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Abstract—This article is a contribution to mathematical mod-
eling and better understanding of fundamental properties of
wireless ad-hoc networks. Our focus in this article is on the
degree distribution and hopcount in these networks. The results
presented here are useful in the study of connectivity and
estimation of the capacity in ad-hoc networks. We model a
wireless ad-hoc network as an undirected geometric random
graph. For the calculation of the link probability between nodes
we have suggested to use a realistic radio model; the so-
called log-normal shadowing model. Through a combination of
mathematical modeling and simulations we have shown that the
degree distribution in wireless ad-hoc networks is binomial for
low values of the mean degree. Further, we have investigated
the hopcount and have shown that the hopcount in wireless ad-
hoc networks can vary between the expected values for lattice
networks and random graphs, depending on radio propagation
conditions.
Index Terms—Graph theory, Ad-hoc networks, Radio model-

ing, Degree distribution, Hopcount.

I. INTRODUCTION
Wireless multi-hop ad-hoc networks are formed by a group

of nodes that communicate with each other over wireless
channels. The nodes in a wireless ad-hoc network can be
mobile. Each node can, if needed, function as relay station
for routing traffic to its final destination. Ad-hoc networks
are decentralized, self-organizing networks and are capable
of forming a communication network without relying on any
fixed infrastructure.
Because of node movements and radio signal fluctuations,

the topology of the network can change from time to time.
However, at any instant in time, an ad-hoc network can be
considered as a graph with fixed topology. In this graph, the
number of links connecting any particular node to its neighbors
is called the degree of that node. An ad-hoc network is said to
be connected if for any source and destination node there exists
a path between them. Otherwise the network is disconnected.
A disconnected network may consist of several disconnected
islands or subnetworks. The hopcount specifies the number of
hops on the path between a source and a destination.
Many aspects of ad-hoc networks have been studied or are

under investigation by the international research community.
For example, extensive work has been done in the development
and optimization of ad-hoc routing protocols ([1] and [2]).
Study of recent literature reveals that exact mathematical mod-
eling of ad-hoc networks is also gaining attention ([3], [4], [5]).
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Good modeling of ad-hoc networks is essential to investigate
fundamental properties of ad-hoc networks like connectivity
and average path length between source and destination nodes.
This article is a contribution to mathematical modeling and
better understanding of fundamental characteristics in ad-hoc
networks. To be specific, here we focus on two aspects:
the degree distribution and the hopcount in wireless ad-hoc
networks.
Knowledge of degree distribution is required to investigate

connectivity in ad-hoc networks. This relation has already been
indicated in e.g. [6] and [7]. However, to our knowledge,
the exact distribution of the node degree in wireless ad-hoc
networks has not been determined till now. In this paper we
show that the degree distribution in wireless ad-hoc network
is very well approximated with a binomial distribution.
The aggregate amount of relay traffic in an ad-hoc network

is linked to the expected values for the hopcount. Conse-
quently, hopcount affects directly interference levels and the
capacity of ad-hoc networks ([8], [9]). In this paper we analyze
the hopcount and show that the hopcount depends on radio
propagation characteristics of the environment.
Our analysis of the degree distribution and the hopcount is

based on a realistic radio model that allows for random vari-
ations in received signal powers. These variation are caused
by obstructions and irregularities in the surroundings of the
transmitting and the receiving antennas. To our knowledge this
so-called log-normal shadowing radio model [10] has not been
used for the modeling of wireless ad-hoc networks before.
The structure of this paper is as follows. In section II

we describe our mathematical presentation of wireless ad-hoc
networks which is based on a general model for geometric
random graphs. In section III we introduce the log-normal
shadowing radio model to complete the geometric random
graph model. In section IV the degree distribution is ana-
lyzed. Here, using simulations results we compare the degree
distribution in ad-hoc networks with a binomial distribution.
Variations in the hopcount, depending on radio propagation
conditions, are studied in section V. Our main conclusions
are summarized in section VI.

