)

N2
−
(

Γ(N + r)

Γ(N + 1)Γ(r + 1)

)2

=

(
Γ(2r+N)

Γ(2r)
− Γ(r2+N)

Γ(r2)

)
NΓ(N + 1)(2r − r2)

−
(

Γ(N + r)

Γ(N + 1)Γ(r + 1)

)2

.

We know that

Γ(N + r)

Γ(N + 1)
= N r−1

(
1 +O

(
1

N

))
.

Therefore, we find that for r < 2,

Var(ϕ̂N(r))

ϕN(r)2
=

(
Γ2(r + 1)

(2r − r2)Γ(2r)
− 1

)(
1 +O

(
1

N r2−2r

))
. (46)

The function on the right hand side is strictly positive for 0 < r < 2, except at r = 1. This
means that the variance of ϕ̂N(r) is of the same order as its expectation squared in this
regime of r. Moreover, as r ↑ 2, we have that the ratio in (46) tends to infinity as N → ∞.
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Therefore, ϕ̂N(r) does not converge to ϕN(r) in L2, even though it is the generating
function of a random distribution that does converge to its mean (in probability) in total
variation and in L2. This indicates that p̂(k)

N has generally fatter tails than p(k)

N . We can
also see this in Figure 1, where 25 realizations of p̂N are drawn, together with pN , for
N = 100, 000.
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Figure 2: The probability distribution pN (solid line) and 25 realizations of p̂N for N =
100, 000 (dashed lines).
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5 Appendix I.

In this appendix we prove the formula for Fq(x, y) used in Section 2 and the summation
formula for the Gamma function used to prove (24). We start with two preparatory
lemmas containing identities for Stirling numbers.

Lemma 5.1 For N > 1 and 0 ≤ k, l ≤ N − 1,

aN [k, l] =
(−1)N−1

(N − 1)!

(
k + l

k

) N−1∑
q=k+l

(−1)q
(

q − 1

k + l − 1

)
S(q)

N−1. (47)

Proof: From the identity (cf. [10, Chapter 1]),

(
a+ b− 2

k − 2

)
=

k−2∑
q=1

(
a− 1

q − 1

)(
b− 1

k − q − 1

)
,

and the generating function of the Stirling numbers (cf. [1, 24.1.3]), we obtain

(
a+ b− 2

N − 2

)
=

1

(N − 2)!

N−2∑
m=1

m∑
j=0

N−m∑
s=0

(
N − 2

m− 1

)
S(j)

m S(s)

N−ma
j−1bs−1.

Reversing summation orders, gives

ab(N − 2)!

(
a + b− 2

N − 2

)
=

N−2∑
j=0

aj

N−j∑
s=0

bs
N−l∑
m=j

(
N − 2

m− 1

)
S(j)

m S(s)

N−m.

From this identity one finds

(N − 2)!

k!l!

∂k+l

∂lb∂ka

[
ab

(
a + b− 2

N − 2

)]∣∣∣∣
a=b=0

=

N−l∑
m=k

(
N − 2

m− 1

)
S(k)

m S(l)

N−m.
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Using the generating function [1, 24.1.3] again, we find for N > 1,

ab

(
a+ b− 2

N − 2

)
=

N−1∑
q=1

S(q)

N−1

(N − 2)!
ab(a + b− 1)q−1

=
N−1∑
q=1

S(q)

N−1

(N − 2)!

q−1∑
j=0

(
q − 1

j

)
aj+1b(b− 1)q−1−j,

so that on the other hand

∂k+l

∂lb∂ka

[
ab

(
a+ b− 2

N − 2

)]∣∣∣∣
a=b=0

=
(−1)k+l−1k!l!

(N − 2)!(k − 1)!(l − 1)!

N−1∑
q=k+l−1

(−1)q (q − 1)!

(q − k − l + 1)!
S(q)

N−1.

Equating both expressions for the (k + l)th partial derivative yields

N−l∑
m=k

(
N − 2

m− 1

)
S(k)

m S(l)

N−m = (−1)k+l−1

(
k + l − 2

k − 1

) N−1∑
q=k+l−1

(−1)q
(

q − 1

k + l − 2

)
S(q)

N−1, (48)

and hence (47).
The above expression shows in particular that aN [k, l] = 0, when k + l ≥ N . �

Lemma 5.2 For N ≥ k + l + 1,

N−2∑
j=k+l

(−1)j
(

j − 1

k + l − 1

)
S(j−1)

N−2

(N − 2)!
=

(−1)k+lS(k+l)

N−1

(N − 2)!
+

(−1)N
(N − k − l − 1)!(k + l − 1)!

. (49)

Proof: Multiply both sides by xN and sum over N ≥ k + l + 1 to obtain after some
manipulations on both sides

(−1)k+l x2

(k + l − 1)!

{
logk+l−1(1 + x)

1 + x
− xk+l−1e−x

}
. �

Lemmas 5.1 and 5.2 allow us to prove the following identity for Fq(x, y).

Lemma 5.3 For q ≥ 1,

Fq(x, y) =
1

(q − 1)!

Γ(x+ y + q)

Γ(x+ y)
. (50)

Proof: We compute

Fq(x, y) = qAq+1(x, y)− (q − 1)Aq(x, y)

=

q∑
k,l=0

(qaq+1[k, l]− (q − 1)aq[k, l])x
kyl + (q − 1)

q∑
k,l:max(k,l)=q

aq[k, l]x
kyl.