II. GEOMETRIC RANDOM GRAPH MODEL FOR AD-HOC
NETWORKS

We start this section with a summary of main characteristics
of random graphs [11]. After that we discuss why a random
graph is not a suitable model to describe wireless ad-hoc
network topologies, and present an alternative model, the so-
called geometric random graph.



A random graph is usually denoted by Gp(n), where n is
the number of nodes in the graph and p is the probability
of having a link between any two nodes. The fundamental
assumption in random graphs is that the presence or absence
of a link between two nodes is independent of the presence
or absence of any other link. So, each link may be considered
to be present with independent probability p. The degree of
a node u, denoted as du, is defined as the number of nodes
connected directly to node u. In other words, the degree of a
node is the number of neighbors of that node. In a random
graph, by definition, du has a binomial distribution [11]:

Pr [du = k] =

µ
n− 1
k

¶
pk (1− p)n−1−k .

A wireless ad-hoc network consists of a number of nodes
(radio devices) spread over a certain geographic area. Every
node may be connected to one or more nodes in its vicinity.
We assume that connections between nodes are two-way,
undirected links. When nodes move, the topology of the
network may change. However, at any given point of time there
is still a well defined topology available. In wireless ad-hoc
network the actual set of connections, in contrast to random
graphs, depends on the geometric distance between nodes. A
direct consequence of the dependency of links on the distance
between nodes is that in wireless ad-hoc networks there is an
increased probability of two nodes to be connected with one
another when they have a common neighbor. This effect is
called clustering [12]. Clustering has been observed and stud-
ied extensively for other network types like social networks
[13]. In the literature, graphs with distance-dependent links
between nodes are sometimes referred to as geometric random
graphs [4]. For reasons explained above, we will model a
wireless ad-hoc network as an undirected geometric random
graph. We denote an undirected geometric random graph with
n nodes as Gp(rij)(n), where p(rij) is the probability of
having a link between two nodes i and j (or j and i) at distance
rij from each other.
In Gp(rij)(n), the total number of edges or links between

nodes is by definition:

L =
nX
i=1

nX
j=i+1

p (rij) .

Let us assume that n nodes are uniformly distributed over
a certain two-dimensional area with size Ω. To derive the
expected number of links, E[L], we have used a dissection
technique and assumed that area Ω is covered with m small
squares (or placeholders) of size ∆Ω. If each of these squares
is small enough to contain at most one node, it is proved in
the appendix:

E[L] =
n(n− 1)
m(m− 1)

mX
i=1

mX
j=i+1

p (rij) ,

where rij is the distance between two placeholders i and j.
We define the link density, L, as the ratio between E[L] and
Emax = n(n− 1)/2, the maximum number of links in a full-
mesh network:

L = E [L]

Emax
=

2

m(m− 1)
mX
i=1

mX
j=i+1

p (rij) . (1)

From this formula we see that link density is independent of
the number of nodes in the network. The link density depends
only on the ”strength of connectivity” (defined by the function
p(r)) over the area of consideration. In other words, the link
density is a measure that indicates how well different parts of
the area can be reached from other parts.
Knowing the expected number of links in the network, the

mean degree, E[d], over all nodes is by definition:

E[d] =
2E[L]

n
= (n− 1)L. (2)

Formulas (1) and (2) are valid for any geometric random
graph Gp(r)(n). In the following section we present a realistic
radio model that leads to our suggestion for the function p(r)
specifically for wireless ad-hoc networks.

III. LOG-NORMAL SHADOWING RADIO MODEL
In radio communications, the received signal levels decrease

as the distance between the transmitter and the receiver
increases. This phenomenon is called path-loss. Attenuation of
radio signals due to the path-loss effect has been modeled by
averaging the measured signal powers over long times and over
many distances around the transmitter. The averaged power at
any given distance to the transmitter is referred to as the area
mean power Pa (in Watts or milli-Watts). The path-loss model
states that Pa is a decreasing function of distance r between
transmitter and the receiver and can be represented by a power
law [14]:

Pa(r) = c

µ
r

r0

¶−η
.

In this formula r0 is a reference distance1. Parameter η is
the path-loss exponent which depends on the environment and
terrain structure and can vary between 2 in free space to 6
in heavily built urban areas [10]. The constant c depends on
the transmitted power, the receiver and the transmitter antenna
gains and the wavelength [10]. The path-loss model is often
used in the study of wireless ad-hoc networks (see e.g. [7]).
However, this model could be inaccurate because in reality the
received power levels may show significant variations around
the area mean power. These power variations are not taken into
consideration in the path-loss model. In this paper we propose
a more realistic radio model for the study of wireless ad-
hoc networks. This model is the log-normal shadowing model
[10], and allows for random power variations around the area
mean power. Let the received power at distance r from the
transmitter be denoted by P(r). In the log-normal shadowing
model the basic assumption is that the logarithm of P(r) is
normally distributed around the logarithmic value of the area
mean power:

1This distance for low-gain antennas in 1-2 GHz region is typically chosen
to be 1 m in indoor environments and 100 meter or 1 km is outdoor
environments.



10 log10 (P(r)) = 10 log10 (Pa(r)) + x.

In this expression x is a zero-mean normal distributed
random variable (in dB) with standard deviation σ (also in dB).
The standard deviation is larger than zero and, in case of severe
signal fluctuations due to irregularities in the surroundings of
the receiving and transmitting antennas, measurements [10]
indicate2 that it can be as high as 12. We notice that if we
assume σ equal to zero, the log-normal model is the same as
the path-loss model. So, the path-loss model can be seen as a
specific case of the more general log-normal model.
Let us assume that for correct reception of radio signals it

is required that P(r) > γ. The "coverage area" of node i in
a wireless ad-hoc network is the collection of all the points j
in the two-dimensional space where P(rij) > γ. A node can
communicate directly with nodes that fall inside its coverage
area but not with other nodes. It should be noticed that the
area of coverage is not an area with fixed boundaries. It can
change according to the probability distribution function of the
log-normal shadowing model.
To eliminate parameters not relevant for our study, we

normalize variables as follows. We define R as the distance
where the area mean power Pa(r) is equal to γ. In other
words, γ = c (R/r0)

−η . If we divide P(r) by γ the result is:

10 log10(P(r)/γ) = 10 log10
¡br −η¢+ x,

where we define br , r/R as the normalized distance. From
this formula we see that the logarithm of P(r)/γ has normal
distribution with the mean 10 log10 (br−η) and the variance σ2.
The condition for correct reception of radio signals is that the
P(r)/γ is more than 1 (or the logarithm of P(r)/γ is more
than zero). Therefore the probability of having a link between
two nodes at normalized distance br from each other is:
p(br) = Pr [10 log10(P(r)/γ) > 0]

=
1√
2πσ

Z ∞
0

exp

"
−(t− 10 log10 (br −η))2

2σ2

#
dt

=
1

2

·
1− erf

µ
3.07

ln (br)
ξ

¶¸
, ξ , σ/η. (3)

In this formula ξ is the ratio between the standard deviation
of shadowing, σ, and the path-loss exponent, η. Low values
of ξ correspond with small variations of signal power around
the area mean power and high values of ξ correspond with
stronger shadowing effects. In the extreme case of ξ = 0,
there is no shadowing effect and our model is equivalent to
the path-loss model. The highest values of ξ correspond with
severe shadowing effects in areas with low path-loss exponent.
The best way to determine the most probable value range
for ξ is through extensive measurements. To our knowledge
this type of measurements for typical wireless ad-hoc network
environments are not available yet. However, based on the

2It should be noted the measurements that we refer to has been done on
lower frequencies than frequencies used in WLAN networks. If a wireless ad-
hoc network is making use of WLAN radio modules, the range of variation
in σ could be different.