From Lemma 5.1, aq[q, l] = aq[k, q] = 0. Thus, we have that Fq(x, y) =
∑

k,l fq[k, l]x
kyl,

with fq[k, l] = qaq+1[k, l]− (q − 1)aq[k, l]. Using (47), we obtain

fq[k, l] =
(−1)q
(q − 2)!

(
k + l

k

) q−1∑
j=k+l

(−1)j
(

j − 1

k + l − 1

)(
S(j)

q

q − 1
+ S(j)

q−1

)
(51)

+
1

(q − 1)!

(
k + l

k

)(
q − 1

k + l − 1

)
,
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and with
S

(j)
q

q−1
+ S(j)

q−1 =
S

(j−1)
q−1

q−1
(see [1, 24.1.3.II.A]),

fq[k, l] =
(−1)q
(q − 1)!

(
k + l

k

) q−1∑
j=k+l

(−1)j
(

j − 1

k + l − 1

)
S(j−1)

q−1 +
1

(q − 1)!

(
k + l

k

)(
q − 1

k + l − 1

)
.

Invoking relation (49), rewritten as

q−1∑
j=k+l

(−1)j
(

j − 1

k + l − 1

)
S(j−1)

q−1

(q − 1)!
=

(−1)k+lS(k+l)
q

(q − 1)!
+
(−1)q+1

(q − 1)!

(
q − 1

k + l − 1

)
,

gives

fq[k, l] =
(−1)q−k−l

(q − 1)!

(
k + l

k

)
S(k+l)

q . (52)

Hence, using that S(m)
q = 0 for all m > q

Fq(x, y) =

q∑
k,l=0

fq[k, l]x
kyl =

(−1)q
(q − 1)!

q∑
k,l=0

(
k + l

k

)
S(k+l)

q (−x)k(−y)l

=
(−1)q
(q − 1)!

q∑
m=0

m∑
k=0

(−1)mS(m)

q

(
m

k

)
xkym−k

=
1

(q − 1)!

q∑
m=0

(−1)q−mS(m)

q (x+ y)m =
1

(q − 1)!

Γ(x+ y + q)

Γ(x+ y)
.

�

Lemma 5.4 For all a, b and N ∈ N,

R(a, b) =

N−1∑
q=0

Γ(a + q)

Γ(b+ q)
=

1

(1 + a− b)

(
Γ(a+N)

Γ(b+N − 1)
− Γ(a)

Γ(b− 1)

)
. (53)

Proof: Verify that

R(a, b− 1) =
Γ(a)

Γ(b− 1)
+

N−1∑
q=1

Γ(a+ q)

Γ(b− 1 + q)
= (b− 1)R(a, b) +

N−1∑
q=1

qΓ(a+ q)

Γ(b+ q)
,

and alternatively

R(a, b− 1) =
Γ(a)

Γ(b− 1)
+

N−2∑
q=0

Γ(a + q + 1)

Γ(b+ q)

= aR(a, b) +
Γ(a)

Γ(b− 1)
− a

Γ(a+N − 1)

Γ(b+N − 1)
+

N−2∑
q=1

qΓ(a+ q)

Γ(b+ q)
.

Equating both sides yields the desired result. �
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6 Appendix II

In this appendix, we prove the moderate deviation bounds, used in Section 3 to prove
Theorem 3.1.

Lemma 6.1 For cN = o
(√

logN
)
, as N → ∞,

∑
|k−log N |≥cN

√
log N

p(k)

N ≤ 8 exp

{
−c

2
N

2

(
1− cN√

logN

)}
.

Proof: Using the generating function (4) and the Markov inequality, we find for each
x > 0, ∑

k≥log N+cN
√

log N

p(k)

N = P(D1,N ≥ logN + cN
√
logN) = P

(
xD1,N ≥ xlog N+cN

√
log N

)

≤ x− log N−cN
√

log NϕN(x)

=
(
x− log N−cN

√
log N

) e(x−1) log N

Γ(x+ 1)

(
1 +O

(
1

N

))
.

Hence, for each x > 0, and for N large enough, using that Γ(x+ 1) > 1
2
(cf. [1, 6.3.19]),∑

k≥log N+cN
√

log N

p(k)

N ≤ 4 exp{−(logN + cN
√
logN) log x+ (x− 1) logN}.

Take x = 1 + cN√
log N

, to get for N sufficiently large

∑
k≥log N+cN

√
log N

p(k)

N ≤ 4 exp

{
−c

2
N

2

(
1− cN√

logN

)}
, (54)

using log(1 + x) ≥ x− x2

2
, x ↓ 0. Similarly we obtain

P(D1,N ≤ logN − cN
√
logN) = P

(
x−D1,N ≥ x−(log N−cN

√
log N)

)
≤ x(log N−cN

√
log N)ϕN(x

−1)

=
(
xlog N−cN

√
log N

) e(x−1−1) log N

Γ(x−1 + 1)

(
1 +O

(
1

N

))
,

so that for each x > 0, using again that Γ(x−1 + 1) > 1
2
, we end up with∑

k≤log N−cN
√

log N

p(k)

N ≤ 4 exp{(logN − cN
√
logN) log x+ (x−1 − 1) logN}.

Take x−1 = 1− cN√
log N

and in exactly the same way as above we obtain

∑
k≤log N−cN

√
log N

p(k)

N ≤ 4 exp

{
−c

2
N

2

(
1− cN√

logN

)}
. (55)

This completes the proof. �
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