Fig. 1. Link probability with log-normal shadowing radio model as function
of the normalized distance between two nodes and for different values of ξ.

aforementioned range of possible values for η and σ, we note
that theoretically ξ may vary between 0 and 6.
Figure 1 shows for different values of ξ the link probability

calculated with (3). It should be noticed that the normalized
distance 1 depends directly on path-loss exponent η. So, the
actual length of the normalized distance 1 for any of the lines
in Figure 1 need not to be the same.
In Figure 1 we see that as shadowing becomes more severe,

the link probability at short distances reduces, while at large
distances the link probability increases. Physically this can
be explained. With little shadowing the path-loss effect is the
dominant factor, while large amount of shadowing smooths
out the distance dependent path-loss effect.
Figure 2 shows results where we used (3) to located points

in a squared area of size 10× 10 that at a certain instant are
connected to a node in the center of this area at coordinates
(0, 0). The points shaded in this figure represent the connected
points to the center node. This collection of points can be
considered as the coverage area around the center node for
different values of ξ. When ξ = 0 (upper left subplot in
Figure 2), variance of the received power around the area mean
power is zero, and the coverage area is a perfect circular area
with normalized radius 1 (this is just the path-loss model).
As the value of ξ increases, variations in the received power
increase as well. Consequently we will have more nodes at
normalized distances larger than 1 that may have a link with
the center node. From the reduced density of shaded points
at close distances to the center node, we also note that there
may be nodes at distances less than the normalized distance
1 that do not have a link with the center node.

A. Link density and average node degree

Assuming normalized distances and substituting p(r) in (1)
with (3) provides the formula for link density with log-normal
shadowing radio model, Lsh:



Fig. 2. Coverage of a node in the center of a service area of szie 10× 10,
for different values of ξ.

Lsh = 1

m(m− 1)
mX
i=1

mX
j=i+1

µ
1− erf

µ
3.07

ln (brij)
ξ

¶¶
, (4)

where brij is the normalized distance between two placeholders
i and j in the "service area" of the ad-hoc network. The service
area of the ad-hoc network is the whole area where nodes are
uniformly distributed. Figure 3 shows calculated values3 of
the link density using (4) for different sizes of square-shaped
service areas and for different values of ξ. Important is to
notice that when the size of the service area increases, the link
density tends to zero. Further, we see that the link density is
higher for larger values of ξ. From a radio propagation point
of view, a higher value of ξ means a higher probability of
having links with nodes at farther distances. As expected, this
translates itself to a higher value of the link density over the
service area.
Having the formula for the link density; the average node

degree in an ad-hoc network with log-normal shadowing
model follows directly from (2):

E[d]sh = (n− 1)Lsh (5)

Table 1 shows some values of the link density and the
average node degree found using (4), respectively, (5); and
compares them with values found through simulations. The
simulation program used for verification of computed results,
spreads n nodes uniformly over the rectangular service area
and establishes links between node pairs using the probability
function (3). The simulated value of the link density in each
case is the ratio of the established links to the maximum
number of possible links. The simulated value of the average
node degree is the mean value of the degree found for all

3In this paper wherever the link density is numerically calculated for an
area of size Ω, we have assumed that ∆Ω = 0.1× 0.1. For a square-sized
area of length Z, this means m = 10× Z.

Fig. 3. Link density for square-sized areas and different values of ξ.

TABLE I
CALCULATED VS SIMULATED VALUES OF LINK DENSITY AND AVERAGE
NODES DEGREE WITH LOG-NORMAL SHADOWING RADIO MODEL.

area ξ cal. Lsh cal.E[d]sh
n=2000

sim.Lsh
n=2000

sim.E[d]sh
n=2000

5×5 0 0.1046 209.04 0.1051 210.02
5×5 3 0.1820 363.73 0.1823 364.42
10×10 0 0.0288 57.57 0.0287 57.41
10×10 3 0.0606 121.14 0.0610 122.00
20×20 0 0.0074 14.72 0.0074 14.85
20×20 3 0.0175 34.98 0.0178 35.52
50×50 0 0.0012 2.34 0.0012 2.45
50×50 3 0.0030 6.00 0.0030 6.08

nodes. It can be seen from this table that there is a good
match between simulated and calculated results.

IV. DEGREE DISTRIBUTION
In the previous section we calculated the link density and

the average node degree with the log-normal shadowing radio
model and verified by simulation that (4) and (5) provide ac-
curate results, regardless of the size of the service area. In this
section we concentrate on the degree distribution. For random
graphs we know that by definition the degree distribution is
binomial. The question considered in this section is whether
the degree distribution in ad-hoc networks is binomial as well.
When nodes are uniformly distributed over the service area,

for any node i with an arbitrary but fixed shape of coverage
area the degree distribution is binomial with a mean value
that depends on the size of the coverage area of node i. This
property follows directly from the uniform distribution and can
be verified easily. However, in an ad-hoc network there are
two factors that make the situation more complex. At the first
place because the coverage area is determined by a probability
function, the coverage area of each node does not have a
fixed shape and can vary from node to node. Secondly, for
nodes close to the borders of the service area, the coverage
area is truncated physically by border limits of the service
area. We will call the first factor "coverage probabilistic
fluctuations", and the second factor "border effect". The border
effect reduces the expected number of neighbors for nodes in



the border area in comparison to nodes situated more towards
the center of the service area. Taking these two aspects into
account, what is distribution of the node degree in an ad-hoc
network when we look at all nodes collectively?
We have investigated this question through simulations4 for

different network sizes, network densities and ξ. Our main
conclusion based on these simulations is that in wireless
ad-hoc networks the node degree can be considered to be
binomially distributed, with a mean value given by (5), when
the "border effect" is negligible. The "coverage probabilistic
fluctuations" do not seem to distort the binomial distribution
of the node degree5. The border effect is negligible if: 1) the
service area is much larger than coverage area of a single node
and 2) the node density is low. A relatively large service area is
equivalent to a low link density. Therefore, the combined effect
of conditions 1 and 2 is reflected in the product of the link
density and the number of nodes; in other words, in the value
of average node degree (see (5)). Considering this, we can
say that the border effect is negligible and the node degree is
binomially distributed when the average node degree is low. In
the remainder of this section we justify this statement and try
to quantify the condition for its validity by simulation results.
Figure 4 shows the degree distribution found through sim-

ulations for ξ = 3 and different number of nodes uniformly
distributed over an area of 20 × 20. Figure 5 shows another
set of simulation results found for n = 1000 and different
values of ξ. In both figures the solid lines represent the
actual degree distribution, while in each case a dotted line
shows a binomial distribution with the same mean value as
the actual degree distribution. We have used the Kolmogorov-
Smirnov test with 5% significance level [15] to verify the
hypothesis that the actual degree distribution is binomial. The
Kolmogorov-Smirnov tests show that for the low values of
average node degree, E[d], the degree distribution is binomial
with high probability. As the average node degree increases,
the probability of accepting the hypothesis reduces. However,
only in cases e, f, k and l in Figures 4 and 5, where the average
node degree is higher than 18, the hypothesis of binomial
distribution could be rejected. Other simulation results for
different sizes and shapes of the service area (not presented
here) are consistent with this result: in all cases where nodes
are uniformly distributed over the service area, the distribution
of the node degree can be considered to be binomial if the
average node degree is low (lower than 18 for square-shaped
areas).
In section I we mentioned that knowing the exact degree

4The simulation method is straightforward. In each simulation run we
distribute n nodes over an area of x × y. We establish links between nodes
using p(br) according to (3) and calculate the degree distribution for all nodes.
5To be able to investigate the effect of coverage probabilistic fluctuations

separate from the border effect, we focused on the nodes in the inner region
of the service area. The inner region of a rectangular service area of size
x × y is a rectangle with size (x − 2d) × (y − 2d). The service area and
the inner region are co-centered rectangles. To exclude the border effect, d
should be chosen in such a way that only a negligible portion of the coverage
area of any node in the inner region could fall outside the service area. In
our simulation for each value of ξ we chose d to be the distance where the
link probability drops to 5% (see (3)). Our simulation results showed that
regardless of the network size, the network density and the value of ξ, the
degree distribution for inner nodes is binomial.

Fig. 4. Degree distribution found through simulation for different values
of n, compared with a binomial distribution having the same mean value.
Service area in all cases is 20× 20 and ξ = 3.

Fig. 5. Degree distribution found through simulation for different values of
ξ, compared with a binomial distribution having the same mean value. Service
area in all cases is 20× 20 and n = 1000.

distribution is relevant in the study of connectivity in ad-
hoc networks. Without going into details we remind that
the transition from disconnected to connected networks takes
place at low values of mean node degree [3]. Therefore, in
the regions close to the transition between connected and
disconnected networks, it is save to assume that the degree
distribution is binomial. In practice too, the average node
degree is unlikely to be high in wireless ad-hoc networks,
personal area networks or sensor networks. At the first place
the transmission power of nodes forming these networks is
low which limits the geographical size of the coverage area,
and consequently the number of neighboring nodes. Secondly,
because of medium sharing in these networks, a high node
degree would result into a very low throughput per node which
is an undesired situation and would be avoided.

V. HOPCOUNT
In this section we focus on the mean hopcount based on

our geometric random graph model of ad-hoc networks. The



Fig. 6. Nodes and links in an ad-hoc network for different values of ξ. In
all subplots n = 1000, and service area is 20× 20.

mean hopcount is the average distance between any pair
of nodes, or the average path length. The mean hopcount
in a random graph Gp(n) with p = E [d] /n, is: E[h] ∼
ln(n)/ ln(E[d]), whereE[d] is the average node degree in
the random graph (see e.g. [12]). As opposite to random
graphs where links are completely uncorrelated and relative
node positions irrelevant, an extremely regulated graph in two
dimensions is a rectangular lattice. Apart from border nodes,
each node in a rectangular lattice has a constant degree of
4. Further, neighboring nodes are all at the same distance
from each other. We call the distance between neighboring
nodes the "granularity" of the lattice. The size of the lattice is
the number of nodes in the lattice. The mean hopcount is of
the order O (

√
n) in a rectangular lattice with n nodes6. For

connected graphs, the mean hopcount in a lattice is higher
than the mean hopcount in a random graph of the same size.
In this section we show that the mean hopcount in an ad-hoc
network can vary between the expected values for a lattice
network and a random graph, depending on the value of ξ.
Figure 6 visualizes the effect of the variation in ξ on the
topology of an ad-hoc network. When ξ = 0, only nodes at
distances less than the normalized distance 1 are connected. As
ξ increases, the probability of having a link between two nodes
at farther distances increases as well. Consequently, the mean
hopcount reduces. Figure 7 shows the hopcount distribution
corresponding to each subplot in Figure 6. When the number
of nodes is high enough for a giant component [3] to appear,
at low values of ξ, the mean hopcount is close to the mean
hopcount in a lattice with the same length and the same width
as the service area and granularity 1. When ξ increases, the
mean hopcount tends more towards the mean hopcount in a
random graph with the same number of nodes and the same
link probability.

6It can be proved that in a two dimensional rectangular lattice consisting
of n = k × l nodes, the mean hop-count is exactly: E[h] = k+l

3
.

Fig. 7. Hop count in an ad-hoc network for different values of ξ. In all
subplots n = 1000, and service area is 20× 20. On each subplot the mean
value of the hop-count is indicated together with the mean hop-count in a
lattice of size 21× 21 and in a random graph with 1000 nodes and the same
link probability as in the ad-hoc network.

VI. CONCLUSIONS

In this paper we have suggested to use the log-normal shad-
owing radio model, which is more realistic than the commonly
used path-loss model to find the link probability between nodes
in wireless ad-hoc networks. With this radio model, the link
probability can be expressed in closed mathematical form, as
shown in (3).
Through a combination of mathematical modeling and sim-

ulations we have shown that in wireless ad-hoc networks, with
uniform distribution of nodes over the service area, the degree
distribution is binomial if the concentration of nodes around
the borders of the service area is low. Compliance with this
condition can be checked based on the value of the mean
degree. The mean degree, E[d] is calculated with (5). Our
simulations show that for square-sized service areas degree
distribution can be considered to be binomial when E[d] . 18.
The other fundamental property of ad-hoc networks studied

here is the hopcount. We have shown that the hopcount in wire-
less ad-hoc networks can shift between the hopcount values
expected for lattice networks and the hopcount values expected
in random graphs. Towards which of these two extremes the
actual hopcount leans depends on factor ξ of the radio model.
At low values of ξ, the men hopcount is close to the mean
hopcount in a lattice with the same length and the same width
as the service area. As ξ increases, more fluctuations in power
loss over radio links can be expected. These fluctuations may
cause nodes at long distances to become visible to each other.
Consequently, when ξ increases, the mean hopcount tends
more towards the mean hopcount in random graphs.

APPENDIX

Consider n nodes uniformly distributed over a certain two-
dimensional area Ω. We split area Ω intom small area’s of size
∆Ω. Assuming that ∆Ω is small enough to include only one
node, the total number of configurations that can be formed



with n nodes over the whole area is
¡
n
m

¢
. We denote these

configurations by L1...L(mn)
. The average number of links

over all possible configurations is by definition the number
of links in each configuration multiplied by the probability of
occurrence of that configuration:

E[L] = Pr {L1}L1 +Pr {L2}L2 + ....+Pr
n
L(mn)

o
L(mn)

=

(nm)X
s=1

Pr {Ls}
 nX
i=1

nX
j=i+1

p (|∆Ωs,i −∆Ωs,j |)
 .

Here ∆Ωs,x indicates the position of the placeholder con-
taining node x in configuration s, and |∆Ωs,i −∆Ωs,j | is
the distance between two nodes i and j in configuration s.
This formula can be simplified and rearranged by taking the
following into account:
• n nodes can be placed in m possible positions in

¡
m
n

¢
distinct ways. If nodes are uniformly distributed over area
Ω, all configurations are equally probable with probability¡
m
n

¢−1.
• In the summation over all possible configuration pos-
sibilities, each node could be positioned in any of the
m possible positions. Therefore, the sum of the link
functions p(.) over all possible links between n nodes
over all possible configuration, can be written as sum-
mation of link functions p(.) over all combination of
placeholders themselves. Further, we notice that the link
function between any two placeholders i and j occurs
exactly

¡
m−2
n−2

¢
times (if positions i and j are occupied,

there are n− 2 nodes to be positioned in m− 2 places,
and this can be done in

¡
m−2
n−2

¢
ways).

Considering these points, the formula for E[L] can be
rewritten as:

E[L] =

¡
m−2
n−2

¢ mP
i=1

mP
j=i+1

p (|∆Ωi −∆Ωj |)¡
m
n

¢
=

n(n− 1)
m(m− 1)

mX
i=1

mX
j=i+1

p (|∆Ωi −∆Ωj |)

=
n(n− 1)
m(m− 1)

mX
i=1

mX
j=i+1

p (rij) ,

where rij is the distance between two positions i and j.
We mention here that the above double summation can be
simplified in several ways to make numerical computations
faster. One method is to rearrange and regroup terms so that
summations will be over the number of nodes, rather than
number of placeholders. An integral expression is also possible
[16].
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